JP2014183606A - Rotor with temperature measurement function - Google Patents

Rotor with temperature measurement function Download PDF

Info

Publication number
JP2014183606A
JP2014183606A JP2013054756A JP2013054756A JP2014183606A JP 2014183606 A JP2014183606 A JP 2014183606A JP 2013054756 A JP2013054756 A JP 2013054756A JP 2013054756 A JP2013054756 A JP 2013054756A JP 2014183606 A JP2014183606 A JP 2014183606A
Authority
JP
Japan
Prior art keywords
rotor
power generation
power
permanent magnet
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013054756A
Other languages
Japanese (ja)
Other versions
JP5995759B2 (en
Inventor
Masahiko Yamashita
真彦 山下
Kentaro Mizuno
健太朗 水野
Hideo Nakai
英雄 中井
Shoji Hashimoto
昭二 橋本
Masaya Segawa
雅也 瀬川
Hirohide Inayama
博英 稲山
Koji Nishi
幸二 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Toyota Central R&D Labs Inc
Original Assignee
JTEKT Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp, Toyota Central R&D Labs Inc filed Critical JTEKT Corp
Priority to JP2013054756A priority Critical patent/JP5995759B2/en
Publication of JP2014183606A publication Critical patent/JP2014183606A/en
Application granted granted Critical
Publication of JP5995759B2 publication Critical patent/JP5995759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve a problem in that a combination of a coil, which generates power using a change in magnetic flux density caused in a rotor during the rotation of the rotor, and an electronic component, which measures the rotor temperature and transmits it wirelessly, makes it possible to directly measure the rotor temperature without wire connection to the rotor, however, it is difficult to actually mount the coil and electronic components on the rotor.SOLUTION: A positioning projection is formed on an approximately cylindrical rotor core that fixes permanent magnets on its outer periphery, the positioning projection being used to restrict the position of the permanent magnet in contact with the end part of each of the permanent magnets. A measurement unit incorporating a power generation coil and an electronic component is fixed to each positioning projection part. The power generation coil is arranged in a place where a magnetic flux is intense, thus effectively generating power.

Description

本明細書では、モータのステータコイルで囲まれている空間内において回転可能に支持され、ステータコイルへの通電を制御することで生成される回転磁場によって回転するロータに関する技術を開示する。   The present specification discloses a technique related to a rotor that is rotatably supported in a space surrounded by a stator coil of a motor and that rotates by a rotating magnetic field generated by controlling energization of the stator coil.

特許文献1に、温度計測機能を備えているロータが開示されている。ロータは、ロータコアと、ロータコアに固定されている永久磁石を備えている。ロータコアは、ステータコイルに対して回転可能に支持されており、略円柱形をしている。複数個の永久磁石が用いられ、複数個の永久磁石がロータコアに固定されている。ステータコイルへの通電を制御することで回転磁場が生成され、その回転磁場によってロータが回転する。   Patent Document 1 discloses a rotor having a temperature measurement function. The rotor includes a rotor core and a permanent magnet fixed to the rotor core. The rotor core is rotatably supported with respect to the stator coil, and has a substantially cylindrical shape. A plurality of permanent magnets are used, and the plurality of permanent magnets are fixed to the rotor core. A rotating magnetic field is generated by controlling energization of the stator coil, and the rotor is rotated by the rotating magnetic field.

ロータを回転させるとロータが発熱し、ロータ温度が上昇する。永久磁石は、所定温度以上に昇温すると減磁または消磁するために、モータのトルクが減少する。ロータ温度を計測する必要がある。   When the rotor is rotated, the rotor generates heat and the rotor temperature rises. Since the permanent magnet is demagnetized or demagnetized when the temperature rises above a predetermined temperature, the torque of the motor decreases. It is necessary to measure the rotor temperature.

特許文献1の技術では、ロータに温度センサ付RFIDタグを設ける。ここでいう温度センサ付RFIDタグは、発電コイルと、発電コイルが発電する電力を駆動電力に変換する電源回路と、電源回路からの電力で駆動させる温度センサ回路と、電源回路からの電力で駆動されるとともに温度センサ回路による計測値を無線で発信する発信回路を搭載している。ロータに発電コイルを固定しておくと、ステータコイルで囲まれている空間内でロータが回転するのに伴って発電コイルを通過する磁束強度が変化し、その磁束強度の変化によって発電コイルが発電する。   In the technique of Patent Document 1, an RFID tag with a temperature sensor is provided on the rotor. The RFID tag with a temperature sensor here is a power generation coil, a power supply circuit that converts power generated by the power generation coil into drive power, a temperature sensor circuit that is driven by power from the power supply circuit, and power that is driven from the power supply circuit. In addition, it is equipped with a transmitter circuit that wirelessly transmits the measured value by the temperature sensor circuit. When the power generation coil is fixed to the rotor, the magnetic flux intensity passing through the power generation coil changes as the rotor rotates in the space surrounded by the stator coil, and the power generation coil generates power by changing the magnetic flux intensity. To do.

上記技術によると、温度計測のための電力をロータ外から供給する電力線も必要とされなければ、計測値をロータ外に伝達する信号線も必要とされない。回転するロータに結線することなくロータ温度を計測することができる。   According to the above technique, if a power line for supplying power for temperature measurement from the outside of the rotor is not required, a signal line for transmitting the measurement value to the outside of the rotor is not required. The rotor temperature can be measured without connecting to the rotating rotor.

