JP2014179451A - Light emission device - Google Patents

Light emission device Download PDF

Info

Publication number
JP2014179451A
JP2014179451A JP2013052198A JP2013052198A JP2014179451A JP 2014179451 A JP2014179451 A JP 2014179451A JP 2013052198 A JP2013052198 A JP 2013052198A JP 2013052198 A JP2013052198 A JP 2013052198A JP 2014179451 A JP2014179451 A JP 2014179451A
Authority
JP
Japan
Prior art keywords
light emitting
circuit
emitting elements
potential end
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013052198A
Other languages
Japanese (ja)
Inventor
Koichi Seki
浩一 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013052198A priority Critical patent/JP2014179451A/en
Publication of JP2014179451A publication Critical patent/JP2014179451A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology for allowing a light emission device in which a plurality of circuit blocks each having a different number of serially connected LEDs are connected in parallel to uniformly emit light with a small number of components.SOLUTION: A light emission device includes: a transistor 100; a first circuit part having a plurality of serially connected light emission elements 11, 12, 13, 21, 22 and 23 with one ends connected to a high potential end +V of a power source and with the other ends connected to a reference potential end GND of the power source; and a second circuit part having a smaller number of serially connected light emission elements 32, 33, 42 and 43 than the first circuit part with one ends connected to the emitter of the transistor and with the other ends connected to a reference potential end. The first circuit part has a node A between the light emission elements at the reference potential end side equal in number to the second circuit part and the other light emission elements at a high potential end side. The transistor is configured such that the base is connected to the node A of the first circuit part, and that the collector is connected to a high potential end.

Description

本発明は、複数の発光素子を有する発光装置に関する。   The present invention relates to a light emitting device having a plurality of light emitting elements.

近年、複数の発光素子(LED)を備えた発光装置を用いて構成された車両用灯具が普及している。車両用灯具として用いる場合には、所定の配光要件を満足するために各LEDに均一な電流を供給してこれらのLEDを均一に発光させる必要がある。このため、発光装置を製造する際には、ほぼ同一の特性のLEDを選別して使用している。ここでいう特性とは主に、光度特性及びIF(順方向電流)−VF(順方向電圧)特性である。   In recent years, a vehicular lamp configured using a light-emitting device including a plurality of light-emitting elements (LEDs) has become widespread. When used as a vehicular lamp, in order to satisfy predetermined light distribution requirements, it is necessary to supply a uniform current to each LED to cause these LEDs to emit light uniformly. For this reason, when manufacturing a light emitting device, LEDs having substantially the same characteristics are selected and used. The characteristics here are mainly luminous intensity characteristics and IF (forward current) -VF (forward voltage) characteristics.

複数のLEDに均一な電流を供給する方法としては、例えば、全てのLEDを直列接続してその両端に電圧を印加することが考えられる。しかし、この場合にはLEDの数がある程度多い場合にはそれらのLEDの直列回路に高電圧を印加するために高価な昇圧回路を用いる必要があり、コストの面で不利となる。これに対して、各LEDを並列接続することも考えられる。例えば、3つのLEDを直列接続した回路ブロック同士をいくつか並列に接続した場合には、この3つのLEDからなる回路ブロックに対応した電圧を印加できればよいため、高価な昇圧回路を使わないようにすることができる。このような並列駆動の場合、各回路ブロックのLEDの数が同数であれば各々のLEDに同じ電流が流れるが、各回路ブロックのLEDの数が異なると明るさが不均一となってしまう。LEDの数の多い回路ブロックに対し、LEDの数の少ない回路ブロックのLEDは負荷電圧が大きくなるため電流が大きくなる。このため、現状は、明るさを均一とするため、不足分のLEDの代わりに抵抗素子や整流ダイオードを挿入して電圧負荷を作り、同電流に調整している。しかし、印加される電圧が設計電圧のときには均等に電流が流れるものの、電圧が変動するとLED、抵抗素子、整流ダイオードの電圧負荷特性の違いから電流に差が出て、明るさが不均一となってしまう。   As a method of supplying a uniform current to a plurality of LEDs, for example, it is conceivable to connect all the LEDs in series and apply a voltage to both ends thereof. However, in this case, if the number of LEDs is large to some extent, it is necessary to use an expensive booster circuit in order to apply a high voltage to the series circuit of those LEDs, which is disadvantageous in terms of cost. On the other hand, it is also conceivable to connect the LEDs in parallel. For example, when several circuit blocks in which three LEDs are connected in series are connected in parallel, it is only necessary to apply a voltage corresponding to the circuit block composed of these three LEDs, so that an expensive booster circuit is not used. can do. In the case of such parallel driving, if the number of LEDs in each circuit block is the same, the same current flows through each LED. However, if the number of LEDs in each circuit block is different, the brightness becomes uneven. Compared with a circuit block with a large number of LEDs, an LED of a circuit block with a small number of LEDs has a large load voltage and therefore a large current. For this reason, at present, in order to make the brightness uniform, a voltage load is created by inserting a resistance element or a rectifier diode instead of the insufficient LED, and the current is adjusted. However, even when the applied voltage is the design voltage, current flows evenly. However, if the voltage fluctuates, the current varies due to the difference in voltage load characteristics of the LED, resistance element, and rectifier diode, resulting in uneven brightness. End up.

