JP6411261B2 - LED drive circuit - Google Patents

LED drive circuit Download PDF

Info

Publication number
JP6411261B2
JP6411261B2 JP2015060649A JP2015060649A JP6411261B2 JP 6411261 B2 JP6411261 B2 JP 6411261B2 JP 2015060649 A JP2015060649 A JP 2015060649A JP 2015060649 A JP2015060649 A JP 2015060649A JP 6411261 B2 JP6411261 B2 JP 6411261B2
Authority
JP
Japan
Prior art keywords
led
switch
current
output
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015060649A
Other languages
Japanese (ja)
Other versions
JP2016181589A (en
Inventor
秋山 貴
貴 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP2015060649A priority Critical patent/JP6411261B2/en
Publication of JP2016181589A publication Critical patent/JP2016181589A/en
Application granted granted Critical
Publication of JP6411261B2 publication Critical patent/JP6411261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Description

本発明は、明るさを調整すると発光色が変化するLED駆動回路に関する。   The present invention relates to an LED drive circuit whose emission color changes when brightness is adjusted.

白熱電球を模し、明るく発光させているときには色温度が高く、暗く発光させているときには色温度を低くするLED照明装置が提案されている。これを簡単に実現するには、色温度の異なる二つのLEDを準備し、輝度に応じて一方のLEDと他方のLEDについて発光強度のバランスを調整すればよい(例えば特許文献1)。そこで特許文献1の図2を図5に再掲示し、輝度に応じて発光色が変化する照明装置を説明する。なお図中、符号を変更している。()内には特許文献1で使用されている用語を示す。   An LED lighting device has been proposed that imitates an incandescent bulb and has a high color temperature when emitting light brightly and a low color temperature when emitting light darkly. In order to easily realize this, two LEDs having different color temperatures may be prepared, and the balance of light emission intensity may be adjusted for one LED and the other LED according to the luminance (for example, Patent Document 1). Then, FIG. 2 of patent document 1 is re-displayed in FIG. 5, and the illuminating device from which a luminescent color changes according to a brightness | luminance is demonstrated. In addition, the code | symbol is changed in the figure. The terms used in Patent Document 1 are shown in parentheses.

図5は従来例として示す照明装置102の回路図である。照明装置102は、調光器160とLEDランプ101とを備え、交流電源150が接続している。LEDランプ101は整流平滑回路170と可変電流源180とLEDモジュール100からなる。LEDモジュール100は、高い色温度で発光するLED列111A(LEDアレイ)と、低い色温度で発光するLED列121Aと、抵抗123とトランジスタ122からなる。LED列111AではLED111が直列接続し、LED列121AではLED121が直列接続している。   FIG. 5 is a circuit diagram of the illumination device 102 shown as a conventional example. The lighting device 102 includes a dimmer 160 and an LED lamp 101, and an AC power source 150 is connected to the lighting device 102. The LED lamp 101 includes a rectifying / smoothing circuit 170, a variable current source 180, and the LED module 100. The LED module 100 includes an LED array 111A (LED array) that emits light at a high color temperature, an LED array 121A that emits light at a low color temperature, a resistor 123, and a transistor 122. In the LED row 111A, the LEDs 111 are connected in series, and in the LED row 121A, the LEDs 121 are connected in series.

整流平滑回路170は調光器160の出力電圧を整流及び平滑し、その平滑された電圧に基づいて可変電流源180が電流Itを出力する。電流ItはLED列111Aを流れる電流I1とLED列121Aを流れる電流I2に分流される。なお電流I2はトランジスタ122のベース電流Ibとコレクタ電流Icに分流される。照明装置102において調光器160により電流Itを増減すると、トランジスタ122が定電流動作する(電流Icが一定)ため電流I1と電流I2の比が変化し発光色が調整される。   The rectifying / smoothing circuit 170 rectifies and smoothes the output voltage of the dimmer 160, and the variable current source 180 outputs the current It based on the smoothed voltage. The current It is divided into a current I1 flowing through the LED array 111A and a current I2 flowing through the LED array 121A. The current I2 is divided into the base current Ib and the collector current Ic of the transistor 122. When the current It is increased or decreased by the dimmer 160 in the lighting device 102, the transistor 122 operates at a constant current (the current Ic is constant), so that the ratio between the current I1 and the current I2 changes and the emission color is adjusted.

特開2014−157744(図2)JP2014-157744 (FIG. 2)

しかしながら図5に示したLEDランプ101は、高輝度発光時にもLED列121Aに電流I2が流れ続けている。つまり低輝度発光時には色温度を低くし、高輝度発光時には色温度を高くするよう調色するLEDランプ101は、LED列111Aに含まれるLED111が高い色温度で発光する一方で、LED列121Aに含まれるLED121が低い色温度で発光するため高輝度発光時に色温度が低下してしまう。そこでLEDランプ101は、LED列111Aの発光色の色温度を必要以上に高くしておき、高輝度発光時におけるLED列111AとLED列121Aの発光量のバランスを正確に維持することで製品の発光色を管理しなければならない。すなわちLEDランプ101は発光色の管理が難しいという課題がある。   However, in the LED lamp 101 shown in FIG. 5, the current I2 continues to flow through the LED array 121A even when light is emitted with high luminance. In other words, the LED lamp 101 that adjusts the color temperature to be low during low-luminance light emission and to increase the color temperature during high-luminance light emission, while the LED 111 included in the LED array 111A emits light at a high color temperature, Since the included LED 121 emits light at a low color temperature, the color temperature is lowered during high luminance light emission. Therefore, the LED lamp 101 has a color temperature of the LED array 111A that is higher than necessary, and accurately maintains the balance of the light emission amounts of the LED array 111A and the LED array 121A during high-luminance light emission. The emission color must be managed. That is, the LED lamp 101 has a problem that it is difficult to manage the emission color.

また、一般に発光色の色温度が低い蛍光体は発光効率も低くなるため、高輝度発光時にLED121Aを発光させているとLEDランプ101の発光効率を高くできない。さらに高輝度発光時のトランジスタ122の損失も無視できない。この結果、図5に示したLEDランプ101は高輝度発光時の発光効率が悪いという課題がある。   In general, a phosphor having a low emission color temperature also has low emission efficiency. Therefore, if the LED 121A is caused to emit light during high luminance emission, the emission efficiency of the LED lamp 101 cannot be increased. Further, the loss of the transistor 122 during high-luminance emission cannot be ignored. As a result, the LED lamp 101 shown in FIG. 5 has a problem that the light emission efficiency at the time of high luminance light emission is poor.