特開2009−247084号公報JP 2009-247084 A

特許文献1の技術によって、原理的には回転するロータに結線することなくロータ温度を計測することが可能となるが、その技術を実用化するのは難しい。
ロータは、ステータコイルで生成される回転磁場に追従して回転する。すなわち、磁場とロータの関係は、基本的には一定である。従って、発電コイルを通過する磁束強度も基本的には一定である。実際には、ステータコイルに対する回転角度に依存して発電コイルを通過する磁束強度は変化するが、その変化量は小さい。磁束強度の小さな変化を利用して発電するためには、ロータに対する発電コイルの取り付け姿勢が重要である。また、発信回路がロータ外に開放された位置に配置されていないと、電波がロータ外に到達せず、ロータ外で受信することができない。発電コイルと温度センサ回路と発信回路のそれぞれを、それぞれが機能を発揮するように搭載するのは難しい。特許文献1の技術では、温度センサ付RFIDタグの設置位置を例示しているに過ぎず、発電コイルの配置方法については開示がない。仮に、図示されている温度センサ付RFIDタグ内に発電コイルが収容されているとすると、その発電コイルでは小さすぎ、ロータ温度を計測して無線発信するのに必要な電力を発電することは難しい。
With the technique of Patent Document 1, it is possible in principle to measure the rotor temperature without connecting to the rotating rotor, but it is difficult to put the technique to practical use.
The rotor rotates following the rotating magnetic field generated by the stator coil. That is, the relationship between the magnetic field and the rotor is basically constant. Therefore, the strength of the magnetic flux passing through the power generation coil is basically constant. Actually, the magnetic flux intensity passing through the power generation coil changes depending on the rotation angle with respect to the stator coil, but the amount of change is small. In order to generate power using a small change in magnetic flux intensity, the mounting posture of the power generation coil with respect to the rotor is important. Further, if the transmission circuit is not disposed at a position opened outside the rotor, the radio wave does not reach the outside of the rotor and cannot be received outside the rotor. It is difficult to mount the power generation coil, the temperature sensor circuit, and the transmission circuit so that each of them functions. In the technique of Patent Document 1, only the installation position of the RFID tag with the temperature sensor is illustrated, and there is no disclosure about the method of arranging the power generation coil. If the power generation coil is accommodated in the illustrated RFID tag with a temperature sensor, the power generation coil is too small, and it is difficult to generate electric power necessary for measuring the rotor temperature and wirelessly transmitting it. .

本明細書では、ロータ温度を計測して計測値を電波で発信するのに必要な発電コイル等の部材を、ロータに搭載する技術を開示する。
本明細書で開示するロータは、ロータコアと、複数個の永久磁石と、少なくとも一つの計測ユニットを備えている。ロータコアは、ステータコイルに対して回転可能に支持されて用いられ、略円柱形である。ロータコアの外周面に、複数個の永久磁石が固定されている。ロータコアには、各々の永久磁石の端部と当接して、ロータコアに対する各々の永久磁石の位置を規制する位置決め凸部が形成されている。計測ユニットは、位置決め凸部に固定されている。計測ユニットは、1個の永久磁石の周囲に巻回された発電コイルと、発電コイルに接続されている電子部品を備えている。その電子部品は、発電コイルから供給される電力を駆動電力に変換する電源回路と、電源回路からの電力で駆動させる温度センサ回路と、電源回路からの電力で駆動されるとともに温度センサ回路の計測値を無線で発信する発信回路を搭載しており、永久磁石の端部に当接している。
The present specification discloses a technique for mounting a member such as a power generation coil necessary for measuring a rotor temperature and transmitting a measurement value by radio waves on the rotor.
The rotor disclosed in this specification includes a rotor core, a plurality of permanent magnets, and at least one measuring unit. The rotor core is used while being supported rotatably with respect to the stator coil, and has a substantially cylindrical shape. A plurality of permanent magnets are fixed to the outer peripheral surface of the rotor core. The rotor core is formed with positioning protrusions that abut the end portions of the permanent magnets and regulate the positions of the permanent magnets with respect to the rotor core. The measurement unit is fixed to the positioning convex portion. The measurement unit includes a power generation coil wound around one permanent magnet and an electronic component connected to the power generation coil. The electronic component includes a power supply circuit that converts power supplied from the power generation coil into drive power, a temperature sensor circuit that is driven by power from the power supply circuit, and measurement of the temperature sensor circuit that is driven by power from the power supply circuit. It has a transmitter circuit that transmits values wirelessly and is in contact with the end of the permanent magnet.

上記によると、発電コイルで形成されるループ、すなわち発電に寄与する磁束の通過範囲が永久磁石の大きさにほぼ等しい。また位置決め凸部はロータの外周面から突出しており、その位置決め凸部に計測ユニットを固定するために、発電コイルとステータ間の距離が近く、磁束の強度が高い位置に発電コイルを位置させることができる。これらにより、発電コイルによって必要電力を発電することができる。電子部品は、ロータ外に開放されている位置に配置されており、発信回路から発信された電波がロータ外に達する。ロータ外で計測値を受信することができる。計測ユニットを位置決め凸部に固定するために、永久磁石の端面のうちの半径方向外側の部分に電子部品を当接させることができ、温度を計測する必要性がもっとも高い位置の温度を計測することができる。   According to the above, the loop formed by the power generation coil, that is, the passing range of the magnetic flux contributing to power generation is substantially equal to the size of the permanent magnet. In addition, the positioning convex part protrudes from the outer peripheral surface of the rotor, and in order to fix the measurement unit to the positioning convex part, the distance between the power generating coil and the stator is close and the power generating coil is positioned at a position where the magnetic flux strength is high. Can do. Thus, the necessary power can be generated by the power generation coil. The electronic component is disposed at a position open to the outside of the rotor, and radio waves transmitted from the transmission circuit reach the outside of the rotor. Measurement values can be received outside the rotor. In order to fix the measuring unit to the positioning convex part, the electronic component can be brought into contact with the radially outer part of the end face of the permanent magnet, and the temperature at the position where the temperature is most required is measured. be able to.