このような不都合を解消し得る先行例として、例えば特開2007−096287号公報(特許文献1)には、互いに異なる数のLEDを直列接続した複数のモジュールを並列に接続したLED発光部において、各モジュールにそれぞれ抵抗素子とトランジスタを直列接続した回路構成が開示されている(特許文献1の図12、図13等参照)。そして、この構成によれば、枝路である各モジュール(直列回路)に流れる電流を精度良く均一に制御できる旨の説明がなされている。しかし、この先行例の構成においては、各モジュールにそれぞれ電流制御用のトランジスタおよび抵抗素子を組み込む必要があるので、モジュール数が増えるに伴って部品点数が増え、高コスト化および回路の大型化を招くという点で改良の余地がある。   As a prior example that can eliminate such inconvenience, for example, in Japanese Patent Application Laid-Open No. 2007-096287 (Patent Document 1), in an LED light emitting unit in which a plurality of modules in which different numbers of LEDs are connected in series are connected in parallel, A circuit configuration in which a resistance element and a transistor are connected in series to each module is disclosed (see FIGS. 12 and 13 of Patent Document 1). And according to this structure, it is demonstrated that the electric current which flows into each module (series circuit) which is a branch can be controlled accurately and uniformly. However, in the configuration of this preceding example, since it is necessary to incorporate a current control transistor and a resistance element in each module, the number of parts increases as the number of modules increases, resulting in higher costs and larger circuits. There is room for improvement in terms of inviting.

特開2007−096287号公報JP 2007-096287 A

本発明に係る具体的態様は、互いに異なる数のLEDを直列接続した複数の回路ブロックを並列に接続した発光装置を少ない部品数で均一に発光させることが可能な技術を提供することを目的の1つとする。   A specific aspect of the present invention is to provide a technique capable of uniformly emitting light with a small number of components in a light emitting device in which a plurality of circuit blocks in which different numbers of LEDs are connected in series are connected in parallel. One.

本発明に係る一態様の発光装置は、(a)トランジスタと、(b)直列接続された複数の発光素子を有しており、一端が電源の高電位端と接続され、他端が電源の基準電位端と接続された第1回路部と、(c)第1回路部よりも少ない数の発光素子を有し、当該発光素子が複数である場合には各発光素子が直列接続されており、一端がトランジスタのエミッタと接続され、他端が基準電位端と接続された第2回路部、を含み、(d)第1回路部は、第2回路部と同数の基準電位端側の発光素子とそれ以外の高電位端側の発光素子との間に節点を有しており、(e)トランジスタは、ベースが第1回路部の節点と接続され、コレクタが高電位端と接続されている、発光装置である。   A light-emitting device of one embodiment according to the present invention includes (a) a transistor and (b) a plurality of light-emitting elements connected in series, one end of which is connected to the high potential end of the power source and the other end of the power source. A first circuit portion connected to the reference potential end; and (c) a smaller number of light emitting elements than the first circuit portion, and when there are a plurality of light emitting elements, the light emitting elements are connected in series. A second circuit portion having one end connected to the emitter of the transistor and the other end connected to the reference potential end; and (d) the first circuit portion emits light of the same number of reference potential ends as the second circuit portion. (E) the transistor has a base connected to the node of the first circuit unit and a collector connected to the high potential end. It is a light emitting device.

上記構成によれば、トランジスタを介して、第1回路部の節点と第2回路部の一端にほぼ同じ電圧を与えることが可能になる。トランジスタ自身は第1回路部の節点の電圧がベースに与えられることにより自律的にオン状態となるため、トランジスタのオンオフを制御するためにマイコン等の手段を設ける必要もない。したがって、互いに異なる数のLEDを直列接続した複数の回路ブロックを並列に接続した発光装置を少ない部品数で均一に発光させることが可能となる。   According to the above configuration, substantially the same voltage can be applied to the node of the first circuit unit and one end of the second circuit unit via the transistor. Since the transistor itself is autonomously turned on when the voltage at the node of the first circuit section is applied to the base, it is not necessary to provide a means such as a microcomputer for controlling on / off of the transistor. Therefore, the light emitting device in which a plurality of circuit blocks in which different numbers of LEDs are connected in series is connected in parallel can be made to emit light uniformly with a small number of components.