また、色温度の高い状態で幅広く調光するのが好まれず、中程度以下の輝度で発光するときには発光色が低い色温度になっていることが好まれる場合がある。   In addition, it is not preferred to perform wide dimming in a state where the color temperature is high, and it may be preferred that the emitted color has a low color temperature when emitting light at a moderate brightness or lower.

そこで本発明は、上記課題に鑑みて為されたものであり、発光効率が良く発光色の管理が容易でありながら、調光時に所定の輝度まで一の発光色で発光し、これを超えたら他の発光色で発光するLED駆動回路を提供する。   Therefore, the present invention has been made in view of the above problems, and emits light with a single emission color up to a predetermined luminance at the time of dimming while having high luminous efficiency and easy management of the emission color. Provided is an LED driving circuit that emits light in other emission colors.

上記課題を解決するため本発明のLED駆動回路は、
可変定電流源と、
第1発光色で発光する第1LED列と、
第2発光色で発光する第2LED列と、
前記第1LED列が発光する状態と前記第2LED列が発光する状態を切り替える切替回路とを備え、
前記可変定電流源に対し前記第1LED列と前記第2LED列が並列接続し、
前記切替回路は、一端が前記第1LED列と直列接続する第1スイッチと、一端が前記第2LED列と直列接続する第2スイッチを有し、前記可変定電流源の出力する電流が所定の電流より小さいときに前記第1スイッチをオンするとともに前記第2スイッチをオフし、前記可変定電流源の出力する電流が前記所定の電流より大きいときに前記第1スイッチをオフするとともに前記第2スイッチをオンすることを特徴とする。
In order to solve the above problems, the LED drive circuit of the present invention is:
A variable constant current source;
A first LED array that emits light in a first emission color;
A second LED array that emits light in a second emission color;
A switching circuit that switches between a state in which the first LED row emits light and a state in which the second LED row emits light,
The first LED row and the second LED row are connected in parallel to the variable constant current source,
The switching circuit has a first switch having one end connected in series with the first LED array, and a second switch having one end connected in series with the second LED array, and the current output from the variable constant current source is a predetermined current. When it is smaller, the first switch is turned on and the second switch is turned off. When the current output from the variable constant current source is larger than the predetermined current, the first switch is turned off and the second switch Is turned on.

本発明のLED駆動回路では、可変定電流源の出力する電流の値が小さいうちは、切替回路が第1スイッチをオン、第2スイッチをオフにするので、第1LED列にのみ電流が流れ、第1LED列が第1発光色で低輝度発光する。可変定電流源の出力電流を増加し、出力電流が所定の値を超えると、切替回路は第1スイッチをオフ、第2スイッチをオンにし、可変定電流源の出力電流が第2LED列のみに流れるように制御する。この結果、可変定電流源の出力電流の値が大きいとき第2LED列だけが第2発光色で高輝度発光するため、本発明のLED駆動回路は発光色の管理が容易になる。前述のように高輝度発光時に第1LED列を消灯させることにより本発明のLED駆動回路は高輝度発光時の発光効率が高くなる。第1LED列の発光効率より第2LED列の発光効率を大きくするとなお良い。   In the LED drive circuit of the present invention, while the value of the current output from the variable constant current source is small, the switching circuit turns on the first switch and turns off the second switch, so that the current flows only in the first LED row, The first LED row emits light with the first emission color and low luminance. When the output current of the variable constant current source is increased and the output current exceeds a predetermined value, the switching circuit turns off the first switch and turns on the second switch, and the output current of the variable constant current source is only in the second LED row. Control to flow. As a result, when the value of the output current of the variable constant current source is large, only the second LED array emits light with high brightness in the second emission color, and therefore the LED drive circuit of the present invention can easily manage the emission color. As described above, the LED drive circuit of the present invention increases the light emission efficiency at the time of high luminance light emission by turning off the first LED row at the time of high luminance light emission. More preferably, the light emission efficiency of the second LED array is made larger than the light emission efficiency of the first LED array.

前記切替回路は、電流検出素子と、前記電流検出素子の一端の電圧で出力を切り替える比較器を含み、前記電流検出素子の前記一端と前記第1スイッチの他端と前記第2スイッチの他端とが接続し、前記比較器の出力に基づいて前記第1スイッチと前記第2スイッチが制御されても良い。   The switching circuit includes a current detection element and a comparator that switches an output with a voltage at one end of the current detection element, the one end of the current detection element, the other end of the first switch, and the other end of the second switch. And the first switch and the second switch may be controlled based on the output of the comparator.

前記第1スイッチが前記比較器の出力で制御され、前記第2スイッチが前記第1スイッチの前記一端の出力で制御されても良い。   The first switch may be controlled by the output of the comparator, and the second switch may be controlled by the output of the one end of the first switch.

前記電流検出素子が抵抗であり、前記比較器がバイポーラトランジスタと他の抵抗を備え、前記比較器の出力が前記バイポーラトランジスタのコレクタ電圧であり、前記第1スイッチ及び前記第2スイッチがエンハンスメント型FETであっても良い。   The current detection element is a resistor, the comparator includes a bipolar transistor and another resistor, the output of the comparator is a collector voltage of the bipolar transistor, and the first switch and the second switch are enhancement-type FETs It may be.

前記電流検出素子が抵抗であり、前記比較器がバイポーラトランジスタと他の抵抗を備え、前記比較器の出力がバイポーラトランジスタのコレクタから分流された電流であり、前記第1スイッチ及び前記第2スイッチがバイポーラトランジスタであっても良い。   The current detection element is a resistor, the comparator includes a bipolar transistor and another resistor, the output of the comparator is a current shunted from the collector of the bipolar transistor, and the first switch and the second switch are It may be a bipolar transistor.

前記第2スイッチの前記一端は、前記第1スイッチの制御端子に抵抗を介して接続していても良い。   The one end of the second switch may be connected to a control terminal of the first switch via a resistor.

前記第1LED列の閾値電圧は、前記第2LED列の閾値電圧より高くても良い。   The threshold voltage of the first LED array may be higher than the threshold voltage of the second LED array.

以上のように本発明のLED駆動回路は、発光効率が良く発光色の管理が容易でありながら、調光時に所定の輝度まで一の発光色で発光し、これを超えたら他の発光色で発光できる。   As described above, the LED drive circuit of the present invention emits light with a single emission color up to a predetermined luminance at the time of dimming while having high luminous efficiency and easy management of the emission color. Can emit light.