第1実施例のロータの分解斜視図。The exploded perspective view of the rotor of the 1st example. 電子部品の回路構成を示す図。The figure which shows the circuit structure of an electronic component. 計測ユニットの平面図。The top view of a measurement unit. 図4とは別の計測ユニットの平面図。The top view of the measurement unit different from FIG. 図1のロータの平面図。The top view of the rotor of FIG. 図5のVI−VI線断面図とその一部拡大図。FIG. 6 is a sectional view taken along line VI-VI in FIG. 5 and a partially enlarged view thereof. 実施例と参考例を対比した図。The figure which contrasted an Example and a reference example. 第2実施例の図6に対応する図。The figure corresponding to FIG. 6 of 2nd Example. 第2実施例の計測ユニットの平面図。The top view of the measurement unit of 2nd Example. 第3実施例の図6に対応する図。The figure corresponding to FIG. 6 of 3rd Example. 第3実施例の計測ユニットの平面図。The top view of the measurement unit of 3rd Example. 第4実施例の図6に対応する図。The figure corresponding to FIG. 6 of 4th Example. 第4実施例の計測ユニットの平面図。The top view of the measurement unit of 4th Example.

下記に説明する実施例の特徴を列記する。
(特徴1)温度センサが、永久磁石の輪郭近傍に配置されている。
(特徴2)温度センサが、永久磁石の周方向の端部の表面近傍に配置されている。
(特徴3)発電コイルが、永久磁石の裏面よりも表面に近い位置に配置されている。
(特徴4)発電コイルと電子部品がフレキシブル基板に実装されている。
(特徴5)1枚のフレキシブル基板に、複数個の発電コイルと1個の電子部品が実装されている。
(特徴6)1枚のフレキシブル基板に、複数個の発電コイルと複数個の電子部品が実装されている。
(特徴7)1個の永久磁石に、1個の発電コイルと1個の電子部品が配置されている。
(特徴8)複数個の永久磁石に対して、複数個の発電コイルと1個の電子部品が配置されている。複数個の発電コイルは、起電力の向きが揃う向きで直列接続されている。
The features of the embodiments described below are listed.
(Feature 1) A temperature sensor is arranged in the vicinity of the contour of the permanent magnet.
(Feature 2) A temperature sensor is disposed in the vicinity of the surface of the circumferential end of the permanent magnet.
(Characteristic 3) The power generation coil is disposed closer to the front surface than the back surface of the permanent magnet.
(Feature 4) The power generation coil and the electronic component are mounted on a flexible substrate.
(Feature 5) A plurality of power generation coils and one electronic component are mounted on one flexible substrate.
(Feature 6) A plurality of power generation coils and a plurality of electronic components are mounted on one flexible substrate.
(Feature 7) One power generation coil and one electronic component are arranged in one permanent magnet.
(Feature 8) A plurality of power generation coils and one electronic component are arranged for a plurality of permanent magnets. The plurality of power generation coils are connected in series so that the directions of the electromotive forces are aligned.

図1において、参照番号2はロータを示し、参照番号30はロータコアを示し、ロータコア30に回転軸41,42が固定されている。ロータコア30は略円柱状であり、その外周面に4枚の永久磁石11,12,13,14が固定されている。
図1、図6等に示すように、ロータコア30の外周面上には、永久磁石11,12,13,14の周方向の端面に当接してロータコア30に対する永久磁石11,12,13,14の周方向の位置を決める凸部31a,32a,33a,34a,31b,32b,33b,34bが形成されている。凸部31a,31bは周方向の位置が同じである。凸部32a,32bと、凸部33a,33bと、凸部34a,34bについても同様である。凸部31a,32a,33a,34aの軸方向の位置は同じである。凸部31b,32b,33b,34bについても同様である。凸部31a,32a,33a,34a,31b,32b,33b,34bの高さは、永久磁石11,12,13,14の厚みよりも低く、凸部31a,32a,33a,34a,31b,32b,33b,34bの頂面は、永久磁石11,12,13,14によって形成される外周面より窪んでいる。凸部31a,32a,33a,34a,31b,32b,33b,34bの頂面は、ロータコア30の外周面の半径より大きく、永久磁石11,12,13,14の外周面の半径より小さな半径の円柱外周面の一部で形成されている。
In FIG. 1, reference numeral 2 indicates a rotor, reference numeral 30 indicates a rotor core, and rotating shafts 41 and 42 are fixed to the rotor core 30. The rotor core 30 has a substantially cylindrical shape, and four permanent magnets 11, 12, 13, and 14 are fixed to the outer peripheral surface thereof.
As shown in FIGS. 1, 6, etc., the permanent magnets 11, 12, 13, 14 with respect to the rotor core 30 are in contact with the circumferential end surfaces of the permanent magnets 11, 12, 13, 14 on the outer circumferential surface of the rotor core 30. Convex portions 31a, 32a, 33a, 34a, 31b, 32b, 33b, and 34b that determine the positions in the circumferential direction are formed. The convex portions 31a and 31b have the same circumferential position. The same applies to the convex portions 32a and 32b, the convex portions 33a and 33b, and the convex portions 34a and 34b. The positions of the convex portions 31a, 32a, 33a, 34a in the axial direction are the same. The same applies to the convex portions 31b, 32b, 33b, and 34b. The height of the convex portions 31a, 32a, 33a, 34a, 31b, 32b, 33b, 34b is lower than the thickness of the permanent magnets 11, 12, 13, 14, and the convex portions 31a, 32a, 33a, 34a, 31b, 32b. , 33b, 34b are recessed from the outer peripheral surface formed by the permanent magnets 11, 12, 13, 14. The top surfaces of the convex portions 31 a, 32 a, 33 a, 34 a, 31 b, 32 b, 33 b, 34 b are larger than the radius of the outer peripheral surface of the rotor core 30 and smaller than the radius of the outer peripheral surface of the permanent magnets 11, 12, 13, 14. It is formed by a part of the outer peripheral surface of the cylinder.