上記の発光装置において、第1回路部は、基準電位端側に直列接続された整流ダイオードを更に有することも好ましい。   In the above light-emitting device, the first circuit section preferably further includes a rectifier diode connected in series on the reference potential end side.

第1回路部の節点と第2回路部の一端の電圧は厳密にいうとトランジスタのベース−エミッタ間電圧の分だけズレが生じるが、このズレを整流ダイオードの順電圧によって相殺することが可能となる。したがって、各発光素子の点灯時の光度をより均一にすることが可能となる。   Strictly speaking, the voltage at the node of the first circuit section and the voltage at one end of the second circuit section are shifted by the base-emitter voltage of the transistor, but this shift can be offset by the forward voltage of the rectifier diode. Become. Accordingly, it is possible to make the luminous intensity when each light emitting element is turned on more uniform.

上記の発光装置は、第1回路部と高電位端との間に接続された電流制限用抵抗素子を更に有することも好ましい。   The light emitting device preferably further includes a current limiting resistance element connected between the first circuit portion and the high potential end.

このように電流制限用抵抗素子を設ける場合でも、原理上、第1回路部に対応したものだけ設ければよく第2回路部に対応したものは不要であるため、部品点数を削減する効果が高い。   Even when the current limiting resistance element is provided in this way, in principle, only the element corresponding to the first circuit part needs to be provided, and the element corresponding to the second circuit part is unnecessary. high.

図1は、一実施形態の発光装置の構成を示す回路図である。FIG. 1 is a circuit diagram illustrating a configuration of a light emitting device according to an embodiment. 図2は、図1に示す発光装置において電源電圧を変化させたときの電流ifと電流ieの関係の一例を示すグラフである。FIG. 2 is a graph showing an example of the relationship between the current if and the current ie when the power supply voltage is changed in the light emitting device shown in FIG. 図3は、他の実施形態の発光装置の構成を示す回路図である。FIG. 3 is a circuit diagram illustrating a configuration of a light emitting device according to another embodiment. 図4は、図3に示す発光装置において電源電圧を変化させたときの電流ieの一例を示すグラフである。FIG. 4 is a graph illustrating an example of the current ie when the power supply voltage is changed in the light emitting device illustrated in FIG. 3. 図5は、他の実施形態の発光装置の構成を示す回路図である。FIG. 5 is a circuit diagram illustrating a configuration of a light emitting device according to another embodiment. 図6は、他の実施形態の発光装置の構成を示す回路図である。FIG. 6 is a circuit diagram illustrating a configuration of a light emitting device according to another embodiment.

以下に、本発明の実施の形態について図面を参照しながら説明する。なお、本明細書における「接続」の意味には、所期の技術的効果を得るために必要な動作を阻害しない形で回路素子等の回路要素間に他の回路要素が介在している場合も含むものとする。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the meaning of “connection” in the present specification includes the case where other circuit elements are interposed between circuit elements such as circuit elements in a form that does not hinder the operation necessary for obtaining the intended technical effect. Shall also be included.

図1は、一実施形態の発光装置の構成を示す回路図である。図1に示す発光装置は、NPN型バイポーラ・トランジスタ100と、電流制限用抵抗素子101と、複数の発光素子(LED)11、12、13、21、22、23、32、33、42、43を含んで構成されている。この発光装置は、高電位端+Vと基準電位端GNDを有する電源と接続されており、この電源から電力供給を受けて各発光素子を点灯させる。なお、本実施形態では各発光素子は、ほぼ同一の特性を有するものとする。ここでいう特性とは主に、光度特性及びIF(順方向電流)−VF(順方向電圧)特性である。   FIG. 1 is a circuit diagram illustrating a configuration of a light emitting device according to an embodiment. 1 includes an NPN bipolar transistor 100, a current limiting resistor element 101, and a plurality of light emitting elements (LEDs) 11, 12, 13, 21, 22, 23, 32, 33, 42, 43. It is comprised including. This light emitting device is connected to a power source having a high potential end + V and a reference potential end GND, and receives power supply from the power source to light each light emitting element. In the present embodiment, each light emitting element has substantially the same characteristics. The characteristics here are mainly luminous intensity characteristics and IF (forward current) -VF (forward voltage) characteristics.