本発明の第1実施形態として示すLED駆動回路の回路図。The circuit diagram of the LED drive circuit shown as 1st Embodiment of this invention. 図1に示すLED駆動回路の電圧―電流特性を示すグラフ。The graph which shows the voltage-current characteristic of the LED drive circuit shown in FIG. 本発明の第2実施形態として示すLED駆動回路の回路図。The circuit diagram of the LED drive circuit shown as 2nd Embodiment of this invention. 本発明の第3実施形態として示すLED駆動回路の回路図。The circuit diagram of the LED drive circuit shown as 3rd Embodiment of this invention. 従来例として示すLED駆動回路の回路図。The circuit diagram of the LED drive circuit shown as a prior art example.

以下、添付図1〜4を参照しながら本発明の好適な実施形態について詳細に説明する。なお図の説明において、同一又は相当要素には同一の符号を付し、重複する説明は省略する。特許請求の範囲に記載した発明特定事項との関係をカッコ内に記載している。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. The relationship with the invention specific matters described in the claims is described in parentheses.

(第1実施形態)
図1、2により本発明の第1実施形態として示すLED駆動回路10を説明する。図1はLED駆動回路10の回路図であり、図2はLED駆動回路10の電圧―電流特性を示すグラフである。
(First embodiment)
An LED driving circuit 10 shown as a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a circuit diagram of the LED drive circuit 10, and FIG. 2 is a graph showing the voltage-current characteristics of the LED drive circuit 10.

図1に示すようにLED駆動回路10は、可変定電流源13と、第1LED列11と、第2LED列21と、切替回路30からなる。第1LED列11は、複数のLED12が直列接続し、色温度が低く赤みがかった色(第1発光色)で発光する。第2LED列21は、複数のLED22が直列接続し、色温度が高く青みがかった色(第2発光色)で発光する。第1LED列11と第2LED列21のアノードは可変定電流源13の電流出力端子に接続している。第1LED列11中のLED12の直列段数は、第2LED列21中のLED22の直列段数より大きい。なおLED12及びLED22は同じLEDダイに対し異なった蛍光樹脂で被覆したものである。すなわち第1LED列11の閾値電圧(LED12の順方向電圧降下と直列段数の積)は、第2LED列21の閾値電圧(LED22の順方向電圧降下と直列段数の積)より大きい。また第1及び第2LED列11、21におけるLED12、22の直列接続とは、良く知られているようにLED12、22の直並列接続又は並直列接続を含んでいる(以下同様)。   As shown in FIG. 1, the LED drive circuit 10 includes a variable constant current source 13, a first LED row 11, a second LED row 21, and a switching circuit 30. The first LED array 11 has a plurality of LEDs 12 connected in series, and emits light in a reddish color (first emission color) with a low color temperature. The second LED array 21 includes a plurality of LEDs 22 connected in series, and emits light with a high color temperature and a bluish color (second emission color). The anodes of the first LED row 11 and the second LED row 21 are connected to the current output terminal of the variable constant current source 13. The number of series stages of LEDs 12 in the first LED string 11 is larger than the number of series stages of LEDs 22 in the second LED string 21. In addition, LED12 and LED22 coat | cover with the different fluorescent resin with respect to the same LED die. That is, the threshold voltage of the first LED string 11 (the product of the forward voltage drop of the LED 12 and the number of series stages) is larger than the threshold voltage of the second LED string 21 (the product of the forward voltage drop of the LED 22 and the number of series stages). The series connection of the LEDs 12 and 22 in the first and second LED rows 11 and 21 includes a series-parallel connection or a parallel-series connection of the LEDs 12 and 22 as is well known (the same applies hereinafter).

切替回路30は、抵抗31、32、33、34、ツェナーダイオード35、36、バイポーラトランジスタ(以下トランジスタと呼ぶ)37、及びエンハンスメント型電界効果トランジスタ(以下FETと呼ぶ)38、39からなる。抵抗31はプルアップ抵抗であり、抵抗31を介して可変定電流源13の電流出力端子とトランジスタ37のコレクタが接続している。抵抗32は電流検出抵抗であり、抵抗32を介してトランジスタ37のベースとエミッタが接続する。トランジスタ37のエミッタは可変定電流源13の電流が戻る端子(グランド)と接続している。   The switching circuit 30 includes resistors 31, 32, 33, 34, Zener diodes 35, 36, bipolar transistors (hereinafter referred to as transistors) 37, and enhancement type field effect transistors (hereinafter referred to as FETs) 38, 39. The resistor 31 is a pull-up resistor, and the current output terminal of the variable constant current source 13 and the collector of the transistor 37 are connected via the resistor 31. The resistor 32 is a current detection resistor, and the base and emitter of the transistor 37 are connected via the resistor 32. The emitter of the transistor 37 is connected to a terminal (ground) to which the current of the variable constant current source 13 returns.

第1スイッチとして動作するFET38は、ゲート(制御端子)がトランジスタ37のコレクタと接続するとともに、ツェナーダイオード35及び抵抗33を介して自分自身のソースに接続し、ドレイン(一端)が第1LED列11のカソードに接続し、ソース(他端)が電流検出用の抵抗32の一端に接続している。第2スイッチとして動作するFET
39は、ゲート(制御端子)がFET38のドレインと接続するとともに、ツェナーダイオード36及び抵抗34を介して自分自身のソースに接続し、ドレイン(一端)が第2LED列21のカソードに接続し、ソース(他端)が電流検出用の抵抗32の一端に接続している。
The FET 38 operating as the first switch has a gate (control terminal) connected to the collector of the transistor 37 and is connected to its own source via the Zener diode 35 and the resistor 33, and a drain (one end) is connected to the first LED row 11. The source (the other end) is connected to one end of the current detection resistor 32. FET acting as a second switch
39, the gate (control terminal) is connected to the drain of the FET 38, is connected to its own source via the Zener diode 36 and the resistor 34, and the drain (one end) is connected to the cathode of the second LED row 21; The other end is connected to one end of the current detection resistor 32.

次に図2を用いてLED駆動回路10の動作を説明する。なお本説明では特別な指示なしに図1の各部材及びブロックを参照する。図2の横軸は可変定電流源13の出力する電流Itであり、縦軸は可変定電流源13の電流出力端子の電圧Vである(可変定電流源13の電流が戻る端子(グランド)の電圧を0(V)とする。)。   Next, the operation of the LED drive circuit 10 will be described with reference to FIG. In this description, each member and block in FIG. 1 are referred to without any special instruction. 2 is the current It output from the variable constant current source 13, and the vertical axis is the voltage V at the current output terminal of the variable constant current source 13 (terminal (ground) to which the current of the variable constant current source 13 returns. Is set to 0 (V)).