図1に示すように、ロータコア30の温度を計測してロータ2の外部に無線送信する計測ユニット21がロータに固定されている。計測ユニット21は、永久磁石11の輪郭形状に一致する開口が形成されている枠部を備えている。回転軸41,42に沿って延びる部分の枠は、永久磁石11と12の間隔と、永久磁石11と14の間隔に嵌まり込む太さに形成されており、計測ユニット21を永久磁石11の周囲を一巡する位置に挿入することができる。さらに計測ユニット21の厚みは、永久磁石11,12,13,14の厚みと凸部31a,32a,33a,34a,31b,32b,33b,34bの高さの差よりも薄く、計測ユニット21を永久磁石11と12の間隔と永久磁石11と14の間隔に嵌め込むと、計測ユニット21の表面は、永久磁石11,12,13,14によって形成される外周面より沈み込む。図1では、計測ユニット21を永久磁石11の周囲を一巡する位置に嵌め込む前の状態を示している。
周知のように、ロータ2はモータのステータコイルで囲まれた空間に収容され、回転軸41,42がモータケースに対して回転可能に支持される。ロータ2は、モータのステータコイルで囲まれた空間内で回転可能に支持される。
As shown in FIG. 1, a measurement unit 21 that measures the temperature of the rotor core 30 and wirelessly transmits it to the outside of the rotor 2 is fixed to the rotor. The measurement unit 21 includes a frame portion in which an opening that matches the contour shape of the permanent magnet 11 is formed. The part of the frame extending along the rotation shafts 41 and 42 is formed to have a thickness that fits into the interval between the permanent magnets 11 and 12 and the interval between the permanent magnets 11 and 14. It can be inserted at a position that makes a round of the surroundings. Further, the thickness of the measuring unit 21 is thinner than the difference between the thickness of the permanent magnets 11, 12, 13, 14 and the height of the convex portions 31 a, 32 a, 33 a, 34 a, 31 b, 32 b, 33 b, 34 b. When fitted into the interval between the permanent magnets 11 and 12 and the interval between the permanent magnets 11 and 14, the surface of the measurement unit 21 sinks from the outer peripheral surface formed by the permanent magnets 11, 12, 13, and 14. FIG. 1 shows a state before the measurement unit 21 is fitted in a position that makes a round around the permanent magnet 11.
As is well known, the rotor 2 is accommodated in a space surrounded by a stator coil of the motor, and the rotating shafts 41 and 42 are rotatably supported with respect to the motor case. The rotor 2 is rotatably supported in a space surrounded by the stator coil of the motor.

図3は、計測ユニット21を示し、フレキシブル基板71上にプリント配線して発電コイル51を形成し、フレキシブル基板71に電子部品61を実装することで形成されている。電子部品61は発電コイル51に接続されている。
図2は、電子部品61が備えている回路構成を示している。電子部品61は、発電コイル51から供給される電力を駆動電力に変換する電源回路81と、電源回路81からの電力で駆動させる温度センサ回路82と、電源回路81からの電力で駆動されるとともに温度センサ回路82の計測値を無線で発信する発信回路83と発信アンテナ84を搭載している。
FIG. 3 shows the measurement unit 21, which is formed by forming a power generation coil 51 by printed wiring on a flexible substrate 71 and mounting an electronic component 61 on the flexible substrate 71. The electronic component 61 is connected to the power generation coil 51.
FIG. 2 shows a circuit configuration provided in the electronic component 61. The electronic component 61 is driven by the power from the power supply circuit 81 that converts the power supplied from the power generation coil 51 into drive power, the temperature sensor circuit 82 that is driven by the power from the power supply circuit 81, and the power from the power supply circuit 81. A transmitter circuit 83 and a transmitter antenna 84 for transmitting the measured value of the temperature sensor circuit 82 wirelessly are mounted.

図5は、計測ユニット21をロータ2に組み込んだ状態における平面図であり、図6(a)は、図5のVI−VI線断面図である。発電コイル51は、永久磁石11と12の間隔と永久磁石11と14の間隔に嵌め込まれている。計測ユニット21は、凸部31a,31b,34a,34bの頂面に強固に固定されている。図6(b)は、凸部31aと、フレキシブル基板71と発電コイル51と電子部品61の関係を示している。フレキシブル基板71は湾曲した状態で永久磁石11と12の間隔に収容され、その弾性力によって電子部品61を永久磁石11の周方向の端面に押し付けている。
図7の(a)は、位置決め用凸部31a,32a,33a,34a,31b,32b,33b,34bが形成されている場合を示し、図7の(b)は、位置決め用凸部が形成されていない場合を示している。位置決め用凸部が形成されていない場合は、電子部品61が永久磁石11に周方向の端面の裏面近傍に当接する。位置決め用凸部31a,32a,33a,34a,31b,32b,33b,34bが形成されていると、その高さによって、電子部品61が永久磁石11に周方向の端面の表面近傍に当接する。
本実施例によると、電子部品61は永久磁石11の周方向の端面の表面近傍に密着し、永久磁石11の周方向の端面の表面近傍の温度を計測する。永久磁石の周方向の端面の表面近傍は最も昇温し易い箇所であり、その箇所の温度を計測できると、昇温防止のための措置を適格に講じることが可能となる。
また、位置決め用凸部31a,32a,33a,34a,31b,32b,33b,34bが形成されていると、その高さによって、発電コイル51が永久磁石11の表面側に配置される。凸部が形成されていないと、発電コイル51が永久磁石11に裏面側に配置される。永久磁石の裏面側と表面側を比較すると、表面側の磁束強度が裏面側よりも高い。位置決め用凸部31a,32a,33a,34a,31b,32b,33b,34bを利用すると、磁束強度が高い位置に発電コイルを配置することができ、効率的に発電することができる。
FIG. 5 is a plan view of the state in which the measurement unit 21 is incorporated in the rotor 2, and FIG. 6A is a cross-sectional view taken along the line VI-VI in FIG. 5. The power generation coil 51 is fitted into the interval between the permanent magnets 11 and 12 and the interval between the permanent magnets 11 and 14. The measurement unit 21 is firmly fixed to the top surfaces of the convex portions 31a, 31b, 34a, and 34b. FIG. 6B shows the relationship among the convex portion 31 a, the flexible substrate 71, the power generation coil 51, and the electronic component 61. The flexible substrate 71 is accommodated in the space between the permanent magnets 11 and 12 in a curved state, and the electronic component 61 is pressed against the end surface in the circumferential direction of the permanent magnet 11 by its elastic force.
FIG. 7A shows a case where positioning convex portions 31a, 32a, 33a, 34a, 31b, 32b, 33b, and 34b are formed, and FIG. 7B shows a case where positioning convex portions are formed. Shows the case where it is not. When the positioning convex portion is not formed, the electronic component 61 contacts the permanent magnet 11 in the vicinity of the back surface of the circumferential end surface. When the positioning convex portions 31a, 32a, 33a, 34a, 31b, 32b, 33b, and 34b are formed, the electronic component 61 comes into contact with the permanent magnet 11 in the vicinity of the surface of the end surface in the circumferential direction.
According to this embodiment, the electronic component 61 is in close contact with the vicinity of the surface of the end face in the circumferential direction of the permanent magnet 11, and measures the temperature near the surface of the end face in the circumferential direction of the permanent magnet 11. The vicinity of the surface of the end surface in the circumferential direction of the permanent magnet is the place where the temperature rises most easily, and if the temperature at that place can be measured, it becomes possible to appropriately take measures for preventing the temperature rise.
Further, when the positioning convex portions 31 a, 32 a, 33 a, 34 a, 31 b, 32 b, 33 b, 34 b are formed, the power generation coil 51 is arranged on the surface side of the permanent magnet 11 depending on the height thereof. If the convex portion is not formed, the power generation coil 51 is disposed on the back side of the permanent magnet 11. When the back side and the front side of the permanent magnet are compared, the magnetic flux intensity on the front side is higher than that on the back side. When the positioning convex portions 31a, 32a, 33a, 34a, 31b, 32b, 33b, and 34b are used, the power generation coil can be disposed at a position where the magnetic flux intensity is high, and power can be generated efficiently.