発光素子11、12、13は、相互に直列接続されており、発光素子11のアノード側が電流制限用抵抗素子101を介して高電位端+Vと接続され、発光素子13のカソード側が基準電位端GNDと接続されている。   The light emitting elements 11, 12, and 13 are connected in series with each other, the anode side of the light emitting element 11 is connected to the high potential end + V through the current limiting resistance element 101, and the cathode side of the light emitting element 13 is the reference potential end GND. Connected with.

発光素子21、22、23は、相互に直列接続されており、発光素子21のアノード側が電流制限用抵抗素子101を介して高電位端+Vと接続され、発光素子23のカソード側が基準電位端GNDと接続されている。なお、この発光素子21、22、23からなる直列回路部(回路ブロック)が「第1回路部」に対応する。   The light emitting elements 21, 22, and 23 are connected in series with each other, the anode side of the light emitting element 21 is connected to the high potential terminal + V through the current limiting resistor element 101, and the cathode side of the light emitting element 23 is the reference potential terminal GND. Connected with. The series circuit portion (circuit block) made up of the light emitting elements 21, 22, and 23 corresponds to the “first circuit portion”.

発光素子32、33は、相互に直列接続されており、発光素子32のアノード側がNPN型バイポーラ・トランジスタ100のエミッタと接続され、発光素子33のカソード側が基準電位端GNDと接続されている。同様に、発光素子42、43は、相互に直列接続されており、発光素子42のアノード側がNPN型バイポーラ・トランジスタ100のエミッタと接続され、発光素子43のカソード側が基準電位端GNDと接続されている。この発光素子32等からなる直列回路部あるいは発光素子42等からなる直列回路部は、上記した発光素子21等からなる直列回路部よりも少ない数の発光素子を有するものであり、「第2回路部」に対応する。NPN型バイポーラ・トランジスタ100のエミッタと各第2回路部とは節点Bで接続されている。   The light emitting elements 32 and 33 are connected in series with each other, the anode side of the light emitting element 32 is connected to the emitter of the NPN bipolar transistor 100, and the cathode side of the light emitting element 33 is connected to the reference potential terminal GND. Similarly, the light emitting elements 42 and 43 are connected in series with each other, the anode side of the light emitting element 42 is connected to the emitter of the NPN bipolar transistor 100, and the cathode side of the light emitting element 43 is connected to the reference potential terminal GND. Yes. The series circuit unit composed of the light emitting elements 32 or the like or the series circuit unit composed of the light emitting elements 42 or the like has a smaller number of light emitting elements than the series circuit unit composed of the above light emitting elements 21 or the like. Part. The emitter of the NPN bipolar transistor 100 and each second circuit portion are connected at a node B.

発光素子21等からなる第1回路部は、発光素子32等(あるいは発光素子42等)からなる第2回路部と同数の基準電位端GND側の発光素子22、23と、それ以外の高電位端側+Vの発光素子21との間に節点Aを有している。   The first circuit portion including the light emitting element 21 and the like has the same number of light emitting elements 22 and 23 on the reference potential end GND side as the second circuit portion including the light emitting element 32 and the like (or the light emitting element 42 and the like), and other high potentials. A node A is provided between the light emitting element 21 on the end side + V.

NPN型バイポーラ・トランジスタ100は、そのベースが第1回路部の節点Aと接続され、コレクタが高電位端+Vと接続され、エミッタが各第2回路部の一端と接続されている。   The NPN bipolar transistor 100 has a base connected to the node A of the first circuit portion, a collector connected to the high potential end + V, and an emitter connected to one end of each second circuit portion.

本実施形態の発光装置は以上のような構成を備えており、次にその動作について詳細に説明する。   The light emitting device of the present embodiment has the above-described configuration, and the operation will be described in detail next.

各発光素子の特性が同一であるとすれば、それぞれを均一な明るさで点灯させるためには各発光素子に対して同じ大きさの電圧を与える必要がある。このため、まず発光素子の数の多い直列回路部である発光素子11等と発光素子21等の並列回路ブロックにおいて、各発光素子が求める光度となる順方向電圧VFが印加されるように抵抗定数を決定する。また、発光素子の数が少ない直列回路部である発光素子32等と発光素子42等の並列回路ブロックの各発光素子を同じ光度となるようにするには、上記と同等の順方向電圧VFを与えればよい。つまり、図1に示す節点Aと節点Bを同電位とすれば、同じ順方向電圧VFが各発光素子に印加されることになり、各発光素子が明るさで点灯する。   If the characteristics of each light emitting element are the same, it is necessary to apply the same voltage to each light emitting element in order to light them with uniform brightness. For this reason, first, in the parallel circuit block such as the light emitting element 11 and the light emitting element 21 which are series circuit portions having a large number of light emitting elements, the resistance constant is applied so that the forward voltage VF having the luminous intensity required by each light emitting element is applied. To decide. In addition, in order to make each light emitting element of the parallel circuit block such as the light emitting element 32 and the like, which is a series circuit portion having a small number of light emitting elements, have the same luminous intensity, the forward voltage VF equivalent to the above is set. Give it. That is, if the node A and the node B shown in FIG. 1 have the same potential, the same forward voltage VF is applied to each light emitting element, and each light emitting element is lit with brightness.

節点Aと節点Bを同電位とするには、NPN型バイポーラ・トランジスタ100を導通状態とすればよい。図1に示す発光装置では、節点Aの電圧によりNPN型バイポーラ・トランジスタ100を導通状態とするに十分な電圧がベースに供給されるので、自律的にNPN型バイポーラ・トランジスタ100を導通状態とすることができる。これにより、節点Aと節点Bはほぼ同電位となり、節点Bには、NPN型バイポーラ・トランジスタ100のコレクタ−エミッタ間を通して電源の高電位端側+Vから各第2回路部に電流が供給される。なお、厳密にはNPN型バイポーラ・トランジスタ100のベース−エミッタ間に微小電流が流れるが、微小値なので無視することができる。これにより各発光素子に同等の順方向電圧VFが印加されるので、各発光素子を均一に点灯させることが可能となる。   In order to make the node A and the node B have the same potential, the NPN bipolar transistor 100 may be turned on. In the light emitting device shown in FIG. 1, a voltage sufficient to bring the NPN bipolar transistor 100 into a conducting state is supplied to the base by the voltage at the node A, so that the NPN bipolar transistor 100 is autonomously brought into a conducting state. be able to. As a result, the node A and the node B have substantially the same potential, and a current is supplied to the second circuit portion from the high potential end side + V of the power source to the node B through the collector-emitter of the NPN bipolar transistor 100. . Strictly speaking, a minute current flows between the base and emitter of the NPN bipolar transistor 100, but it is negligible and can be ignored. Thereby, since the equivalent forward voltage VF is applied to each light emitting element, it becomes possible to light each light emitting element uniformly.

図2は、図1に示す発光装置において電源電圧を変化させたときの電流ifと電流ieの関係の一例を示すグラフである。図2より、電源電圧が変動しても電流ifと電流ieが同様に変化することが分かる。つまり電源電圧が変動しても、各発光素子を同一の明るさに点灯させることができる。ここで、電流ifと電流ieの間に僅かなズレがあるのは、NPN型バイポーラ・トランジスタ100のベース−エミッタ間電圧(一例として0.7V)が存在するからである。この電圧ズレによる電流差が許容できる用途であれば、非常に部品点数の少ない回路で均一に発光させることが可能な発光装置を実現できる。また、従来では発光素子の数の少ないブロック側にも電流制限用抵抗素子が必要であったが、本実施形態では、発光素子の数の多いブロック側の電流制限用抵抗素子101のみで足りることからも、部品点数を減らすことが可能になる。   FIG. 2 is a graph showing an example of the relationship between the current if and the current ie when the power supply voltage is changed in the light emitting device shown in FIG. FIG. 2 shows that the current if and the current ie change similarly even if the power supply voltage fluctuates. That is, even if the power supply voltage fluctuates, each light emitting element can be lit with the same brightness. Here, there is a slight deviation between the current if and the current ie because the base-emitter voltage (0.7 V as an example) of the NPN bipolar transistor 100 exists. If the current difference due to the voltage deviation is acceptable, a light emitting device capable of uniformly emitting light with a circuit having a very small number of parts can be realized. Conventionally, the current limiting resistor element is also required on the block side where the number of light emitting elements is small. However, in this embodiment, only the current limiting resistor element 101 on the block side where the number of light emitting elements is large is sufficient. Therefore, the number of parts can be reduced.

なお、NPN型バイポーラ・トランジスタ100のベース−エミッタ間電圧による電流ifと電流ieの間のズレが許容できない場合には、図3に示すような回路構成を採用することでこのズレを簡単に補正することができる。   If the deviation between the current if and the current ie due to the base-emitter voltage of the NPN bipolar transistor 100 cannot be tolerated, this deviation can be easily corrected by adopting a circuit configuration as shown in FIG. can do.

図3に示す発光装置は、基本的に図1に示した発光装置と共通の構成を備えており、発光素子11等および発光素子21等からなる各直列回路部の基準電位端GND側に直列接続された整流ダイオード102を更に有する点が異なっている。なお、共通の構成については同一符号を付したうえでそれらの説明を省略する。このような整流ダイオード102を付加することで、NPN型バイポーラ・トランジスタ100のベース−エミッタ間電圧を整流ダイオード102の順電圧により相殺することができる。   The light-emitting device shown in FIG. 3 basically has the same configuration as that of the light-emitting device shown in FIG. 1, and is connected in series to the reference potential terminal GND side of each series circuit unit including the light-emitting elements 11 and 21 and the like. The difference is that it further includes a connected rectifier diode 102. In addition, about the common structure, after attaching the same code | symbol, those description is abbreviate | omitted. By adding such a rectifier diode 102, the base-emitter voltage of the NPN bipolar transistor 100 can be canceled by the forward voltage of the rectifier diode 102.

図4は、図3に示す発光装置において電源電圧を変化させたときの電流ieの一例を示すグラフである。図示のように各発光素子に流れる電流ieをすべて同じにすることができるので、各発光素子の点灯時の光度をより均一にすることが可能となる。   FIG. 4 is a graph illustrating an example of the current ie when the power supply voltage is changed in the light emitting device illustrated in FIG. 3. As shown in the drawing, since the currents ie flowing through the respective light emitting elements can all be the same, it is possible to make the luminous intensity at the time of lighting of each light emitting element more uniform.

図5は、他の実施形態の発光装置の構成を示す回路図である。図5に示す発光装置は、上記した図3に示した発光装置と共通の構成を備えており、2つの発光素子からなる直列回路部をより多く並列に接続した点が異なっている。なお、共通の構成については同一符号を付したうえでそれらの説明を省略する。   FIG. 5 is a circuit diagram illustrating a configuration of a light emitting device according to another embodiment. The light-emitting device shown in FIG. 5 has the same configuration as that of the light-emitting device shown in FIG. 3 described above, and is different in that more series circuit units including two light-emitting elements are connected in parallel. In addition, about the common structure, after attaching the same code | symbol, those description is abbreviate | omitted.

図5に示す発光装置は、発光素子32等からなる直列回路部、発光素子42等からなる直列回路部に加え、発光素子52、53からなる直列回路部、発光素子62、63からなる直列回路部、発光素子72、73からなる直列回路部、発光素子82、83からなる直列回路部を備えており、これらがすべて並列に接続されている。各直列回路部は、それぞれ「第2回路部」に対応するものであり、各直列回路部の一端がNPN型バイポーラ・トランジスタ100のエミッタと接続されており、各直列回路部の他端が基準電位端GNDと接続されている。   The light-emitting device shown in FIG. 5 includes a series circuit unit composed of light-emitting elements 52 and 53, a series circuit unit composed of light-emitting elements 52 and 53, a series circuit unit composed of light-emitting elements 52 and 53, and a series circuit composed of light-emitting elements 62 and 63. Unit, a series circuit unit composed of light emitting elements 72 and 73, and a series circuit unit composed of light emitting elements 82 and 83, all of which are connected in parallel. Each series circuit unit corresponds to a “second circuit unit”, and one end of each series circuit unit is connected to the emitter of the NPN bipolar transistor 100, and the other end of each series circuit unit is a reference. It is connected to the potential terminal GND.

このように、発光素子の数が相対的に少ない直列回路部が増えたとしても、発光素子の数が多い直列回路部である発光素子11等と発光素子21等の並列回路ブロック以外には電流制限用抵抗素子101を設ける必要がないので、小型化、低コスト化を実現できる。   As described above, even if the number of series circuit units having a relatively small number of light emitting elements is increased, the currents other than the parallel circuit blocks such as the light emitting element 11 and the light emitting element 21 which are series circuit units having a large number of light emitting elements are used. Since it is not necessary to provide the limiting resistance element 101, a reduction in size and cost can be realized.

図6は、他の実施形態の発光装置の構成を示す回路図である。図6に示す発光装置は、上記した各実施形態と共通の原理に基づくものであり、NPN型バイポーラ・トランジスタ100a、100bと、電流制限用抵抗素子101と、整流ダイオード102と、複数の発光素子(LED)11、12、13、21、22、23、32、33、42、43、52、53、63b、73b、83bを含んで構成されている。   FIG. 6 is a circuit diagram illustrating a configuration of a light emitting device according to another embodiment. The light-emitting device shown in FIG. 6 is based on the principle common to the above-described embodiments, and includes NPN-type bipolar transistors 100a and 100b, a current limiting resistor element 101, a rectifier diode 102, and a plurality of light-emitting elements. (LED) 11, 12, 13, 21, 22, 23, 32, 33, 42, 43, 52, 53, 63b, 73b, 83b are comprised.

発光素子11等からなる直列回路部と発光素子21等からなる直列回路部は互いに並列接続されており、これらの一端側が高電位端+Vと接続され、他端側が整流ダイオード102を介して基準電位端GNDと接続されている。そして、発光素子21等からなる直列回路部の節点A1にはNPN型バイポーラ・トランジスタ100aのベースが接続され、節点A2にはNPN型バイポーラ・トランジスタ100bのベースが接続されている。   The series circuit unit composed of the light emitting element 11 and the like and the series circuit unit composed of the light emitting element 21 and the like are connected in parallel, one end side thereof is connected to the high potential end + V, and the other end side is connected to the reference potential via the rectifier diode 102. It is connected to the end GND. The base of the NPN bipolar transistor 100a is connected to the node A1 of the series circuit portion including the light emitting element 21 and the like, and the base of the NPN bipolar transistor 100b is connected to the node A2.

発光素子32等からなる直列回路部、発光素子42等からなる直列回路部、発光素子52等からなる直列回路部は互いに並列接続されており、これらの一端側がNPN型バイポーラ・トランジスタ100aのエミッタと接続され、他端側が基準電位端GNDと接続されている。なお、NPN型バイポーラ・トランジスタ100aのコレクタは高電位端+Vと接続されている。   The series circuit portion composed of the light emitting elements 32 and the like, the series circuit portion composed of the light emitting elements 42 and the like, and the series circuit portion composed of the light emitting elements 52 and the like are connected in parallel to each other, and one end side thereof is connected to the emitter of the NPN bipolar transistor 100a. The other end side is connected to the reference potential terminal GND. The collector of the NPN bipolar transistor 100a is connected to the high potential end + V.

発光素子63b、73b、83bは、互いに並列接続されており、これらの一端側がNPN型バイポーラ・トランジスタ100bのエミッタと接続され、他端側が基準電位端GNDと接続されている。なお、NPN型バイポーラ・トランジスタ100bのコレクタは高電位端+Vと接続されている。   The light emitting elements 63b, 73b, and 83b are connected in parallel to each other, and one end side thereof is connected to the emitter of the NPN bipolar transistor 100b, and the other end side is connected to the reference potential terminal GND. The collector of the NPN bipolar transistor 100b is connected to the high potential end + V.

図6に示す発光装置においては、発光素子21等からなる直列回路部が「第1回路部」に対応し、発光素子32等からなる直列回路部、発光素子42等からなる直列回路部、発光素子52等からなる直列回路部はそれぞれ「第2回路部」に対応する。他方で、発光素子21等からなる直列回路部が「第1回路部」に対応し、発光素子63b、73b、83bのそれぞれが「第2回路部」に対応する。   In the light emitting device shown in FIG. 6, the series circuit unit including the light emitting element 21 and the like corresponds to the “first circuit unit”, and the series circuit unit including the light emitting element 32 and the like, the series circuit unit including the light emitting element 42 and the like, Each of the series circuit portions including the elements 52 corresponds to the “second circuit portion”. On the other hand, the series circuit portion composed of the light emitting elements 21 and the like corresponds to the “first circuit portion”, and each of the light emitting elements 63b, 73b, and 83b corresponds to the “second circuit portion”.

このように、発光素子の数が異なる回路部が増えたとしても、発光素子の数が多い直列回路部である発光素子11等と発光素子21等の並列回路ブロック以外には電流制限用抵抗素子101を設ける必要がないので、小型化、低コスト化を実現できる。また、発光素子の数を自由に設計することができる。   As described above, even if the number of circuit units having different numbers of light emitting elements is increased, the current limiting resistor element is used in addition to the parallel circuit blocks such as the light emitting element 11 and the light emitting element 21 which are series circuit units having a large number of light emitting elements. Since there is no need to provide 101, it is possible to achieve downsizing and cost reduction. Further, the number of light emitting elements can be designed freely.

なお、本発明は上述した実施形態の内容に限定されるものではなく、本発明の要旨の範囲内において種々に変形して実施をすることが可能である。   In addition, this invention is not limited to the content of embodiment mentioned above, In the range of the summary of this invention, it can change and implement variously.