図2において、始めに可変定電流源13の出力する電流Itが0(A)であり、可変定電流源13の出力端子の電圧がV0(V)であるものとする。FET38のゲート電圧は、電圧V0を抵抗31、ツェナーダイオード35、抵抗33で分割したときのツェナーダイオードのカソード電圧となる。この電圧はFET38の閾値電圧(Vthとも呼ばれる)を超えている(以下、FETの閾値電圧を超えている電圧をハイレベルと呼ぶ)ので、FET38を導通状態(以下導通状態をオンと呼ぶ)にする。FET38がオンしているため、FET39のゲート電圧はFET39の閾値電圧以下となり(以下、FETの閾値電圧以下の電圧をローレベルと呼ぶ)、FET39は遮断状態(以下遮断状態をオフと呼ぶ)になる。   In FIG. 2, it is assumed that the current It output from the variable constant current source 13 is 0 (A) and the voltage at the output terminal of the variable constant current source 13 is V0 (V). The gate voltage of the FET 38 becomes the cathode voltage of the Zener diode when the voltage V0 is divided by the resistor 31, the Zener diode 35, and the resistor 33. Since this voltage exceeds the threshold voltage (also referred to as Vth) of the FET 38 (hereinafter, the voltage exceeding the threshold voltage of the FET is referred to as a high level), the FET 38 is in a conductive state (hereinafter, the conductive state is referred to as ON). To do. Since the FET 38 is on, the gate voltage of the FET 39 is equal to or lower than the threshold voltage of the FET 39 (hereinafter, the voltage equal to or lower than the threshold voltage of the FET is referred to as a low level), and the FET 39 is in a cutoff state (hereinafter, the cutoff state is referred to as off). Become.

可変定電流源13の出力電流Itが0(A)からI4(A)までの電流範囲I3にあるとき、抵抗32の電圧降下が0.6V以下となり、トランジスタ37のコレクタ−エミッタ間がオフする。このためFET38のゲート電圧はハイレベルを維持し、FET39のゲート電圧はローレベルを維持する。この結果、第1LED列11にのみ電流I1が流れる(I1=It、I2=0)。   When the output current It of the variable constant current source 13 is in the current range I3 from 0 (A) to I4 (A), the voltage drop of the resistor 32 becomes 0.6 V or less, and the collector-emitter of the transistor 37 is turned off. . For this reason, the gate voltage of the FET 38 is maintained at a high level, and the gate voltage of the FET 39 is maintained at a low level. As a result, the current I1 flows only in the first LED row 11 (I1 = It, I2 = 0).

すなわち電流Itの増加にともない、可変定電流源13の出力端子の電圧Vが上昇し、第1LED列11の発光輝度が増加する。なおツェナーダイオード35は可変定電流源13の出力端子の電圧Vが上昇しても過剰な電圧がFET38のゲートに印加されないようにする保護素子であり、降伏電圧がFET38の閾値電圧よりやや大きいものを用いる。   That is, as the current It increases, the voltage V of the output terminal of the variable constant current source 13 increases, and the light emission luminance of the first LED row 11 increases. The Zener diode 35 is a protective element that prevents an excessive voltage from being applied to the gate of the FET 38 even when the voltage V at the output terminal of the variable constant current source 13 increases, and has a breakdown voltage slightly higher than the threshold voltage of the FET 38. Is used.

可変定電流源13の出力電流ItがI4(A)を超えた電流範囲I5では、抵抗32の電圧降下が0.6Vを超えるため、トランジスタ37のコレクタ−エミッタ間がオンする。この結果、FET38のゲート電圧はローレベルとなりFET38がオフする。FET38がオフすると、第1LED列11に電流が流れなくなりFET39のゲート電圧がハイレベルとなる(第1LED列11の電圧降下が減り、FET39のゲート電圧がツェナーダイオード36の降伏電圧となる)。この結果、第2LED列21にのみ電流I2が流れる(I1=0、I2=It)。   In the current range I5 where the output current It of the variable constant current source 13 exceeds I4 (A), the voltage drop of the resistor 32 exceeds 0.6V, so that the collector-emitter of the transistor 37 is turned on. As a result, the gate voltage of the FET 38 becomes low level and the FET 38 is turned off. When the FET 38 is turned off, no current flows through the first LED string 11 and the gate voltage of the FET 39 becomes high level (the voltage drop of the first LED string 11 is reduced, and the gate voltage of the FET 39 becomes the breakdown voltage of the Zener diode 36). As a result, the current I2 flows only through the second LED row 21 (I1 = 0, I2 = It).

なお第2LED列21は、第1LED列11よりも閾値電圧が低いため、可変定電流源13の出力電流ItがI4(A)を超えると、可変定電流源13の出力端子の電圧Vは、V1(V)からいったん第2LED列21の閾値電圧付近の電圧V2(V)まで低下する。そして電流Itの増加にともない、可変定電流源13の出力端子の電圧Vが上昇し、第2LED列21の発光輝度が増加する。   Since the second LED string 21 has a lower threshold voltage than the first LED string 11, when the output current It of the variable constant current source 13 exceeds I4 (A), the voltage V of the output terminal of the variable constant current source 13 is The voltage decreases from V1 (V) to a voltage V2 (V) near the threshold voltage of the second LED array 21 once. As the current It increases, the voltage V at the output terminal of the variable constant current source 13 increases, and the light emission luminance of the second LED array 21 increases.

ツェナーダイオード36は、可変定電流源13の出力端子の電圧Vが上昇しても過剰な電圧がFET39のゲートに印加されないようにする保護素子であり、降伏電圧がFET39の閾値よりやや大きいものを用いる。LED駆動回路10では第1LED列11の閾値電圧が第2LED列21の閾値電圧よりLED12の順方向電圧降下で数個分大きくしているので、電流ItがI4(A)より大きいとき可変定電流源13の出力端子の電圧V
が上昇しても第1LED列11に電流が流れない。これは、図2においてグラフの右端の電圧値が電圧V0に達しないことに対応する。
The Zener diode 36 is a protective element that prevents an excessive voltage from being applied to the gate of the FET 39 even when the voltage V at the output terminal of the variable constant current source 13 rises, and has a breakdown voltage slightly larger than the threshold value of the FET 39. Use. In the LED driving circuit 10, the threshold voltage of the first LED array 11 is increased by several forward voltage drops of the LED 12 from the threshold voltage of the second LED array 21, so that the variable constant current when the current It is greater than I4 (A) The voltage V at the output terminal of the source 13
No current flows through the first LED array 11 even if the voltage rises. This corresponds to the fact that the voltage value at the right end of the graph in FIG. 2 does not reach the voltage V0.

もしも仮に第1LED列11の閾値電圧を第2LED列21の閾値電圧より小さくした場合、LED駆動回路10では、電流ItがI4(A)より大きい電流範囲I5にあるとき、第1LED列11からツェナーダイオード36、抵抗34を経て電流I1が流れる可能性がある。しかしながら抵抗34を大きな値にしておけば、この電流I1(及び第1LED列11の点灯)を無視できる。この場合でも前述のFET38、39の状態は変わらない。   If the threshold voltage of the first LED string 11 is made smaller than the threshold voltage of the second LED string 21, the LED drive circuit 10 starts from the first LED string 11 to the zener when the current It is in the current range I5 larger than I4 (A). There is a possibility that the current I1 flows through the diode 36 and the resistor 34. However, if the resistance 34 is set to a large value, this current I1 (and lighting of the first LED string 11) can be ignored. Even in this case, the states of the FETs 38 and 39 are not changed.

以上のようにLED駆動回路10では、可変定電流源13の出力電流Itの値が小さい電流期間I3において、切替回路30は、FET38をオン、FET39をオフにし、第1LED列11にのみ電流I1が流れるよう制御し、第1LED列11が第1発光色で低輝度発光する。可変定電流源13の出力電流Itを増加し、出力電流が所定の値(I4(A))を超えると、切替回路30は、FET38をオフ、FET39をオンにし、可変定電流源13の出力電流Itが第2LED列21のみに流れるように制御する。この結果LED駆動回路10において、可変定電流源13の出力電流Itの値が大きい電流範囲I5で第2LED列21が第2発光色で高輝度発光する。   As described above, in the LED drive circuit 10, in the current period I3 in which the value of the output current It of the variable constant current source 13 is small, the switching circuit 30 turns on the FET 38 and turns off the FET 39, and the current I1 is supplied only to the first LED row 11. The first LED row 11 emits light with a low luminance in the first emission color. When the output current It of the variable constant current source 13 is increased and the output current exceeds a predetermined value (I4 (A)), the switching circuit 30 turns off the FET 38 and turns on the FET 39 to output the variable constant current source 13. Control is performed so that the current It flows only through the second LED array 21. As a result, in the LED drive circuit 10, the second LED array 21 emits light with high brightness in the second emission color in the current range I5 where the value of the output current It of the variable constant current source 13 is large.

すなわち高輝度発光時にLED駆動回路10は、第1LED列11の発光色が混じらず、第2LED列21の発光色で発光するので、LED駆動回路10及びこれを使用する製品において発光色の管理が容易になる。また高輝度発光時にLED駆動回路10は、第2LED列21を発光効率の高い色温度で発光させている一方で、発光効率の低い色温度で発光する第1LED列11を消灯させているため発光効率が高くなっている。   That is, the LED drive circuit 10 emits light with the light emission color of the second LED row 21 without being mixed with the light emission color of the first LED row 11 at the time of high luminance light emission, so that the light emission color can be managed in the LED drive circuit 10 and products using the LED drive circuit 10. It becomes easy. The LED driving circuit 10 emits light because the second LED array 21 emits light at a color temperature with high light emission efficiency, and the first LED array 11 that emits light at a color temperature with low light emission efficiency is turned off while emitting light with high luminance. Efficiency is high.

図1に示したようにLED駆動回路10において切替回路30は、電流検出素子として抵抗32、比較器としてトランジスタ37を含んでいた。すなわち比較器であるトランジスタ37はベース−エミッタ間の閾値電圧である0.6Vと抵抗32の一端の電圧(ベース電圧)を比較し、コレクタの電圧出力を反転させている。また電流検出素子である抵抗32の一端は第1スイッチであるFET38のソース(他端)と第2スイッチであるFET39のソース(他端)とが接続し、第1LED列11及び第2LED列21に流れる電流I1、I2が抵抗32に流れ込んでいる。そしてトランジスタ37のコレクタ電圧に基づいてFET38、39が制御される。なおトランジスタ37のコレクタ電圧に基づき、トランジスタ37のコレクタ電圧でFET38が制御され、さらにFET38のドレイン電圧でFET39が制御されている。   As shown in FIG. 1, the switching circuit 30 in the LED drive circuit 10 includes a resistor 32 as a current detection element and a transistor 37 as a comparator. In other words, the transistor 37 as a comparator compares the base-emitter threshold voltage of 0.6 V with the voltage at one end of the resistor 32 (base voltage) and inverts the collector voltage output. Also, one end of the resistor 32 that is a current detection element is connected to the source (the other end) of the FET 38 that is the first switch and the source (the other end) of the FET 39 that is the second switch, and the first LED row 11 and the second LED row 21 are connected. Currents I1 and I2 flowing in the resistor 32 flow into the resistor 32. The FETs 38 and 39 are controlled based on the collector voltage of the transistor 37. The FET 38 is controlled by the collector voltage of the transistor 37 based on the collector voltage of the transistor 37, and the FET 39 is further controlled by the drain voltage of the FET 38.

電流検出素子としては、抵抗ばかりでなくコイルや集積化したセンサであっても良い。比較器としては、トランジスタばかりでなく、コンパレータやA/Dコンバータでも良い。電流検出素子は第1スイッチ及び第2スイッチに別々に設けても良い。第1及び第2スイッチを制御する回路は、デジタル制御回路であってもよい。しかしながらLED駆動回路10は、少ない素子数で、電流Itに基づき第1LED列11と第2LED列21の切り替えを可能にしている。   The current detection element may be not only a resistor but also a coil or an integrated sensor. As a comparator, not only a transistor but also a comparator or an A / D converter may be used. The current detection element may be provided separately for the first switch and the second switch. The circuit that controls the first and second switches may be a digital control circuit. However, the LED drive circuit 10 enables switching between the first LED array 11 and the second LED array 21 based on the current It with a small number of elements.