発電コイル51の磁束通過面積は、永久磁石11の面積にほぼ等しく、ロータコア30の円筒部分の外周面積のほぼ1/4に及んでいる。発電コイル51の有効発電面積が広く、ロータ2が回転することによって生じる発電コイル通過磁束の強度変化によって必要な電力を確保することができる。また、電子部品61はロータ2の外部に連通する位置に配置されており、電子部品61から発信された電波をロータの外側で受信ができる。第1実施例によって、ロータ内外間に亘る配線を設けることなく、ロータ温度を計測して無線で発信することが可能となる。
発電コイル51の大きさは、1個の永久磁石の大きさにほぼ等しいのが好ましい。周知のように、発電電圧vの大きさは、電磁誘導の法則によって、下記のものとなる。
v=−n×(ΔB/Δt)×S
ここで、nはコイルの巻数であり、ΔB/Δtは磁束密度の時間変化であり、Sはコイルの面積である。
上記式より、発電電圧vとコイル面積Sが比例することがわかり、発電電圧を高めるためにはコイル面積を大きくするのが有効であることがわかる。しかしながら、発電コイルの大きさが1個の永久磁石よりも大きくなると、その発電コイルが隣接する永久磁石にもかかることになる。ところが、隣接する永久磁石の極性は反対方向であり、磁束を打ち消しあう方向であることから、1個の発電コイルが隣接する永久磁石にまでかかると、その発電コイルを通過する磁束がかえって減少してしまう。その結果、発電電圧が低下してしまう。発電コイルが1個の永久磁石の大きさにほぼ等しい場合に、最も効率的に発電することができる。
計測ユニット21は、図4に示すものであってもよい。この場合は、フレキシブル基板を用いない。細いマグネットワイヤを複数回巻いて発電コイル51とする。
The magnetic flux passage area of the power generation coil 51 is substantially equal to the area of the permanent magnet 11, and is approximately ¼ of the outer peripheral area of the cylindrical portion of the rotor core 30. The effective power generation area of the power generation coil 51 is wide, and necessary power can be secured by a change in strength of the magnetic flux passing through the power generation coil that is generated when the rotor 2 rotates. Further, the electronic component 61 is disposed at a position communicating with the outside of the rotor 2, and radio waves transmitted from the electronic component 61 can be received outside the rotor. According to the first embodiment, the rotor temperature can be measured and transmitted wirelessly without providing wiring between the inside and outside of the rotor.
The size of the power generating coil 51 is preferably approximately equal to the size of one permanent magnet. As is well known, the magnitude of the generated voltage v is as follows according to the law of electromagnetic induction.
v = −n × (ΔB / Δt) × S
Here, n is the number of turns of the coil, ΔB / Δt is the time change of the magnetic flux density, and S is the area of the coil.
From the above equation, it can be seen that the generated voltage v and the coil area S are proportional, and it is found effective to increase the coil area in order to increase the generated voltage. However, when the size of the power generation coil is larger than one permanent magnet, the power generation coil is also applied to the adjacent permanent magnet. However, because the polarity of adjacent permanent magnets is in the opposite direction and cancels the magnetic flux, when one power generation coil reaches the adjacent permanent magnet, the magnetic flux passing through that power generation coil is reduced. End up. As a result, the generated voltage decreases. When the power generation coil is approximately equal to the size of one permanent magnet, power can be generated most efficiently.
The measurement unit 21 may be as shown in FIG. In this case, a flexible substrate is not used. A thin magnet wire is wound a plurality of times to form the power generation coil 51.