11、12、13、21、22、23、32、33、42、43:発光素子
100:NPN型バイポーラ・トランジスタ
101:電流制限用抵抗素子
102:整流ダイオード
A、B:節点
+V:高電位端
GND:基準電位端
11, 12, 13, 21, 22, 23, 32, 33, 42, 43: Light-emitting element 100: NPN-type bipolar transistor 101: Current-limiting resistor element 102: Rectifier diode A, B: Node + V: High potential end GND: Reference potential terminal

Claims (3)

トランジスタと、
直列接続された複数の発光素子を有しており、一端が電源の高電位端と接続され、他端が前記電源の基準電位端と接続された第1回路部と、
前記第1回路部よりも少ない数の発光素子を有し、当該発光素子が複数である場合には各発光素子が直列接続されており、一端が前記トランジスタのエミッタと接続され、他端が前記基準電位端と接続された第2回路部と、
を含み、
前記第1回路部は、前記第2回路部と同数の前記基準電位端側の発光素子とそれ以外の前記高電位端側の発光素子との間に節点を有しており、
前記トランジスタは、ベースが前記第1回路部の前記節点と接続され、コレクタが前記高電位端と接続されている、
発光装置。
A transistor,
A first circuit unit having a plurality of light emitting elements connected in series, having one end connected to a high potential end of a power source and the other end connected to a reference potential end of the power source;
When the number of the light emitting elements is smaller than that of the first circuit portion and the number of the light emitting elements is plural, the light emitting elements are connected in series, one end is connected to the emitter of the transistor, and the other end is A second circuit unit connected to the reference potential terminal;
Including
The first circuit section has a node between the same number of light emitting elements on the reference potential end side as the second circuit section and the other light emitting elements on the high potential end side,
The transistor has a base connected to the node of the first circuit unit and a collector connected to the high potential end.
Light emitting device.
前記第1回路部は、前記基準電位端側に直列接続された整流ダイオードを更に有する、
請求項1に記載の発光装置。
The first circuit unit further includes a rectifier diode connected in series to the reference potential end side.
The light emitting device according to claim 1.
前記第1回路部と前記高電位端との間に接続された電流制限用抵抗素子を更に有する、
請求項1又は2に記載の発光装置。
A current limiting resistor connected between the first circuit portion and the high potential end;
The light emitting device according to claim 1.
JP2013052198A 2013-03-14 2013-03-14 Light emission device Pending JP2014179451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052198A JP2014179451A (en) 2013-03-14 2013-03-14 Light emission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052198A JP2014179451A (en) 2013-03-14 2013-03-14 Light emission device

Publications (1)

Publication Number Publication Date
JP2014179451A true JP2014179451A (en) 2014-09-25

Family

ID=51699121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052198A Pending JP2014179451A (en) 2013-03-14 2013-03-14 Light emission device

Country Status (1)

Country Link
JP (1) JP2014179451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135650A (en) * 2015-01-23 2016-07-28 矢崎総業株式会社 Vehicle interior lighting device
JP2020510299A (en) * 2017-03-14 2020-04-02 ルミレッズ ホールディング ベーフェー LED lighting circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135650A (en) * 2015-01-23 2016-07-28 矢崎総業株式会社 Vehicle interior lighting device
JP2020510299A (en) * 2017-03-14 2020-04-02 ルミレッズ ホールディング ベーフェー LED lighting circuit
JP7093363B2 (en) 2017-03-14 2022-06-29 ルミレッズ ホールディング ベーフェー LED lighting circuit

Similar Documents

Publication Publication Date Title
JP5120537B2 (en) Lighting device
JP2007096287A (en) Led lighting device and led substrate module
JP6273375B2 (en) Lighting device
JP3173326U (en) Array type constant current drive circuit
JP2009010099A (en) Lighting system
JP2014179451A (en) Light emission device
JP5416356B2 (en) Vehicle lighting
US10917949B2 (en) Light module for a motor vehicle comprising a plurality of light source branches
JP6411261B2 (en) LED drive circuit
JP4435107B2 (en) Light-emitting diode constant current pulse width control drive circuit
CN109155344B (en) Light emitting device and lighting device
JP2009016460A (en) Driving device and illuminating device
JP2010003810A (en) Light-emitting diode-driving circuit
JP2008004731A (en) Constant-current pulse-width-control driving circuit for light emitting diode
JP2007142139A (en) Led drive control unit
US20180237092A1 (en) Energy supply circuit for a lighting module
KR101847801B1 (en) Circuit for outputting reference voltage of led driving module for a vehicle lamp
JP7142186B2 (en) Light-emitting diode (LED)-based current divider for dividing LED current among multiple LED channels, and multi-channel light-emitting diode (LED)-based lighting device
TW201419931A (en) Control circuit for LED
WO2012020606A1 (en) Light-emitting diode drive circuit
JP7097049B2 (en) Light emitting diode drive circuit
JP5103811B2 (en) Backlight dimming control device
KR20090106714A (en) Constant Current Driver for LED Lighting System
JP2013004586A (en) Led drive circuit and method for driving led
JP2017134956A (en) Driver of luminous load and light-emitting device