JP2014180287A - Biological information detector - Google Patents

Biological information detector Download PDF

Info

Publication number
JP2014180287A
JP2014180287A JP2013054490A JP2013054490A JP2014180287A JP 2014180287 A JP2014180287 A JP 2014180287A JP 2013054490 A JP2013054490 A JP 2013054490A JP 2013054490 A JP2013054490 A JP 2013054490A JP 2014180287 A JP2014180287 A JP 2014180287A
Authority
JP
Japan
Prior art keywords
light
subject
biological information
unit
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013054490A
Other languages
Japanese (ja)
Other versions
JP2014180287A5 (en
JP6209836B2 (en
Inventor
有亮 ▲高▼▲橋▼
Yusuke Takahashi
Hideto Yamashita
秀人 山下
Masaaki Kuroda
真朗 黒田
Ichiro Aoshima
一郎 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013054490A priority Critical patent/JP6209836B2/en
Priority to CN201410036509.1A priority patent/CN104055504A/en
Priority to US14/205,154 priority patent/US9814399B2/en
Priority to EP14159850.8A priority patent/EP2781186A1/en
Publication of JP2014180287A publication Critical patent/JP2014180287A/en
Publication of JP2014180287A5 publication Critical patent/JP2014180287A5/ja
Application granted granted Critical
Publication of JP6209836B2 publication Critical patent/JP6209836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biological information detector and the like which can detect proper biological information when a contact condition of a contact surface with a subject changes or the like.SOLUTION: A biological information detector includes: a detecting part which has a light receiving part 140 for receiving light from a subject; a translucent member 30 which is provided at a case surface side that comes in contact with the subject of the biological information detector, transmits light from the subject, and comes in contact with the subject when measuring biological information of the subject; and diaphragm parts 80 and 82 which are provided between the translucent member 30 and the detecting part, between the translucent member 30 and the subject, or in the translucent member 30, and narrow the light from the subject in an optical path between the subject and the detecting part.

Description

本発明は、生体情報検出装置等に関する。   The present invention relates to a biological information detection device and the like.

従来より、人間の脈波等の生体情報を検出する生体情報検出装置が知られている。特許文献1、2には、このような生体情報検出装置の一例である脈拍計の従来技術が開示されている。脈拍計は、例えば腕、手首、指等に装着されて、人体の心拍に由来する拍動を検出して、脈拍数を測定する。   2. Description of the Related Art Conventionally, a biological information detection apparatus that detects biological information such as a human pulse wave is known. Patent Documents 1 and 2 disclose conventional techniques of a pulse meter which is an example of such a biological information detection apparatus. The pulse meter is attached to, for example, an arm, a wrist, a finger, or the like, and detects a pulsation derived from a heartbeat of a human body to measure a pulse rate.

特許文献1、2に開示される脈拍計は、光電式の脈拍計であり、その検出部(脈波センサー)は、被検体(被検出部位)に向けて光を発光する発光部と、被検体からの光(生体情報を有する光)を受光する受光部を有する。この脈拍計では、血流量の変化を受光量の変化として検出することで、脈波を検出している。そして特許文献1には、手首に装着するタイプの脈拍計が開示され、特許文献2には、指に装着するタイプの脈拍計が開示されている。   The pulsometers disclosed in Patent Documents 1 and 2 are photoelectric pulsometers, and the detection unit (pulse wave sensor) includes a light emitting unit that emits light toward a subject (detection site), and a target. A light receiving unit that receives light from the specimen (light having biological information) is included. In this pulse meter, a pulse wave is detected by detecting a change in blood flow as a change in the amount of received light. Patent Document 1 discloses a pulse meter that is worn on the wrist, and Patent Document 2 discloses a pulse meter that is worn on a finger.

特開2011−139725号公報JP2011-139725A 特開2009−201919号公報JP 2009-201919 A

これらの従来技術では、発光部からの光や被検体からの光を透過する透光部材が設けられ、この透光部材が、被検体(手首や指の肌等)との接触面を有している。そして、この被検体との接触面の接触状態の変化等を要因として、生体情報の検出信号の信号品位が低下し、生体情報の信頼性や検出精度等が低下してしまう。   In these conventional techniques, a translucent member that transmits light from the light emitting unit and light from the subject is provided, and this translucent member has a contact surface with the subject (such as the wrist or finger skin). ing. Then, due to the change in the contact state of the contact surface with the subject or the like, the signal quality of the detection signal of the biological information is reduced, and the reliability and detection accuracy of the biological information is reduced.

本発明の幾つかの態様によれば、被検体との接触面の接触状態の変化等があった場合にも適正な生体情報を検出可能な生体情報検出装置等を提供することができる。   According to some aspects of the present invention, it is possible to provide a biological information detection apparatus and the like that can detect appropriate biological information even when there is a change in the contact state of the contact surface with the subject.

本発明の一態様は、被検体からの光を受光する受光部を有する検出部と、生体情報検出装置の前記被検体に接触する筺体面側に設けられ、前記被検体からの光を透過し、かつ前記被検体の生体情報の測定時に前記被検体に接触する透光部材と、前記透光部材と前記検出部の間又は前記透光部材と前記被検体との間又は前記透光部材内に設けられ、前記被検体と前記検出部の間の光路において前記被検体からの光を絞る絞り部とを含む生体情報検出装置に関係する。   One embodiment of the present invention is provided on a body surface side of a biological information detection device that contacts a subject, and having a light receiving unit that receives light from the subject, and transmits light from the subject. And a translucent member that contacts the subject at the time of measuring biological information of the subject, and between the translucent member and the detection unit, between the translucent member and the subject, or in the translucent member And a biological information detection apparatus including a diaphragm unit that squeezes light from the subject in an optical path between the subject and the detection unit.

本発明の一態様によれば、被検体の生体情報の測定時に透光部材が被検体に接触し、この透光部材を通過する光を、検出部の受光部が受光することで、被検体の生体情報が検出される。そして本発明の一態様では、被検体と検出部の間の光路において、このような被検体からの光を絞る絞り部が設けられている。このようにすれば、被検体との接触面の接触状態の変化等を要因とする迷光が生じた場合にも、この迷光が受光部に入射されることなどを抑制することができ、適正な生体情報の検出が可能になる。   According to one aspect of the present invention, a light-transmitting member comes into contact with a subject at the time of measuring biological information of the subject, and the light-receiving unit of the detection unit receives light passing through the light-transmitting member. Biometric information is detected. In one aspect of the present invention, a diaphragm unit for narrowing the light from the subject is provided in the optical path between the subject and the detection unit. In this way, even when stray light is generated due to a change in the contact state of the contact surface with the subject, the stray light can be prevented from being incident on the light receiving unit. Biometric information can be detected.

また本発明の一態様では、前記検出部は、前記被検体に対して光を出射する発光部を含み、前記透光部材は、前記発光部からの光を透過し、前記絞り部は、前記被検体と前記検出部の間の光路において、前記発光部からの光を絞るようにしてもよい。   In one aspect of the present invention, the detection unit includes a light emitting unit that emits light to the subject, the translucent member transmits light from the light emitting unit, and the diaphragm unit includes the light emitting unit. In the optical path between the subject and the detection unit, the light from the light emitting unit may be narrowed down.

このようにすれば、発光部からの光が迷光になって、適正な生体情報の検出ができなくなる事態を抑制できる。   In this way, it is possible to suppress a situation in which light from the light emitting unit becomes stray light and proper biological information cannot be detected.

また本発明の一態様では、前記絞り部として、前記受光部側に設けられた第1の絞り部と、前記発光部側に設けられた第2の絞り部とを有してもよい。   In one embodiment of the present invention, the diaphragm unit may include a first diaphragm unit provided on the light receiving unit side and a second diaphragm unit provided on the light emitting unit side.

このようにすれば、迷光が受光部に入射されるのを、例えば第1の絞り部により抑制したり、発光部からの光が迷光になるのを、例えば第2の絞り部により抑制することなどが可能になる。   In this way, the stray light is prevented from being incident on the light receiving unit, for example, by the first diaphragm unit, or the light from the light emitting unit is prevented from becoming stray light, for example, by the second diaphragm unit. It becomes possible.

また本発明の一態様では、前記受光部側に設けられた前記第1の絞り部の開口部の面積よりも、前記発光部側に設けられた前記第2の絞り部の開口部の面積の方が小さくてもよい。   In one embodiment of the present invention, the area of the opening of the second diaphragm provided on the light emitting unit side is larger than the area of the opening of the first diaphragm provided on the light receiving unit side. It may be smaller.

このようにすれば、第1、第2の絞り部の開口部の面積を、光学的な効率・性能の向上や製品歩留まりの向上等に適した面積に設定できるようになる。   In this way, the area of the opening of the first and second apertures can be set to an area suitable for improving optical efficiency and performance, improving product yield, and the like.

また本発明の一態様では、前記透光部材の透光領域の第1の端部と前記受光部の2つの端部のうち前記透光領域の前記第1の端部から遠い側の端部である第2の端部とを結ぶ線と、前記受光部の光軸とのなす角度をθrとして、前記受光部の前記第2の端部と前記絞り部の開口部側の端部とを結ぶ線と、前記光軸とのなす角度をθaとした場合に、θa<θrであってもよい。   In one embodiment of the present invention, the first end of the translucent region of the translucent member and the end of the translucent region farther from the first end of the two ends of the light receiving unit. The angle between the line connecting the second end portion and the optical axis of the light receiving portion is θr, and the second end portion of the light receiving portion and the end portion on the opening side of the aperture portion are When the angle formed between the connecting line and the optical axis is θa, θa <θr may be satisfied.

このようにθa<θrの関係が成り立てば、例えば透光部材の透光領域の第1の端部からの光を、絞り部により遮って、受光部に入射されないようにすることなどが可能になる。   If the relationship of θa <θr is established in this way, for example, light from the first end of the light transmitting region of the light transmitting member can be blocked by the diaphragm so that it does not enter the light receiving unit. Become.

また本発明の一態様では、前記透光部材の透光領域の第1の端部と前記受光部の2つの端部のうち前記透光領域の前記第1の端部に近い側の端部である第1の端部とを結ぶ線上と、前記透光部材の透光領域の第2の端部と前記受光部の2つの端部のうち前記透光領域の前記第2の端部に近い側の端部である第2の端部とを結ぶ線上とに、前記絞り部が位置するように、前記絞り部が配置設定されてもよい。   In one embodiment of the present invention, the first end of the translucent region of the translucent member and the end of the two portions of the light receiving unit that are closer to the first end of the translucent region. On the line connecting the first end portion and the second end portion of the translucent region of the translucent region of the translucent member and the second end portion of the translucent region of the two end portions of the light receiving portion. The aperture portion may be arranged and set so that the aperture portion is located on a line connecting the second end portion which is the near end portion.

このようにすれば、透光部材の第1、第2の端部からの迷光が、絞り部により遮られることを保証できるようになる。   In this way, it becomes possible to ensure that stray light from the first and second end portions of the translucent member is blocked by the aperture portion.

また本発明の一態様では、前記透光部材の透光領域の第2の端部と前記発光部の2つの端部のうち前記透光領域の前記第2の端部から遠い側の端部である第1の端部とを結ぶ線と、前記発光部の光軸とのなす角度をθtとして、前記発光部の前記第1の端部と前記絞り部の開口部側の端部とを結ぶ線と、前記光軸とのなす角度をθbとした場合に、θb<θtであってもよい。   In one embodiment of the present invention, the second end of the translucent area of the translucent member and the end of the translucent area farther from the second end of the two ends of the light emitting section. The angle between the line connecting the first end portion and the optical axis of the light emitting portion is θt, and the first end portion of the light emitting portion and the end portion on the opening side of the aperture portion are If the angle between the connecting line and the optical axis is θb, θb <θt may be satisfied.

このようにθb<θtの関係が成り立てば、例えば発光部から透光部材の透光領域の第2の端部へと向かう光を、絞り部により遮ることなどで、適正な生体情報を検出できるようになる。   If the relationship of θb <θt is established in this way, appropriate biological information can be detected, for example, by blocking the light traveling from the light emitting portion to the second end portion of the light transmitting region of the light transmitting member by the aperture portion. It becomes like this.

また本発明の一態様では、前記透光部材の透光領域の第1の端部と前記発光部の2つの端部のうち前記透光領域の前記第1の端部に近い側の端部である第1の端部とを結ぶ線上と、前記透光部材の透光領域の第2の端部と前記発光部の2つの端部のうち前記透光領域の前記第2の端部に近い側の端部である第2の端部とを結ぶ線上とに、前記絞り部が位置するように、前記絞り部が配置設定されてもよい。   In one embodiment of the present invention, the first end portion of the light-transmitting region of the light-transmitting member and the end portion on the side close to the first end portion of the light-transmitting region among the two end portions of the light-emitting portion. On the line connecting the first end portion, the second end portion of the light transmitting region of the light transmitting member, and the second end portion of the light transmitting portion of the two end portions of the light emitting portion. The aperture portion may be arranged and set so that the aperture portion is located on a line connecting the second end portion which is the near end portion.

このようにすれば、発光部から透光部材の透光領域の第1、第2の端部へと向かう光が、絞り部により遮られることを保証できるようになる。   In this way, it is possible to ensure that the light traveling from the light emitting portion toward the first and second end portions of the light transmitting region of the light transmitting member is blocked by the aperture portion.

また本発明の一態様では、前記絞り部の絞り領域の面積は、前記透光部材の透光領域の面積よりも小さくてもよい。   In one embodiment of the present invention, the area of the aperture region of the aperture section may be smaller than the area of the light transmitting region of the light transmitting member.

このようにすれば、透光部材の所定領域を通過する光を、絞り部により遮ることが可能になる。   If it does in this way, it will become possible to block the light which passes the predetermined field of a translucent member by a diaphragm part.

また本発明の一態様では、前記絞り部は、前記透光部材の周縁領域を通過する光を遮光してもよい。   In the aspect of the invention, the diaphragm may block light that passes through a peripheral region of the translucent member.

このようにすれば、透光部材の周縁領域を通過する光が要因となって、適正な生体情報の検出ができなくなる事態を抑制できる。   If it does in this way, the situation which becomes impossible for detection of proper living body information due to the light which passes through the peripheral field of a translucent member can be controlled.

また本発明の一態様では、前記透光部材は、前記被検体の生体情報の測定時に前記被検体に接触して押圧を与える凸部を有し、前記絞り部は、前記凸部の周縁領域を通過する光を遮光してもよい。   In one embodiment of the present invention, the translucent member has a convex portion that contacts and presses the subject when measuring biological information of the subject, and the diaphragm portion is a peripheral region of the convex portion. The light passing through may be shielded.

このようにすれば、透光部材に対して、被検体に適正な押圧を与えるための凸部を設けた場合に、凸部の周縁領域を通過する光が要因となって、適正な生体情報の検出ができなくなる事態を抑制できる。   In this way, when a convex portion for applying an appropriate pressure to the subject is provided on the translucent member, the appropriate biological information is caused by the light passing through the peripheral area of the convex portion. It is possible to suppress the situation where it becomes impossible to detect this.

また本発明の一態様では、前記凸部を囲むように設けられ、前記凸部が前記被検体に与える押圧を抑制する押圧抑制部を含んでもよい。   Moreover, in one mode of the present invention, it may include a press suppressing unit that is provided so as to surround the convex part and suppresses the press applied to the subject by the convex part.

このようにすれば、凸部が被検体に与える押圧を押圧抑制部により抑制して、押圧変動を低減することなどが可能になる。   If it does in this way, the press which a convex part gives to a subject will be controlled by a press control part, and it will become possible to reduce pressure fluctuation.

また本発明の一態様では、前記凸部の押圧を発生させる荷重機構による荷重に対する前記凸部の押圧の変化量を押圧変化量とした場合に、前記押圧抑制部は、前記荷重機構の荷重が0〜FL1となる第1の荷重範囲での前記押圧変化量に対して、前記荷重機構の荷重がFL1よりも大きくなる第2の荷重範囲での前記押圧変化量が小さくなるように、前記凸部が前記被検体に与える押圧を抑制してもよい。   Moreover, in one aspect of the present invention, when the amount of change in pressing of the convex portion with respect to the load by the load mechanism that generates pressing of the convex portion is defined as the amount of pressing change, the pressing suppression portion is configured so that the load of the load mechanism is The convex change amount is reduced so that the pressure change amount in the second load range in which the load of the load mechanism is larger than FL1 is smaller than the pressure change amount in the first load range of 0 to FL1. You may suppress the press which a part gives to the said test object.

このようにすれば、凸部により適正な初期押圧を被検体に与えながら、凸部が被検体に与える押圧を押圧抑制部により抑制して押圧変動を低減することなどが可能になる。   In this way, it is possible to reduce the pressure fluctuation by suppressing the pressure applied to the subject by the convex portion by the press suppressing portion while applying an appropriate initial pressure to the subject by the convex portion.

また本発明の一態様では、前記絞り部は、前記透光部材と前記検出部の間に設けられてもよい。   In the aspect of the invention, the diaphragm may be provided between the translucent member and the detection unit.

但し、絞り部の配置設定は、このような配置設定には限定されない。   However, the arrangement setting of the diaphragm portion is not limited to such an arrangement setting.

また本発明の一態様では、前記絞り部の絞り領域の形状は、前記透光部材の透光領域の形状と相似形であってもよい。   In the aspect of the invention, the shape of the stop region of the stop portion may be similar to the shape of the light-transmitting region of the light-transmitting member.

また本発明の一態様では、前記生体情報として脈波を検出してもよい。   In one embodiment of the present invention, a pulse wave may be detected as the biological information.

但し、生体情報検出装置の検出対象となる生体情報は、脈波には限定されない。   However, the biological information to be detected by the biological information detection device is not limited to the pulse wave.

図1(A)、図1(B)は本実施形態の生体情報検出装置の外観図。FIG. 1A and FIG. 1B are external views of the biological information detection apparatus of this embodiment. 図2(A)〜図2(C)は生体情報検出装置の連結部の説明図。FIG. 2A to FIG. 2C are explanatory diagrams of a connecting portion of the biological information detecting device. 生体情報検出装置の本体部の裏蓋部の斜視図。The perspective view of the back cover part of the main-body part of a biometric information detection apparatus. 裏蓋部の断面図。Sectional drawing of a back cover part. 図5(A)、図5(B)は被検体に対する透光部材の押圧が変化したときの問題点の説明図。FIG. 5A and FIG. 5B are explanatory diagrams of problems when the pressure of the translucent member against the subject changes. 図6(A)、図6(B)はヘルツの弾性接触理論の説明図。6A and 6B are explanatory diagrams of Hertz's elastic contact theory. 図7(A)、図7(B)は本実施形態の手法の説明図。FIG. 7A and FIG. 7B are explanatory diagrams of the method of this embodiment. 図8(A)、図8(B)は絞り部、遮光部の配置構成例を示す図。FIG. 8A and FIG. 8B are diagrams illustrating an arrangement configuration example of a diaphragm portion and a light shielding portion. 図9(A)〜図9(C)は絞り領域の穴径の設定手法の説明図。FIG. 9A to FIG. 9C are explanatory diagrams of a method for setting the hole diameter of the aperture region. 図10(A)、図10(B)は絞り部の配置設定手法の説明図。FIG. 10A and FIG. 10B are explanatory diagrams of the arrangement setting method of the apertures. 図11(A)、図11(B)も絞り部の配置設定手法の説明図。FIG. 11A and FIG. 11B are also explanatory diagrams of the arrangement setting method of the diaphragm portion. 図12(A)〜図12(C)は絞り部の配置位置の種々の例を示す図。FIGS. 12A to 12C are diagrams showing various examples of arrangement positions of the apertures. 絞り部と遮光部を一体形成した遮光用部材の第1の例の斜視図。The perspective view of the 1st example of the member for light shielding which formed the aperture part and the light-shielding part integrally. 図14(A)、図14(B)は絞り部と遮光部を一体形成した遮光用部材の第1の例の上面図、断面図。FIGS. 14A and 14B are a top view and a cross-sectional view of a first example of a light shielding member in which a diaphragm portion and a light shielding portion are integrally formed. 絞り部と遮光部を一体形成した遮光用部材の第2の例の斜視図。The perspective view of the 2nd example of the member for light shielding which integrally formed the aperture | diaphragm | squeeze part and the light-shielding part. 図16(A)、図16(B)は絞り部と遮光部を一体形成した遮光用部材の第2の例の上面図、断面図。FIGS. 16A and 16B are a top view and a cross-sectional view of a second example of a light shielding member in which a diaphragm portion and a light shielding portion are integrally formed. 図17(A)、図17(B)は透光部材の凸部及び押圧抑制部の説明図。FIG. 17A and FIG. 17B are explanatory views of a convex portion and a pressure suppressing portion of the light transmitting member. 図18(A)、図18(B)はΔhとMN比の関係を示す図。18A and 18B are diagrams showing the relationship between Δh and the MN ratio. 生体情報検出装置の全体構成の例を示す機能ブロック図。The functional block diagram which shows the example of the whole structure of a biometric information detection apparatus.

以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。   Hereinafter, this embodiment will be described. In addition, this embodiment demonstrated below does not unduly limit the content of this invention described in the claim. In addition, all the configurations described in the present embodiment are not necessarily essential configuration requirements of the present invention.

1.生体情報検出装置
図1(A)は本実施形態の生体情報検出装置(生体情報測定装置)の一例を示す外観図である。この生体情報検出装置は時計タイプの脈拍計であり、本体部300と、被検体の手首400に生体情報検出装置を取り付けるためのバンド320、322(リストバンド)を有する。機器本体である本体部300には、各種の情報を表示する表示部310や、脈波センサー(検出部、透光部材等で構成されるセンサー)や、各種の処理を行う処理部などが設けられる。表示部310には、測定された脈拍数や時刻が表示されている。なお図1(A)では、手首400(又は腕)の周長方向を第1の方向DR1とし、手410から下腕420に向かう方向を第2の方向DR2としている。
1. Biological Information Detection Device FIG. 1A is an external view showing an example of a biological information detection device (biological information measurement device) of the present embodiment. This biological information detection device is a watch-type pulse meter, and has a main body 300 and bands 320 and 322 (wrist bands) for attaching the biological information detection device to a wrist 400 of a subject. The main body unit 300 which is a device main body is provided with a display unit 310 that displays various types of information, a pulse wave sensor (a sensor configured by a detection unit, a translucent member, etc.), a processing unit that performs various types of processing, and the like. It is done. The display unit 310 displays the measured pulse rate and time. In FIG. 1A, the circumferential direction of the wrist 400 (or arm) is defined as a first direction DR1, and the direction from the hand 410 toward the lower arm 420 is defined as a second direction DR2.

図1(B)は生体情報検出装置の詳細な構成例を示す外観図である。バンド320、322は、伸縮部330、332を介して本体部300に接続される。伸縮部330、332は、図1(A)の第1の方向DR1及び第2の方向DR2等に沿って変形可能となっている。バンド320の一端には連結部340が接続される。この連結部340は時計におけるバックルに相当するものであり、バックルの棒部が挿入されるバンド穴部は、逆側のバンド322に形成されている。   FIG. 1B is an external view illustrating a detailed configuration example of the biological information detection apparatus. The bands 320 and 322 are connected to the main body 300 via the stretchable parts 330 and 332. The stretchable parts 330 and 332 can be deformed along the first direction DR1 and the second direction DR2 in FIG. A connecting portion 340 is connected to one end of the band 320. The connecting portion 340 corresponds to a buckle in a timepiece, and a band hole portion into which a buckle bar portion is inserted is formed in a band 322 on the opposite side.

図2(A)に示すように、連結部340は、バンド320に固定される固定部材342や、スライド部材344や、弾性部材であるバネ350、352を有する。そして図2(B)、図2(C)に示すように、スライド部材344は、固定部材342に対して、スライド方向DRSに沿ってスライド自在に取り付けられており、バネ350、352は、スライド時における引っ張り力を発生する。これらのバネ350、352や伸縮部330、332やバンド320、322等により、本実施形態の荷重機構が実現される。   As shown in FIG. 2A, the connecting portion 340 includes a fixing member 342 fixed to the band 320, a slide member 344, and springs 350 and 352 that are elastic members. As shown in FIGS. 2B and 2C, the slide member 344 is slidably attached to the fixed member 342 along the slide direction DRS, and the springs 350 and 352 are slid. Generates a pulling force in time. The load mechanism of this embodiment is realized by the springs 350 and 352, the expansion and contraction portions 330 and 332, the bands 320 and 322, and the like.

固定部材342には表示器343が設けられており、表示器343には、適正なスライド範囲を示すための目盛が付されている。具体的には、表示器343には、適正なスライド範囲(押圧範囲)を示す点P1、P2が付されている。そして、これらの点P1、P2の範囲内に、スライド部材344のバンド320側の端部が位置していれば、適正なスライド範囲(押圧範囲)内にあり、適切な引っ張り力が作用していることが保証される。ユーザーは、この適正なスライド範囲内になるように、バックルである連結部340の棒部を、バンド322のバンド穴部に挿入して、生体情報検出装置を手首に装着する。こうすることで、被検体に対する脈波センサー(透光部材の凸部)の押圧が、想定した適切な押圧になることが、ある程度保証されることになる。なお、図1(A)〜図2(C)に示す生体情報検出装置の構造の詳細については、特開2012−90975号公報に開示されている。   The fixing member 342 is provided with an indicator 343, and the indicator 343 is provided with a scale for indicating an appropriate slide range. Specifically, the display 343 is provided with points P1 and P2 indicating an appropriate slide range (pressing range). If the end of the slide member 344 on the band 320 side is located within the range of these points P1 and P2, it is within the proper slide range (pressing range) and an appropriate tensile force is applied. It is guaranteed that The user inserts the rod portion of the connecting portion 340 that is a buckle into the band hole portion of the band 322 so as to be within the proper slide range, and attaches the biological information detection device to the wrist. By doing so, it is ensured to some extent that the pressure of the pulse wave sensor (the convex portion of the translucent member) on the subject is the appropriate pressure assumed. Details of the structure of the biological information detection apparatus shown in FIGS. 1A to 2C are disclosed in Japanese Patent Application Laid-Open No. 2012-90975.

なお、図1(A)〜図2(C)では、生体情報検出装置が、手首に装着する時計タイプの脈拍計である場合を例にとり説明したが、本実施形態はこれに限定されない。例えば、本実施形態の生体情報検出装置は、手首以外の部位(例えば、指、上腕、胸等)に装着されて生体情報を検出(測定)するものであってもよい。また、生体情報検出装置の検出対象となる生体情報も、脈波(脈拍数)には限定されず、生体情報検出装置は、脈波以外の生体情報(例えば血液中の酸素飽和度、体温、心拍等)を検出する装置であってもよい。   In addition, although FIG. 1 (A)-FIG.2 (C) demonstrated taking the case where the biometric information detection apparatus was a timepiece type | mold pulse meter with which a wrist is mounted | worn, this embodiment is not limited to this. For example, the biological information detection apparatus of the present embodiment may be mounted on a part other than the wrist (for example, finger, upper arm, chest, etc.) and detect (measure) biological information. Further, the biological information to be detected by the biological information detection device is not limited to the pulse wave (pulse rate), and the biological information detection device can detect biological information other than the pulse wave (for example, oxygen saturation in the blood, body temperature, A device that detects a heartbeat or the like may be used.

図3は、生体情報検出装置の本体部300の裏側に設けられる裏蓋部10の構成例を示す斜視図であり、図4は、図3のA−A’での断面図である。裏蓋部10は、カバー部材20と透光部材30により構成され、この裏蓋部10により、本体部300の裏側の筐体面22(裏面)が構成される。   FIG. 3 is a perspective view illustrating a configuration example of the back cover 10 provided on the back side of the main body 300 of the biological information detection apparatus, and FIG. 4 is a cross-sectional view taken along line A-A ′ of FIG. 3. The back cover part 10 is composed of a cover member 20 and a translucent member 30, and the back cover part 10 forms a housing surface 22 (back face) on the back side of the main body part 300.

透光部材30は、生体情報検出装置の被検体に接触する筺体面22側に設けられ、被検体からの光を透過する。また透光部材30は、被検体の生体情報の測定時に、被検体に接触する。例えば透光部材30の凸部40が被検体に接触する。なお凸部40の表面形状は、曲面形状(球面形状)であることが望ましいが、これに限定されるものではなく、種々の形状を採用できる。また、透光部材30は被検体からの光の波長に対して透明であればよく、透明な材料を用いてもよいし、有色の材料を用いてもよい。   The translucent member 30 is provided on the side of the housing surface 22 that comes into contact with the subject of the biological information detecting device, and transmits light from the subject. The translucent member 30 contacts the subject when measuring the biological information of the subject. For example, the convex part 40 of the translucent member 30 contacts the subject. The surface shape of the convex portion 40 is desirably a curved surface shape (spherical shape), but is not limited to this, and various shapes can be adopted. Moreover, the translucent member 30 should just be transparent with respect to the wavelength of the light from a subject, and may use a transparent material and may use a colored material.

図4に示すように、カバー部材20は、透光部材30を覆うように形成される。透光部材30は透光性を有するが、カバー部材20は、透光性を有さず、非透光性の部材となっている。例えば、透光部材30は、透明な樹脂(プラスチック)で形成され、カバー部材20は、黒等の所定色の樹脂で形成される。なお、非透光性とは生体情報検出装置が検知可能な波長の光を透過しない材料のことを意味する。   As shown in FIG. 4, the cover member 20 is formed so as to cover the translucent member 30. Although the translucent member 30 has translucency, the cover member 20 does not have translucency and is a non-translucent member. For example, the translucent member 30 is formed of a transparent resin (plastic), and the cover member 20 is formed of a predetermined color resin such as black. In addition, non-light-transmissive means the material which does not permeate | transmit the light of the wavelength which a biological information detection apparatus can detect.

そして図3、図4に示すように、透光部材30は、その一部が、カバー部材20の開口から被検体側に露出しており、この露出部分に凸部40が形成されている。従って、生体情報の測定時に、この露出部分に形成された凸部40が、被検体(例えばユーザの手首の肌)に接触することになる。図3、図4では、この露出部分に形成された凸部40により、生体情報検出装置の検出窓が構成されている。ここで、図4では、この検出窓以外の部分、つまりカバー部材20(押圧抑制部60)の裏側部分にも透光部材30が設けられている。但し本実施形態はこれに限定されず、検出窓の部分にだけ透光部材30を設けてもよい。   As shown in FIGS. 3 and 4, a part of the translucent member 30 is exposed to the subject side from the opening of the cover member 20, and the convex portion 40 is formed on the exposed portion. Therefore, the convex part 40 formed in this exposed part contacts a subject (for example, skin of a user's wrist) at the time of measurement of biometric information. In FIG. 3 and FIG. 4, a detection window of the biological information detection device is configured by the convex portion 40 formed in the exposed portion. Here, in FIG. 4, the translucent member 30 is provided also in parts other than this detection window, ie, the back side part of the cover member 20 (pressing suppression part 60). However, this embodiment is not limited to this, You may provide the translucent member 30 only in the part of a detection window.

なお図4に示すように、凸部40の周囲には、押圧変動等を抑制するための溝部42が設けられている。また、透光部材30において凸部40が設けられる側の面を第1の面とした場合に、透光部材30は、その第1の面の裏側の第2の面において凸部40に対応する位置に、凹部32を有している。また裏蓋部10には、裏蓋部10をネジ止めするためのねじ穴部24や、信号伝達や電源供給用の端子を接続するための端子穴部26なども設けられている。   In addition, as shown in FIG. 4, the groove part 42 for suppressing press fluctuation | variation etc. is provided in the circumference | surroundings of the convex part 40. As shown in FIG. Further, when the surface on the side where the convex portion 40 is provided in the translucent member 30 is the first surface, the translucent member 30 corresponds to the convex portion 40 on the second surface on the back side of the first surface. A recessed portion 32 is provided at a position to be used. The back cover 10 is also provided with a screw hole 24 for screwing the back cover 10 and a terminal hole 26 for connecting a terminal for signal transmission and power supply.

図3に示すように、生体情報検出装置の筺体面22(裏面)が、第1の方向DR1に沿った中心線CLにより第1の領域RG1と第2の領域RG2に区画される場合に、凸部40は、第1の領域RG1に設けられている。図1(A)に示すような手首に装着するタイプの生体情報検出装置を例にとれば、第1の領域RG1は手側(時計における3時方向)の領域であり、第2の領域RG2は下腕側(時計における9時方向)の領域である。このように透光部材30の凸部40は、筐体面22において手に近い側の第1の領域RG1に設けられる。こうすることで、腕の径変化が小さい場所に凸部40が配置されるようになるため、押圧変動等を抑制できる。   As shown in FIG. 3, when the body surface 22 (back surface) of the biological information detection device is partitioned into a first region RG1 and a second region RG2 by a center line CL along the first direction DR1, The convex portion 40 is provided in the first region RG1. Taking a biological information detection device of the type worn on the wrist as shown in FIG. 1A as an example, the first region RG1 is a hand side (3 o'clock direction in the watch) region, and the second region RG2 Is an area on the lower arm side (9 o'clock direction on the watch). Thus, the convex part 40 of the translucent member 30 is provided in the first region RG1 on the side close to the hand on the housing surface 22. By doing so, the convex portion 40 is arranged at a place where the change in the diameter of the arm is small, so that the pressure fluctuation and the like can be suppressed.

そして凸部40は、被検体の生体情報の測定時に被検体に接触して押圧(押圧力)を与える。具体的には、ユーザーが生体情報検出装置を手首に装着して、脈波等の生体情報を検出する際に、凸部40がユーザーの手首の肌に接触して押圧を与える。この押圧は、図1(A)〜図2(C)で説明した荷重機構による荷重により発生することになる。   And the convex part 40 contacts a subject at the time of the measurement of the biological information of a subject, and gives a press (pressing force). Specifically, when the user wears the biological information detection device on the wrist and detects biological information such as a pulse wave, the convex portion 40 comes into contact with the skin of the user's wrist and gives pressure. This pressing is generated by the load by the load mechanism described with reference to FIGS. 1 (A) to 2 (C).

また生体情報検出装置の筐体面22には、凸部40が被検体(手首の肌)に与える押圧を抑制する押圧抑制部60が設けられている。図3、図4では、押圧抑制部60は、筐体面22において、透光部材30の凸部40を囲むように設けられている。そしてカバー部材20の面が押圧抑制部60として機能している。即ち、カバー部材20の面を土手形状に成型することで、押圧抑制部60が形成されている。図4に示すように、この押圧抑制部60の押圧抑制面は、凸部40の位置から第2の方向DR2(手首から下腕側への方向)に向かうにつれて低くなるように傾斜している。つまり、筐体面22に直交する方向DRHでの高さが、第2の方向DR2に向かうにつれて低くなるように傾斜している。   In addition, the housing surface 22 of the biological information detection device is provided with a pressure suppression unit 60 that suppresses the pressure applied by the convex portion 40 to the subject (the wrist skin). 3 and 4, the pressing suppression unit 60 is provided on the housing surface 22 so as to surround the convex portion 40 of the translucent member 30. The surface of the cover member 20 functions as the pressing suppression unit 60. That is, the pressing suppression part 60 is formed by molding the surface of the cover member 20 into a bank shape. As shown in FIG. 4, the pressure suppression surface of the pressure suppression unit 60 is inclined so as to become lower from the position of the convex portion 40 toward the second direction DR2 (the direction from the wrist to the lower arm). . That is, the height in the direction DRH orthogonal to the housing surface 22 is inclined so as to become lower in the second direction DR2.

なお、図3、図4では、検出部130や凸部40(検出窓)が、筺体面22(裏面)の手側(3時方向)の第1の領域RG1に設けられているが、本実施形態はこれに限定されない。例えば検出部130や凸部40(検出窓)を、筺体面22の中央部の領域(中心線CLが通る領域)などに設け、その周辺に押圧抑制部60を設けてもよい。   3 and 4, the detection unit 130 and the convex portion 40 (detection window) are provided in the first region RG1 on the hand side (3 o'clock direction) of the housing surface 22 (back surface). The embodiment is not limited to this. For example, the detection part 130 and the convex part 40 (detection window) may be provided in the center part area | region (area | region where the centerline CL passes) of the housing surface 22, etc., and the press suppression part 60 may be provided in the periphery.

図4に示すように、透光部材30の凸部40の下方には、検出部130が設けられている。ここで、上方は、方向DRHの方向であり、下方は、方向DRHの反対方向である。別の言い方をすれば、下方は、生体情報検出装置の本体部300の裏面(被検体に接触する側の面)から表面(被検体に接触しない側の面)へと向かう方向である。本実施形態における脈波センサーは、このような透光部材30や検出部130等で構成されるセンサーユニットである。   As shown in FIG. 4, a detection unit 130 is provided below the convex portion 40 of the translucent member 30. Here, the upper direction is the direction DRH, and the lower direction is the direction opposite to the direction DRH. In other words, the downward direction is a direction from the back surface (the surface on the side in contact with the subject) of the main body 300 of the biological information detection apparatus to the front surface (the surface on the side not in contact with the subject). The pulse wave sensor in the present embodiment is a sensor unit including such a light transmitting member 30, the detection unit 130, and the like.

検出部130は、受光部140と発光部150を有する。これらの受光部140と発光部150は、基板160に実装されている。受光部140は、被検体からの光(反射光、透過光等)を受光する。発光部150は、被検体に対して光を出射する。例えば発光部150が光を被検体に出射し、その光が被検体(血管)により反射されると、受光部140が、その反射光を受光して検出する。受光部140は、例えばフォトダイオード等の受光素子により実現できる。発光部150は、例えばLED等の発光素子により実現できる。例えば受光部140は、半導体の基板に形成されたPN接合のダイオード素子などにより実現できる。この場合に、受光角度を絞るための角度制限フィルターや受光素子に入射する光の波長を制限する波長制限フィルターを、このダイオード素子上に形成してもよい。   The detection unit 130 includes a light receiving unit 140 and a light emitting unit 150. The light receiving unit 140 and the light emitting unit 150 are mounted on the substrate 160. The light receiving unit 140 receives light (reflected light, transmitted light, etc.) from the subject. The light emitting unit 150 emits light to the subject. For example, when the light emitting unit 150 emits light to the subject and the light is reflected by the subject (blood vessel), the light receiving unit 140 receives and detects the reflected light. The light receiving unit 140 can be realized by a light receiving element such as a photodiode. The light emitting unit 150 can be realized by a light emitting element such as an LED. For example, the light receiving unit 140 can be realized by a PN junction diode element or the like formed on a semiconductor substrate. In this case, an angle limiting filter for narrowing the light receiving angle and a wavelength limiting filter for limiting the wavelength of light incident on the light receiving element may be formed on the diode element.

脈拍計を例にとると、発光部150からの光は、被検体の内部を進み、表皮、真皮及び皮下組織等で拡散又は散乱する。その後、この光は、血管(被検出部位)に到達し、反射される。この際に、光の一部は血管により吸収される。そして、脈拍の影響により血管での光の吸収率が変化し、反射光の光量も変化するため、受光部140がこの反射光を受光して、その光量の変化を検出することで、生体情報である脈拍数等を検出できるようになる。   Taking a pulse meter as an example, the light from the light emitting unit 150 travels inside the subject and diffuses or scatters in the epidermis, dermis, subcutaneous tissue, and the like. Thereafter, this light reaches the blood vessel (detected site) and is reflected. At this time, part of the light is absorbed by the blood vessels. Then, the light absorption rate in the blood vessel changes due to the influence of the pulse, and the amount of reflected light also changes. Therefore, the light receiving unit 140 receives this reflected light and detects the change in the amount of light, thereby detecting biological information. It becomes possible to detect the pulse rate and the like.

なお図4では、検出部130として、受光部140と発光部150の両方が設けられているが、例えば受光部140だけを設けるようにしてもよい。この場合には、例えば受光部140は、被検体からの透過光を受光することになる。例えば被検体の裏側に設けられた発光部150からの光が被検体を透過した場合に、受光部140は、その透過光を受光して検出する。   In FIG. 4, both the light receiving unit 140 and the light emitting unit 150 are provided as the detecting unit 130. However, for example, only the light receiving unit 140 may be provided. In this case, for example, the light receiving unit 140 receives transmitted light from the subject. For example, when light from the light emitting unit 150 provided on the back side of the subject passes through the subject, the light receiving unit 140 receives and detects the transmitted light.

そして本実施形態では図4に示すように、絞り部80、82が設けられている。検出部130として受光部140が設けられている場合には、この絞り部80、82は、被検体と検出部130の間の光路において、被検体からの光を絞る。また、検出部130として発光部150が設けられている場合には、絞り部80、82は、被検体と検出部130の間の光路において、発光部150からの光を絞る。図4では、絞り部80、82は、透光部材30と検出部130の間に設けられている。但し、絞り部80、82を透光部材30と被検体との間や透光部材30内に設けてもよい。例えば絞り部80、82は透光部材30に近接して配置される。   And in this embodiment, as shown in FIG. 4, the aperture | diaphragm | squeeze parts 80 and 82 are provided. When the light receiving unit 140 is provided as the detection unit 130, the diaphragm units 80 and 82 throttle light from the subject in the optical path between the subject and the detection unit 130. When the light emitting unit 150 is provided as the detection unit 130, the diaphragm units 80 and 82 condense the light from the light emitting unit 150 in the optical path between the subject and the detection unit 130. In FIG. 4, the aperture portions 80 and 82 are provided between the translucent member 30 and the detection unit 130. However, the diaphragms 80 and 82 may be provided between the translucent member 30 and the subject or in the translucent member 30. For example, the diaphragm portions 80 and 82 are disposed in proximity to the translucent member 30.

また図4では、受光部140と発光部150との間に遮光部100が設けられている。検出部130として、受光部140と発光部150の両方が設けられている場合には、この遮光部100は、例えば発光部150からの光が受光部140に直接入射されるのを遮光する。   In FIG. 4, the light shielding unit 100 is provided between the light receiving unit 140 and the light emitting unit 150. When both the light receiving unit 140 and the light emitting unit 150 are provided as the detecting unit 130, the light shielding unit 100 shields light from the light emitting unit 150 from being directly incident on the light receiving unit 140, for example.

2.絞り部、遮光部
さて、本実施形態のような生体情報検出装置では、透光部材30において、被検体である肌に接触する面は有限面積の接触面となっている。そして本実施形態では、例えば樹脂やガラス等で形成される硬い素材の透光部材30の有限面積の接触面に対して、肌のように相対的に柔らかいものを接触させている。すると、弾性力学の観点で見ると、透光部材30の周縁部(外周部)の付近においては、肌と接触していない領域や、接触圧の弱い領域が生じる。また生体情報検出装置の機器に外力が加えられて、機器にモーメントが発生するときなども、接触面の周縁部の付近の領域は、最も浮きやすい。
2. In the living body information detection apparatus as in the present embodiment, the surface of the translucent member 30 that comes into contact with the skin that is the subject is a finite area contact surface. In this embodiment, for example, a relatively soft material such as skin is brought into contact with the contact surface of the light-transmitting member 30 of a hard material formed of resin, glass, or the like. Then, from the viewpoint of elastic mechanics, a region that is not in contact with the skin and a region where the contact pressure is weak are generated in the vicinity of the peripheral portion (outer peripheral portion) of the translucent member 30. In addition, even when an external force is applied to the device of the biological information detection apparatus and a moment is generated in the device, the region near the peripheral edge of the contact surface is most likely to float.

このような領域を介して、発光部150、肌、受光部140の間を通過する光には、動的な接触状態の変化に起因して、光学的に光の強弱が発生しやすい。そして、そのような光が受光部140に入射すれば、脈成分とは相関の無いノイズとなってしまう。   The light passing between the light emitting unit 150, the skin, and the light receiving unit 140 via such a region is likely to generate optical intensity due to a dynamic change in contact state. If such light is incident on the light receiving unit 140, the noise has no correlation with the pulse component.

また、静的な接触状態であっても、信号品位の低下は起こり得る。肌にきちんと接触していなければ、発光部150を起源としない外光が、受光部140に入射することがある。一方、過大な接触圧となっている場合には、皮下の血管を潰してしまうことにより、この領域を通過した光には、拍動成分が入りにくくなる。   Even in a static contact state, signal quality can be degraded. If the skin is not properly in contact, external light that does not originate from the light emitting unit 150 may enter the light receiving unit 140. On the other hand, when the contact pressure is excessive, the pulsating component is less likely to enter the light that has passed through this region by crushing the subcutaneous blood vessel.

このようなノイズが大きく重畳するほど、脈波検出信号の信号品位は低下し、脈拍計測などの様々な生体計測において、計測データの信頼性が低下してしまう。   The greater the noise is superimposed, the lower the signal quality of the pulse wave detection signal, and the reliability of measurement data decreases in various biological measurements such as pulse measurement.

例えば図5(A)は、透光部材30の凸部40(接触面)が、被検体である肌2に与える押圧が小さい場合を示し、図5(B)は当該押圧が大きい場合を示している。図5(A)、図5(B)のA1、A2に示す場所に着目すると、押圧の変化により、肌2と凸部40との間の接触状態が変化している。例えば図5(A)では、A1、A2の場所において肌2と凸部40が非接触状態又は弱い接触状態になっているが、図5(B)では接触状態になっている。従って、発光部150から出射されて受光部140に戻ってくる光の強弱などが、図5(A)と図5(B)とで変化してしまい、計測データの信頼性が低下する。なお、図5(A)、図5(B)は図3に示す生体情報検出装置のA−A’断面図の凹部32周辺を拡大した図と解釈してもよいし、方向DRHに対して鉛直方向から凹部32周辺の構成部品を投影した投影図又は配置図と解釈してもよい。以降では、図5(A)、図5(B)の類似図を用いて本実施形態の説明を行うが、いずれの図も同様に解釈できるものとする。   For example, FIG. 5 (A) shows a case where the convex portion 40 (contact surface) of the translucent member 30 gives a small pressure to the skin 2 as the subject, and FIG. 5 (B) shows a case where the pressure is large. ing. When attention is paid to the locations indicated by A1 and A2 in FIGS. 5A and 5B, the contact state between the skin 2 and the convex portion 40 changes due to the change in the pressure. For example, in FIG. 5A, the skin 2 and the convex portion 40 are in a non-contact state or weak contact state at locations A1 and A2, but in FIG. 5B, they are in a contact state. Therefore, the intensity of light emitted from the light emitting unit 150 and returning to the light receiving unit 140 changes between FIG. 5A and FIG. 5B, and the reliability of measurement data decreases. 5A and 5B may be interpreted as an enlarged view of the periphery of the recess 32 in the AA ′ cross-sectional view of the biological information detecting device shown in FIG. 3, and with respect to the direction DRH. You may interpret as the projection figure or the layout figure which projected the component parts around the recessed part 32 from the perpendicular direction. Hereinafter, the present embodiment will be described with reference to the similar diagrams in FIGS. 5A and 5B. However, it is assumed that both diagrams can be similarly interpreted.

例えば図6(A)、図6(B)はヘルツの弾性接触理論を説明する図である。Eは肌のヤング率、vは肌のポアソン比、Fは加える力の最大値、rは球面半径、αは接触円面の半径、σは変位である。これらのパラメーターに所定値を代入し、ヘルツの弾性接触理論に基づいて、接触面中心からの距離に対する押圧を計算すると、例えば図6(B)のような結果が得られる。図6(B)に示すように、接触面中心から距離が離れると、押圧が低下し、例えばB1、B2に示す部分では、急激な低下になる。従って、図5(A)、図5(B)のA1、A2に示す場所では、荷重の微少な変化によって、接触面での押圧が急激に変化してしまい、計測データの信頼性が著しく低下する。   For example, FIGS. 6A and 6B are diagrams for explaining Hertz's elastic contact theory. E is the skin Young's modulus, v is the skin Poisson's ratio, F is the maximum force applied, r is the spherical radius, α is the radius of the contact circle, and σ is the displacement. By substituting predetermined values for these parameters and calculating the pressure against the distance from the center of the contact surface based on Hertz's elastic contact theory, a result such as that shown in FIG. 6B is obtained. As shown in FIG. 6 (B), when the distance is away from the center of the contact surface, the pressure decreases, and for example, in the portions indicated by B1 and B2, the pressure rapidly decreases. Therefore, at the locations indicated by A1 and A2 in FIG. 5 (A) and FIG. 5 (B), the pressure on the contact surface changes abruptly due to slight changes in the load, and the reliability of the measurement data is significantly reduced. To do.

例えば図5(A)、図5(B)では、人体の皮膚に接触する透光部材30の接触面を、曲面形状の凸形状(凸部)で構成している。このようにすることで、皮膚表面に対する透光部材30の密着度が向上するため、皮膚表面からの反射光量や外乱光等のノイズ光の侵入を防止できる。   For example, in FIG. 5 (A) and FIG. 5 (B), the contact surface of the translucent member 30 that comes into contact with the skin of the human body is constituted by a curved convex shape (convex portion). By doing in this way, since the close_contact | adherence degree of the translucent member 30 with respect to the skin surface improves, invasion of noise lights, such as the reflected light amount from a skin surface, and disturbance light, can be prevented.

しかしながら、図6(A)、図6(B)から明らかなように、凸形状の周縁部(外周部)では中心部に対して相対的に肌との接触圧が低下する。   However, as is clear from FIG. 6A and FIG. 6B, the contact pressure with the skin is relatively lowered with respect to the central portion at the convex peripheral portion (outer peripheral portion).

この場合に、中心部の接触圧で最適化すると、周縁部の接触圧は最適範囲未満となる。一方、周縁部の接触圧で最適化すると、中心部の接触圧が最適範囲に対し過剰となる。   In this case, if the contact pressure at the central portion is optimized, the contact pressure at the peripheral portion is less than the optimum range. On the other hand, if the contact pressure at the peripheral edge is optimized, the contact pressure at the center is excessive with respect to the optimum range.

接触圧が最適範囲未満の場合は、機器の揺れにより脈波センサーが肌と接触したり離れたりするケースや、接触したままとしても脈波センサーが静脈を潰しきれていないことにより、脈波検出信号に体動ノイズが重畳する。このノイズ成分を低減すれば、より高いM/N比(S/N比)の脈波検出信号を得ることが可能になる。ここでMは脈波検出信号の信号レベルを表し、Nはノイズレベルを表す。   When the contact pressure is less than the optimum range, the pulse wave sensor detects if the pulse wave sensor comes in contact with or away from the skin due to the shaking of the device, or the pulse wave sensor does not crush the veins even if it remains in contact. Body motion noise is superimposed on the signal. If this noise component is reduced, a pulse wave detection signal having a higher M / N ratio (S / N ratio) can be obtained. Here, M represents the signal level of the pulse wave detection signal, and N represents the noise level.

以上のような課題を解決するために、図4、図7(A)、図7(B)に示すように、本実施形態の生体情報検出装置は、被検体(肌等)からの光を受光する受光部140を有する検出部130と、透光部材30と、絞り部80、82(アパーチャー)を有する。透光部材30は、生体情報検出装置の被検体に接触する筺体面22側に設けられ、被検体からの光を透過し、かつ被検体の生体情報の測定時に被検体に接触する。絞り部80、82は、被検体と検出部130の間の光路において、被検体からの光を絞る。また図4等では、検出部130は、被検体に対して光を出射する発光部150を有しており、透光部材30は、発光部150からの光を透過する。そして絞り部80、82は、被検体と検出部130の間の光路において、発光部150からの光を絞る。なおリフレクター152は、発光部150が発光する光を反射して光の利用効率を高めるためのものである。   In order to solve the problems as described above, as shown in FIGS. 4, 7A, and 7B, the biological information detection apparatus of the present embodiment uses light from a subject (skin etc.). It has the detection part 130 which has the light-receiving part 140 which light-receives, the translucent member 30, and the aperture parts 80 and 82 (aperture). The translucent member 30 is provided on the side of the housing 22 that contacts the subject of the biological information detecting device, transmits light from the subject, and contacts the subject when measuring the biological information of the subject. The diaphragms 80 and 82 squeeze light from the subject in the optical path between the subject and the detection unit 130. In FIG. 4 and the like, the detection unit 130 includes a light emitting unit 150 that emits light to the subject, and the translucent member 30 transmits light from the light emitting unit 150. The diaphragms 80 and 82 squeeze the light from the light emitting unit 150 in the optical path between the subject and the detection unit 130. The reflector 152 is for reflecting the light emitted from the light emitting unit 150 to increase the light use efficiency.

このように本実施形態では、図7(A)、図7(B)のA1、A2に示す場所等での光(迷光)が検出されないように、絞り部80、82を設けて、光を絞っている。例えば、最適押圧化された透光部材30の透光領域の中心部(例えば凸部の頂点)を通過する光は、できるだけ遮断せずに透過させる一方で、透光部材30の透光領域(例えば凸部)の周縁部の付近を介した光は遮断する。例えば図7(A)、図7(B)では、絞り部80を設けることで、周縁部であるA1に示す場所での光が受光部140に入射されないようになる。また、絞り部82を設けることで、発光部150からの光が、A2に示す場所に対して出射されないようになる。つまり本実施形態では、押圧(荷重)の変化によって接触状態が変化する場所での光を絞っている。このようにすれば、図7(A)、図7(B)に示すようにA1、A2に示す場所で接触状態が変化した場合にも、A1、A2に示す場所での光の状態が受光結果に影響を及ばさなくなる。従って、計測データの信頼性等を向上できるようになる。   As described above, in this embodiment, the diaphragm portions 80 and 82 are provided so that light (stray light) is not detected at the locations indicated by A1 and A2 in FIGS. 7A and 7B. Squeezed. For example, the light passing through the central portion (for example, the apex of the convex portion) of the light-transmitting region of the light-transmitting member 30 that has been optimally pressed is transmitted without blocking as much as possible, while the light-transmitting region ( For example, light passing through the vicinity of the peripheral edge of the convex portion is blocked. For example, in FIGS. 7A and 7B, by providing the diaphragm portion 80, light at a location indicated by A1 that is the peripheral portion is not incident on the light receiving portion 140. In addition, by providing the diaphragm unit 82, the light from the light emitting unit 150 is prevented from being emitted to the place indicated by A2. That is, in this embodiment, light is focused at a place where the contact state changes due to a change in pressure (load). In this way, even when the contact state changes at the locations indicated by A1 and A2 as shown in FIGS. 7A and 7B, the light state at the locations indicated by A1 and A2 is received. The result will not be affected. Therefore, the reliability of measurement data can be improved.

更に図4、図7(A)、図7(B)等では、受光部140と発光部150の間に遮光部100(遮光壁)を設けている。この遮光部100は、例えば、筺体面22(図3、図4参照)に直交する方向DRHに延在形成される遮光壁である。具体的には、例えば受光部140の中心位置と発光部150の中心位置を結ぶ線分に対して交差(直交)する方向に沿った壁面を有する遮光部100が設けられる。このような遮光部100を設けることで、発光部150からの直接光が受光部140に入射されるのが抑止されて、計測データの信頼性等を更に向上できるようになる。   Further, in FIGS. 4, 7 </ b> A, 7 </ b> B, etc., a light shielding unit 100 (light shielding wall) is provided between the light receiving unit 140 and the light emitting unit 150. The light shielding portion 100 is, for example, a light shielding wall formed to extend in a direction DRH orthogonal to the housing surface 22 (see FIGS. 3 and 4). Specifically, for example, the light shielding unit 100 having a wall surface along a direction intersecting (orthogonal) with respect to a line segment connecting the center position of the light receiving unit 140 and the center position of the light emitting unit 150 is provided. By providing such a light shielding unit 100, direct light from the light emitting unit 150 is prevented from entering the light receiving unit 140, and the reliability of measurement data and the like can be further improved.

即ち、受光部140と発光部150との間の距離は、近ければ近いほど光学的な効率・性能が向上する。例えば光学的な効率・性能は距離の二乗に反比例して劣化する。従って、できる限り受光部140と発光部150の間の距離を近づけることが望ましい。   That is, the closer the distance between the light receiving unit 140 and the light emitting unit 150 is, the more optical efficiency and performance is improved. For example, optical efficiency and performance deteriorate in inverse proportion to the square of the distance. Therefore, it is desirable to make the distance between the light receiving unit 140 and the light emitting unit 150 as close as possible.

しかしながら、受光部140と発光部150の間の距離を近づけると、発光部150からの直接光が受光部140に入射されて性能が劣化する可能性が高まる。   However, when the distance between the light receiving unit 140 and the light emitting unit 150 is reduced, the possibility that the direct light from the light emitting unit 150 is incident on the light receiving unit 140 and the performance deteriorates increases.

そこで、受光部140と発光部150の間に遮光部100を設け、発光部150からの直接光が受光部140に入射されるのを抑止する。即ち本実施形態では、前述したように、被検体との接触面の接触状態が不安定になる経路からの光学的な悪影響を除去するために、絞り部80、82を設けている。一方、発光部150の直接光による悪影響については遮光部100により除去する。こうすれば、被検体との接触面の接触状態の変動によるノイズを除去する絞り部80、82と、発光部150の直接光を除去する遮光部100とにより、光電型の脈波センサーの光学的な安定性を確保することが可能になる。なお遮光部100については、これを設けない構成とすることも可能である。   Therefore, the light shielding unit 100 is provided between the light receiving unit 140 and the light emitting unit 150 to prevent direct light from the light emitting unit 150 from entering the light receiving unit 140. In other words, in the present embodiment, as described above, the diaphragm portions 80 and 82 are provided in order to remove an adverse optical effect from the path where the contact state of the contact surface with the subject becomes unstable. On the other hand, the light shielding unit 100 removes adverse effects of the light emitting unit 150 caused by direct light. In this way, the optical parts of the photoelectric pulse wave sensor are configured by the diaphragm portions 80 and 82 that remove noise due to the change in the contact state of the contact surface with the subject, and the light shielding portion 100 that removes direct light from the light emitting portion 150. It is possible to ensure a stable stability. In addition, about the light-shielding part 100, it can also be set as the structure which does not provide this.

さて、以上では、図8(A)に示すように、透光部材30が凸部40を有する場合について説明したが、本実施形態の生体情報検出装置はこれに限定されない。例えば図8(B)に示すように、透光部材30が曲面形状等の凸部40を有しない場合にも、絞り部80、82や遮光部100を設けることで、迷光による計測データの信頼性等の低下を抑制できる。例えば透光部材30は、平面でない部分で対象物と接触する立体形状となっており、絞り部80、82は、この立体形状のうち、相対的に低い部分を遮光するよう設置されることになる。   As described above, as shown in FIG. 8A, the case where the translucent member 30 has the convex portion 40 has been described. However, the biological information detection apparatus of the present embodiment is not limited to this. For example, as shown in FIG. 8B, even when the translucent member 30 does not have a convex portion 40 such as a curved surface shape, by providing the diaphragm portions 80 and 82 and the light shielding portion 100, the reliability of measurement data due to stray light is improved. The fall of property etc. can be controlled. For example, the translucent member 30 has a three-dimensional shape that comes into contact with the object at a non-planar portion, and the diaphragm portions 80 and 82 are installed so as to shield a relatively low portion of the three-dimensional shape. Become.

また図8(A)、図8(B)において、RTRは透光部材30の透光領域(光が透過する領域)を表し、RAPは、絞り部80、82の絞り領域(光を絞る領域)を表している。またSTRは透光領域RTRの面積を表し、SAPは絞り領域RAPの面積を表している。例えば図3において、透光部材30のうち、カバー部材20で覆われておらず、被検体側に露出している領域が透光領域RTRとなる。また絞り領域RAPは、絞り部80、82の開口部の領域である。そして絞り部80、82の絞り領域RAPは、例えば平面視において、透光領域RTRに囲まれる領域となっている。   8A and 8B, RTR represents a light-transmitting region (light-transmitting region) of the light-transmitting member 30, and RAP represents a diaphragm region (region for condensing light) of the aperture portions 80 and 82. ). STR represents the area of the translucent region RTR, and SAP represents the area of the aperture region RAP. For example, in FIG. 3, the translucent member 30 that is not covered with the cover member 20 and is exposed to the subject side is the translucent region RTR. The aperture region RAP is an aperture region of the aperture portions 80 and 82. The stop area RAP of the stop portions 80 and 82 is an area surrounded by the translucent area RTR in a plan view, for example.

具体的には図8(A)、図8(B)に示すように、絞り部80、82の絞り領域RAP(開口領域)の面積SAPは、透光部材30の透光領域RTRの面積STRよりも小さくなっている。即ち、絞り部80、82は、透光部材30の周縁領域(外周領域)を通過する光を遮光しており、少なくとも周縁領域の面積の分だけ、面積SAPは面積STRよりも小さくなっている。   Specifically, as shown in FIGS. 8A and 8B, the area SAP of the aperture region RAP (opening region) of the aperture portions 80 and 82 is the area STR of the translucent region RTR of the translucent member 30. Is smaller than That is, the diaphragm portions 80 and 82 block light passing through the peripheral region (outer peripheral region) of the translucent member 30, and the area SAP is smaller than the area STR by at least the area of the peripheral region. .

また図8(A)、図8(B)では、絞り部80、82の絞り領域RAPの形状は、透光部材30の透光領域RTRの形状と相似形(略相似形を含む)となっている。図8(A)のように透光部材30が凸部40を有する場合には、透光領域RTRの形状は、例えば凸部40の平面投射形状と相似形(略相似形)となる。例えば図8(A)、図8(B)では、透光領域RTR及び絞り領域RAPの形状は共に円形状であり、相似形となっている。例えば透光領域RTRが四角形状である場合には、絞り領域RAPの形状も相似形である四角形状にすればよい。但し、ここで言う相似形は、完全な相似形である必要はなく、略相似形(図形の種類として相似形)であればよい。また透光領域RTRの形状と絞り領域RAPの形状は相似形でなくてもよい。   8A and 8B, the shape of the stop region RAP of the stop portions 80 and 82 is similar to the shape of the light transmitting region RTR of the light transmitting member 30 (including a substantially similar shape). ing. When the translucent member 30 has the convex portion 40 as shown in FIG. 8A, the shape of the translucent region RTR is, for example, similar to the planar projection shape of the convex portion 40 (substantially similar). For example, in FIGS. 8A and 8B, the translucent region RTR and the aperture region RAP are both circular and similar in shape. For example, when the translucent region RTR has a quadrangular shape, the shape of the aperture region RAP may be a similar quadrangular shape. However, the similar shape mentioned here does not need to be a complete similar shape, and may be a substantially similar shape (similar shape as a type of figure). Further, the shape of the light transmitting region RTR and the shape of the aperture region RAP may not be similar.

また図8(A)、図8(B)において、図3、図4の筺体面22に直交する方向DRHでの遮光部100の高さをH1とし、絞り部80、82の検出部側の面である下面の高さをH2としたとすると、H1>H2の関係が成り立っている。こうすることで、発光部150からの光が、絞り部80、82等に反射して受光部140に入射されてしまう事態を抑制できる。   8A and 8B, the height of the light-shielding part 100 in the direction DRH orthogonal to the housing surface 22 in FIGS. 3 and 4 is H1, and the diaphragm parts 80 and 82 are located on the detection part side. Assuming that the height of the lower surface which is a surface is H2, the relationship of H1> H2 is established. By doing so, it is possible to suppress a situation in which light from the light emitting unit 150 is reflected by the diaphragm units 80 and 82 and is incident on the light receiving unit 140.

図9(A)〜図9(C)は絞り領域RAPの穴径の設定手法の説明図である。図9(A)において、ARRは受光部140の受光エリアを表し、ARTは発光部150の光照射エリアを示す。これらの受光エリアARR、光照射エリアARTは光の強度の半値幅などにより設定されるエリアである。絞り領域RAPは、受光エリアARR及び光照射エリアARTにより決定できる。例えば絞り領域RAPは、受光エリアARR及び光照射エリアARTのうち、少なくとも遮光部100側(中心側)のエリアを含む領域となっている。   9A to 9C are explanatory diagrams of a method for setting the hole diameter of the aperture region RAP. In FIG. 9A, ARR represents the light receiving area of the light receiving unit 140, and ART represents the light irradiation area of the light emitting unit 150. The light receiving area ARR and the light irradiation area ART are areas set by the half-value width of the light intensity. The aperture area RAP can be determined by the light receiving area ARR and the light irradiation area ART. For example, the aperture region RAP is a region including at least the area on the light shielding unit 100 side (center side) of the light receiving area ARR and the light irradiation area ART.

図9(B)は、絞り領域RAPの穴径(透過穴径)と平均脈波DC値の関係を示す図である。図9(B)に示すように、絞り領域RAPの穴径が大きくなるほど、透過する光が増えるため、平均脈波DC値は大きくなる。しかしながら、絞り領域RAPの穴径の増加に対する平均脈波DC値の増加は飽和する。例えば図9(B)では絞り領域RAPの穴径が4mm程度となったところで飽和している。   FIG. 9B is a diagram showing the relationship between the hole diameter (transmission hole diameter) of the aperture region RAP and the average pulse wave DC value. As shown in FIG. 9B, the larger the hole diameter of the aperture region RAP, the larger the transmitted light increases, so the average pulse wave DC value increases. However, the increase in the average pulse wave DC value with respect to the increase in the hole diameter of the throttle region RAP is saturated. For example, in FIG. 9B, the aperture is saturated when the diameter of the aperture region RAP reaches about 4 mm.

図9(C)は、絞り領域RAPの穴径(アパーチャー径)とM、Nパワーの関係を示す図である。ここでMは脈波信号の信号レベルを表し、Nはノイズレベルを表す。図9(C)に示すように、穴径が5mmよりも大きくなると、ノイズレベルが急増する。これは、図5(A)、(B)で説明したように、穴径が大きくなると、透光部材30の周縁領域での迷光が受光部140に入射されて、ノイズとして検出されてしまうからである。   FIG. 9C is a diagram showing the relationship between the hole diameter (aperture diameter) of the aperture region RAP and the M and N powers. Here, M represents the signal level of the pulse wave signal, and N represents the noise level. As shown in FIG. 9C, when the hole diameter is larger than 5 mm, the noise level increases rapidly. This is because, as described with reference to FIGS. 5A and 5B, when the hole diameter increases, stray light in the peripheral region of the translucent member 30 enters the light receiving unit 140 and is detected as noise. It is.

このように、絞り領域RAPの穴径が小さくなりすぎると、受光量が減ってしまい、脈波検出信号のレベルが低下してしまう一方で、絞り領域RAPの穴径が大きくなりすぎると、透光部材30の周縁領域での迷光等が原因で、ノイズ成分が増加してしまう。従って、絞り領域RAPの穴径は、脈波検出信号のレベルを十分確保できる範囲で、被検体(肌、皮膚)との接触状態の変化(つまりノイズ)による影響を最小限に抑えることができる値に設定することが望ましい。例えば図9(A)〜図9(C)の場合は、穴径は4mm(φ4)程度に設定されることになる。   Thus, if the hole diameter of the aperture region RAP becomes too small, the amount of received light decreases, and the level of the pulse wave detection signal decreases. Due to stray light or the like in the peripheral region of the optical member 30, the noise component increases. Therefore, the hole diameter of the aperture region RAP is within a range in which the level of the pulse wave detection signal can be sufficiently secured, and the influence due to the change in the contact state with the subject (skin, skin) (that is, noise) can be minimized. It is desirable to set it to a value. For example, in the case of FIGS. 9A to 9C, the hole diameter is set to about 4 mm (φ4).

図10(A)〜図11(B)は絞り部の配置設定手法の説明図である。   FIG. 10A to FIG. 11B are explanatory diagrams of the arrangement setting method of the apertures.

例えば図10(A)において、透光部材30の透光領域の第1の端部ED1(受光部側の端部)と、受光部140の第2の端部ER2(右側端部)とを結ぶ線を、LN1とする。第2の端部ER2は、受光部140の2つの端部ER1、ER2のうち透光領域の第1の端部ED1から遠い側の端部である。また受光部140の第2の端部ER2と絞り部80の開口部側の端部EA1とを結ぶ線を、LN2とする。そして線LN1と受光部140の光軸AXR(受光面に垂直な軸)とのなす角度をθrとし、線LN2と光軸AXRとのなす角度をθaとする。   For example, in FIG. 10A, the first end ED1 (the end on the light receiving unit side) of the light transmitting region of the translucent member 30 and the second end ER2 (the right end) of the light receiving unit 140 are arranged. The connecting line is LN1. The second end ER2 is an end on the side farther from the first end ED1 of the light-transmitting region among the two ends ER1 and ER2 of the light receiving unit 140. A line connecting the second end ER2 of the light receiving unit 140 and the end EA1 on the opening side of the diaphragm 80 is denoted as LN2. An angle formed between the line LN1 and the optical axis AXR (axis perpendicular to the light receiving surface) of the light receiving unit 140 is θr, and an angle formed between the line LN2 and the optical axis AXR is θa.

この場合に、図10(A)ではθa<θrとなっている。即ち、θa<θrとなるように、受光部140側の絞り部80が配置設定されている。   In this case, θa <θr in FIG. That is, the aperture 80 on the light receiving unit 140 side is arranged and set so that θa <θr.

このようにθa<θrの関係が成り立てば、図10(A)から明らかなように、透光部材30の透光領域の第1の端部ED1からの光が、絞り部80により遮られることで、受光部140に入射されないようになる。   If the relationship of θa <θr is established in this way, the light from the first end ED1 of the light-transmitting region of the light-transmitting member 30 is blocked by the aperture 80, as is apparent from FIG. Thus, the light is not incident on the light receiving unit 140.

例えば受光部140は、その受光面全体での受光量を検出するものであるため、その第2の端部ER2に入射された光であっても、全体的な受光量として検出されてしまう。従って、接触状態の変化等により、透光部材30の第1の端部ED1から受光部140の第2の端部ER2に入射される光の状態が変化すると、これがノイズとして重畳されてしまい、計測データの信頼度等が低下する事態が生じる。   For example, since the light receiving unit 140 detects the amount of light received by the entire light receiving surface, even the light incident on the second end ER2 is detected as the total amount of received light. Therefore, when the state of light incident on the second end ER2 of the light receiving unit 140 from the first end ED1 of the translucent member 30 changes due to a change in the contact state or the like, this is superimposed as noise, There arises a situation in which the reliability of measurement data decreases.

この点、図10(A)のようにθa<θrの関係が成り立てば、透光部材30の透光領域の第1の端部ED1からの光が、絞り部80により遮られるため、上記のような事態を効果的に抑止できるようになる。   In this regard, if the relationship of θa <θr is established as shown in FIG. 10A, the light from the first end ED1 of the light-transmitting region of the light-transmitting member 30 is blocked by the aperture 80, and thus the above-mentioned Such a situation can be effectively deterred.

また図10(B)において、透光部材30の透光領域の第2の端部ED2(発光部側の端部)と、発光部150の第1の端部ET1(左側端部)とを結ぶ線を、LN3とする。第1の端部ET1は、発光部150の2つの端部ET1、ET2のうち透光領域の第2の端部ED2から遠い側の端部である。また発光部150の第1の端部ET1と絞り部82の開口部側の端部EA2とを結ぶ線を、LN4とする。そして線LN3と発光部150の光軸AXT(発光面に垂直な軸)とのなす角度をθtとし、線LN4と光軸AXTとのなす角度をθbとする。   10B, the second end ED2 (end on the light emitting unit side) of the light transmitting region of the translucent member 30 and the first end ET1 (left end) of the light emitting unit 150 are provided. The connecting line is LN3. The first end ET1 is an end of the two ends ET1 and ET2 of the light emitting unit 150 that is farther from the second end ED2 of the translucent region. A line connecting the first end ET1 of the light emitting unit 150 and the end EA2 on the opening side of the diaphragm 82 is denoted as LN4. An angle formed between the line LN3 and the optical axis AXT (axis perpendicular to the light emitting surface) of the light emitting unit 150 is θt, and an angle formed between the line LN4 and the optical axis AXT is θb.

この場合に、図10(B)ではθb<θtとなっている。即ち、θb<θtとなるように、発光部150側の絞り部82が配置設定されている。   In this case, θb <θt in FIG. That is, the diaphragm 82 on the light emitting unit 150 side is arranged and set so that θb <θt.

このようにθb<θtの関係が成り立てば、図10(B)から明らかなように、発光部150から透光部材30の透光領域の第2の端部ED2へと向かう光が、絞り部82により遮られるようになる。従って、第2の端部ED2での迷光が受光されてしまう等の事態を効果的に抑止できるようになる。   If the relationship of θb <θt is established in this way, as is clear from FIG. 10B, the light traveling from the light emitting unit 150 to the second end ED2 of the light transmitting region of the light transmitting member 30 is reduced to the aperture unit. It will be interrupted by 82. Accordingly, it is possible to effectively suppress a situation such as reception of stray light at the second end ED2.

また図11(A)、図11(B)に示すような手法で絞り部80、82を配置設定してもよい。   Moreover, you may arrange | position arrangement | positioning of the aperture | diaphragm | squeeze parts 80 and 82 by a method as shown to FIG. 11 (A) and FIG. 11 (B).

例えば図11(A)において、透光部材30の透光領域の第1の端部ED1(受光部側の端部)と、受光部140の第1の端部ER1(左側端部)とを結ぶ線を、LN5とする。第1の端部ER1は、受光部140の2つの端部ER1、ER2のうち透光領域の第1の端部ED1に近い側の端部である。また透光部材30の透光領域の第2の端部ED2(発光部側の端部)と、受光部140の第2の端部ER2(右側端部)とを結ぶ線を、LN6とする。第2の端部ER2は、受光部140の2つの端部ER1、ER2のうち透光領域の第2の端部ED2に近い側の端部である。   For example, in FIG. 11A, the first end ED1 (end on the light receiving unit side) of the translucent region of the translucent member 30 and the first end ER1 (left end) of the light receiving unit 140 are arranged. The connecting line is LN5. The first end ER1 is an end of the light receiving unit 140 on the side close to the first end ED1 of the light transmitting region. Further, a line connecting the second end ED2 (light emitting part side end) of the light transmitting region of the light transmitting member 30 and the second end ER2 (right side end) of the light receiving part 140 is LN6. . The second end ER2 is an end of the light receiving unit 140 on the side close to the second end ED2 of the translucent region among the two ends ER1 and ER2.

この場合に図11(A)では、少なくとも線LN5、LN6上に、絞り部80、82が位置するように、絞り部80、82が配置設定されている。即ち、線LN5、LN6の光路上に絞り部80、82が位置している。   In this case, in FIG. 11A, the aperture portions 80 and 82 are set so that the aperture portions 80 and 82 are positioned at least on the lines LN5 and LN6. That is, the diaphragm portions 80 and 82 are positioned on the optical paths of the lines LN5 and LN6.

このようにすれば、透光部材30の透光領域の第1、第2の端部ED1、ED2からの迷光が、絞り部80、82により遮られることを保証できるようになる。従って、第1、第2の端部ED1、ED2での迷光により計測データの信頼性等が低下してしまう事態を、効果的に抑制できるようになる。   In this way, it is possible to ensure that stray light from the first and second end portions ED1 and ED2 of the light transmitting region of the light transmitting member 30 is blocked by the aperture portions 80 and 82. Accordingly, it is possible to effectively suppress a situation in which the reliability of measurement data is reduced due to stray light at the first and second end portions ED1 and ED2.

また図11(B)において、透光部材30の透光領域の第1の端部ED1と、発光部150の第1の端部ET1(左側端部)とを結ぶ線を、LN7とする。第1の端部ET1は、発光部150の2つの端部ET1、ET2のうち透光領域の第1の端部ED1に近い側の端部である。また透光部材30の透光領域の第2の端部ED2と、発光部150の第2の端部ET2(右側端部)とを結ぶ線を、LN8とする。第2の端部ET2は、発光部150の2つの端部ET1、ET2のうち透光領域の第2の端部ED2に近い側の端部である。   In FIG. 11B, a line connecting the first end ED1 of the light-transmitting region of the light-transmitting member 30 and the first end ET1 (left-side end) of the light emitting unit 150 is denoted as LN7. The first end ET1 is an end on the side close to the first end ED1 of the light-transmitting region among the two ends ET1 and ET2 of the light emitting unit 150. A line connecting the second end ED2 of the light-transmitting region of the light-transmitting member 30 and the second end ET2 (right end) of the light-emitting unit 150 is denoted as LN8. The second end portion ET2 is an end portion of the two end portions ET1 and ET2 of the light emitting unit 150 on the side close to the second end portion ED2 of the light transmitting region.

この場合に図11(B)では、少なくとも線LN7、LN8上に、絞り部80、82が位置するように、絞り部80、82を配置設定している。即ち、線LN7、LN8の光路上に絞り部80、82が位置している。   In this case, in FIG. 11B, the aperture portions 80 and 82 are set so that the aperture portions 80 and 82 are positioned at least on the lines LN7 and LN8. That is, the diaphragm portions 80 and 82 are located on the optical paths of the lines LN7 and LN8.

このようにすれば、発光部150から、透光部材30の透光領域の第1、第2の端部ED1、ED2へと向かう光が、絞り部80、82により遮られることを保証できるようになる。従って、発光部150からの光が第1、第2の端部ED1、ED2において迷光になり、この迷光により計測データの信頼性等が低下してしまう事態を、効果的に抑制できるようになる。   In this way, it can be ensured that light from the light emitting unit 150 toward the first and second end portions ED1 and ED2 of the light transmitting region of the light transmitting member 30 is blocked by the aperture portions 80 and 82. become. Therefore, the situation where the light from the light emitting unit 150 becomes stray light at the first and second end portions ED1 and ED2 and the reliability of the measurement data decreases due to the stray light can be effectively suppressed. .

なお、図4、図7(A)、図7(B)等では、絞り部80、82が、透光部材30と検出部130(受光部140、発光部150)の間に設けられている。例えば、絞り部80、82は、透光部材30や検出部130から離れた位置に配置設定されている。このように、透光部材30と検出部130の間に絞り部80、82を配置すれば、被検体と検出部130の間の光路上において、絞り部80、82により迷光を効果的に遮って、この迷光によるノイズが計測データに重畳されてしまう事態を効果的に抑制できる。但し、絞り部80、82の配置形成手法は、これに限定されず、種々の変形実施が可能であり、絞り部80、82を、透光部材30と被検体との間又は透光部材30内に設けてもよい。   In FIGS. 4, 7 </ b> A, 7 </ b> B, and the like, the diaphragm portions 80 and 82 are provided between the translucent member 30 and the detection unit 130 (the light receiving unit 140 and the light emitting unit 150). . For example, the diaphragms 80 and 82 are arranged and set at positions away from the translucent member 30 and the detection unit 130. As described above, if the apertures 80 and 82 are arranged between the light transmitting member 30 and the detection unit 130, stray light is effectively blocked by the apertures 80 and 82 on the optical path between the subject and the detection unit 130. Thus, it is possible to effectively suppress the situation where noise due to the stray light is superimposed on the measurement data. However, the arrangement forming method of the diaphragm portions 80 and 82 is not limited to this, and various modifications can be made. The diaphragm portions 80 and 82 are disposed between the light transmitting member 30 and the subject or the light transmitting member 30. It may be provided inside.

例えば図12(A)では、絞り部80、82は、透光部材30と検出部130の間に設けられているものの、透光部材30に対して密着するように絞り部80、82が配置形成されている。また図12(B)では、透光部材30内(材質中)に絞り部80、82が配置形成されている。また図12(C)では、被検体と透光部材30の間に絞り部80、82が配置形成されている。このように絞り部80、82の配置形成手法としては種々の態様を想定できる。   For example, in FIG. 12A, the aperture portions 80 and 82 are provided between the translucent member 30 and the detector 130, but the aperture portions 80 and 82 are arranged so as to be in close contact with the translucent member 30. Is formed. In FIG. 12B, diaphragm portions 80 and 82 are disposed and formed in the translucent member 30 (in the material). In FIG. 12C, diaphragm portions 80 and 82 are disposed and formed between the subject and the translucent member 30. Thus, various modes can be envisaged as the arrangement forming method of the aperture portions 80 and 82.

また絞り部80、82の製造手法も、図4、図7(A)、図7(B)等のように透光部材30等と別体に形成する手法に限定されず、種々の手法を採用できる。例えば図12(A)、図12(C)のように透光部材30に密着するように絞り部80、82を形成する場合には、塗装、蒸着又は印刷などの手法により絞り部80、82を形成すればよい。或いは図12(B)のように透光部材30の中に絞り部80、82を形成する場合には、例えばインサート成型などの手法により絞り部80、82を形成すればよい。   In addition, the manufacturing method of the aperture portions 80 and 82 is not limited to the method of forming the diaphragm members 80 and 82 separately from the translucent member 30 and the like as shown in FIGS. 4, 7A and 7B, and various methods can be used. Can be adopted. For example, when the aperture portions 80 and 82 are formed so as to be in close contact with the translucent member 30 as shown in FIGS. 12A and 12C, the aperture portions 80 and 82 are applied by a technique such as painting, vapor deposition, or printing. May be formed. Alternatively, when the aperture portions 80 and 82 are formed in the translucent member 30 as shown in FIG. 12B, the aperture portions 80 and 82 may be formed by a technique such as insert molding.

また絞り部80、82の絞り領域(アパーチャー)の形状は、透光部材30の透光領域と相似形(略相似形、疑似相似形)であってもよいし、受光部140や凸部40の構造と相似形(略相似形、疑似相似形)であってもよい。或いは、受光部140の受光範囲や発光部150の発光範囲と相似形(略相似形、疑似相似形)であってもよい。   Further, the shape of the aperture regions (apertures) of the aperture portions 80 and 82 may be similar to the translucent region of the translucent member 30 (substantially similar shape or pseudo-similar shape), or the light receiving portion 140 or the convex portion 40. The structure may be similar to the structure (substantially similar or pseudo-similar). Alternatively, it may be similar to the light receiving range of the light receiving unit 140 or the light emitting range of the light emitting unit 150 (substantially similar or pseudo-similar).

以上に説明した本実施形態の生体情報検出装置によれば、脈波センサーと肌との接触圧の弱い領域や、脈波センサーと肌との接触状態が変化しやすい領域を通過する出射光や肌からの拡散光を、遮光することにより、脈波検出信号に重畳するノイズ成分を低減でき、信号品位を向上することが可能になる。   According to the biological information detection apparatus of the present embodiment described above, the outgoing light passing through the region where the contact pressure between the pulse wave sensor and the skin is weak, or the region where the contact state between the pulse wave sensor and the skin is likely to change By blocking the diffused light from the skin, the noise component superimposed on the pulse wave detection signal can be reduced, and the signal quality can be improved.

3.絞り部、遮光部の一体形成
本実施形態では、絞り部80、82と遮光部100とを遮光用部材78として一体形成してもよい。即ち、絞り部80、82と遮光部100(遮光壁)とを一体構造とする。図13は、このように一体形成された遮光用部材78の第1の例を示す斜視図であり、図14(A)、図14(B)は、各々、遮光用部材78の第1の例の上面図、断面図である。
3. In the present embodiment, the diaphragm portions 80 and 82 and the light shielding portion 100 may be integrally formed as the light shielding member 78. That is, the diaphragm portions 80 and 82 and the light shielding portion 100 (light shielding wall) are integrated. FIG. 13 is a perspective view showing a first example of the light shielding member 78 integrally formed as described above. FIGS. 14A and 14B are views showing a first example of the light shielding member 78, respectively. It is the upper side figure of an example, and sectional drawing.

図13〜図14(B)に示すように、遮光用部材78には、受光部側に設けられた絞り部80(第1の絞り部)と、発光部側に設けられた絞り部82(第2の絞り部)とが形成されている。そして受光部側の絞り部80に対応して、受光部側の絞りの開口部81が形成され、発光部側の絞り部82に対応して、発光部側の絞りの開口部83が形成されている。絞り部80、82との間には、絞り部80、82と一体的に遮光部100が形成されている。例えば、遮光用部材78は、一端側に底部が形成され他端側が開口する有底筒部の形状となっており、この有底筒部の底部が絞り部80、82として形成される。そして底部である絞り部80、82に対して、アパーチャーとして機能する開口部81、83が形成されている。また有底筒部の他端側の開口の領域を2分割(分断)するように、遮光部100が形成されている。   As shown in FIGS. 13 to 14B, the light blocking member 78 includes a diaphragm unit 80 (first diaphragm unit) provided on the light receiving unit side and a diaphragm unit 82 (on the light emitting unit side). A second diaphragm portion). A diaphragm opening 81 on the light receiving unit side is formed corresponding to the diaphragm unit 80 on the light receiving unit side, and a diaphragm opening 83 on the light emitting unit side is formed corresponding to the diaphragm unit 82 on the light emitting unit side. ing. Between the aperture portions 80 and 82, a light shielding portion 100 is formed integrally with the aperture portions 80 and 82. For example, the light shielding member 78 has a shape of a bottomed cylindrical portion having a bottom portion formed on one end side and opened on the other end side, and the bottom portions of the bottomed cylindrical portion are formed as throttle portions 80 and 82. Openings 81 and 83 that function as apertures are formed in the throttle portions 80 and 82 that are the bottom portions. Further, the light shielding portion 100 is formed so that the opening region on the other end side of the bottomed cylindrical portion is divided into two (divided).

遮光部100は、図13、図14(A)に示すように、その中心部102において肉厚が細くなっている。こうすることで、受光部140と発光部150の距離を、より近づけることが可能になり、光学的な効率・性能を向上できる。   As shown in FIGS. 13 and 14A, the light shielding portion 100 has a small thickness at the central portion 102 thereof. By doing so, the distance between the light receiving unit 140 and the light emitting unit 150 can be made closer, and the optical efficiency and performance can be improved.

また、生体情報検出装置の筺体面22(図3、図4参照)に直交する方向DRHでの遮光部100の高さをH1とし、絞り部80、82の検出部130側の面である下面の高さをH2としたとする。これらの高さH1、H2は基準面(例えば基板160)からの高さである。この場合に図14(B)に示すように、H1>H2の関係が成り立っている。即ち、遮光部100は、絞り部80、82の下面よりも高い位置まで延在形成された遮光壁となっている。こうすることで、発光部150からの光が、絞り部80、82等に反射して、受光部140に入射されてしまう事態を抑制できる。即ち、発光部150の直接反射光の影響を除去することが可能になり、測定データの信頼性の低下等を抑制できる。   Further, the height of the light shielding unit 100 in the direction DRH orthogonal to the housing surface 22 (see FIGS. 3 and 4) of the biological information detection device is H1, and the lower surface which is the surface on the detection unit 130 side of the diaphragms 80 and 82 Is assumed to be H2. These heights H1 and H2 are heights from a reference plane (for example, the substrate 160). In this case, the relationship of H1> H2 is established as shown in FIG. That is, the light shielding portion 100 is a light shielding wall that extends to a position higher than the lower surfaces of the aperture portions 80 and 82. By doing so, it is possible to suppress a situation in which light from the light emitting unit 150 is reflected by the diaphragm units 80 and 82 and is incident on the light receiving unit 140. That is, it becomes possible to remove the influence of the directly reflected light of the light emitting unit 150, and it is possible to suppress a decrease in reliability of measurement data.

また図14(B)に示すように、遮光用部材78は、受光部140及び発光部150が実装される基板160の上方(方向DRHの方向)から、基板160に向かって取り付けられる。即ち、遮光用部材78の有底筒部形状の他端側の開口の領域に対して、受光部140及び発光部150が実装される基板160が挿入されるように、取り付けられる。そして遮光用部材78には、突起部86、88が形成されており、この突起部86、88が、基板160に形成された穴部に嵌合することで、遮光用部材78が基板160に対して固定される。これにより、例えば透光部材30の裏側の凹部32に対応する位置に、絞り部80、82、遮光部100、受光部140、発光部150が配置されるようになる。この場合に凹部32の部分では、透光部材30の肉厚が薄くなっている。従って、受光部140に入射される光や、発光部150から出射される光についての、透光部材30での通過距離である光路の長さを短くできる。従って、これらの光の透光部材30での減衰が低減され、透過光量を向上できる。   As shown in FIG. 14B, the light blocking member 78 is attached toward the substrate 160 from above (the direction DRH) of the substrate 160 on which the light receiving unit 140 and the light emitting unit 150 are mounted. That is, the light-shielding member 78 is attached so that the substrate 160 on which the light-receiving unit 140 and the light-emitting unit 150 are mounted is inserted into the opening region on the other end side of the bottomed cylindrical part shape of the light-shielding member 78. Projection portions 86 and 88 are formed on the light shielding member 78, and the projection portions 86 and 88 are fitted into holes formed in the substrate 160, so that the light shielding member 78 is attached to the substrate 160. It is fixed against. Thereby, for example, the diaphragm portions 80 and 82, the light shielding portion 100, the light receiving portion 140, and the light emitting portion 150 are arranged at positions corresponding to the concave portions 32 on the back side of the translucent member 30. In this case, the thickness of the translucent member 30 is thin at the concave portion 32. Therefore, the length of the optical path, which is the passing distance of the light incident on the light receiving unit 140 and the light emitted from the light emitting unit 150, through the translucent member 30 can be shortened. Therefore, attenuation of these lights in the translucent member 30 is reduced, and the amount of transmitted light can be improved.

なお、絞り部80、82、遮光部100には、脈波センサーの光学的な効率・性能を向上するための加工処理等を施すことが望ましい。例えば、絞り部80、82、遮光部100の表面(壁面)を荒くする加工処理を行って、光の反射率を抑制する。或いは、絞り部80、82、遮光部100の表面をモスアイ構造にする。例えば数十〜数百nm周期の凹凸構造を表面に形成して、反射防止構造とする。或いは、絞り部80、82、遮光部100の表面の色を、黒色等の所定色にして、光の乱反射を防ぐようにする。このようにすれば、絞り部80、82、遮光部100での反射光が迷光となって、計測データのノイズ成分となってしまう事態を効果的に抑制できる。   In addition, it is desirable that the diaphragm portions 80 and 82 and the light shielding portion 100 are subjected to processing for improving the optical efficiency and performance of the pulse wave sensor. For example, the processing of roughening the surfaces (wall surfaces) of the diaphragm portions 80 and 82 and the light shielding portion 100 is performed to suppress the light reflectance. Alternatively, the surfaces of the diaphragm portions 80 and 82 and the light shielding portion 100 have a moth-eye structure. For example, an uneven structure having a period of several tens to several hundreds of nanometers is formed on the surface to form an antireflection structure. Alternatively, the surface color of the apertures 80 and 82 and the light shielding unit 100 is set to a predetermined color such as black so as to prevent irregular reflection of light. In this way, it is possible to effectively suppress a situation in which the reflected light from the diaphragm portions 80 and 82 and the light shielding portion 100 becomes stray light and becomes a noise component of measurement data.

さて、前述したように、脈波センサーの光学的な効率・性能を向上するためには、受光部140と発光部150との間の距離を最小化することが望ましい。このため、遮光部100をできるだけ薄い壁厚構造にする必要がある。特に、図13、図14(A)の遮光部100の中心部102(受光部140の中心位置と発光部150の中心位置を結ぶ線と交わる領域)において、遮光部100の壁厚を薄くする。   As described above, in order to improve the optical efficiency and performance of the pulse wave sensor, it is desirable to minimize the distance between the light receiving unit 140 and the light emitting unit 150. For this reason, it is necessary to make the light-shielding part 100 as thin as possible. In particular, the wall thickness of the light shielding unit 100 is reduced in the central portion 102 of the light shielding unit 100 in FIGS. 13 and 14A (a region intersecting with a line connecting the center position of the light receiving unit 140 and the center position of the light emitting unit 150). .

しかしながら、このように薄い壁厚の遮光部100の単体構造では、強度が不足してしまう。例えば脈拍計が使用される走行時や自転車搭乗時には、強い衝撃(例えば10G程度)が機器に加わるため、それらの衝撃に対応できる強度が必要となる。   However, the strength of the single-piece structure of the light-shielding portion 100 having such a thin wall thickness is insufficient. For example, when traveling using a pulse meter or riding a bicycle, a strong impact (for example, about 10G) is applied to the device, and thus strength that can cope with the impact is required.

そこで本実施形態では、絞り部80、82と遮光部100を一体構造とする手法を採用している。即ち、絞り部80、82と遮光部100の各々を単体の部材で実現するのではなく、図13に示すように絞り部80、82と遮光部100が一体形成された遮光用部材78を用いる。このような一体形成された遮光用部材78であれば、遮光部100の壁厚が薄くても、衝撃に耐えうる強度を確保することが可能になる。   Therefore, in the present embodiment, a technique is adopted in which the aperture portions 80 and 82 and the light shielding portion 100 are integrated. That is, each of the aperture portions 80 and 82 and the light shielding portion 100 is not realized by a single member, but a light shielding member 78 in which the aperture portions 80 and 82 and the light shielding portion 100 are integrally formed is used as shown in FIG. . With such a light shielding member 78 formed integrally, even if the wall thickness of the light shielding portion 100 is thin, it is possible to ensure the strength to withstand an impact.

また、絞り部80、82と遮光部100は共に、光学的な安定化という目的の点で一致しているため、材料の共通化等が容易である。例えば、絞り部80、82と遮光部100の表面の色を、乱反射の生じない黒色に設定することなども容易となる。   In addition, since the diaphragm portions 80 and 82 and the light shielding portion 100 all coincide with each other in terms of the purpose of optical stabilization, it is easy to share materials. For example, it becomes easy to set the colors of the surfaces of the diaphragm portions 80 and 82 and the light shielding portion 100 to black that does not cause irregular reflection.

また絞り部80、82と遮光部100を一体化することで、部品組み立て時の組立性が向上し、コスト低減に寄与する。例えば図14(B)において、透光部材30の凹部32に遮光用部材78を挿入し、遮光用部材78の突起部86、88を、受光部140、発光部150が実装された基板160に嵌合させて固定するだけで、脈波センサーの組み立てを完了できる。   Further, by integrating the aperture portions 80 and 82 and the light shielding portion 100, the assemblability at the time of assembling the components is improved, which contributes to cost reduction. For example, in FIG. 14B, the light shielding member 78 is inserted into the concave portion 32 of the light transmitting member 30, and the projections 86 and 88 of the light shielding member 78 are attached to the substrate 160 on which the light receiving portion 140 and the light emitting portion 150 are mounted. The assembly of the pulse wave sensor can be completed simply by fitting and fixing.

また、機器の量産性を考慮すると、遮光用部材78は射出成型により製造することが望ましい。しかしながら、遮光部100の壁厚があまりに薄いと、射出成形時に、遮光部100の部分に樹脂が十分に充填されないおそれがある。   Further, considering the mass productivity of equipment, it is desirable to manufacture the light shielding member 78 by injection molding. However, if the wall thickness of the light shielding portion 100 is too thin, there is a possibility that the resin is not sufficiently filled in the portion of the light shielding portion 100 during injection molding.

そこで図14(A)では、受光部側の絞り部80(第1の絞り部)の開口部81の面積よりも、発光部側の絞り部82の開口部83の面積の方が小さくなるようにしている。   Therefore, in FIG. 14A, the area of the aperture 83 of the aperture 82 on the light emitting unit side is smaller than the area of the aperture 81 of the aperture 80 (first aperture) on the light receiving unit side. I have to.

また図14(A)では、受光部140の中心と発光部150の中心を結ぶ線LNRT上において、遮光部100の壁厚が最小になるようにしている。例えば、中央部102に近づくにつれて壁厚が薄くなるようにしている。   In FIG. 14A, the wall thickness of the light shielding unit 100 is minimized on a line LNRT connecting the center of the light receiving unit 140 and the center of the light emitting unit 150. For example, the wall thickness decreases as the distance from the central portion 102 approaches.

例えば発光部側の開口部83の面積を小さくすれば、図14(A)のDP1、DP2の経路を、射出成型における樹脂の流し込み経路に設定できる。そして、DP1からDP3の経路と、DP2からDP4の経路で樹脂を流し込むことで、樹脂を十分に充填して、壁厚が薄い中央部102においても、樹脂により遮光部100を形成できるようになる。そして、例えばLED等により実現される発光部150の大きさは、フォトダイオードの半導体IC等により実現される受光部140の大きさに比べて、小さいのが一般的である。従って、発光部側の開口部83の面積を小さくしても、それほど問題は生じない。そして受光部側の開口部81の面積を大きくすることで、受光効率を高めることができ、生体情報検出装置の性能等の向上を図れる。   For example, if the area of the opening 83 on the light emitting part side is reduced, the paths DP1 and DP2 in FIG. 14A can be set as the resin pouring path in the injection molding. Then, by pouring the resin through the path from DP1 to DP3 and the path from DP2 to DP4, the resin can be sufficiently filled, and the light shielding part 100 can be formed from the resin even in the central portion 102 where the wall thickness is thin. . For example, the size of the light emitting unit 150 realized by an LED or the like is generally smaller than the size of the light receiving unit 140 realized by a semiconductor IC of a photodiode or the like. Therefore, even if the area of the opening 83 on the light emitting unit side is reduced, there is not much problem. And by increasing the area of the opening part 81 on the light receiving part side, the light receiving efficiency can be increased, and the performance and the like of the biological information detecting apparatus can be improved.

そして、このように発光部側の開口部83の面積を小さくして、樹脂の流し込みを容易にし、遮光部100の中央部102等での壁厚を薄くすれば、受光部140と発光部150の間の距離を近づけることができる。これにより、光学的な効率・性能を向上できるようになる。即ち、遮光部100の強度と光学的な効率・性能を両立しながら、射出成形時の樹脂の充填不足を防ぎ、歩留まり等の向上を図ることが可能になる。   If the area of the opening 83 on the light emitting part side is reduced in this way to facilitate the pouring of the resin and the wall thickness at the central part 102 of the light shielding part 100 is reduced, the light receiving part 140 and the light emitting part 150 are obtained. The distance between can be reduced. Thereby, optical efficiency and performance can be improved. That is, it is possible to prevent the resin from being insufficiently filled at the time of injection molding and improve the yield and the like while achieving both the strength of the light shielding unit 100 and the optical efficiency and performance.

なお、図15、図16(A)、図16(B)に、絞り部80、82と遮光部100とが一体形成された遮光用部材78の第2の例の斜視図、上面図、断面図を示す。この第2の例の遮光用部材78では、図16(A)に示すように、受光部側の開口部81の面積と発光部側の開口部83の面積が等しくなっている。また図16(B)に示すように、透光部材30が曲面形状の凸部を有しない構成となっている。このように遮光用部材78の構造・形状としては種々の変形実施が可能である。   15, 16 (A), and 16 (B), a perspective view, a top view, and a cross-section of a second example of the light shielding member 78 in which the aperture portions 80 and 82 and the light shielding portion 100 are integrally formed. The figure is shown. In the light shielding member 78 of the second example, as shown in FIG. 16A, the area of the opening 81 on the light receiving part side and the area of the opening 83 on the light emitting part side are equal. As shown in FIG. 16B, the translucent member 30 does not have a curved convex portion. As described above, various modifications can be made to the structure and shape of the light shielding member 78.

4.透光部材の凸部
図17(A)に示すように本実施形態では、透光部材30は、被検体の生体情報の測定時に被検体に接触して押圧を与える凸部40を有している。
4). As shown in FIG. 17A, in this embodiment, the translucent member 30 has a convex portion 40 that comes into contact with and applies pressure to the subject when measuring biological information of the subject. Yes.

そして絞り部80、82は、C1、C2に示すように、この凸部40の周縁領域を通過する光を遮光している。こうすれば、C1、C2のように接触状態が不安定な場所での迷光を原因とする計測データの信頼性の低下等を抑制できる。   The diaphragm portions 80 and 82 block light passing through the peripheral region of the convex portion 40 as indicated by C1 and C2. By doing so, it is possible to suppress a decrease in reliability of measurement data caused by stray light in a place where the contact state is unstable such as C1 and C2.

また図17(A)では、押圧抑制部60が設けられている。この押圧抑制部60は、生体情報検出装置の筺体面(被検体側の面)において凸部40を囲むように設けられ、凸部40が被検体に与える押圧を抑制する。この押圧抑制部60は、図3、図4では、凸部40の位置から第2の方向DR2側(手から下腕へと向かう方向側)に広がる押圧抑制面を有している。具体的には、押圧抑制部60は、カバー部材20に形成された土手形状の部分により実現されている。   Moreover, in FIG. 17 (A), the press suppression part 60 is provided. The pressing suppression unit 60 is provided so as to surround the convex portion 40 on the body surface (surface on the subject side) of the biological information detecting device, and suppresses the pressure that the convex portion 40 applies to the subject. In FIG. 3 and FIG. 4, the pressing suppression portion 60 has a pressing suppression surface that extends from the position of the convex portion 40 to the second direction DR2 side (the direction side from the hand toward the lower arm). Specifically, the pressing suppression unit 60 is realized by a bank-shaped portion formed on the cover member 20.

この場合に、例えば、生体情報検出装置の筺体面に直交する方向DRHでの凸部40の高さをHA(例えば凸部40の曲面形状の頂点の高さ)とし、押圧抑制部60の高さをHB(例えば最も高い場所での高さ)とし、高さHAから高さHBを減じた値(高さHAとHBの差)をΔhとした場合に、Δh=HA−HB>0の関係が成り立っている。例えば、凸部40は、押圧抑制部60の押圧抑制面から被検体側に、Δh>0となるように突出している。即ち、凸部40は、押圧抑制部60の押圧抑制面よりも、Δhの分だけ被検体側に突出している。   In this case, for example, the height of the convex portion 40 in the direction DRH orthogonal to the housing surface of the biological information detecting device is HA (for example, the height of the apex of the curved surface shape of the convex portion 40), and the height of the pressing suppression unit 60 is high. When the height is HB (for example, the height at the highest place) and the value obtained by subtracting the height HB from the height HA (the difference between the heights HA and HB) is Δh, Δh = HA−HB> 0 A relationship is established. For example, the convex portion 40 protrudes from the pressure suppression surface of the pressure suppression unit 60 toward the subject so that Δh> 0. That is, the convex portion 40 protrudes toward the subject side by Δh from the pressure suppression surface of the pressure suppression portion 60.

このように、Δh>0となる凸部40を設けることで、例えば静脈消失点を超えるための初期押圧を被検体に対して与えることが可能になる。また、凸部40が被検体に与える押圧を抑制するための押圧抑制部60を設けることで、生体情報検出装置により生体情報の測定を行う使用範囲において、押圧変動を最小限に抑えることが可能になり、ノイズ成分等の低減を図れる。ここで静脈消失点とは、被検体に凸部40を接触させ押圧を次第に強くした時に、脈波信号に重畳された静脈に起因する信号が消失、または脈波測定に影響しない程度に小さくなる点のことである。   As described above, by providing the convex portion 40 that satisfies Δh> 0, for example, it is possible to apply an initial pressure to the subject to exceed the vein vanishing point. In addition, by providing the pressure suppressing unit 60 for suppressing the pressure applied to the subject by the convex portion 40, it is possible to minimize the pressure fluctuation in the usage range in which the biological information is measured by the biological information detecting device. Therefore, noise components and the like can be reduced. Here, the vein vanishing point is reduced to such an extent that the signal caused by the vein superimposed on the pulse wave signal disappears or does not affect the pulse wave measurement when the convex portion 40 is brought into contact with the subject and the pressure is gradually increased. It is a point.

例えば図17(B)では、横軸は、図1(B)〜図2(C)で説明した荷重機構(バネ、伸縮部などの弾性部材や、バンド等で構成される機構)が発生する荷重を表しており、縦軸は、凸部40が被検体に与える押圧(血管にかかる圧力)を表している。そして凸部40の押圧を発生させる荷重機構による荷重に対する凸部40の押圧の変化量を押圧変化量としたとする。この押圧変化量は、荷重に対する押圧の変化特性の傾きに相当する。   For example, in FIG. 17B, the horizontal axis is generated by the load mechanism described in FIGS. 1B to 2C (a mechanism constituted by an elastic member such as a spring or a stretchable part, a band, or the like). The load represents the load, and the vertical axis represents the pressure (pressure applied to the blood vessel) that the convex portion 40 applies to the subject. Then, it is assumed that the amount of change in the pressing of the convex portion 40 with respect to the load by the load mechanism that generates the pressing of the convex portion 40 is a pressing change amount. This amount of change in pressure corresponds to the inclination of the change characteristic of pressure against the load.

この場合に押圧抑制部60は、荷重機構の荷重が0〜FL1となる第1の荷重範囲RF1での押圧変化量VF1に対して、荷重機構の荷重がFL1よりも大きくなる第2の荷重範囲RF2での押圧変化量VF2が小さくなるように、凸部40が被検体に与える押圧を抑制する。即ち、初期押圧範囲である第1の荷重範囲RF1では、押圧変化量VF1を大きくする一方で、生体情報検出装置の使用範囲である第2の荷重範囲RF2では、押圧変化量VF2を小さくする。   In this case, the pressure suppression unit 60 has a second load range in which the load of the load mechanism is larger than FL1 with respect to the pressure change amount VF1 in the first load range RF1 in which the load of the load mechanism is 0 to FL1. The pressure applied to the subject by the convex portion 40 is suppressed so that the pressure change amount VF2 at RF2 is reduced. That is, in the first load range RF1 that is the initial pressing range, the pressing change amount VF1 is increased, while in the second load range RF2 that is the usage range of the biological information detecting device, the pressing change amount VF2 is decreased.

つまり、第1の荷重範囲RF1では、押圧変化量VF1を大きくして、荷重に対する押圧の変化特性の傾きを大きくしている。このような変化特性の傾きが大きな押圧は、凸部40の飛び出し量に相当するΔhにより実現される。即ち、Δh>0となる凸部40を設けることで、荷重機構による荷重が少ない場合であっても、静脈消失点を超えるのに必要十分な初期押圧を、被検体に対して与えることが可能になる。   That is, in the first load range RF1, the pressure change amount VF1 is increased to increase the inclination of the pressure change characteristic with respect to the load. Such a pressing with a large gradient of the change characteristic is realized by Δh corresponding to the protrusion amount of the convex portion 40. That is, by providing the convex portion 40 where Δh> 0, even when the load by the load mechanism is small, it is possible to give the subject an initial pressure necessary and sufficient to exceed the venous vanishing point. become.

一方、第2の荷重範囲RF2では、押圧変化量VF2を小さくして、荷重に対する押圧の変化特性の傾きを小さくしている。このような変化特性の傾きが小さな押圧は、押圧抑制部60による押圧抑制により実現される。即ち、凸部40が被検体に与える押圧を、押圧抑制部60が抑制することで、生体情報検出装置の使用範囲では、荷重の変動等があった場合にも、押圧の変動を最小限に抑えることが可能になる。これにより、ノイズ成分の低減等を図れる。   On the other hand, in the second load range RF2, the pressure change amount VF2 is reduced to reduce the inclination of the pressure change characteristic with respect to the load. Such a pressing with a small inclination of the change characteristic is realized by pressing suppression by the pressing suppressing unit 60. In other words, the pressure suppression unit 60 suppresses the pressure applied to the subject by the convex portion 40, thereby minimizing the pressure variation even when there is a load variation or the like in the usage range of the biological information detection device. It becomes possible to suppress. As a result, noise components can be reduced.

このように、最適化された押圧(例えば16kPa程度)が被検体に与えられるようにすることで、脈波センサーの信号成分(M)を増加させると共に、ノイズ成分(N)を低減できる。また、脈波測定に使用する押圧の範囲を、第2の荷重範囲RF2に対応する範囲に設定することで、最小限の押圧変動(例えば±4kPa程度)に抑えることが可能になり、ノイズ成分を低減できる。また、絞り部80、82や遮光部100を用いて、光学的なノイズを低減することで、脈波検出信号に乗るノイズ成分を、更に低減することが可能になる。   As described above, by applying an optimized pressure (for example, about 16 kPa) to the subject, the signal component (M) of the pulse wave sensor can be increased and the noise component (N) can be reduced. In addition, by setting the pressure range used for pulse wave measurement to a range corresponding to the second load range RF2, it is possible to suppress a minimum pressure fluctuation (for example, about ± 4 kPa), and a noise component Can be reduced. In addition, by reducing the optical noise using the diaphragms 80 and 82 and the light shielding unit 100, it is possible to further reduce the noise component on the pulse wave detection signal.

さて、凸部40の飛び出し量を表すΔhは、最適押圧を規定する重要なパラメーターとなる。即ち、静脈消失点を超えるための押圧を常に与えるためには、ある程度の飛び出し量が必要であり、Δhを大きな値にする必要がある。しかしながら、Δhが過大な値になってしまうと、脈波センサーの信号成分の低減や押圧変動の増加の要因となるおそれがある。   Now, Δh representing the protruding amount of the convex portion 40 is an important parameter for defining the optimum pressing. That is, in order to always give a pressure for exceeding the venous vanishing point, a certain amount of pop-out amount is necessary, and Δh needs to be a large value. However, if Δh becomes an excessive value, it may cause a reduction in the signal component of the pulse wave sensor and an increase in pressure fluctuation.

そこで、脈波センサーの信号成分を十分確保できる範囲、つまり最適押圧を与えることができる範囲で、最小のΔhを選択するようにする。即ち、最適押圧を与えることができる範囲であれば、Δhが小さいほど、ノイズ成分を低く抑えることができる。   Therefore, the minimum Δh is selected within a range where a signal component of the pulse wave sensor can be sufficiently secured, that is, within a range where the optimum pressure can be applied. That is, as long as Δh is smaller, the noise component can be kept lower as long as the optimum pressure can be applied.

例えば図18(A)は、ユーザーがグーパーの動作(GP)を行った場合における、ΔhとMN比(SN比)との関係を表す測定値の例である。また図18(B)は、ユーザーが走る動作(RUN)を行った場合における、ΔhとMN比との関係を表す測定値の例である。ここでMN比は、脈波センサーの信号成分(M)とノイズ成分(N)の比に相当するものである。   For example, FIG. 18A is an example of a measured value representing the relationship between Δh and the MN ratio (SN ratio) when the user performs a grouper action (GP). FIG. 18B is an example of a measurement value representing the relationship between Δh and the MN ratio when the user performs a running operation (RUN). Here, the MN ratio corresponds to the ratio of the signal component (M) and the noise component (N) of the pulse wave sensor.

図18(A)、図18(B)から、Δhの範囲は、0.01mm≦Δh≦0.5mmであることが望ましく、更に好ましくは、0.05mm≦Δh≦0.35mmであることが望ましいことが理解される。例えばΔh=0.25mm程度にすることで、MN比を最も大きくすることが可能になる。即ち、このようにΔhを小さな値にすることで、静脈消失点を超えるための最低限の押圧を被検体に与えながら、押圧変動等を要因とするノイズ成分の増加を抑制して、信号の品位を表すMN比を高めることが可能になる。   18A and 18B, the range of Δh is desirably 0.01 mm ≦ Δh ≦ 0.5 mm, and more preferably 0.05 mm ≦ Δh ≦ 0.35 mm. It is understood that it is desirable. For example, by making Δh = about 0.25 mm, the MN ratio can be maximized. That is, by setting Δh to a small value in this way, an increase in noise components caused by pressure fluctuations or the like is suppressed while giving the subject a minimum pressure to exceed the venous vanishing point, and the signal It becomes possible to increase the MN ratio representing the quality.

5.生体情報検出装置の全体構成
図19は、生体情報検出装置の全体構成の例を示す機能ブロック図である。図19の生体情報検出装置は、検出部130、体動検出部190、処理部200、記憶部240、表示部310を含む。なお本実施形態の生体情報検出装置は図19の構成に限定されず、その構成要素の一部を省略したり、他の構成要素を追加するなどの種々の変形実施が可能である。
5. Overall Configuration of Biological Information Detection Device FIG. 19 is a functional block diagram illustrating an example of the overall configuration of the biological information detection device. 19 includes a detection unit 130, a body movement detection unit 190, a processing unit 200, a storage unit 240, and a display unit 310. Note that the biological information detection apparatus of the present embodiment is not limited to the configuration shown in FIG. 19, and various modifications such as omitting some of the components or adding other components are possible.

検出部130は、脈波等の生体情報を検出するものであり、受光部140、発光部150を含む。これらの受光部140、発光部150等により脈波センサー(光電センサー)が実現される。検出部130は、脈波センサーにより検出された信号を、脈波検出信号として出力する。   The detection unit 130 detects biological information such as a pulse wave, and includes a light receiving unit 140 and a light emitting unit 150. A pulse wave sensor (photoelectric sensor) is realized by the light receiving unit 140, the light emitting unit 150, and the like. The detection unit 130 outputs a signal detected by the pulse wave sensor as a pulse wave detection signal.

体動検出部190は、種々のセンサーのセンサー情報に基づいて、体動に応じて変化する信号である体動検出信号を出力する。体動検出部190は、体動センサーとして例えば加速度センサー192を含む。なお、体動検出部190は、体動センサーとして圧力センサーやジャイロセンサーなどを有していてもよい。   The body motion detection unit 190 outputs a body motion detection signal that is a signal that changes according to body motion, based on sensor information of various sensors. The body motion detection unit 190 includes, for example, an acceleration sensor 192 as a body motion sensor. The body motion detection unit 190 may include a pressure sensor, a gyro sensor, or the like as a body motion sensor.

処理部200は、例えば記憶部240をワーク領域として、各種の信号処理や制御処理を行うものであり、例えばCPU等のプロセッサー或いはASICなどの論理回路により実現できる。処理部200は、信号処理部210、拍動情報演算部220、表示制御部230を含む。   The processing unit 200 performs various signal processing and control processing using the storage unit 240 as a work area, for example, and can be realized by a processor such as a CPU or a logic circuit such as an ASIC. The processing unit 200 includes a signal processing unit 210, a pulsation information calculation unit 220, and a display control unit 230.

信号処理部210は各種の信号処理(フィルター処理等)を行うものであり、例えば、検出部130からの脈波検出信号や体動検出部190からの体動検出信号などに対して信号処理を行う。例えば信号処理部210は体動ノイズ低減部212を含む。体動ノイズ低減部212は、体動検出部190からの体動検出信号に基づいて、脈波検出信号から、体動に起因したノイズである体動ノイズを低減(除去)する処理を行う。具体的には、例えば適応フィルターなどを用いたノイズ低減処理を行う。   The signal processing unit 210 performs various types of signal processing (filter processing and the like). For example, the signal processing unit 210 performs signal processing on a pulse wave detection signal from the detection unit 130, a body movement detection signal from the body movement detection unit 190, and the like. Do. For example, the signal processing unit 210 includes a body movement noise reduction unit 212. Based on the body motion detection signal from the body motion detection unit 190, the body motion noise reduction unit 212 performs a process of reducing (removing) body motion noise that is noise caused by body motion from the pulse wave detection signal. Specifically, for example, noise reduction processing using an adaptive filter or the like is performed.

拍動情報演算部220は、信号処理部210からの信号等に基づいて、拍動情報の演算処理を行う。拍動情報は例えば脈拍数などの情報である。具体的には、拍動情報演算部220は、体動ノイズ低減部212でのノイズ低減処理後の脈波検出信号に対してFFT等の周波数解析処理を行って、スペクトルを求め、求めたスペクトルにおいて代表的な周波数を心拍の周波数とする処理を行う。求めた周波数を60倍にした値が、一般的に用いられる脈拍数(心拍数)となる。なお、拍動情報は脈拍数そのものには限定されず、例えば脈拍数を表す他の種々の情報(例えば心拍の周波数や周期等)であってもよい。また、拍動の状態を表す情報であってもよく、例えば血液量そのものを表す値を拍動情報としてもよい。   The pulsation information calculation unit 220 performs pulsation information calculation processing based on the signal from the signal processing unit 210 and the like. The pulsation information is information such as the pulse rate. Specifically, the pulsation information calculation unit 220 obtains a spectrum by performing frequency analysis processing such as FFT on the pulse wave detection signal after the noise reduction processing in the body motion noise reduction unit 212, and obtains the spectrum. In FIG. 5, processing is performed in which a representative frequency is a heartbeat frequency. A value obtained by multiplying the obtained frequency by 60 is a commonly used pulse rate (heart rate). Note that the pulsation information is not limited to the pulse rate itself, and may be other various information (for example, the frequency or cycle of the heartbeat) representing the pulse rate, for example. Moreover, the information which represents the state of pulsation may be sufficient, for example, it is good also considering the value showing the blood volume itself as pulsation information.

表示制御部230は、表示部310に各種の情報や画像を表示するための表示制御を行う。例えば図1(A)に示すように、脈拍数などの拍動情報や時刻情報などの各種情報を、表示部310に表示する制御を行う。また、表示部310の代わりとして光、音又は振動等のユーザーの知覚を刺激する出力を行う報知デバイスを設けてもよい。このような報知デバイスとしては例えばLED、ブザー又はバイブレーターなどを想定できる。   The display control unit 230 performs display control for displaying various information and images on the display unit 310. For example, as shown in FIG. 1A, control is performed to display various information such as pulse information such as a pulse rate and time information on the display unit 310. Moreover, you may provide the alerting | reporting device which performs the output which stimulates perception of users, such as light, a sound, or a vibration, instead of the display part 310. FIG. As such a notification device, for example, an LED, a buzzer, or a vibrator can be assumed.

なお、以上のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また生体情報検出装置の構成、動作も本実施形態で説明したものに限定されず、種々の変形実施が可能である。   Although the present embodiment has been described in detail as described above, it will be easily understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. Accordingly, all such modifications are intended to be included in the scope of the present invention. For example, a term described at least once together with a different term having a broader meaning or the same meaning in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Further, the configuration and operation of the biological information detection apparatus are not limited to those described in the present embodiment, and various modifications can be made.

2 肌、10 裏蓋部、20 カバー部材、22 筺体面、24 ねじ穴部、
26 端子穴部、30 透光部材、32 凹部、40 凸部、42 溝部、
60 押圧抑制部、78 遮光用部材、80、82 絞り部、81、83 開口部、
86、88 突起部、100 遮光部、102 中心部、
130 検出部、140 受光部、150 発光部、152 リフレクター、
160 基板、190 体動検出部、192 加速度センサー、
200 処理部、210 信号処理部、212 体動ノイズ低減部、
220 拍動情報演算部、230 表示制御部、240 記憶部、
300 本体部、310 表示部、320、322 バンド、
330、332 伸縮部、340 連結部、342 固定部材、343 表示器、
344 スライド部材、350、352 バネ、
400 手首、410 手、420 下腕
2 skin, 10 back cover, 20 cover member, 22 housing surface, 24 screw hole,
26 terminal hole part, 30 translucent member, 32 concave part, 40 convex part, 42 groove part,
60 pressure suppression part, 78 light shielding member, 80, 82 aperture part, 81, 83 opening part,
86, 88 Projection part, 100 Light shielding part, 102 Center part,
130 detector, 140 light receiver, 150 light emitter, 152 reflector,
160 substrate, 190 body motion detector, 192 acceleration sensor,
200 processing unit, 210 signal processing unit, 212 body movement noise reduction unit,
220 beat information calculation unit, 230 display control unit, 240 storage unit,
300 body, 310 display, 320, 322 bands,
330, 332 telescopic part, 340 connecting part, 342 fixing member, 343 indicator,
344 Slide member, 350, 352 Spring,
400 wrists, 410 hands, 420 lower arms

Claims (15)

被検体からの光を受光する受光部を有する検出部と、
生体情報検出装置の前記被検体に接触する筺体面側に設けられ、前記被検体からの光を透過し、かつ前記被検体の生体情報の測定時に前記被検体に接触する透光部材と、
前記透光部材と前記検出部の間又は前記透光部材と前記被検体との間又は前記透光部材内に設けられ、前記被検体と前記検出部の間の光路において前記被検体からの光を絞る絞り部と、
を含むことを特徴とする生体情報検出装置。
A detection unit having a light receiving unit for receiving light from the subject;
A translucent member that is provided on a body surface side that comes into contact with the subject of the biological information detection device, transmits light from the subject, and contacts the subject when measuring biological information of the subject;
Light from the subject provided in an optical path between the light transmitting member and the detection unit, between the light transmitting member and the subject, or in the light transmitting member, and between the subject and the detection unit. An aperture part for narrowing down,
A biological information detection device comprising:
請求項1において、
前記検出部は、
前記被検体に対して光を出射する発光部を含み、
前記透光部材は、前記発光部からの光を透過し、
前記絞り部は、
前記被検体と前記検出部の間の光路において、前記発光部からの光を絞ることを特徴とする生体情報検出装置。
In claim 1,
The detector is
Including a light emitting unit that emits light to the subject;
The translucent member transmits light from the light emitting unit,
The throttle part is
The biological information detection apparatus characterized by narrowing the light from the light emitting part in the optical path between the subject and the detection part.
請求項2において、
前記絞り部として、前記受光部側に設けられた第1の絞り部と、前記発光部側に設けられた第2の絞り部とを有することを特徴とする生体情報検出装置。
In claim 2,
The living body information detection apparatus having a first diaphragm provided on the light receiving unit side and a second diaphragm provided on the light emitting unit side as the diaphragm unit.
請求項3において、
前記受光部側に設けられた前記第1の絞り部の開口部の面積よりも、前記発光部側に設けられた前記第2の絞り部の開口部の面積の方が小さいことを特徴とする生体情報検出装置。
In claim 3,
The area of the opening of the second diaphragm provided on the light emitting part is smaller than the area of the opening of the first diaphragm provided on the light receiving part. Biological information detection device.
請求項1乃至4のいずれかにおいて、
前記透光部材の透光領域の第1の端部と前記受光部の2つの端部のうち前記透光領域の前記第1の端部から遠い側の端部である第2の端部とを結ぶ線と、前記受光部の光軸とのなす角度をθrとして、前記受光部の前記第2の端部と前記絞り部の開口部側の端部とを結ぶ線と、前記光軸とのなす角度をθaとした場合に、θa<θrであることを特徴とする生体情報検出装置。
In any one of Claims 1 thru | or 4,
A first end of the translucent region of the translucent member and a second end that is an end of the translucent region farther from the first end of the two ends of the light receiving unit; A line connecting the second end portion of the light receiving portion and the end portion on the opening side of the aperture portion, where θr is an angle formed between the line connecting the light receiving portion and the optical axis of the light receiving portion, and the optical axis A biological information detection apparatus, wherein θa <θr, where θa is an angle formed by.
請求項1乃至4のいずれかにおいて、
前記透光部材の透光領域の第1の端部と前記受光部の2つの端部のうち前記透光領域の前記第1の端部に近い側の端部である第1の端部とを結ぶ線上と、前記透光部材の透光領域の第2の端部と前記受光部の2つの端部のうち前記透光領域の前記第2の端部に近い側の端部である第2の端部とを結ぶ線上とに、前記絞り部が位置するように、前記絞り部が配置設定されることを特徴とする生体情報検出装置。
In any one of Claims 1 thru | or 4,
A first end portion which is an end portion of the light transmitting region closer to the first end portion of the light transmitting portion and a first end portion of the light transmitting region of the light transmitting member; A second end of the translucent region of the translucent member and an end portion of the two ends of the light receiving unit that are close to the second end of the translucent region. The biological information detecting apparatus, wherein the diaphragm portion is arranged and set so that the diaphragm portion is positioned on a line connecting the two end portions.
請求項2乃至4のいずれかにおいて、
前記透光部材の透光領域の第2の端部と前記発光部の2つの端部のうち前記透光領域の前記第2の端部から遠い側の端部である第1の端部とを結ぶ線と、前記発光部の光軸とのなす角度をθtとして、前記発光部の前記第1の端部と前記絞り部の開口部側の端部とを結ぶ線と、前記光軸とのなす角度をθbとした場合に、θb<θtであることを特徴とする生体情報検出装置。
In any of claims 2 to 4,
A first end that is a second end of the translucent region of the translucent member and an end far from the second end of the translucent region of the two ends of the light emitting unit; A line connecting the first end portion of the light emitting portion and the end portion on the opening side of the aperture portion, where θt is an angle between the line connecting the light emitting portion and the optical axis of the light emitting portion, and the optical axis A biological information detection apparatus, wherein θb <θt, where θb is an angle formed by.
請求項2乃至4のいずれかにおいて、
前記透光部材の透光領域の第1の端部と前記発光部の2つの端部のうち前記透光領域の前記第1の端部に近い側の端部である第1の端部とを結ぶ線上と、前記透光部材の透光領域の第2の端部と前記発光部の2つの端部のうち前記透光領域の前記第2の端部に近い側の端部である第2の端部とを結ぶ線上とに、前記絞り部が位置するように、前記絞り部が配置設定されることを特徴とする生体情報検出装置。
In any of claims 2 to 4,
A first end portion which is a first end portion of the translucent region of the translucent member and an end portion of the two end portions of the light emitting portion which are closer to the first end portion of the translucent region; A second end portion of the translucent region of the translucent member and an end portion on the side close to the second end portion of the translucent region among the two end portions of the light emitting unit. The biological information detecting apparatus, wherein the diaphragm portion is arranged and set so that the diaphragm portion is positioned on a line connecting the two end portions.
請求項1乃至8のいずれかにおいて、
前記絞り部の絞り領域の面積は、前記透光部材の透光領域の面積よりも小さいことを特徴とする生体情報検出装置。
In any one of Claims 1 thru | or 8.
The living body information detecting apparatus according to claim 1, wherein an area of the aperture region of the aperture portion is smaller than an area of the light transmitting region of the light transmitting member.
請求項1乃至9のいずれかにおいて、
前記絞り部は、
前記透光部材の周縁領域を通過する光を遮光することを特徴とする生体情報検出装置。
In any one of Claims 1 thru | or 9,
The throttle part is
A biological information detection apparatus that blocks light passing through a peripheral region of the translucent member.
請求項1乃至10のいずれかにおいて、
前記透光部材は、
前記被検体の生体情報の測定時に前記被検体に接触して押圧を与える凸部を有し、
前記絞り部は、
前記凸部の周縁領域を通過する光を遮光することを特徴とする生体情報検出装置。
In any one of Claims 1 thru | or 10.
The translucent member is
A convex portion that contacts and presses the subject when measuring the biological information of the subject;
The throttle part is
A biological information detection apparatus that blocks light passing through a peripheral area of the convex portion.
請求項11において、
前記凸部を囲むように設けられ、前記凸部が前記被検体に与える押圧を抑制する押圧抑制部を含むことを特徴とする生体情報検出装置。
In claim 11,
A biological information detection apparatus, comprising: a pressure suppression unit that is provided so as to surround the convex part, and that suppresses the pressure applied to the subject by the convex part.
請求項12において、
前記凸部の押圧を発生させる荷重機構による荷重に対する前記凸部の押圧の変化量を押圧変化量とした場合に、
前記押圧抑制部は、
前記荷重機構の荷重が0〜FL1となる第1の荷重範囲での前記押圧変化量に対して、前記荷重機構の荷重がFL1よりも大きくなる第2の荷重範囲での前記押圧変化量が小さくなるように、前記凸部が前記被検体に与える押圧を抑制することを特徴とする生体情報検出装置。
In claim 12,
When the amount of change in pressing of the convex portion relative to the load by the load mechanism that generates pressing of the convex portion is set as the amount of change in pressing,
The pressing suppression part is
The pressure change amount in the second load range in which the load of the load mechanism is larger than FL1 is smaller than the pressure change amount in the first load range in which the load of the load mechanism is 0 to FL1. As described above, the biological information detection apparatus is characterized by suppressing the pressure applied to the subject by the convex portion.
請求項1乃至13のいずれかにおいて、
前記絞り部の絞り領域の形状は、前記透光部材の透光領域の形状と相似形であることを特徴とする生体情報検出装置。
In any one of Claims 1 thru | or 13.
The biological information detection apparatus according to claim 1, wherein the shape of the aperture region of the aperture portion is similar to the shape of the light transmitting region of the light transmitting member.
請求項1乃至14のいずれかにおいて、
前記生体情報として脈波を検出することを特徴とする生体情報検出装置。
In any one of Claims 1 thru | or 14.
A biological information detecting apparatus for detecting a pulse wave as the biological information.
JP2013054490A 2013-03-18 2013-03-18 Biological information detection device Active JP6209836B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013054490A JP6209836B2 (en) 2013-03-18 2013-03-18 Biological information detection device
CN201410036509.1A CN104055504A (en) 2013-03-18 2014-01-24 Biological Information Detection Apparatus
US14/205,154 US9814399B2 (en) 2013-03-18 2014-03-11 Biological information detection apparatus
EP14159850.8A EP2781186A1 (en) 2013-03-18 2014-03-14 Biological information detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054490A JP6209836B2 (en) 2013-03-18 2013-03-18 Biological information detection device

Publications (3)

Publication Number Publication Date
JP2014180287A true JP2014180287A (en) 2014-09-29
JP2014180287A5 JP2014180287A5 (en) 2016-04-07
JP6209836B2 JP6209836B2 (en) 2017-10-11

Family

ID=51699597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054490A Active JP6209836B2 (en) 2013-03-18 2013-03-18 Biological information detection device

Country Status (1)

Country Link
JP (1) JP6209836B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182617A1 (en) 2014-05-27 2015-12-03 日本精工株式会社 Bearing device and beading device fixing plate
JP2016123846A (en) * 2015-09-18 2016-07-11 セイコーエプソン株式会社 Biological information measurement sensor, and biological information measurement device
JP2017018466A (en) * 2015-07-14 2017-01-26 株式会社デンソー Sphygmograph
JP2019111067A (en) * 2017-12-22 2019-07-11 京セラ株式会社 Optical sensor device
JP2019111193A (en) * 2017-12-25 2019-07-11 セイコーエプソン株式会社 Biological information measuring device and biological information detection sensor
CN111372513A (en) * 2017-10-20 2020-07-03 苏黎世大学 Device for measuring optical parameters in scattering media

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793039A (en) * 1980-11-30 1982-06-09 Matsushita Electric Works Ltd Blood stream measuring device
JP2005246089A (en) * 2005-04-21 2005-09-15 Denso Corp Pulse wave sensor
JP2008086705A (en) * 2006-10-05 2008-04-17 Sanyo Electric Co Ltd Measurement assisting material, and optical measuring method using the same
JP5031894B2 (en) * 2008-05-12 2012-09-26 パイオニア株式会社 Self-luminous sensor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793039A (en) * 1980-11-30 1982-06-09 Matsushita Electric Works Ltd Blood stream measuring device
JP2005246089A (en) * 2005-04-21 2005-09-15 Denso Corp Pulse wave sensor
JP2008086705A (en) * 2006-10-05 2008-04-17 Sanyo Electric Co Ltd Measurement assisting material, and optical measuring method using the same
JP5031894B2 (en) * 2008-05-12 2012-09-26 パイオニア株式会社 Self-luminous sensor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182617A1 (en) 2014-05-27 2015-12-03 日本精工株式会社 Bearing device and beading device fixing plate
JP2017018466A (en) * 2015-07-14 2017-01-26 株式会社デンソー Sphygmograph
JP2016123846A (en) * 2015-09-18 2016-07-11 セイコーエプソン株式会社 Biological information measurement sensor, and biological information measurement device
CN111372513A (en) * 2017-10-20 2020-07-03 苏黎世大学 Device for measuring optical parameters in scattering media
CN111372513B (en) * 2017-10-20 2023-03-10 苏黎世大学 Device for measuring optical parameters in scattering media
JP2019111067A (en) * 2017-12-22 2019-07-11 京セラ株式会社 Optical sensor device
JP6999407B2 (en) 2017-12-22 2022-01-18 京セラ株式会社 Optical sensor device
JP2019111193A (en) * 2017-12-25 2019-07-11 セイコーエプソン株式会社 Biological information measuring device and biological information detection sensor

Also Published As

Publication number Publication date
JP6209836B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
US9814399B2 (en) Biological information detection apparatus
JP6229338B2 (en) Photodetection unit and biological information detection apparatus
JP6209836B2 (en) Biological information detection device
EP2781187B1 (en) Biological information detection apparatus
JP6167581B2 (en) Biological information detection device
JP6476656B2 (en) Biological information detection device
EP2792298B1 (en) Biological information detection apparatus
JP5862731B1 (en) Sensor and biological information detection apparatus
JP2015119911A (en) Biological body information detector
JP5907200B2 (en) Photodetection unit and biological information detection apparatus
US20160367144A1 (en) Photodetection unit and biological information detection apparatus
JP6167582B2 (en) Biological information detection device
JP6142596B2 (en) Biological information detection device
WO2016092750A1 (en) Sensor unit, biological information detection apparatus, electronic device, and biological information detection method
JP6221278B2 (en) Biological information detection device
JP6221277B2 (en) Biological information detection device
JP6323088B2 (en) Photodetection unit and biological information detection apparatus
JP6891441B2 (en) Detection device and measuring device
JP6323111B2 (en) Photodetection unit and biological information detection apparatus
JP2017189415A (en) Biological information measurement device
JP2019150382A (en) Biological information measurement device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170628

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6209836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150