(第2実施例)
第1実施例では、4個ある永久磁石11,12,13,14のうちの1個の永久磁石11に対してのみ計測ユニット21を配置する。
第2実施例では、図8、9に例示するように、それぞれの永久磁石に計測ユニットを配置する。すなわち、永久磁石11に計測ユニット21を配置し、永久磁石12に計測ユニット22を配置し、永久磁石13に計測ユニット23を配置し、永久磁石14に計測ユニット24を配置する。
この実施例では、図9に示すように、1枚のフレキシブル基板70上に、発電コイル51と電子部品61の組と、発電コイル52と電子部品62の組と、発電コイル53と電子部品63の組と、発電コイル54と電子部品64の組を形成する。1枚のフレキシブル基板70を利用すると、計測ユニット21,22,23,24が製造し易く、ロータコア30に取り付け易い。
(Second embodiment)
In the first embodiment, the measurement unit 21 is arranged only for one of the four permanent magnets 11, 12, 13, 14.
In the second embodiment, as illustrated in FIGS. 8 and 9, a measurement unit is arranged in each permanent magnet. That is, the measurement unit 21 is arranged on the permanent magnet 11, the measurement unit 22 is arranged on the permanent magnet 12, the measurement unit 23 is arranged on the permanent magnet 13, and the measurement unit 24 is arranged on the permanent magnet 14.
In this embodiment, as shown in FIG. 9, a set of a power generation coil 51 and an electronic component 61, a set of a power generation coil 52 and an electronic component 62, a power generation coil 53 and an electronic component 63 are formed on a single flexible substrate 70. And a set of the power generation coil 54 and the electronic component 64 are formed. If one flexible substrate 70 is used, the measurement units 21, 22, 23, and 24 are easy to manufacture and attach to the rotor core 30.

(第3実施例)
本実施例では、図10と図11に示すように、永久磁石11の温度を電子部品61で計測して発信し、永久磁石12の温度を電子部品62で計測して発信する。本実施例では、図11に示すように、永久磁石11の周囲に巻回される発電コイル51と、永久磁石13の周囲に巻回される発電コイル53を、配線56で直列に接続し、発電コイル51,53の合計発電電圧を電子部品61に供給する。発電コイル51,53は同じ方向に巻かれている。永久磁石11と永久磁石13は同じ極性であることから(図10に示す場合は、外面側がN極で内面側がS極の極性となっている)、発電コイル51,53が同じ方向に巻かれていると、発電コイル51,53に生じる起電力の向きが揃い、その合計発電電圧が電子部品61に供給される。同様に、永久磁石12の周囲に巻回される発電コイル52と、永久磁石14の周囲に巻回される発電コイル54を、配線55で直列に接続し、発電コイル52,54の合計発電電圧を電子部品62に供給する。発電コイル52,54は同じ方向に巻かれている。永久磁石12と永久磁石14は同じ極性であることから(永久磁石11,13とは逆の極性である)、発電コイル52,54が同じ方向に巻かれていると、発電コイル52,54に生じる起電力の向きが揃い、その合計発電電圧が電子部品62に供給される。本実施例でも、1枚の共通基板70上に、発電コイル51、52,53,54をプリント配線し、電子部品61、62を実装する。
(Third embodiment)
In this embodiment, as shown in FIGS. 10 and 11, the temperature of the permanent magnet 11 is measured and transmitted by the electronic component 61, and the temperature of the permanent magnet 12 is measured and transmitted by the electronic component 62. In the present embodiment, as shown in FIG. 11, the power generation coil 51 wound around the permanent magnet 11 and the power generation coil 53 wound around the permanent magnet 13 are connected in series by the wiring 56, The total generated voltage of the power generation coils 51 and 53 is supplied to the electronic component 61. The power generating coils 51 and 53 are wound in the same direction. Since the permanent magnet 11 and the permanent magnet 13 have the same polarity (in the case shown in FIG. 10, the outer surface side is an N pole and the inner surface side is an S pole), the power generating coils 51 and 53 are wound in the same direction. If so, the directions of the electromotive forces generated in the power generation coils 51 and 53 are aligned, and the total generated voltage is supplied to the electronic component 61. Similarly, the power generation coil 52 wound around the permanent magnet 12 and the power generation coil 54 wound around the permanent magnet 14 are connected in series by the wiring 55, and the total generated voltage of the power generation coils 52, 54 is connected. Is supplied to the electronic component 62. The power generating coils 52 and 54 are wound in the same direction. Since the permanent magnet 12 and the permanent magnet 14 have the same polarity (opposite polarity with respect to the permanent magnets 11 and 13), if the power generating coils 52 and 54 are wound in the same direction, the power generating coils 52 and 54 The direction of the generated electromotive force is aligned, and the total generated voltage is supplied to the electronic component 62. Also in the present embodiment, the power generation coils 51, 52, 53, and 54 are printed on one common substrate 70, and the electronic components 61 and 62 are mounted.

(第4実施例)
本実施例では、図12と図13に示すように、永久磁石11の温度を電子部品61で計測して発信する。本実施例では、永久磁石11の輪郭の周囲に巻回される発電コイル51と、永久磁石12の周囲に巻回される発電コイル52と、永久磁石13の周囲に巻回される発電コイル53と、永久磁石14の周囲に巻回される発電コイル54を直列に接続し、発電コイル51,52,53,54の合計発電電圧を電子部品61に供給する。永久磁石11と永久磁石13は同じ極性であり、永久磁石12と永久磁石14は同じ極性であり、永久磁石11,13と永久磁石12,14は逆の極性であることから、発電コイル51と発電コイル53は同じ方向に巻かれており、発電コイル52と発電コイル54は同じ方向に巻かれており、発電コイル51,53と発電コイル52,54は逆方向に巻かれている。上記のように接続されていると、発電コイル51,52,53,54に生じる起電力の向きが揃い、発電コイル51,52,53,54の合計発電電圧が電子部品61に供給される。本実施例でも、1枚の共通基板70上に、発電コイル51、52,53,54をプリント配線し、電子部品61を実装する。
(Fourth embodiment)
In this embodiment, as shown in FIGS. 12 and 13, the temperature of the permanent magnet 11 is measured by the electronic component 61 and transmitted. In the present embodiment, the power generation coil 51 wound around the contour of the permanent magnet 11, the power generation coil 52 wound around the permanent magnet 12, and the power generation coil 53 wound around the permanent magnet 13. Then, the power generation coil 54 wound around the permanent magnet 14 is connected in series, and the total power generation voltage of the power generation coils 51, 52, 53, 54 is supplied to the electronic component 61. The permanent magnet 11 and the permanent magnet 13 have the same polarity, the permanent magnet 12 and the permanent magnet 14 have the same polarity, and the permanent magnets 11 and 13 and the permanent magnets 12 and 14 have opposite polarities. The power generation coil 53 is wound in the same direction, the power generation coil 52 and the power generation coil 54 are wound in the same direction, and the power generation coils 51 and 53 and the power generation coils 52 and 54 are wound in opposite directions. When connected as described above, the directions of the electromotive forces generated in the power generation coils 51, 52, 53, 54 are aligned, and the total generated voltage of the power generation coils 51, 52, 53, 54 is supplied to the electronic component 61. Also in this embodiment, the power generation coils 51, 52, 53, and 54 are printed on one common substrate 70, and the electronic component 61 is mounted.