前述したようにLED駆動回路10では第1発光色の色温度を低いものとし、第2発光色の色温度を色温度の高いものとしていたので、電流I1、I2に対する第1及び第2LED列11、21の発光効率は、第2LED列21の方が大きくなる。この条件の下でLED駆動回路10は、第1LED列11に含まれるLED12の個数を第2LED列21に含まれるLED22の個数より多くし、電流I4(A)の前後で第1LED列11と第2LED列21の明るさを等しくしていた。つまり発光色が切り替わるとき明るさが変化しないため、自然な調光が可能になる。   As described above, in the LED drive circuit 10, the color temperature of the first emission color is set low and the color temperature of the second emission color is set high, so that the first and second LED arrays 11 for the currents I1 and I2 are used. , 21 has a higher luminous efficiency in the second LED array 21. Under this condition, the LED drive circuit 10 increases the number of LEDs 12 included in the first LED array 11 from the number of LEDs 22 included in the second LED array 21, and the first LED array 11 and the first LED array before and after the current I4 (A). The brightness of the two LED rows 21 was made equal. That is, since the brightness does not change when the emission color is switched, natural light control is possible.

なおLED駆動回路10では、第1LED列11の閾値電圧を第2LED列21の閾値電圧より高くするため、LED12、22の個数を調整していた。LED12、22の個数で第1及び第2LED列11、12の閾値電圧を調整できたのは、前述したようにLED駆動回路10ではLED12及びLED22のLEDダイが共通であり、各LED12、22の順方向電圧降下が等しかったためである。これに対し第1LED列と第2LED列に含まれるLEDが異なった種類・型式のLEDダイを使用する場合もある。この場合、それぞれのLEDダイの順方向電圧降下に基づいて第1LED列と第2LED列の閾値電圧を調整する必要がある。   In the LED driving circuit 10, the number of LEDs 12 and 22 is adjusted in order to make the threshold voltage of the first LED row 11 higher than the threshold voltage of the second LED row 21. The reason why the threshold voltages of the first and second LED rows 11 and 12 can be adjusted by the number of the LEDs 12 and 22 is that the LED dies of the LED 12 and the LED 22 are common in the LED driving circuit 10 as described above. This is because the forward voltage drop was equal. On the other hand, there may be a case where different types and types of LED dies are used for the LEDs included in the first LED row and the second LED row. In this case, it is necessary to adjust the threshold voltages of the first LED row and the second LED row based on the forward voltage drop of each LED die.

(第2実施形態)
前述したように図1に示したLED駆動回路10の切替回路30では、電流検出素子が抵抗32、比較器がトランジスタ37(より正確にはプルアップ用の抵抗31を含む)、比較器の出力がトランジスタ37のコレクタ電圧であり、さらに第1スイッチ及び第2スイッチがエンハンスメント型のFET38、39であった。これに対し第1スイッチ及び第2スイッチは他のスイッチング素子であっても良い。そこで図3に本発明の第2実施形態として、第1スイッチ及び第2スイッチがバイポーラトランジスタであるLED駆動回路40の回路図を示す。
(Second Embodiment)
As described above, in the switching circuit 30 of the LED driving circuit 10 shown in FIG. 1, the current detection element is the resistor 32, the comparator is the transistor 37 (more precisely, the pull-up resistor 31), and the output of the comparator. Is the collector voltage of the transistor 37, and the first and second switches are enhancement type FETs 38 and 39. On the other hand, the first switch and the second switch may be other switching elements. FIG. 3 shows a circuit diagram of an LED driving circuit 40 in which the first switch and the second switch are bipolar transistors as a second embodiment of the present invention.

図3に示すようにLED駆動回路40は、図1に示したLED駆動回路10に含まれる可変定電流源13と第1及び第2LED列11、21が共通であり、切替回路40aがLED駆動回路10の切替回路30と異なる。   As shown in FIG. 3, in the LED drive circuit 40, the variable constant current source 13 and the first and second LED rows 11 and 21 included in the LED drive circuit 10 shown in FIG. 1 are common, and the switching circuit 40a is LED driven. Different from the switching circuit 30 of the circuit 10.

LED駆動回路40において切替回路40aは、抵抗41、42、43、44、45と、バイポーラトランジスタ(以下トランジスタと呼ぶ)47、48、49からなる。抵抗41はプルアップ抵抗であり、抵抗31を介して可変定電流源13の電流出力端子とトランジスタ47のコレクタが接続している。抵抗42は電流検出抵抗であり、抵抗42とベース電流を制限する抵抗43とを介してトランジスタ47のベースとエミッタが接続する。トランジスタ47のエミッタは可変定電流源13の電流が戻る端子(グランド)と接続している。   In the LED drive circuit 40, the switching circuit 40a includes resistors 41, 42, 43, 44, and 45, and bipolar transistors (hereinafter referred to as transistors) 47, 48, and 49. The resistor 41 is a pull-up resistor, and the current output terminal of the variable constant current source 13 and the collector of the transistor 47 are connected via the resistor 31. The resistor 42 is a current detection resistor, and the base and emitter of the transistor 47 are connected via the resistor 42 and a resistor 43 that limits the base current. The emitter of the transistor 47 is connected to a terminal (ground) from which the current of the variable constant current source 13 returns.

第1スイッチとして動作するトランジスタ48は、コレクタ(一端)が第1LED列11のカソードと接続するとともに、ベース(制御端子)が抵抗44を介してトランジスタ47のコレクタと接続する。第2スイッチとして動作するトランジスタ49は、コレクタ(一端)が第2LED列21のカソードと接続するとともに、ベース(制御端子)が抵抗45を介してトランジスタ48のコレクタと接続する。トランジスタ48、49のエミッタ(他端)はともに抵抗42の一端にしている。   The transistor 48 operating as the first switch has a collector (one end) connected to the cathode of the first LED row 11 and a base (control terminal) connected to the collector of the transistor 47 via the resistor 44. The transistor 49 operating as the second switch has a collector (one end) connected to the cathode of the second LED row 21 and a base (control terminal) connected to the collector of the transistor 48 via the resistor 45. The emitters (other ends) of the transistors 48 and 49 are both connected to one end of the resistor 42.

切替回路40aは、切替回路30(図1参照)と同様に比較器がトランジスタ47(より正確には抵抗41を含む)である。しかしながら第1スイッチ及び第2スイッチは、トランジスタ48、49であるためオン及びオフはベース電流で制御される。すなわち比較器の出力としてトランジスタ47のコレクタから分流された電流でトランジスタ48が制御され、トランジスタ48のコレクタから分流した電流でトランジスタ49が制御される。   In the switching circuit 40a, the comparator is a transistor 47 (more precisely, the resistor 41 is included) as in the switching circuit 30 (see FIG. 1). However, since the first switch and the second switch are the transistors 48 and 49, ON and OFF are controlled by the base current. That is, the transistor 48 is controlled by the current shunted from the collector of the transistor 47 as the output of the comparator, and the transistor 49 is controlled by the current shunted from the collector of the transistor 48.

なおベース電流を無視すれば、LED駆動回路40の発光動作は、図1及び図2で示したLED駆動回路10の発光動作と等しく、作用効果も等しい。さらにLED駆動回路40は、第1及び第2スイッチをバイポーラトランジスタ(トランジスタ48、49)としたことにより図1に示したLED駆動回路10より回路が若干簡単になっている。   If the base current is ignored, the light emission operation of the LED drive circuit 40 is equal to the light emission operation of the LED drive circuit 10 shown in FIG. 1 and FIG. Further, the LED drive circuit 40 is slightly simpler than the LED drive circuit 10 shown in FIG. 1 by using bipolar transistors (transistors 48 and 49) as the first and second switches.

(第3実施形態)
LED駆動回路10、40では第1スイッチ(FET38、トランジスタ48)が比較器(トランジスタ37、47)の出力で制御され、第2スイッチ(FET39、トランジスタ49)が第1スイッチの一端の出力(ドレインの電圧、コレクタから分流した電流)で制御されていた。このような回路構成は、例えば図2において電流ItがI4(A)近傍にあるとき発振を起こすことがある。そこで図4に本発明の第3実施形態として、発振防止のため第1スイッチ及び第2スイッチの切り替り時にヒステリシス特性を備えたLED駆動回路50の回路図を示す。
(Third embodiment)
In the LED drive circuits 10, 40, the first switch (FET 38, transistor 48) is controlled by the output of the comparator (transistors 37, 47), and the second switch (FET 39, transistor 49) is the output (drain) of one end of the first switch. Voltage, current shunted from the collector). Such a circuit configuration may cause oscillation when the current It is in the vicinity of I4 (A) in FIG. 2, for example. FIG. 4 shows a circuit diagram of an LED drive circuit 50 having a hysteresis characteristic when the first switch and the second switch are switched to prevent oscillation as a third embodiment of the present invention.

図4に示すようにLED駆動回路50は、図1に示したLED駆動回路10に抵抗51を追加しただけである。すなわちLED駆動回路50は、切替回路50aにおいて第1スイッチであるFET38のゲート(制御端子)と第2スイッチであるFET39のドレイン(一端)が抵抗51を介して接続している。   As shown in FIG. 4, the LED drive circuit 50 is obtained by adding a resistor 51 to the LED drive circuit 10 shown in FIG. 1. That is, in the LED drive circuit 50, the gate (control terminal) of the FET 38 serving as the first switch and the drain (one end) of the FET 39 serving as the second switch are connected via the resistor 51 in the switching circuit 50a.

FET38と第1LED列11からなる回路は、FET38のゲートを入力、ドレインを出力とする反転増幅器とみることができる。同様にFET39と第2LED列21からなる回路は、FET39のゲートを入力、ドレインを出力とする反転増幅器とみることができる。つまり抵抗51は、2段の反転増幅器からなる増幅器の入力と出力を接続するフィードバック抵抗とみなせる。このフィードバック抵抗は良く知られているようにヒステリシスを発生する。この結果、LED駆動回路50は図2の電流I4(A)近傍で起こる発振が抑制される。   The circuit composed of the FET 38 and the first LED string 11 can be regarded as an inverting amplifier having the gate of the FET 38 as an input and the drain as an output. Similarly, the circuit composed of the FET 39 and the second LED array 21 can be regarded as an inverting amplifier in which the gate of the FET 39 is an input and the drain is an output. That is, the resistor 51 can be regarded as a feedback resistor that connects the input and output of an amplifier composed of a two-stage inverting amplifier. This feedback resistor generates hysteresis as is well known. As a result, the LED drive circuit 50 is suppressed from oscillating near the current I4 (A) in FIG.

10、40、50…LED駆動回路、
11…第1LED列、
12、22…LED、
13…可変定電流源、
21…第2LED列、
30、40a、50a…切替回路、
31、32、33、34、41、42、43、44、45、51…抵抗、
35、36…ツェナーダイオード、
37、47…トランジスタ(バイポーラトランジスタ、比較器)、
38…FET(エンハンスメント型電界効果トランジスタ、第1スイッチ)、
39…FET(エンハンスメント型電界効果トランジスタ、第2スイッチ)、
48…トランジスタ(バイポーラトランジスタ、第1スイッチ)、
49…トランジスタ(バイポーラトランジスタ、第2スイッチ)。
10, 40, 50 ... LED drive circuit,
11 ... 1st LED row,
12, 22 ... LED,
13 ... Variable constant current source,
21 ... 2nd LED row,
30, 40a, 50a ... switching circuit,
31, 32, 33, 34, 41, 42, 43, 44, 45, 51 ... resistance,
35, 36 ... Zener diode,
37, 47 ... transistor (bipolar transistor, comparator),
38 ... FET (enhancement type field effect transistor, first switch),
39 ... FET (enhancement type field effect transistor, second switch),
48 ... transistor (bipolar transistor, first switch),
49: Transistor (bipolar transistor, second switch).

Claims (7)

可変定電流源と、
第1発光色で発光する第1LED列と、
第2発光色で発光する第2LED列と、
前記第1LED列が発光する状態と前記第2LED列が発光する状態を切り替える切替回路とを備え、
前記可変定電流源に対し前記第1LED列と前記第2LED列が並列接続し、
前記切替回路は、一端が前記第1LED列と直列接続する第1スイッチと、一端が前記第2LED列と直列接続する第2スイッチを有し、前記可変定電流源の出力する電流が所定の電流より小さいときに前記第1スイッチをオンするとともに前記第2スイッチをオフし、前記可変定電流源の出力する電流が前記所定の電流より大きいときに前記第1スイッチをオフするとともに前記第2スイッチをオンすることを特徴とするLED駆動回路。
A variable constant current source;
A first LED array that emits light in a first emission color;
A second LED array that emits light in a second emission color;
A switching circuit that switches between a state in which the first LED row emits light and a state in which the second LED row emits light,
The first LED row and the second LED row are connected in parallel to the variable constant current source,
The switching circuit has a first switch having one end connected in series with the first LED array, and a second switch having one end connected in series with the second LED array, and the current output from the variable constant current source is a predetermined current. When it is smaller, the first switch is turned on and the second switch is turned off. When the current output from the variable constant current source is larger than the predetermined current, the first switch is turned off and the second switch LED driving circuit characterized by turning on.
前記切替回路は、電流検出素子と、前記電流検出素子の一端の電圧で出力を切り替える比較器を含み、前記電流検出素子の前記一端と前記第1スイッチの他端と前記第2スイッチの他端とが接続し、前記比較器の出力に基づいて前記第1スイッチと前記第2スイッチが制御されることを特徴とする請求項1に記載のLED駆動回路。   The switching circuit includes a current detection element and a comparator that switches an output with a voltage at one end of the current detection element, the one end of the current detection element, the other end of the first switch, and the other end of the second switch. The LED driving circuit according to claim 1, wherein the first switch and the second switch are controlled based on an output of the comparator. 前記第1スイッチが前記比較器の出力で制御され、前記第2スイッチが前記第1スイッチの前記一端の出力で制御されることを特徴とする請求項2に記載のLED駆動回路。   The LED driving circuit according to claim 2, wherein the first switch is controlled by an output of the comparator, and the second switch is controlled by an output of the one end of the first switch. 前記電流検出素子が抵抗であり、前記比較器がバイポーラトランジスタと他の抵抗を備え、前記比較器の出力が前記バイポーラトランジスタのコレクタ電圧であり、前記第1スイッチ及び前記第2スイッチがエンハンスメント型FETであることを特徴とする請求項2又は3に記載のLED駆動回路。   The current detection element is a resistor, the comparator includes a bipolar transistor and another resistor, the output of the comparator is a collector voltage of the bipolar transistor, and the first switch and the second switch are enhancement-type FETs The LED driving circuit according to claim 2 or 3, wherein 前記電流検出素子が抵抗であり、前記比較器がバイポーラトランジスタと他の抵抗を備え、前記比較器の出力がバイポーラトランジスタのコレクタから分流された電流であり、前記第1スイッチ及び前記第2スイッチがバイポーラトランジスタであることを特徴とする請求項2又は3に記載のLED駆動回路。   The current detection element is a resistor, the comparator includes a bipolar transistor and another resistor, the output of the comparator is a current shunted from the collector of the bipolar transistor, and the first switch and the second switch are 4. The LED driving circuit according to claim 2, wherein the LED driving circuit is a bipolar transistor. 前記第2スイッチの前記一端は、前記第1スイッチの制御端子に抵抗を介して接続していていることを特徴とする請求項1から5のいずれか一項に記載のLED駆動回路。   6. The LED drive circuit according to claim 1, wherein the one end of the second switch is connected to a control terminal of the first switch via a resistor. 前記第1LED列の閾値電圧は、前記第2LED列の閾値電圧より高いことを特徴とする請求項1から6のいずれか一項に記載のLED駆動回路。   The LED drive circuit according to any one of claims 1 to 6, wherein a threshold voltage of the first LED array is higher than a threshold voltage of the second LED array.
JP2015060649A 2015-03-24 2015-03-24 LED drive circuit Active JP6411261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060649A JP6411261B2 (en) 2015-03-24 2015-03-24 LED drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060649A JP6411261B2 (en) 2015-03-24 2015-03-24 LED drive circuit

Publications (2)

Publication Number Publication Date
JP2016181589A JP2016181589A (en) 2016-10-13
JP6411261B2 true JP6411261B2 (en) 2018-10-24

Family

ID=57131933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060649A Active JP6411261B2 (en) 2015-03-24 2015-03-24 LED drive circuit

Country Status (1)

Country Link
JP (1) JP6411261B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979898A (en) * 2017-12-27 2018-05-01 苏州菲达旭微电子有限公司 Low-voltage LED linear drive circuit
CN108668412B (en) * 2018-06-14 2023-05-23 上汽大众汽车有限公司 Current feedback type brightness BIN area compensation circuit for LED lamp meeting vehicle body diagnosis
JP6391877B1 (en) * 2018-06-20 2018-09-19 アール・ビー・コントロールズ株式会社 LED toning lighting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4081665B2 (en) * 2002-09-13 2008-04-30 三菱電機株式会社 LED lighting device and lighting fixture
JP5141874B2 (en) * 2007-06-28 2013-02-13 東芝ライテック株式会社 Lighting device
US8638045B2 (en) * 2011-02-07 2014-01-28 Cypress Semiconductor Corporation Mutli-string LED current control system and method
US9844113B2 (en) * 2013-01-25 2017-12-12 Dialog Semiconductor Inc. Adjusting color temperature in a dimmable LED lighting system

Also Published As

Publication number Publication date
JP2016181589A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
US10182486B2 (en) LED drive circuit
TWI666970B (en) Analog and digital dimming control for led driver
JP6057906B2 (en) LED lighting device
KR101340905B1 (en) Light emitting diode circuit and arrangement and device
US9474111B2 (en) Solid state lighting apparatus including separately driven LED strings and methods of operating the same
WO2013118208A1 (en) Light-emitting circuit, light-emitting module, and illumination device
US9307595B2 (en) Light emitting device driving module
US9198242B2 (en) Apparatus for driving LEDs using high voltage
CN102484918A (en) Method and apparatus for controlling dimming levels of leds
US9420647B2 (en) Dimming and voltage protection method and apparatus for solid-state lighting
EP2474988A1 (en) Light-emitting diode drive control circuit
US9538591B2 (en) Lighting apparatus
JP2003100472A (en) Driving equipment for light emitting diode
JP2010176985A (en) Lighting system
JP6411261B2 (en) LED drive circuit
US9167637B2 (en) LED drive circuit
JP2016115685A (en) Led luminescent apparatus of ac driving system, and driving method thereof
EP2850917B1 (en) Light source circuitry
US10368415B2 (en) Lighting apparatus
US10285239B2 (en) Protection circuit for short circuit of LED power supply
KR20160094020A (en) Circuit and method to control led lighting apparatus
JP2010003810A (en) Light-emitting diode-driving circuit
KR100878852B1 (en) Dimmer for ac driven light emitting diode
US11672060B1 (en) LED driving circuit, LED driving method and display device applying the same
JPWO2017175806A1 (en) LED drive circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180926

R150 Certificate of patent or registration of utility model

Ref document number: 6411261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250