以上、本実施例について詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。例えば、上記では永久磁石の周方向の端部に当接して周方向の位置を決める実施例を示したが、回転軸方向の端部に当接する凸部に計測ユニットを固定することもできるし、周方向の端部と回転軸方向の端部に当接する凸部に計測ユニットを固定することもできる。あるいは、永久磁石が周方向にも回転軸方向にも延びる端部を備えていることがあり、その端部に当接する凸部に計測ユニットを固定してもよい。
本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Although the present embodiment has been described in detail above, these are merely examples, and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. For example, in the above description, the embodiment has been described in which the circumferential position of the permanent magnet is contacted to determine the circumferential position. However, the measurement unit can be fixed to a convex portion that contacts the rotational axis end. The measurement unit can also be fixed to a convex portion that abuts the end in the circumferential direction and the end in the rotation axis direction. Alternatively, the permanent magnet may have an end portion that extends in both the circumferential direction and the rotation axis direction, and the measurement unit may be fixed to a convex portion that contacts the end portion.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

2:ロータ
11,12,13,14:永久磁石
21,22,23,24:計測ユニット
30:ロータコア
31a,32a,33a,34a,31b,32b,33b,34b:凸部
41,42:回転軸
51,52,53,54:発電コイル
61,62,63,64:電子部品
70,71:フレキシブル基板
81:電源回路
82:温度センサ回路
83:発信回路
84:発信アンテナ
2: Rotor 11, 12, 13, 14: Permanent magnets 21, 22, 23, 24: Measuring unit 30: Rotor cores 31a, 32a, 33a, 34a, 31b, 32b, 33b, 34b: Convex portions 41, 42: Rotating shaft 51, 52, 53, 54: Power generation coils 61, 62, 63, 64: Electronic components 70, 71: Flexible substrate 81: Power supply circuit 82: Temperature sensor circuit 83: Transmission circuit 84: Transmission antenna

Claims (1)

モータのステータコイルで囲まれている空間に収容されるロータであり、
ステータコイルに対して回転可能に支持される略円柱形のロータコアと、ロータコアの外周面に固定されている複数個の永久磁石と、計測ユニットを備えており、
前記ロータコアに、各々の永久磁石の端部に当接して、前記ロータコアに対する各々の永久磁石の位置を規制する位置決め凸部が形成されており、
前記計測ユニットは、前記位置決め凸部に固定されており、1個の永久磁石の周囲に巻回された発電コイルと、発電コイルに接続されている電子部品を備えており、
前記電子部品が、発電コイルから供給される電力を駆動電力に変換する電源回路と、電源回路からの電力で駆動させる温度センサ回路と、電源回路からの電力で駆動されるとともに温度センサ回路の計測値を無線で発信する発信回路を搭載しており、永久磁石の端部に当接していることを特徴とするロータ。
A rotor accommodated in a space surrounded by a stator coil of the motor;
A substantially cylindrical rotor core supported rotatably with respect to the stator coil, a plurality of permanent magnets fixed to the outer peripheral surface of the rotor core, and a measuring unit;
Positioning convex portions are formed on the rotor core so as to abut the end portions of the permanent magnets and regulate the positions of the permanent magnets with respect to the rotor core,
The measurement unit is fixed to the positioning convex part, and includes a power generation coil wound around one permanent magnet, and an electronic component connected to the power generation coil,
The electronic component is a power supply circuit that converts power supplied from the power generation coil into drive power, a temperature sensor circuit that is driven by power from the power supply circuit, and measurement of the temperature sensor circuit that is driven by power from the power supply circuit A rotor having a transmission circuit for transmitting values wirelessly and in contact with an end of a permanent magnet.
JP2013054756A 2013-03-18 2013-03-18 Rotor with temperature measurement function Expired - Fee Related JP5995759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054756A JP5995759B2 (en) 2013-03-18 2013-03-18 Rotor with temperature measurement function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054756A JP5995759B2 (en) 2013-03-18 2013-03-18 Rotor with temperature measurement function

Publications (2)

Publication Number Publication Date
JP2014183606A true JP2014183606A (en) 2014-09-29
JP5995759B2 JP5995759B2 (en) 2016-09-21

Family

ID=51701855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054756A Expired - Fee Related JP5995759B2 (en) 2013-03-18 2013-03-18 Rotor with temperature measurement function

Country Status (1)

Country Link
JP (1) JP5995759B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101663124B1 (en) * 2016-04-19 2016-10-07 (주)코스탈파워 Generating system capable of remote measurement
KR20210019460A (en) * 2018-06-08 2021-02-22 인테르컨트롤헤르만쾰러엘렉트릭게엠베하운트코.카게 System Including Electric Motor
CN113612327A (en) * 2021-08-10 2021-11-05 哈尔滨电机厂有限责任公司 Permanent magnet synchronous motor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134748A (en) * 1983-12-23 1985-07-18 Matsushita Electric Works Ltd Speed detector of motor
JPS63124742A (en) * 1986-11-12 1988-05-28 Railway Technical Res Inst Automatic temperature measuring and recording device for motor
JPH07298556A (en) * 1994-04-28 1995-11-10 Fuji Electric Co Ltd Power supply device of telemeter for rotating machine
JPH0865929A (en) * 1994-08-19 1996-03-08 Japan Servo Co Ltd Rotor of rotating-magnet motor
JPH09117081A (en) * 1995-10-16 1997-05-02 Yaskawa Electric Corp Rotor for permanent magnet synchronous motor
JP2003525011A (en) * 2000-02-26 2003-08-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnet holder or method for fixing a magnet to a support member
JP2006094576A (en) * 2004-09-21 2006-04-06 Mitsubishi Motors Corp Motor internal temperature measuring instrument
JP2006353063A (en) * 2005-06-20 2006-12-28 Yaskawa Electric Corp Permanent magnet type motor
JP2007174873A (en) * 2005-12-26 2007-07-05 Asmo Co Ltd Motor
JP2009011054A (en) * 2007-06-27 2009-01-15 Toshiba Corp Apparatus for measuring physical value information of motor
JP2009171674A (en) * 2008-01-11 2009-07-30 Mitsubishi Electric Corp Rotor for permanent magnet type dynamo-electric machine, and method of manufacturing rotor for permanent magnet type dynamo-electric machine
JP2009247084A (en) * 2008-03-31 2009-10-22 Hitachi Ltd Rotary electric machine and vehicle
JP2011004583A (en) * 2009-05-21 2011-01-06 Mitsubishi Electric Corp Permanent magnet rotating electrical machine
US20110273121A1 (en) * 2010-05-04 2011-11-10 Remy Technologies, Llc Electric Machine Component Temperature Monitoring
US20120181882A1 (en) * 2011-01-14 2012-07-19 Remy Technologies, L.L.C. Electric machine having an integrated rotor temperature sensor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134748A (en) * 1983-12-23 1985-07-18 Matsushita Electric Works Ltd Speed detector of motor
JPS63124742A (en) * 1986-11-12 1988-05-28 Railway Technical Res Inst Automatic temperature measuring and recording device for motor
JPH07298556A (en) * 1994-04-28 1995-11-10 Fuji Electric Co Ltd Power supply device of telemeter for rotating machine
JPH0865929A (en) * 1994-08-19 1996-03-08 Japan Servo Co Ltd Rotor of rotating-magnet motor
JPH09117081A (en) * 1995-10-16 1997-05-02 Yaskawa Electric Corp Rotor for permanent magnet synchronous motor
JP2003525011A (en) * 2000-02-26 2003-08-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnet holder or method for fixing a magnet to a support member
JP2006094576A (en) * 2004-09-21 2006-04-06 Mitsubishi Motors Corp Motor internal temperature measuring instrument
JP2006353063A (en) * 2005-06-20 2006-12-28 Yaskawa Electric Corp Permanent magnet type motor
JP2007174873A (en) * 2005-12-26 2007-07-05 Asmo Co Ltd Motor
JP2009011054A (en) * 2007-06-27 2009-01-15 Toshiba Corp Apparatus for measuring physical value information of motor
JP2009171674A (en) * 2008-01-11 2009-07-30 Mitsubishi Electric Corp Rotor for permanent magnet type dynamo-electric machine, and method of manufacturing rotor for permanent magnet type dynamo-electric machine
JP2009247084A (en) * 2008-03-31 2009-10-22 Hitachi Ltd Rotary electric machine and vehicle
JP2011004583A (en) * 2009-05-21 2011-01-06 Mitsubishi Electric Corp Permanent magnet rotating electrical machine
US20110273121A1 (en) * 2010-05-04 2011-11-10 Remy Technologies, Llc Electric Machine Component Temperature Monitoring
US20120181882A1 (en) * 2011-01-14 2012-07-19 Remy Technologies, L.L.C. Electric machine having an integrated rotor temperature sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101663124B1 (en) * 2016-04-19 2016-10-07 (주)코스탈파워 Generating system capable of remote measurement
KR20210019460A (en) * 2018-06-08 2021-02-22 인테르컨트롤헤르만쾰러엘렉트릭게엠베하운트코.카게 System Including Electric Motor
KR102535080B1 (en) 2018-06-08 2023-05-19 인테르 콘트롤 헤르만 쾰러 엘렉트릭 게엠베하 운트 코. 카게 system with electric motor
CN113612327A (en) * 2021-08-10 2021-11-05 哈尔滨电机厂有限责任公司 Permanent magnet synchronous motor

Also Published As

Publication number Publication date
JP5995759B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
US9048716B2 (en) Motor including specific magnetic sensor arrangement
JP6323146B2 (en) Motor and blower
JP4468033B2 (en) Electric motor for variable valve timing device of vehicle engine
US9450446B2 (en) Connector-free magnetic charger/winder
JP2019501617A (en) Motor and electric steering device including the same
JP2014099971A (en) Motor
US10782149B2 (en) Sensor module and motor comprising same
US20110291532A1 (en) Coreless electromechanical device
JP5995759B2 (en) Rotor with temperature measurement function
WO2013017794A3 (en) Compact positioning assembly comprising an actuator and a sensor built into the yoke of the actuator
JP6027463B2 (en) Rotor with temperature measurement function
KR102185388B1 (en) Inhibitor Integrated Actuator Shift Control Device
JP5995764B2 (en) Rotor with temperature measurement function
JP2015116119A (en) Motor
US20210384783A1 (en) Rotor, motor and brushless motor
JP2015109727A (en) Rotary electric machine integrated control device
KR101252488B1 (en) Inductive position sensor
KR20190083812A (en) A Ring Magnet Applied Type of a Rotor of a Motor for a Robot with a Eccentric Type of a Structure Having a Lower Cogging and a Lower Torque Ripple
US10637332B2 (en) Electric actuator
JP5277605B2 (en) Brushless motor
KR101551468B1 (en) Brush holder apparatus provided with hall sensor
JP2007010581A (en) Noncontact type potentiometer
US20160065042A1 (en) Step motor
JP5643710B2 (en) Pulley structure
JP5952102B2 (en) Electric motor with rotation speed detection function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R150 Certificate of patent or registration of utility model

Ref document number: 5995759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees