JP2014178665A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2014178665A
JP2014178665A JP2013201925A JP2013201925A JP2014178665A JP 2014178665 A JP2014178665 A JP 2014178665A JP 2013201925 A JP2013201925 A JP 2013201925A JP 2013201925 A JP2013201925 A JP 2013201925A JP 2014178665 A JP2014178665 A JP 2014178665A
Authority
JP
Japan
Prior art keywords
toner
resin
weight
forming apparatus
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013201925A
Other languages
Japanese (ja)
Inventor
Toyoshi Sawada
豊志 澤田
Atsushi Aoto
淳 青戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013201925A priority Critical patent/JP2014178665A/en
Publication of JP2014178665A publication Critical patent/JP2014178665A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a reduction in primary transfer ratio of a toner image in a high-temperature and high-humidity environment, while suppressing the occurrence of unevenness in concentration and color tone on a recording sheet having a rough surface nature stably for a long period.SOLUTION: An image forming apparatus comprises: photoreceptors 3Y, M, C, K for forming Y, M, C, K toner images; and a transfer unit 60 that intermediately transfers the toner images on the photoreceptors onto the surface of an intermediate transfer belt 61. A toner contains a crystalline resin including a urethane bond and a urea bond in a main chain; when an integrated intensity of a spectrum derived from a crystalline structure of the crystalline resin in an X-ray diffraction spectrum of the toner is denoted as C, and an integrated intensity of a spectrum derived from an amorphous structure of an amorphous resin is denoted as A, a solution for C/(C+A) is 0.15 or more; and a surface friction coefficient of the photoreceptors is a value lower than a value of a surface friction coefficient of the intermediate transfer belt 61.

Description

本発明は、トナー像を担持する像担持体と、像担持体上のトナー像を中間転写体の表面に中間転写する中間転写手段とを備える複写機、ファクシミリ、プリンタ等の画像形成装置に関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus such as a copying machine, a facsimile machine, and a printer that includes an image carrier that carries a toner image and intermediate transfer means that intermediately transfers a toner image on the image carrier onto the surface of an intermediate transfer member. It is.

従来、この種の画像形成装置としては、特許文献1に記載のものが知られている。この画像形成装置は、周知の電子写真プロセスにより、像担持体たるドラム状の感光体の表面上にトナー像を形成する。そして、このトナー像を無端移動する中間転写ベルトの表面に中間転写した後に記録シートに2次転写する。   Conventionally, as this type of image forming apparatus, the one described in Patent Document 1 is known. This image forming apparatus forms a toner image on the surface of a drum-shaped photoconductor as an image carrier by a known electrophotographic process. Then, the toner image is transferred onto the surface of the intermediate transfer belt that moves endlessly, and then secondarily transferred onto the recording sheet.

かかる構成において、中間転写ベルトとして、硬度の低い材料からなるものを用いると、比較的短期間のうちにベルトに伸びを発生させ、伸びに起因するベルト速度変動などによって画像劣化を引き起こしてしまう。また、中間転写ベルトの代わりに大径の中間転写ローラを用いた場合に、中間転写ローラが硬度の低い材料からなるものであると、比較的短期間のうちにローラに亀裂が発生して画像劣化を引き起こしてしまう。このため、中間転写ベルトや中間転写ローラなどの中間転写体としては、ポリイミド樹脂やポリアミドイミド樹脂などの強度の高い材料からなるものを用いることで、伸びや亀裂に起因する画像劣化の発生を抑えるようにすることが望ましい。   In such a configuration, if an intermediate transfer belt made of a material having low hardness is used, the belt is stretched in a relatively short period of time, and image deterioration is caused by a belt speed variation caused by the elongation. In addition, when a large-diameter intermediate transfer roller is used instead of the intermediate transfer belt, if the intermediate transfer roller is made of a material with low hardness, the roller will crack in a relatively short period of time. It will cause deterioration. For this reason, as an intermediate transfer body such as an intermediate transfer belt or an intermediate transfer roller, a material made of a material having high strength such as polyimide resin or polyamideimide resin is used to suppress the occurrence of image deterioration due to elongation or cracks. It is desirable to do so.

しかしながら、一般に、強度の高い材料は硬度も高い。このため、強度の高い材料からなる中間転写体を用いると、2次転写工程で中間転写体の表面を記録シート表面の微妙な凹凸に追従させて柔軟に変形させることが困難になって、転写圧ムラを引き起こし易くなってしまう。特に、記録シートとして、和紙、エンボス紙、クラフト紙などといった表面性の粗いものを用いると、転写圧ムラが顕著になって紙面の凹凸にならった濃淡ムラや色調ムラを発生させ易くなってしまう。   However, in general, a high strength material has a high hardness. For this reason, if an intermediate transfer member made of a high-strength material is used, it becomes difficult to flexibly deform the surface of the intermediate transfer member by following subtle irregularities on the surface of the recording sheet in the secondary transfer step. It becomes easy to cause pressure unevenness. In particular, when recording sheets with rough surface properties such as Japanese paper, embossed paper, kraft paper, etc. are used, uneven transfer pressure becomes prominent and it becomes easy to generate unevenness in color and unevenness in color tone. .

そこで、本発明者らは、ポリイミド樹脂からなるベルト層を基材とする中間転写ベルトをセットしたプリンタ試験機を用いて、濃淡ムラや色調ムラを抑えるための様々な実験を行った。すると、トナーとして、ウレタン結合又はウレア結合を主鎖に具備する結晶性樹脂を次のような割合で含むものを用いることで、和紙のような表面性の粗い記録シートに対しても、濃淡ムラや色調ムラのない画像を形成し得ることがわかった。即ち、「C/(C+A)」という計算式の解を0.15以上にする割合である。この計算式におけるCは、トナーのX線回折スペクトルにおける結晶性樹脂の結晶構造に由来するスペクトルの積分強度を示している。また、Aは、トナーのX線回折スペクトルにおける非結晶性樹脂の非結晶構造に由来するスペクトルの積分強度を示している。   Accordingly, the present inventors conducted various experiments for suppressing shading unevenness and color tone unevenness using a printer testing machine in which an intermediate transfer belt having a belt layer made of polyimide resin as a base material is set. Then, by using a toner containing a crystalline resin having a urethane bond or a urea bond in the main chain in the following proportion as a toner, even for a recording sheet with rough surface properties such as Japanese paper, uneven density It was found that an image having no color unevenness can be formed. That is, the ratio is such that the solution of the calculation formula “C / (C + A)” is 0.15 or more. C in this calculation formula indicates the integral intensity of the spectrum derived from the crystal structure of the crystalline resin in the X-ray diffraction spectrum of the toner. A represents the integrated intensity of the spectrum derived from the amorphous structure of the amorphous resin in the X-ray diffraction spectrum of the toner.

しかしながら、かかるトナーを用いると、高温高湿の環境下において、感光体から中間転写ベルトへのトナー像の1次転写率を大きく低下させて、画像濃度不足を引き起こし易くなってしまうこともわかった。   However, it has also been found that when such toner is used, the primary transfer rate of the toner image from the photoconductor to the intermediate transfer belt is greatly reduced in a high-temperature and high-humidity environment, and the image density tends to be insufficient. .

本発明は、以上の背景に鑑みてなされたものであり、その目的とするところは、次のような画像形成装置を提供することである。即ち、表面性の粗い記録シートにおける濃淡ムラや色調ムラの発生を長期間に渡って安定して抑えつつ、高温高湿の環境下におけるトナー像の1次転写率の低下を抑えることができる画像形成装置である。   The present invention has been made in view of the above background, and an object thereof is to provide the following image forming apparatus. That is, an image capable of suppressing a decrease in the primary transfer rate of a toner image in a high-temperature and high-humidity environment while stably suppressing the occurrence of shading unevenness and color tone unevenness in a recording sheet with rough surface properties over a long period of time. Forming device.

上記目的を達成するために、本発明は、像担持体と、前記像担持体上のトナー像を中間転写体の表面に中間転写する中間転写手段とを備える画像形成装置であって、前記トナーが、ウレタン結合及びウレア結合のうち少なくとも何れか一方を主鎖に具備する結晶性樹脂を含有するものであり、前記トナーのX線回折スペクトルにおける前記結晶性樹脂の結晶構造に由来するスペクトルの積分強度をC、前記X線回折スペクトルにおける非結晶性樹脂の非結晶構造に由来するスペクトルの積分強度をAでそれぞれ表した場合に、「C/(C+A)」の解が0.15以上であり、且つ、前記像担持体の表面摩擦係数が前記中間転写体の表面摩擦係数よりも低い値であることを特徴とするものである。   In order to achieve the above object, the present invention provides an image forming apparatus comprising: an image carrier; and an intermediate transfer unit that intermediately transfers a toner image on the image carrier to a surface of an intermediate transfer member. Which contains a crystalline resin having at least one of a urethane bond and a urea bond in the main chain, and integration of a spectrum derived from the crystal structure of the crystalline resin in the X-ray diffraction spectrum of the toner When the intensity is represented by C and the integral intensity of the spectrum derived from the amorphous structure of the amorphous resin in the X-ray diffraction spectrum is represented by A, the solution of “C / (C + A)” is 0.15 or more. In addition, the surface friction coefficient of the image carrier is lower than the surface friction coefficient of the intermediate transfer member.

本発明においては、トナーが、「C/(C+A)」の解を0.15以上にする割合で、ウレタン結合及びウレア結合のうち少なくとも何れか一方を主鎖に具備する結晶性樹脂を含んでいることで、後述する実験で本発明者らが明らかにしたように、表面性の粗い記録シートにおける濃淡ムラや色調ムラの発生を長期間に渡って安定して抑えることができる。   In the present invention, the toner includes a crystalline resin having at least one of a urethane bond and a urea bond in the main chain at a ratio of setting the solution of “C / (C + A)” to 0.15 or more. Therefore, as revealed by the inventors in experiments described later, it is possible to stably suppress the occurrence of shading unevenness and color tone unevenness in a recording sheet with rough surface properties over a long period of time.

また、本発明においては、像担持体の表面摩擦係数を中間転写体の表面摩擦係数よりも低くすることで、後述する実験で本発明者らが明らかにしたように、高温高湿の環境下におけるトナー像の1次転写率の低下を抑えることができる。   In the present invention, the surface friction coefficient of the image bearing member is made lower than the surface friction coefficient of the intermediate transfer member, so that the present inventors have made it clear in an experiment described later in an environment of high temperature and high humidity. It is possible to suppress a decrease in the primary transfer rate of the toner image.

実施形態に係る複写機を示す概略構成図。1 is a schematic configuration diagram showing a copier according to an embodiment. 同複写機におけるプリンタ部の内部構成の一部を拡大して示す部分拡大構成図。FIG. 3 is a partially enlarged configuration diagram illustrating a part of an internal configuration of a printer unit in the copier. 同プリンタ部のY用のプロセスユニットを示す拡大構成図。FIG. 3 is an enlarged configuration diagram showing a process unit for Y of the printer unit. プロセスユニットにおける潤滑剤塗布装置の変形例を示す拡大構成図。The expansion block diagram which shows the modification of the lubricant coating device in a process unit. 同プリンタ部の2次転写ニップの周囲を示す拡大構成図。FIG. 3 is an enlarged configuration diagram illustrating the periphery of a secondary transfer nip of the printer unit. トナーのX線回折装置によって得られる回折スペクトルの一例を示すグラフ。6 is a graph showing an example of a diffraction spectrum obtained by an X-ray diffraction apparatus for toner. 同一例のフィッティング関数の特性を示すグラフ。The graph which shows the characteristic of the fitting function of the same example. 13C−NMRスペクトルを示す図。The figure which shows a 13C-NMR spectrum.

以下、本発明を適用した画像形成装置として、電子写真方式によって画像を形成する複写機の実施形態について説明する。
まず、実施形態に係る複写機の基本的な構成について説明する。図1は、実施形態に係る複写機を示す概略構成図である。この複写機は、プリンタ部1と、白紙供給装置100と、原稿搬送読取ユニット150とを備えている。原稿搬送読取ユニット150は、プリンタ部1の上に固定された原稿読取装置たるスキャナ160と、これに支持される原稿搬送装置たるADF170とを有している。
Hereinafter, as an image forming apparatus to which the present invention is applied, an embodiment of a copying machine that forms an image by an electrophotographic method will be described.
First, a basic configuration of the copying machine according to the embodiment will be described. FIG. 1 is a schematic configuration diagram illustrating a copying machine according to an embodiment. The copying machine includes a printer unit 1, a blank paper supply device 100, and a document conveyance reading unit 150. The document conveyance reading unit 150 includes a scanner 160 as a document reading device fixed on the printer unit 1 and an ADF 170 as a document conveyance device supported by the scanner 160.

白紙供給装置100は、ペーパーバンク101内に多段に配設された4つの給紙ユニット107、給紙路108、複数の搬送ローラ対109等を備えている。また、4つの給紙ユニット107はそれぞれ、給紙カセット104、給紙ローラ105、分離ローラ対106等から構成されている。   The blank paper supply apparatus 100 includes four paper supply units 107, paper supply paths 108, a plurality of conveyance roller pairs 109, and the like that are arranged in multiple stages in the paper bank 101. Each of the four paper feed units 107 includes a paper feed cassette 104, a paper feed roller 105, a separation roller pair 106, and the like.

給紙ユニット107は、記録シートPを複数枚重ねた紙束の状態で給紙カセット104内に収容している。そして、プリンタ部1からの制御信号に基づいて、給紙ローラ105を回転駆動させて、紙束における一番上の記録シートPを給紙路108に向けて送り出す。送り出された記録シートPは、分離ローラ対106によって1枚に分離されてから、給紙路108内に至る。そして、給紙路108内に設けられた複数の搬送ローラ対109の搬送ニップを経由して、プリンタ部1の第1受入分岐路30に送られる。   The paper feed unit 107 is housed in the paper feed cassette 104 in a state of a bundle of sheets in which a plurality of recording sheets P are stacked. Then, based on a control signal from the printer unit 1, the paper feed roller 105 is driven to rotate, and the uppermost recording sheet P in the paper bundle is sent out toward the paper feed path 108. The fed recording sheet P is separated into one sheet by the separation roller pair 106 and then reaches the inside of the sheet feeding path 108. Then, the sheet is sent to the first receiving branch path 30 of the printer unit 1 through the conveyance nips of the plurality of conveyance roller pairs 109 provided in the sheet feeding path 108.

プリンタ部1は、イエロー(Y),マゼンタ(M),シアン(C),ブラック(K)のトナー像を形成するための4つのプロセスユニット2Y,M,C,K、第1受入分岐路30、受入搬送ローラ対31、手差しトレイ32、第2受入分岐路34等を備えている。また、手差し分離ローラ対35、転写前搬送路36、レジストローラ対37、搬送ベルトユニット39、定着ユニット43、スイッチバック装置46、排紙ローラ対47、排紙トレイ48、光書込ユニット50、転写ユニット60等も備えている。なお、像担持体ユニットとしてのプロセスユニット2Y,M,C,Kは、所定のピッチで並ぶ像担持体たるドラム状の感光体3Y,M,C,Kを有している。   The printer unit 1 includes four process units 2Y, 2M, 2C, and 3K for forming yellow (Y), magenta (M), cyan (C), and black (K) toner images. , A receiving conveyance roller pair 31, a manual feed tray 32, a second receiving branching path 34, and the like. Also, a manual separation roller pair 35, a pre-transfer conveyance path 36, a registration roller pair 37, a conveyance belt unit 39, a fixing unit 43, a switchback device 46, a discharge roller pair 47, a discharge tray 48, an optical writing unit 50, A transfer unit 60 and the like are also provided. Note that the process units 2Y, 2M, 2C, and 2K as image carrier units have drum-shaped photoreceptors 3Y, 3M, 3C, and 3K that are image carriers arranged at a predetermined pitch.

後述する2次転写ニップの直前で記録シートPを搬送するための転写前搬送路36は、紙搬送方向の上流側で第1受入分岐路30と第2受入分岐路34とに分岐している。白紙供給装置100の給紙路108から送り出された記録シートPは、プリンタ部1の第1受入分岐路30に受け入れられた後、第1受入分岐路30内に配設された受入搬送ローラ対31の搬送ニップを経由して転写前搬送路36に送られる。   A pre-transfer conveyance path 36 for conveying the recording sheet P immediately before a secondary transfer nip, which will be described later, is branched into a first reception branch path 30 and a second reception branch path 34 on the upstream side in the paper conveyance direction. . After the recording sheet P sent out from the paper feed path 108 of the blank paper supply apparatus 100 is received by the first receiving branch path 30 of the printer unit 1, a pair of receiving transport rollers disposed in the first receiving branch path 30. It is sent to the pre-transfer conveyance path 36 via the conveyance nip 31.

プリンタ部1の筺体における側面には、手差しトレイ32が筺体に対して開閉可能に配設されており、筺体に対して開いた状態でトレイ上面に紙束が手差しされる。手差しされた紙束における一番上の記録シートPは、手差しトレイ32の送出ローラ32aによって第2受入分岐路34に向けて送り出される。そして、手差し分離ローラ対35によって1枚に分離されてから転写前搬送路36に送られる。   A manual feed tray 32 is disposed on the side surface of the housing of the printer unit 1 so as to be openable and closable with respect to the housing. The uppermost recording sheet P in the manually fed paper bundle is sent out toward the second receiving / branching path 34 by the feed roller 32a of the manual feed tray 32. Then, after being separated into one sheet by the manual feed separation roller pair 35, it is sent to the pre-transfer conveyance path 36.

光書込ユニット50は、図示しないレーザーダイオード、ポリゴンミラー、各種レンズなどを有している。そして、後述するスキャナ160によって読み取られた画像情報や、外部のパーソナルコンピュータから送られている画像情報に基づいて、レーザーダイオードを駆動する。これにより、プロセスユニット2Y,M,C,Kの感光体3Y,M,C,Kを光走査する。具体的には、プロセスユニット2Y,M,C,Kの感光体3Y,M,C,Kは、図示しない駆動手段によってそれぞれ図中反時計回り方向に回転駆動せしめられる。光書込ユニット50は、駆動中の感光体3Y,M,C,Kに対して、画像情報に基づいて変調したレーザー光Lをそれぞれ感光体の回転軸線方向に偏向せしめながら照射することで、光走査処理を行う。これにより、感光体3Y,M,C,Kには、Y,M,C,K画像情報に基づいた静電潜像が形成され、現像装置4Y,M,C,KによってY,M,C,Kトナー像に現像される。   The optical writing unit 50 has a laser diode, a polygon mirror, various lenses, etc., not shown. Then, the laser diode is driven based on image information read by a scanner 160 described later and image information sent from an external personal computer. Thereby, the photoconductors 3Y, M, C, and K of the process units 2Y, M, C, and K are optically scanned. Specifically, the photoconductors 3Y, 3M, 3C, and 3K of the process units 2Y, 2M, 2C, and 2K are rotated in the counterclockwise direction in the drawing by driving means (not shown). The optical writing unit 50 irradiates the driven photoreceptors 3Y, 3M, 3C, and 3K with laser light L modulated based on the image information while deflecting them in the direction of the rotation axis of the photoreceptor. An optical scanning process is performed. Thereby, electrostatic latent images based on Y, M, C, and K image information are formed on the photoreceptors 3Y, M, C, and K, and Y, M, and C are developed by the developing devices 4Y, M, C, and K, respectively. , K toner images.

図2は、プリンタ部1の内部構成の一部を拡大して示す部分拡大構成図である。各色のプロセスユニット3K,Y,M,Cは、それぞれ、像担持体たる感光体と、その周囲に配設される各種装置とを1つのユニットとして共通の支持体に支持するものであり、プリンタ部本体に対して感光体や各種装置が一体的に着脱可能になっている。そして、互いに使用するトナーの色が異なる点の他が同様の構成になっている。Y用のプロセスユニット2Yを例にすると、これは、感光体3Yの他、これの表面に形成された静電潜像をYトナー像に現像するための現像装置4Yを有している。また、後述するY用の1次転写ニップを通過した後の感光体3Y表面に付着している転写残トナーを除去するドラムクリーニング装置18Yなども有している。本複写機では、4つのプロセスユニット2Y,M,C,Kを、後述する中間転写ベルト61に対してその無端移動方向に沿って並べたいわゆるタンデム型の構成になっている。   FIG. 2 is a partially enlarged configuration diagram illustrating a part of the internal configuration of the printer unit 1 in an enlarged manner. The process units 3K, Y, M, and C for the respective colors support a photosensitive member as an image carrier and various devices disposed around it on a common support as a unit. A photosensitive member and various devices can be integrally attached to and detached from the main body. The configuration is the same except that the colors of the toners used are different. Taking the process unit 2Y for Y as an example, this has a developing device 4Y for developing an electrostatic latent image formed on the surface of the photoreceptor 3Y into a Y toner image in addition to the photoreceptor 3Y. Further, it also includes a drum cleaning device 18Y that removes transfer residual toner adhering to the surface of the photoreceptor 3Y after passing through a Y primary transfer nip described later. This copying machine has a so-called tandem configuration in which four process units 2Y, 2M, 2C, and 2K are arranged along an endless movement direction with respect to an intermediate transfer belt 61 described later.

図3は、Y用のプロセスユニット2Yを示す拡大構成図である。同図に示されるように、プロセスユニット2Yは、感光体3Yの周りに、現像装置4Y、ドラムクリーニング装置18Y、帯電ローラ16Y等を有している。また、図示しない除電ランプ等も有している。   FIG. 3 is an enlarged configuration diagram showing the Y process unit 2Y. As shown in the figure, the process unit 2Y has a developing device 4Y, a drum cleaning device 18Y, a charging roller 16Y, and the like around the photoreceptor 3Y. It also has a static elimination lamp (not shown).

図中反時計回り方向に回転駆動される感光体3Yの表面は、その回転に伴って光書込ユニット(50)による光走査位置に進入する前に、帯電ローラ16Yによる一様帯電処理位置を通過する。帯電ローラ16Yには、図示しない電源により、直流電圧に交流電圧が重畳された帯電バイアスが印加されている。かかる帯電ローラ16Yは、感光体3Yの表面に当接又は近接するように配設されており、感光体3Yとの間に放電を発生させる。この放電により、感光体3Yの表面がYトナーの正規帯電極性と同極性に一様帯電せしめられる。帯電部材として、帯電ローラ16Yの代わりに、金属製の回転軸部材と、これの周面に立設せしめられた複数の導電性起毛からなるブラシローラ部とを具備する帯電ブラシローラを用いてもよい。   The surface of the photoreceptor 3Y that is driven to rotate in the counterclockwise direction in the drawing has a uniform charging processing position by the charging roller 16Y before entering the optical scanning position by the optical writing unit (50) along with the rotation. pass. A charging bias in which an AC voltage is superimposed on a DC voltage is applied to the charging roller 16Y from a power source (not shown). The charging roller 16Y is disposed so as to be in contact with or close to the surface of the photoreceptor 3Y, and generates a discharge with the photoreceptor 3Y. By this discharge, the surface of the photoreceptor 3Y is uniformly charged to the same polarity as the normal charging polarity of the Y toner. As the charging member, instead of the charging roller 16Y, a charging brush roller having a metal rotating shaft member and a brush roller portion made up of a plurality of conductive raised members standing on the peripheral surface thereof may be used. Good.

感光体3Yを一様帯電せしめる帯電装置として、帯電ローラ方式や帯電ブラシ方式のものに代えて、コロトロンやスコロトロンなどのコロナ放電方式のものを用いてもよい。但し、帯電ローラ方式や帯電ブラシ方式の帯電装置では、コロナ放電方式のものに比べて、オゾンの発生量を大幅に低減することができる。   As a charging device for uniformly charging the photoreceptor 3Y, a corona discharge system such as a corotron or a scorotron may be used instead of a charging roller system or a charging brush system. However, in the charging device of the charging roller system or the charging brush system, the amount of ozone generated can be significantly reduced as compared with the corona discharge system.

帯電ローラ16Yによって一様に帯電せしめられた感光体3Yの表面は、レーザー光Lによる光走査で露光部の電位を減衰させる。これにより、感光体3Yの表面には静電潜像が形成される。この静電潜像の電位も、一様帯電部(地肌部)と同様にYトナーの正規帯電極性と同極性であるが、その絶対値が地肌部電位の絶対値よりも大幅に小さくなっている。   The surface of the photoreceptor 3 </ b> Y that is uniformly charged by the charging roller 16 </ b> Y attenuates the potential of the exposure portion by optical scanning with the laser beam L. As a result, an electrostatic latent image is formed on the surface of the photoreceptor 3Y. The potential of the electrostatic latent image is the same as the normal charging polarity of the Y toner as in the uniformly charged portion (background portion), but its absolute value is significantly smaller than the absolute value of the background portion potential. Yes.

感光体3Yは、有機光導電層を有するいわゆる有機感光体(OPC)である。かかる感光体3Yとしては、アルミニウム等からなる導電性支持体の表面に、感光性を有する有機感光材の塗布による感光層を形成したドラム状のものを用いている。   The photoreceptor 3Y is a so-called organic photoreceptor (OPC) having an organic photoconductive layer. As the photoreceptor 3Y, a drum-shaped member is used in which a photosensitive layer is formed on a surface of a conductive support made of aluminum or the like by applying a photosensitive organic photosensitive material.

現像装置4Yは、図示しない磁性キャリアと非磁性のYトナーとを含有する二成分現像剤(以下、単に現像剤という)を用いて潜像を現像するものである。内部に収容している現像剤を攪拌しながら搬送する攪拌部5Yと、感光体3Y上の静電潜像を現像する現像部9Yとを有している。なお、現像装置4Yとして、二成分現像剤の代わりに、磁性キャリアを含まない一成分現像剤によって現像を行うタイプのものを使用していもよい。   The developing device 4Y develops a latent image using a two-component developer (hereinafter simply referred to as a developer) containing a magnetic carrier (not shown) and a non-magnetic Y toner. It has an agitation unit 5Y that conveys the developer contained inside while agitating, and a developing unit 9Y that develops the electrostatic latent image on the photoreceptor 3Y. The developing device 4Y may be of a type that performs development with a one-component developer that does not include a magnetic carrier, instead of the two-component developer.

攪拌部5Yは、現像部9Yよりも低い位置に設けられており、互いに平行配設された第1搬送スクリュウ6Y及び第2搬送スクリュウ7Y、これらスクリュウの間に設けられた仕切り板、ケーシングの底面に設けられたトナー濃度センサー8Yなどを有している。   The agitating unit 5Y is provided at a position lower than the developing unit 9Y. The first conveying screw 6Y and the second conveying screw 7Y are arranged in parallel to each other, a partition plate provided between these screws, and the bottom surface of the casing. The toner density sensor 8Y and the like provided in the printer.

現像部9Yは、ケーシングの開口を通して感光体3Yに対向する現像ロール10Y、これに対して自らの先端を近接させるドクターブレード13Yなどを有している。また、現像ロール10Yは、非磁性材料からなる筒状の現像スリーブ11Yと、これの内部に回転不能に設けられたマグネットローラ12Yとを有している。このマグネットローラ12Yは、周方向に並ぶ複数の磁極を有している。これら磁極は、それぞれスリーブ上の現像剤に対して回転方向の所定位置で磁力を作用させる。これにより、攪拌部5Yから送られてくる現像剤を現像スリーブ11Y表面に引き寄せて担持させるとともに、磁力線に沿った磁気ブラシをスリーブ表面上に形成する。   The developing unit 9Y includes a developing roll 10Y that faces the photoreceptor 3Y through the opening of the casing, a doctor blade 13Y that makes its tip close to the developing roll 10Y, and the like. Further, the developing roll 10Y has a cylindrical developing sleeve 11Y made of a nonmagnetic material, and a magnet roller 12Y provided in the inside thereof so as not to rotate. The magnet roller 12Y has a plurality of magnetic poles arranged in the circumferential direction. Each of these magnetic poles applies a magnetic force to the developer on the sleeve at a predetermined position in the rotational direction. As a result, the developer sent from the stirring unit 5Y is attracted and carried on the surface of the developing sleeve 11Y, and a magnetic brush along the magnetic field lines is formed on the sleeve surface.

磁気ブラシは、現像スリーブ11Yの回転に伴ってドクターブレード13Yとの対向位置を通過する際に適正な層厚に規制されてから、感光体3Yに対向する現像領域に搬送される。そして、現像スリーブ11Yに印加される現像バイアスと、感光体3Yの静電潜像との電位差によってYトナーを静電潜像上に転移させて現像に寄与する。更に、現像スリーブ11Yの回転に伴って再び現像部9Y内に戻り、マグネットローラ12Yの磁極間に形成される反発磁界の影響によってスリーブ表面から離脱した後、攪拌部5Y内に戻される。攪拌部5Y内には、トナー濃度センサー8Yによる検知結果に基づいて、現像剤に適量のトナーが補給される。   The magnetic brush is transported to a developing region facing the photoreceptor 3Y after being regulated to an appropriate layer thickness when passing through a position facing the doctor blade 13Y as the developing sleeve 11Y rotates. Then, Y toner is transferred onto the electrostatic latent image by the potential difference between the developing bias applied to the developing sleeve 11Y and the electrostatic latent image on the photoreceptor 3Y, thereby contributing to development. Further, as the developing sleeve 11Y rotates, the developing sleeve 9Y returns to the developing portion 9Y again, and after the release from the sleeve surface due to the influence of the repulsive magnetic field formed between the magnetic poles of the magnet roller 12Y, the developing sleeve 11Y returns to the stirring portion 5Y. An appropriate amount of toner is supplied to the developer in the stirring unit 5Y based on the detection result of the toner density sensor 8Y.

現像スリーブ11Yに印加される現像バイアスは、Yトナーの正規帯電極性と同極性で、その絶対値が感光体3Yの地肌部電位の絶対値よりも小さく且つ静電潜像の電位の絶対値よりも大きい直流電圧からなる。これにより、いわゆるネガ−ポジ現像が行われる。   The developing bias applied to the developing sleeve 11Y has the same polarity as the normal charging polarity of the Y toner, the absolute value thereof is smaller than the absolute value of the background portion potential of the photoreceptor 3Y, and the absolute value of the potential of the electrostatic latent image. Also consists of a large DC voltage. Thereby, so-called negative-positive development is performed.

感光体3Yの表面に形成されたYトナー像は、感光体3Yの表面移動に伴ってY用の1次転写ニップに進入する。具体的には、無端状の中間転写ベルト61の裏面(ループ内周面)には、Y用の1次転写ローラ62Yが当接しており、中間転写ベルト61を感光体3Yに向けて押し付けている。これにより、中間転写ベルト61のおもて面と、感光体3Yとが当接するY用の1次転写ニップが形成されている。1次転写ローラ62Yには、図示しない電源により、Yトナーの正規帯電極性とは逆極性の1次転写バイアスが印加されている。この印加により、Y用の1次転写ニップには、感光体3Yの静電潜像と中間転写ベルト61のおもて面との間に転写電界が形成されている。感光体3Yの回転駆動に伴ってY用の1次転写ニップに進入したYトナー像は、ニップ圧や転写電界の作用によって感光体3Yから中間転写ベルト61のおもて面に1次転写される。   The Y toner image formed on the surface of the photoreceptor 3Y enters the primary transfer nip for Y as the surface of the photoreceptor 3Y moves. Specifically, the primary transfer roller 62Y for Y is in contact with the back surface (loop inner peripheral surface) of the endless intermediate transfer belt 61, and the intermediate transfer belt 61 is pressed toward the photoreceptor 3Y. Yes. As a result, a primary transfer nip for Y in which the front surface of the intermediate transfer belt 61 and the photoreceptor 3Y are in contact with each other is formed. A primary transfer bias having a polarity opposite to the normal charging polarity of the Y toner is applied to the primary transfer roller 62Y by a power source (not shown). With this application, a transfer electric field is formed between the electrostatic latent image on the photoreceptor 3 </ b> Y and the front surface of the intermediate transfer belt 61 in the primary transfer nip for Y. The Y toner image that has entered the primary transfer nip for Y as the photoconductor 3Y is rotated is primarily transferred from the photoconductor 3Y to the front surface of the intermediate transfer belt 61 by the action of the nip pressure or transfer electric field. The

Y用の1次転写ニップを通過した後の感光体3Yの表面には、中間転写ベルト61に1次転写されなかった若干量の転写残トナーが付着している。この転写残トナーは、ドラムクリーニング装置18Yによって感光体3Yの表面から除去される。   A small amount of untransferred toner that has not been primarily transferred to the intermediate transfer belt 61 adheres to the surface of the photoreceptor 3Y after passing through the primary transfer nip for Y. This transfer residual toner is removed from the surface of the photoreceptor 3Y by the drum cleaning device 18Y.

ドラムクリーニング装置18Yとしては、クリーニングブレード20Yを感光体3Yに押し当てる方式のものを用いている。そして、このドラムクリーニング装置18Yはクリーニングブレード20Y、潤滑剤塗布装置、均しブレード23Y等を有している。   As the drum cleaning device 18Y, a system that presses the cleaning blade 20Y against the photoreceptor 3Y is used. The drum cleaning device 18Y includes a cleaning blade 20Y, a lubricant application device, a leveling blade 23Y, and the like.

回転駆動に伴ってY用の1次転写ニップを通過した感光体3Yの表面は、ドラムクリーニング装置18Yとの対向位置に進入する。そして、クリーニングブレード20Yによるクリーニング位置、潤滑剤塗布装置による潤滑剤塗布位置、均しブレード23Yによる潤滑剤均し位置を順次通過する。   The surface of the photoreceptor 3Y that has passed through the primary transfer nip for Y in accordance with the rotational drive enters a position facing the drum cleaning device 18Y. Then, a cleaning position by the cleaning blade 20Y, a lubricant application position by the lubricant application device, and a lubricant leveling position by the leveling blade 23Y are sequentially passed.

ゴムや樹脂等からなるクリーニングブレード20Yは、ブレードホルダー24Yによって片持ち支持されている。また、このブレードホルダー24Yは、ブレード固定端側とは反対側の端部を揺動軸として揺動可能に支持されており、コイルバネによって感光体3Yの表面に向けて付勢されている。これにより、ブレードホルダー24Yに片持ち支持されているクリーニングブレード20Yの自由端側のエッジと、感光体3Yの表面とが当接している。クリーニングブレード20Yは、その自由端側のエッジで、感光体3Yの表面に付着している転写残トナーを掻き取る。なお、クリーニングブレード20Yは、この固定端側よりも自由端側を感光体3Yの表面移動方向の上流側に向けるいわゆるカウンター方向で感光体3Yに当接するようになっている。   The cleaning blade 20Y made of rubber or resin is cantilevered by a blade holder 24Y. Further, the blade holder 24Y is supported so as to be swingable with an end portion on the opposite side to the blade fixed end side as a swing shaft, and is biased toward the surface of the photoreceptor 3Y by a coil spring. As a result, the edge on the free end side of the cleaning blade 20Y that is cantilevered by the blade holder 24Y and the surface of the photoreceptor 3Y are in contact with each other. The cleaning blade 20Y scrapes off the transfer residual toner adhering to the surface of the photoreceptor 3Y at the free end side edge. The cleaning blade 20Y comes into contact with the photoconductor 3Y in a so-called counter direction in which the free end side is directed to the upstream side in the surface movement direction of the photoconductor 3Y rather than the fixed end side.

ドラムクリーニング装置18Yの潤滑剤塗布装置は、塗布ブラシローラ19Y、これに向けて付勢される固形潤滑剤21Y、固形潤滑剤21Yを塗布ブラシローラ19Yに向けて付勢する付勢手段たるコイルバネ22Y等を有している。塗布ブラシローラ19Yを図中時計回り方向に回転駆動せしめる図示しない駆動手段等も有している。塗布ブラシローラ19Yは、図示しない軸受けによって長手方向の両端部が回転自在に支持される回転軸部材と、これの表面に立設せしめられた複数の起毛からなるブラシローラ部とを具備している。そして、ブラシローラ部を固形潤滑剤21Yと感光体3Yの表面との両方に当接させながら、感光体3Yと線速差をもって回転するのに伴って、固形潤滑剤21Yから掻き取った潤滑剤粉末を感光体3Yの表面に塗布する。この塗布により、感光体3Yの表面に潤滑剤粉末からなる潤滑剤膜が形成されて、後述する転写残トナーと感光体3Yとの付着力を弱めてトナーのクリーニング性を向上させたり、感光体3Yを一様帯電処理時の放電エネルギーから保護したりする。   The lubricant application device of the drum cleaning device 18Y includes an application brush roller 19Y, a solid lubricant 21Y urged toward the application brush roller 19Y, and a coil spring 22Y as an urging means for urging the solid lubricant 21Y toward the application brush roller 19Y. Etc. It also has a driving means (not shown) that rotates the application brush roller 19Y in the clockwise direction in the drawing. The application brush roller 19Y includes a rotary shaft member whose both ends in the longitudinal direction are rotatably supported by a bearing (not shown), and a brush roller portion made up of a plurality of raised brushes standing on the surface thereof. . Then, the lubricant scraped from the solid lubricant 21Y as it rotates with the linear velocity difference from the photoconductor 3Y while bringing the brush roller portion into contact with both the solid lubricant 21Y and the surface of the photoconductor 3Y. The powder is applied to the surface of the photoreceptor 3Y. By this application, a lubricant film made of lubricant powder is formed on the surface of the photoreceptor 3Y, and the adhesion between the transfer residual toner described later and the photoreceptor 3Y is weakened to improve the cleaning property of the toner. 3Y is protected from the discharge energy during the uniform charging process.

ドラムクリーニング装置18Yの均しブレード23Yも、クリーニングブレード20Yと同様に、ゴムや樹脂等からなり、ブレードホルダー26Yによって片持ち支持されている。このブレードホルダー26Yは、ブレード固定端側とは反対側の端部を揺動軸として揺動可能に支持されており、コイルバネによって感光体3Yの表面に向けて付勢されている。これにより、ブレードホルダー26Yに片持ち支持されている均しブレード23Yの自由端側のエッジと、感光体3Yの表面とが当接している。均しブレード23Yは、その自由端側のエッジで、感光体3Yの表面に塗布された潤滑剤粉末を均等にならす。これにより、感光体3Yの表面上に潤滑剤膜が形成される。なお、均しブレード23Yは、この固定端側よりも自由端側を感光体3Yの表面移動方向の下流側に向けるいわゆるトレーリング方向で感光体3Yに当接するようになっている。   Similarly to the cleaning blade 20Y, the leveling blade 23Y of the drum cleaning device 18Y is made of rubber, resin, or the like, and is cantilevered by the blade holder 26Y. The blade holder 26Y is supported so as to be capable of swinging with an end opposite to the blade fixed end as a swing shaft, and is biased toward the surface of the photoreceptor 3Y by a coil spring. Thereby, the edge on the free end side of the leveling blade 23Y that is cantilevered by the blade holder 26Y and the surface of the photoreceptor 3Y are in contact with each other. The leveling blade 23Y evenly distributes the lubricant powder applied to the surface of the photoreceptor 3Y at its free end side edge. As a result, a lubricant film is formed on the surface of the photoreceptor 3Y. The leveling blade 23Y comes into contact with the photoreceptor 3Y in a so-called trailing direction in which the free end side is directed to the downstream side in the surface movement direction of the photoreceptor 3Y rather than the fixed end side.

回転駆動に伴ってドラムクリーニング装置18Yによる潤滑剤均し位置を通過した感光体3Yの表面は、図示しない除電ランプによって除電される。そして、帯電ローラ16Yによって再び一様に帯電せしめられた後、上述した光書込ユニットによる光走査が施される。   The surface of the photoreceptor 3Y that has passed through the leveling position of the lubricant by the drum cleaning device 18Y in accordance with the rotational drive is neutralized by a neutralizing lamp (not shown). Then, after being uniformly charged again by the charging roller 16Y, optical scanning by the optical writing unit described above is performed.

図2において、プロセスユニット2M,C,Kの感光体3M,C,Kの表面には、これまで説明してきたY用のプロセスユニット2Yと同様の工程により、M,C,Kトナー像が形成される。   In FIG. 2, M, C, and K toner images are formed on the surfaces of the photoreceptors 3M, C, and K of the process units 2M, C, and K by the same process as the Y process unit 2Y described above. Is done.

4つのプロセスユニット2Y,M,C,Kの下方には、転写手段としての転写ユニット60が配設されている。この転写ユニット60は、複数のローラによって張架している中間転写ベルト61を、感光体3Y,M,C,Kに当接させながら、何れか1つのローラの回転駆動によって図中時計回り方向に無端移動させる。これにより、感光体3Y,M,C,Kと、像担持体たる中間転写ベルト61とが当接するY,M,C,K用の1次転写ニップが形成されている。   Below the four process units 2Y, 2M, 2C, and 2K, a transfer unit 60 as transfer means is disposed. The transfer unit 60 rotates in the clockwise direction in the figure by rotating one of the rollers while the intermediate transfer belt 61 stretched by a plurality of rollers is brought into contact with the photoreceptors 3Y, 3M, 3C, and 3K. Move endlessly. As a result, primary transfer nips for Y, M, C, and K in which the photoreceptors 3Y, 3M, 3C, and 3K come into contact with the intermediate transfer belt 61 that is an image carrier are formed.

Y,M,C,K用の1次転写ニップの近傍では、ベルトループ内側に配設された1次転写ローラ62Y,M,C,Kによって中間転写ベルト61を感光体3YY,M,C,Kに向けて押圧している。これら1次転写ローラ62Y,M,C,Kには、それぞれ図示しない電源によって1次転写バイアスが印加されている。これにより、Y,M,C,K用の1次転写ニップには、感光体3Y,M,C,K上のトナー像を中間転写ベルト61に向けて静電移動させる1次転写電界が形成されている。   In the vicinity of the primary transfer nips for Y, M, C, and K, the intermediate transfer belt 61 is moved to the photosensitive members 3YY, M, C, and K by primary transfer rollers 62Y, M, C, and K disposed inside the belt loop. Pressing toward K. A primary transfer bias is applied to the primary transfer rollers 62Y, 62M, 62C, 62K by a power source (not shown). As a result, a primary transfer electric field for electrostatically moving the toner images on the photoreceptors 3Y, 3M, 3C, and 3K toward the intermediate transfer belt 61 is formed in the primary transfer nips for Y, M, C, and K. Has been.

図中時計回り方向の無端移動に伴ってY,M,C,K用の1次転写ニップを順次通過していく中間転写ベルト61のおもて面には、各1次転写ニップでトナー像が順次重ね合わせて1次転写される。この重ね合わせの1次転写により、中間転写ベルト61のおもて面には4色重ね合わせトナー像(以下、4色トナー像という)が形成される。   In the drawing, a toner image is formed on each of the primary transfer nips on the front surface of the intermediate transfer belt 61 that sequentially passes through the primary transfer nips for Y, M, C, and K with endless movement in the clockwise direction. Are sequentially superimposed and primarily transferred. By this primary transfer of superposition, a four-color superposed toner image (hereinafter referred to as a four-color toner image) is formed on the front surface of the intermediate transfer belt 61.

中間転写ベルト61の図中下方には、2次転写対向ローラ72が配設されており、これは中間転写ベルト61における2次転写ローラ68に対する掛け回し箇所にベルトおもて面から当接して2次転写ニップを形成している。これにより、中間転写ベルト61のおもて面と、2次転写対向ローラ72とが当接する2次転写ニップが形成されている。   A secondary transfer counter roller 72 is disposed below the intermediate transfer belt 61 in the drawing, and this is in contact with a portion of the intermediate transfer belt 61 that is wound around the secondary transfer roller 68 from the belt front surface. A secondary transfer nip is formed. As a result, a secondary transfer nip is formed in which the front surface of the intermediate transfer belt 61 and the secondary transfer counter roller 72 abut.

中間転写ベルト61のループ内において、2次転写ローラ68には、図示しない2次転写電源回路により、トナーの正規帯電極性と同極性(本例では負極性)の2次転写バイアスが印加されている。一方、ベルトのおもて面に当接しながら2次転写ニップを形成している2次転写対向ローラ72は、接地されている。これにより、2次転写ニップ内には、負極性のトナーをベルト側から2次転写対向ローラ72側に向けて静電移動させる2次転写電界が形成されている。   In the loop of the intermediate transfer belt 61, a secondary transfer bias having the same polarity as the normal charging polarity of the toner (negative polarity in this example) is applied to the secondary transfer roller 68 by a secondary transfer power supply circuit (not shown). Yes. On the other hand, the secondary transfer counter roller 72 that forms the secondary transfer nip while being in contact with the front surface of the belt is grounded. As a result, a secondary transfer electric field is formed in the secondary transfer nip for electrostatically moving negative toner from the belt side toward the secondary transfer counter roller 72 side.

2次転写ニップの図中右側方には、図示しない上述のレジストローラ対が配設されており、ローラ間に挟み込んだ記録シートを中間転写ベルト61上の4色トナー像に同期させ得るタイミングで2次転写ニップに送り出す。2次転写ニップ内では、中間転写ベルト61上の4色トナー像が2次転写電界やニップ圧の影響によって記録シートに一括2次転写され、記録シートの白色と相まってフルカラー画像となる。   The above-described registration roller pair (not shown) is disposed on the right side of the secondary transfer nip in the drawing, and the recording sheet sandwiched between the rollers can be synchronized with the four-color toner image on the intermediate transfer belt 61. Send to the secondary transfer nip. In the secondary transfer nip, the four-color toner images on the intermediate transfer belt 61 are secondarily transferred onto the recording sheet under the influence of the secondary transfer electric field and the nip pressure, and become a full color image combined with the white color of the recording sheet.

2次転写ニップを通過した中間転写ベルト61のおもて面には、2次転写ニップで記録シートに転写されなかった転写残トナーが付着している。この転写残トナーは、クリーニングブレードを中間転写ベルト61に当接させているベルトクリーニング装置75によってクリーニングされる。なお、クリーニングブレードは、自らと、ベルト内側に配設されたバックアップローラとの間に中間転写ベルト61を挟み込んでいる。   The transfer residual toner that has not been transferred to the recording sheet at the secondary transfer nip is attached to the front surface of the intermediate transfer belt 61 that has passed through the secondary transfer nip. This transfer residual toner is cleaned by a belt cleaning device 75 in which a cleaning blade is in contact with the intermediate transfer belt 61. The cleaning blade sandwiches the intermediate transfer belt 61 between itself and a backup roller disposed inside the belt.

図1において、2次転写ニップを通過した後の記録シートPは、中間転写ベルト61から離間して、搬送ベルトユニット39に受け渡される。この搬送ベルトユニット39は、無端状の搬送ベルトを駆動ローラと従動ローラとによって張架しながら、駆動ローラの回転駆動によって図中反時計回り方向に無端移動せしめる。そして、2次転写ニップから受け渡された記録シートPをベルト上部張架面に保持しながら、ベルトの無端移動に伴って搬送して定着ユニット43に受け渡す。   In FIG. 1, the recording sheet P after passing through the secondary transfer nip is separated from the intermediate transfer belt 61 and transferred to the transport belt unit 39. The conveyor belt unit 39 endlessly moves the endless conveyor belt in the counterclockwise direction in the figure by the rotational driving of the driving roller while the endless conveyor belt is stretched between the driving roller and the driven roller. The recording sheet P delivered from the secondary transfer nip is conveyed along with the endless movement of the belt while being held on the belt upper tension surface, and delivered to the fixing unit 43.

定着ユニット43は、駆動ローラと、発熱源を内包する加熱ローラとによって張架した定着ベルトを駆動ローラの回転駆動に伴って図中時計回り方向に無端移動せしめている。そして、定着ベルトの下方に配設された加圧ローラを定着ベルトの下部張架面に当接させて定着ニップを形成している。定着ユニット43に受け入れられた記録シートPは、この定着ニップ内で加圧されたり加熱されたりすることで、表面上のフルカラー画像が定着せしめられる。そして、定着ユニット43内から排紙ローラ対47に向けて送り出される。   In the fixing unit 43, a fixing belt stretched by a driving roller and a heating roller containing a heat generation source is moved endlessly in the clockwise direction in the drawing as the driving roller is driven to rotate. A pressure roller disposed below the fixing belt is brought into contact with the lower tension surface of the fixing belt to form a fixing nip. The recording sheet P received by the fixing unit 43 is pressed or heated in the fixing nip, whereby the full color image on the surface is fixed. Then, the paper is sent out from the fixing unit 43 toward the paper discharge roller pair 47.

記録シートPの第1面だけに画像を形成する片面プリントモードの場合には、排紙ローラ対47のローラ間の排紙ニップに挟み込まれた記録シートPがそのまま機外に排出されて排紙トレイ48上にスタックされる。   In the single-sided print mode in which an image is formed only on the first surface of the recording sheet P, the recording sheet P sandwiched in the paper discharge nip between the rollers of the paper discharge roller pair 47 is directly discharged outside the apparatus and discharged. Stacked on the tray 48.

定着ユニット43や搬送ベルトユニット39の下方には、スイッチバック装置46が配設されている。記録シートPの両面に画像を形成する両面プリントモードの場合には、排紙ニップに挟み込まれた記録シートPが逆方向に戻されて、スイッチバック装置46に進入する。そして、スイッチバック装置46内で上下反転せしめられた後、再び2次転写転写ニップに送られて、もう片面にも画像の2次転写処理と定着処理とが施される。   A switchback device 46 is disposed below the fixing unit 43 and the conveyor belt unit 39. In the double-sided printing mode in which images are formed on both sides of the recording sheet P, the recording sheet P sandwiched in the paper discharge nip is returned in the reverse direction and enters the switchback device 46. Then, after being turned upside down in the switchback device 46, it is sent again to the secondary transfer transfer nip, and the other side of the image is subjected to image secondary transfer processing and fixing processing.

プリンタ部1の上に固定されたスキャナ160は、図示しない原稿の画像を読み取るための読取手段として、固定読取部と、移動読取部とを有している。光源、反射ミラー、CCD等の画像読取センサーなどを有する固定読取部は、原稿に接触するようにスキャナ160のケーシング上壁に固定された図示しない第1コンタクトガラスの直下に配設されている。そして、ADF170によって搬送される原稿が第1コンタクトガラス上を通過する際に、光源から発した光を原稿面で順次反射させながら、複数の反射ミラーを経由させて画像読取センサーで受光する。これにより、光源や反射ミラー等からなる光学系を移動させることなく、原稿を走査する。   The scanner 160 fixed on the printer unit 1 has a fixed reading unit and a moving reading unit as reading means for reading an image of a document (not shown). A fixed reading unit having a light source, a reflection mirror, an image reading sensor such as a CCD, and the like is disposed immediately below a first contact glass (not shown) fixed to the upper wall of the casing of the scanner 160 so as to contact the document. Then, when the document conveyed by the ADF 170 passes over the first contact glass, the light emitted from the light source is sequentially reflected by the document surface, and is received by the image reading sensor via the plurality of reflection mirrors. Thus, the original is scanned without moving the optical system including the light source and the reflecting mirror.

一方、スキャナ160の移動読取部は、原稿に接触するようにスキャナ160のケーシング上壁に固定された図示しない第2コンタクトガラスの直下に配設されており、光源や、反射ミラーなどからなる光学系を図中左右方向に移動させることができる。そして、光学系を図中左側から右側に移動させていく過程で、光源から発した光を第2コンタクトガラス上に載置された図示しない原稿で反射させた後、複数の反射ミラーを経由させて、スキャナ本体に固定された画像読取センサーで受光する。これにより、光学系を移動させながら、原稿を走査する。   On the other hand, the moving reading unit of the scanner 160 is disposed directly below a second contact glass (not shown) fixed to the upper wall of the casing of the scanner 160 so as to come into contact with the document, and is an optical device composed of a light source, a reflection mirror, and the like. The system can be moved in the horizontal direction in the figure. Then, in the process of moving the optical system from the left side to the right side in the figure, the light emitted from the light source is reflected by a document (not shown) placed on the second contact glass and then passed through a plurality of reflecting mirrors. The image is received by an image reading sensor fixed to the scanner body. Accordingly, the original is scanned while moving the optical system.

図3において、塗布ブラシローラ19Yによる感光体3Yに対する潤滑剤粉末の塗布量(単位時間あたりの塗布量)は、コイルバネ22Yによる固形潤滑剤21Yの付勢力によって決まる。コイルバネ22Yとして、所望の塗布量が得られるバネ定数のものを選択することで、塗布量を所望の値に調整することが可能である。なお、コイルバネ22Yに代えて、図4に示されるように、固形潤滑剤21Yに荷重をかける重り27Yを設け、重り27Yによって固形潤滑剤21Yを塗布ブラシローラ19Yに向けて付勢してもよい。この場合、重り27Yとして、所望の塗布量が得られる重さのものを選択することで、塗布量を所望の値に調整することが可能である。   In FIG. 3, the application amount (application amount per unit time) of the lubricant powder to the photoreceptor 3Y by the application brush roller 19Y is determined by the urging force of the solid lubricant 21Y by the coil spring 22Y. It is possible to adjust the coating amount to a desired value by selecting a spring constant having a desired coating amount as the coil spring 22Y. Instead of the coil spring 22Y, as shown in FIG. 4, a weight 27Y that applies a load to the solid lubricant 21Y may be provided, and the solid lubricant 21Y may be biased toward the application brush roller 19Y by the weight 27Y. . In this case, it is possible to adjust the coating amount to a desired value by selecting a weight 27Y having a weight that can provide a desired coating amount.

なお、感光体3Yの表面に塗布された潤滑剤粉末の一部は、感光体3Yから中間転写ベルト61に転移する。   A part of the lubricant powder applied to the surface of the photoreceptor 3Y is transferred from the photoreceptor 3Y to the intermediate transfer belt 61.

図5は、2次転写ニップの周囲を示す拡大構成図である。図示のように、2次転写対向ローラ72の側方には、塗布ブラシローラ76が配設されている。そして、この塗布ブラシローラ76に対しては、コイルバネ78によって固形潤滑剤77が押し付けられている。回転駆動する塗布ブラシローラ76は、固形潤滑剤77から掻き取って得た潤滑剤粉末を2次転写対向ローラ72の表面に塗布する。塗布された潤滑剤粉末の一部は、2次転写ニップで2次転写対向ローラ72から中間転写ベルト61の表面に転移する。塗布ブラシローラ76、固形潤滑剤77、及びコイルバネ78は、2次転写対向ローラ72に対して潤滑剤粉末を塗布する潤滑剤塗布手段として機能している。   FIG. 5 is an enlarged configuration diagram showing the periphery of the secondary transfer nip. As shown in the figure, an application brush roller 76 is disposed on the side of the secondary transfer counter roller 72. A solid lubricant 77 is pressed against the application brush roller 76 by a coil spring 78. The rotating application brush roller 76 applies the lubricant powder obtained by scraping from the solid lubricant 77 to the surface of the secondary transfer counter roller 72. Part of the applied lubricant powder is transferred from the secondary transfer counter roller 72 to the surface of the intermediate transfer belt 61 at the secondary transfer nip. The application brush roller 76, the solid lubricant 77, and the coil spring 78 function as a lubricant application unit that applies lubricant powder to the secondary transfer counter roller 72.

図3に示される潤滑剤塗布装置や、図5に示される潤滑剤塗布手段は、中間転写ベルト61に対して潤滑剤を間接的に塗布する手段としても機能している。図3に示される潤滑剤塗布装置が中間転写ベルト61に対して潤滑剤粉末を間接的に塗布する量は、感光体3Yに対する塗布量よりも少なくなる。実施形態に係る複写機では、図5に示される潤滑剤塗布手段のコイルバネ78のバネ定数を調整することで、中間転写ベルト61に対する潤滑剤塗布量を調整することができる。これにより、感光体3Yの表面摩擦係数や、中間転写ベルト61の表面摩擦係数を調整することができる。   The lubricant application device shown in FIG. 3 and the lubricant application means shown in FIG. 5 also function as means for indirectly applying the lubricant to the intermediate transfer belt 61. The amount of the lubricant application device shown in FIG. 3 that indirectly applies the lubricant powder to the intermediate transfer belt 61 is smaller than the amount applied to the photoreceptor 3Y. In the copying machine according to the embodiment, the amount of lubricant applied to the intermediate transfer belt 61 can be adjusted by adjusting the spring constant of the coil spring 78 of the lubricant applying means shown in FIG. Thereby, the surface friction coefficient of the photoreceptor 3Y and the surface friction coefficient of the intermediate transfer belt 61 can be adjusted.

なお、図2において、ベルトクリーニング装置75の内部に、図3に示される潤滑剤塗布装置と同様の構成のものを設け、それによって潤滑剤粉末を中間転写ベルト61に直接的に塗布してもよい。この潤滑剤塗布装置については、図5に示される潤滑剤塗布手段に加えて設けてもよいし、図5に示される潤滑剤塗布手段の代わりに設けてもよい。   In FIG. 2, a belt cleaning device 75 having a configuration similar to that of the lubricant application device shown in FIG. 3 is provided so that the lubricant powder can be applied directly to the intermediate transfer belt 61. Good. This lubricant application device may be provided in addition to the lubricant application means shown in FIG. 5, or may be provided instead of the lubricant application means shown in FIG.

次に、実施形態に係る複写機に用いられるトナーについて説明する。
トナーの結着樹脂として用いられる樹脂として、結晶性樹脂が知られている。また、結晶性樹脂としては、ウレタン結合とウレア結合とのうち、少なくとも何れか一方を具備する結晶性樹脂が知られている。結晶性樹脂は、結晶構造の部位を有する樹脂であり、X線回折装置によって得られる回折スペクトルに結晶構造に由来する回折ピークを有する。かかる結晶性樹脂は、高化式フローテスターによって測定される軟化温度と、示差走査熱量計(DSC)により測定される融解熱の最大ピーク温度との比(軟化温度/融解熱の最大ピーク温度)が0.8〜1.6の範囲にある。これにより、熱によって急峻に軟化するという特性を発揮する。
Next, toner used in the copying machine according to the embodiment will be described.
A crystalline resin is known as a resin used as a binder resin for toner. Further, as a crystalline resin, a crystalline resin having at least one of a urethane bond and a urea bond is known. The crystalline resin is a resin having a crystal structure portion, and has a diffraction peak derived from the crystal structure in a diffraction spectrum obtained by an X-ray diffractometer. Such a crystalline resin has a ratio (softening temperature / maximum peak temperature of heat of fusion) of a softening temperature measured by a Koka type flow tester and a maximum peak temperature of heat of fusion measured by a differential scanning calorimeter (DSC). Is in the range of 0.8 to 1.6. As a result, it exhibits the characteristic of being softened sharply by heat.

トナーの結着樹脂として用いられる非結晶性樹脂は、結晶構造を有さない樹脂であり、X線回折装置によって得られる回折スペクトルに結晶構造に由来する回折ピークを有さない。非結晶性樹脂は、軟化温度と融解熱の最大ピーク温度との比(軟化温度/融解熱の最大ピーク温度)が1.6より大きく、熱により緩やかに軟化するという特性を発揮する。   The non-crystalline resin used as the binder resin for the toner is a resin having no crystal structure, and does not have a diffraction peak derived from the crystal structure in a diffraction spectrum obtained by an X-ray diffractometer. The amorphous resin has a ratio between the softening temperature and the maximum peak temperature of the heat of fusion (softening temperature / maximum peak temperature of the heat of fusion) greater than 1.6, and exhibits a characteristic of being softened softly by heat.

樹脂の軟化温度については、高化式フローテスター(例えば、CFT−500D(島津製作所製))を用いて測定することが可能である。具体的には、試料として1gの樹脂を昇温速度3℃/分間の条件で加熱しながら、プランジャーによって2.94MPaの荷重を与える。そして、直径0.5mm、長さ1mmのノズルから押出しながら、温度に対するフローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度を軟化温度とする。   The softening temperature of the resin can be measured using a Koka flow tester (for example, CFT-500D (manufactured by Shimadzu Corporation)). Specifically, a load of 2.94 MPa is applied by a plunger while heating 1 g of resin as a sample at a temperature rising rate of 3 ° C./min. Then, while extruding from a nozzle having a diameter of 0.5 mm and a length of 1 mm, the plunger drop amount of the flow tester is plotted against the temperature, and the temperature at which half of the sample flows out is defined as the softening temperature.

また、樹脂の融解熱の最大ピーク温度については、示差走査熱量計(DSC)(例えば、TA−60WS及びDSC−60(島津製作所製))を用いて測定することが可能である。具体的には、融解熱の最大ピーク温度の測定に供する試料を、前処理として、130℃で溶融した後、130℃から70℃まで1.0℃/分間の速度で降温し、次に70℃から10℃まで0.5℃/分間の速度で降温する。そして、DSCにより、昇温速度10℃/分間で昇温して吸発熱変化を測定して、「吸発熱量」と「温度」とのグラフを描く。このときに観測される20℃〜100℃にある吸熱ピーク温度を「Ta*」とする。吸熱ピークが複数ある場合は、最も吸熱量が大きいピークの温度をTa*とする。その後、試料を(Ta*−10)℃で6時間保管した後、更に(Ta*−15)℃で6時間だけ保管する。次いで、前記試料を、DSCにより、降温速度10℃/分間で0℃まで冷却した後、昇温速度10℃/分間で昇温して吸発熱変化を測定して、同様のグラフを描き、吸熱量の最大ピークに対応する温度を、融解熱の最大ピーク温度とする。   The maximum peak temperature of the heat of fusion of the resin can be measured using a differential scanning calorimeter (DSC) (for example, TA-60WS and DSC-60 (manufactured by Shimadzu Corporation)). Specifically, as a pretreatment, a sample subjected to measurement of the maximum peak temperature of heat of fusion is melted at 130 ° C., then cooled from 130 ° C. to 70 ° C. at a rate of 1.0 ° C./min, and then 70 The temperature is lowered from 10 ° C. to 10 ° C. at a rate of 0.5 ° C./min. Then, by DSC, the temperature is increased at a rate of temperature increase of 10 ° C./min and the change in heat absorption / exotherm is measured, and a graph of “heat absorption / heat generation amount” and “temperature” is drawn. The endothermic peak temperature at 20 ° C. to 100 ° C. observed at this time is defined as “Ta *”. When there are a plurality of endothermic peaks, the temperature of the peak with the largest endothermic amount is Ta *. Thereafter, the sample is stored at (Ta * -10) ° C. for 6 hours, and further stored at (Ta * −15) ° C. for 6 hours. Next, the sample was cooled to 0 ° C. by DSC at a temperature decrease rate of 10 ° C./min, and then the temperature was increased at a temperature increase rate of 10 ° C./min to measure the endothermic change. The temperature corresponding to the maximum peak of heat quantity is defined as the maximum peak temperature of heat of fusion.

トナーの結着樹脂中における結晶性樹脂の含有量としては、50質量%以上であることが好ましい。かかるトナーでは、結晶性樹脂による優れた低温定着性と耐熱保存性の両立性を最大限に発現できるからである。また、前記含有量は、65質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、95質量%以上であることが特に好ましい。前記含有量が50質量%未満であると、結着樹脂の熱急峻性がトナーの粘弾特性上で発現できず、低温定着性と耐熱保存性の両立が難しくなる。   The content of the crystalline resin in the toner binder resin is preferably 50% by mass or more. This is because such a toner can maximize the compatibility between excellent low-temperature fixability and heat-resistant storage stability due to the crystalline resin. Further, the content is more preferably 65% by mass or more, still more preferably 80% by mass or more, and particularly preferably 95% by mass or more. When the content is less than 50% by mass, the heat steepness of the binder resin cannot be expressed on the viscoelastic properties of the toner, making it difficult to achieve both low-temperature fixability and heat-resistant storage stability.

トナーは、トナーのX線回折装置によって得られる回折スペクトルにおいて、結着樹脂の結晶構造に由来するスペクトルの積分強度Cと、非結晶構造に由来するスペクトルの積分強度Aとの関係について、次のような条件を具備するものであることが好ましい。即ち、「C/(C+A)」の解が0.15以上であるという条件である。かかる条件を具備するトナーは、定着性と耐熱保存性との両立を図ることができる。更に、後述するように、凹凸紙を用いた場合における濃度ムラや色調ムラの発生を抑えることができる。なお、前記解は、0.20以上であることがより好ましく、0.30以上であることが更に好ましく、0.45以上であることが特に好ましい。   In the diffraction spectrum obtained by the X-ray diffractometer of the toner, the relationship between the integrated intensity C of the spectrum derived from the crystal structure of the binder resin and the integrated intensity A of the spectrum derived from the amorphous structure is as follows. It is preferable to satisfy such conditions. That is, the condition that the solution of “C / (C + A)” is 0.15 or more. A toner having such conditions can achieve both fixing properties and heat-resistant storage stability. Furthermore, as will be described later, it is possible to suppress the occurrence of density unevenness and color tone unevenness when using uneven paper. The solution is more preferably 0.20 or more, still more preferably 0.30 or more, and particularly preferably 0.45 or more.

トナーがワックスを含有するものである場合、2Θ=23.5〜24°の位置にワックス固有の回折ピークが現れることが多い。しかし、トナー全重量に対するワックス含有量が15wt%以下である場合は、ワックス固有の回折ピークの寄与がわずかであることから考慮しなくてもよい。15wt%以上の場合には、結着樹脂の結晶構造に由来するスペクトルの積分強度から、ワックスの結晶構造に由来するスペクトルの積分強度を差し引いた値を上述の「結着樹脂の結晶構造に由来するスペクトルの積分強度C」とする。   When the toner contains a wax, a diffraction peak specific to the wax often appears at a position of 2Θ = 23.5 to 24 °. However, when the wax content with respect to the total weight of the toner is 15 wt% or less, the contribution of the diffraction peak inherent to the wax is negligible. In the case of 15 wt% or more, the value obtained by subtracting the integral intensity of the spectrum derived from the crystal structure of the wax from the integral intensity of the spectrum derived from the crystal structure of the binder resin is derived from the above-mentioned “derived from the crystal structure of the binder resin”. The integrated intensity C of the spectrum to be obtained.

「C/(C+A)」の解は、トナー中の結晶化部位の量(主にトナーの主成分たる結着樹脂中の結晶化部位の量)を示す指標である。X線回折測定としては、例えば2次元検出器搭載X線回折装置(D8 DISCOVER with GADDS/Bruker社製)を例示することができる。なお、従来から公知である結晶性樹脂やワックスを添加剤程度に含むようなトナーは、前記解がおおよそ0.15未満になる。X繊回折測定では、キャピラリーとして、マークチューブ(リンデンマンガラス)の直径0.70mmであるものを使用する。トナーの試料をこのキャピラリー管の上部まで詰めてX線回折測定を行う。なお、サンプルを詰める際はタッピングを行い、タッピング回数は100回とする。   The solution of “C / (C + A)” is an index indicating the amount of crystallization sites in the toner (mainly the amount of crystallization sites in the binder resin as the main component of the toner). As an X-ray diffraction measurement, for example, a two-dimensional detector-mounted X-ray diffraction apparatus (D8 DISCOVER with GADDS / Bruker) can be exemplified. In the case of a toner containing a conventionally known crystalline resin or wax to the extent of an additive, the solution is less than about 0.15. In the X-fiber diffraction measurement, a capillary having a mark tube (Lindenman glass) having a diameter of 0.70 mm is used. A toner sample is packed up to the top of the capillary tube and X-ray diffraction measurement is performed. Note that tapping is performed when filling the sample, and the number of tapping is 100 times.

X線回折測定における詳細条件は次の通りである。
・管電流:40mA
・管電圧:40kV
・ゴニオメーター2θ軸:20.0000°
・ゴニオメーターΩ軸:0.0000°
・ゴニオメーターφ軸:0.0000°
・検出器距離:15cm(広角測定)
・測定範囲:3.2≦2θ(゜)≦37.2
・測定時間:600sec
Detailed conditions in the X-ray diffraction measurement are as follows.
・ Tube current: 40 mA
・ Tube voltage: 40kV
-Goniometer 2θ axis: 20.0000 °
-Goniometer Ω axis: 0.0000 °
-Goniometer φ axis: 0.0000 °
・ Detector distance: 15cm (wide angle measurement)
Measurement range: 3.2 ≦ 2θ (°) ≦ 37.2
・ Measurement time: 600 sec

入射光学系には、φ1mmのピンホールを持つコリメーターを用いる。得られた2次元データを、付属のソフトで(χ軸が3.2°〜37.2°で)積分し、回折強度と2θの1次元データに変換する。そして、得られたX線回折測定結果を基に、「C/(C+A)」を算出する。   A collimator having a φ1 mm pinhole is used for the incident optical system. The obtained two-dimensional data is integrated with the attached software (chi axis is 3.2 ° to 37.2 °) and converted to one-dimensional data of diffraction intensity and 2θ. Then, “C / (C + A)” is calculated based on the obtained X-ray diffraction measurement result.

X線回折測定によって得られる回折スペクトルの例を、図6、図7に示す。これらの図のグラフにおいて、横軸は2θを示し、縦軸はX線回折強度を示している。それらの軸は何れも線形軸である。図6のX線回折スペクトルにおいては、2θ=21.3°、24.2°に主要なピーク(P1、P2)があり、この2つのピークを含む広範囲にハロー(h)が見られる。その主要なピークは、結晶構造に由来するものであり、ハローは非晶構造に由来するものである。この2の主要なピークとハローは、次のガウス関数で表される。
fp1(2θ)=ap1exp{−(2θ−bp1)2/(2cp12)}
fp2(2θ)=ap2exp{−(2θ−bp2)2/(2cp22)}
fh(2θ)=ahexp{−(2θ−bh)2/(2ch2)}
Examples of diffraction spectra obtained by X-ray diffraction measurement are shown in FIGS. In the graphs of these figures, the horizontal axis indicates 2θ, and the vertical axis indicates the X-ray diffraction intensity. All of these axes are linear axes. In the X-ray diffraction spectrum of FIG. 6, there are main peaks (P1, P2) at 2θ = 21.3 ° and 24.2 °, and a halo (h) is observed in a wide range including these two peaks. The main peak is derived from the crystal structure, and the halo is derived from the amorphous structure. These two major peaks and halos are expressed by the following Gaussian function.
fp1 (2θ) = ap1exp {− (2θ−bp1) 2 / (2cp12)}
fp2 (2θ) = ap2exp {− (2θ−bp2) 2 / (2cp22)}
fh (2θ) = ahexp {− (2θ−bh) 2 / (2ch2)}

これらのガウス関数において、fp1(2θ)、fp2(2θ)、fh(2θ)はそれぞれ、主要ピークP1、P2、ハローに対応する関数を示している。3つのガウス関数の和である
「f(2θ)=fp1(2θ)+fp2(2θ)+fh(2θ)」を、X線回折スペクトル全体のフィッティング関数(図7)とする。そして、最小二乗法によるフィッティングを行う。フィッティング変数としては、ap1、bp1、cp1、ap2、bp2、cp2、ah、bh、chの9つを用いる。それらフィッティング変数のフィッティングの初期値とする。そして、bp1、bp2、bhにはX線回折のピーク位置(図示の例では、bp1=21.3、bp2=24.2、bh=22.5)を、他の変数に適宜入力して、2つの主要ピークとハローとをX線回折スペクトルにできる限り一致させて得られる値を設定する。フィッティングは、例えばMicrosoft社製Excel2003のソルバーを利用して行うことができる。フィッティング後の2つの主要なピーク(P1、P2)に対応するガウス関数fp1(2θ)、fp2(2θ)、及びハローに相当するガウス関数fh(2θ)のそれぞれについての積分面積(SP1、Sp2、Sh)を求める。そして、(Sp1+Sp2)を(C)、Shを(A)としたとき、結晶化部位の量を示す指標である比率「C/(C+A))を算出することができる。
In these Gaussian functions, fp1 (2θ), fp2 (2θ), and fh (2θ) indicate functions corresponding to the main peaks P1, P2, and halo, respectively. “F (2θ) = fp1 (2θ) + fp2 (2θ) + fh (2θ)”, which is the sum of three Gaussian functions, is a fitting function (FIG. 7) of the entire X-ray diffraction spectrum. Then, fitting by the least square method is performed. Nine of ap1, bp1, cp1, ap2, bp2, cp2, ah, bh, and ch are used as fitting variables. The initial values of the fitting of these fitting variables are used. For bp1, bp2, and bh, X-ray diffraction peak positions (bp1 = 21.3, bp2 = 24.2, bh = 22.5 in the illustrated example) are appropriately input to other variables, A value obtained by matching the two main peaks and the halo to the X-ray diffraction spectrum as much as possible is set. The fitting can be performed, for example, using a Microsoft 2003 Excel solver. The integrated areas (SP1, Sp2, Sp2, Sp2) of the Gaussian functions fp1 (2θ), fp2 (2θ) corresponding to the two main peaks (P1, P2) after the fitting, and the Gaussian function fh (2θ) corresponding to the halo. Sh) is obtained. Then, when (Sp1 + Sp2) is (C) and Sh is (A), a ratio “C / (C + A)) that is an index indicating the amount of crystallization sites can be calculated.

トナーは、昇温時の最大吸熱ピーク温度Tが、50℃〜70℃であることが好ましく、53℃〜65℃であることがより好ましく、58℃〜62℃であることが更に好ましい。最大吸熱ピーク温度Tが、50℃〜70℃であると、トナーに要求される最低限の耐熱保存性を確保することができ、且つ、従来にはない優れた低温定着性を発揮することができる。最大吸熱ピーク温度Tが、50℃より低いと、低温定着性は良くなるが耐熱保存性が悪化する。また、最大吸熱ピーク温度Tが70℃より高いと、逆に耐熱保存性は良くなるが低温定着性が悪化する。 The toner has a maximum endothermic peak temperature T 1 of the during heating is preferably from 50 ° C. to 70 ° C., more preferably from 53 ° C. to 65 ° C., and more preferably a 58 ° C. through 62 ° C.. Maximum endothermic peak temperature T 1 is, if it is 50 ° C. to 70 ° C., it is possible to ensure the minimum heat-resistant storage stability required of the toner, and, to exhibit unprecedented excellent low-temperature fixability Can do. Maximum endothermic peak temperatures T 1 is lower than 50 ° C., but the better the low-temperature fixability heat resistant storage stability is deteriorated. Also, if the maximum endothermic peak temperature T 1 is higher than 70 ° C., heat resistant storage stability conversely becomes better low-temperature fixability is degraded.

トナーは、降温時の最大吸熱ピーク温度Tが、30℃〜55℃であることが好ましく、35℃〜55℃であることがより好ましく、40〜55℃であることが更に好ましい。最大吸熱ピーク温度Tが30℃未満であると、定着画像が冷却〜固化される速度が遅く、トナー画像(印刷物)のブロッキングや搬送傷が生じることがある。最大吸熱ピーク温度Tは可能な限り高い値であることが望ましいが、結晶化温度であることから、融点である最大吸熱ピーク温度Tより高い値にはならない。優れた耐熱保存性と、低温定着性とを維持しつつ、トナー画像のブロッキングや搬送傷を抑制するためには、最大吸熱ピーク温度Tと最大吸熱ピーク温度Tとの差(T−T)はある程度狭い範囲であることが望ましい。差(T−T)は、30℃以下であることが好ましく、25℃以下であることがより好ましく、20℃以下であることが更に好ましい。差(T−T)が40℃より大きい場合には、定着温度とトナー画像の固化される温度の差が大きくトナー画像のブロッキングや搬送傷を抑制する効果が得られない。 Toner is lowered maximum endothermic peak temperature T 2 at the time, preferably from 30 ° C. to 55 ° C., more preferably from 35 ° C. to 55 ° C., and more preferably a 40 to 55 ° C.. If the maximum endothermic peak temperature T 2 is below 30 ° C., the rate at which the fixed image is cooled ~ solidification is slow, sometimes blocking and transporting scratches toner image (printed material) occurs. It is desirable that the maximum endothermic peak temperature T 2 is available a high value as much as, because it is the crystallization temperature, not higher than the maximum endothermic peak temperature T 1 of the melting point. In order to suppress toner image blocking and conveyance flaws while maintaining excellent heat-resistant storage stability and low-temperature fixability, the difference between the maximum endothermic peak temperature T 1 and the maximum endothermic peak temperature T 2 (T 1 − It is desirable that T 2 ) is in a narrow range to some extent. The difference (T 1 -T 2 ) is preferably 30 ° C. or less, more preferably 25 ° C. or less, and further preferably 20 ° C. or less. When the difference (T 1 −T 2 ) is larger than 40 ° C., the difference between the fixing temperature and the temperature at which the toner image is solidified is large, and the effect of suppressing toner image blocking and conveyance flaws cannot be obtained.

トナーの最大吸熱ピーク(T、T)については、示差走査熱量計(DSC)(例えば、TA−60WS及びDSC−60(島津製作所製))を用いて測定することが可能である。具体的には、まず、約5.0mgのトナーをアルミニウム製の試料容器に入れ、試料容器をホルダーユニットに載せ、電気炉中にセットする。次に、窒素雰囲気下、0℃から10℃/minで150℃まで昇温させた後、150℃から10℃/minで0℃まで降温させる。更に、0℃から10℃/minで100℃まで昇温させる。DSCシステムの解析プログラムを用いて、2回目の昇温時におけるDSC曲線を選択し、トナーの最大吸熱ピーク温度T1(DSCピーク温度)を測定する。また、同様にして降温時におけるトナーの最大発熱ピーク温度T2を測定する。 The maximum endothermic peak (T 1 , T 2 ) of the toner can be measured using a differential scanning calorimeter (DSC) (for example, TA-60WS and DSC-60 (manufactured by Shimadzu Corporation)). Specifically, first, about 5.0 mg of toner is put in an aluminum sample container, and the sample container is placed on a holder unit and set in an electric furnace. Next, in a nitrogen atmosphere, the temperature is raised from 0 ° C. to 150 ° C. at 10 ° C./min, and then lowered from 150 ° C. to 0 ° C. at 10 ° C./min. Furthermore, the temperature is raised from 0 ° C. to 100 ° C. at 10 ° C./min. Using the analysis program of the DSC system, a DSC curve at the second temperature rise is selected, and the maximum endothermic peak temperature T1 (DSC peak temperature) of the toner is measured. Similarly, the maximum heat generation peak temperature T2 of the toner when the temperature is lowered is measured.

トナーは、示差走査熱量計(DSC)により測定される昇温2回目の融解熱の最大ピーク温度が、50℃以上70℃以下の範囲にあり、且つ、昇温2回目の融解熱量が、30J/g以上75J/g以下であることが好ましい。かかるトナーは、低温定着性と耐熱保存性をより高いレベルで両立し、耐ホットオフセット性により優れるからである。トナーの融解熱の最大ピーク温度が50℃未満であると、高温環境下でトナーのブロッキングが発生し易くなり、同最大ピーク温度が70℃を超えると、低温定着性が発現し難くなる。また、前記最大ピーク温度は55℃以上、68℃以下であることがより好ましく、58℃以上、65℃以下であることが更に好ましい。   In the toner, the maximum peak temperature of the second heat of fusion measured by a differential scanning calorimeter (DSC) is in the range of 50 ° C. or higher and 70 ° C. or lower, and the heat of fusion of the second temperature rise is 30 J. / G or more and 75 J / g or less is preferable. This is because such a toner achieves both low-temperature fixability and heat-resistant storage stability at a higher level and is superior in hot offset resistance. When the maximum peak temperature of the heat of fusion of the toner is less than 50 ° C., toner blocking tends to occur in a high temperature environment, and when the maximum peak temperature exceeds 70 ° C., low temperature fixability is hardly exhibited. The maximum peak temperature is more preferably 55 ° C. or more and 68 ° C. or less, and further preferably 58 ° C. or more and 65 ° C. or less.

トナーの融解熱量が30J/g未満であると、トナー中における結晶構造を有する部位が少なくなり、シャープメルト性が低下し、耐熱保存性と低温定着性のバランスが得難くなる。また、前記融解熱量が75J/gを超えると、トナーを溶融させて定着するために必要なエネルギーが大きくなり、定着装置によっては定着性が悪化してしまうことがある。前記融解熱量は、45J/g以上、70J/g以下であることがより好ましく、50J/g以上、60J/g以下であることが更に好ましい。   If the heat of fusion of the toner is less than 30 J / g, the portion having a crystal structure in the toner is reduced, sharp melt properties are lowered, and it is difficult to obtain a balance between heat resistant storage stability and low temperature fixability. On the other hand, when the heat of fusion exceeds 75 J / g, the energy required to melt and fix the toner increases, and the fixability may deteriorate depending on the fixing device. The heat of fusion is more preferably 45 J / g or more and 70 J / g or less, and further preferably 50 J / g or more and 60 J / g or less.

トナーの融解熱の最大ピーク温度については、示差走査熱量計(DSC)(例えば、TA−60WS及びDSC−60(島津製作所製))を用いて測定することが可能である。具体的には、融解熱の最大ピーク温度の測定に供する試料を、20℃から150℃まで、昇温速度10℃/分間という条件で昇温させる。次いで、降温速度10℃/分間で0℃まで冷却した後、再び昇温速度10℃/分間で昇温して吸発熱変化を測定して、「吸発熱量」と「温度」とのグラフを描き、吸熱量の最大ピークに対応する温度を、昇温2回目の融解熱の最大ピーク温度とする。この時の最大ピーク温度を有する吸熱ピークの吸熱量を、昇温2回目の融解熱量とする。   The maximum peak temperature of the heat of fusion of the toner can be measured using a differential scanning calorimeter (DSC) (for example, TA-60WS and DSC-60 (manufactured by Shimadzu Corporation)). Specifically, the temperature of a sample used for measurement of the maximum peak temperature of heat of fusion is raised from 20 ° C. to 150 ° C. under a temperature raising rate of 10 ° C./min. Next, after cooling to 0 ° C. at a temperature decrease rate of 10 ° C./min, the temperature is increased again at a temperature increase rate of 10 ° C./min to measure the endothermic change, and a graph of “endothermic amount” and “temperature” is displayed. The temperature corresponding to the maximum peak of the endothermic amount is defined as the maximum peak temperature of the heat of fusion at the second temperature increase. The endothermic amount of the endothermic peak having the maximum peak temperature at this time is defined as the second heat of fusion.

トナーの結着樹脂として使用される結晶性樹脂の融解熱の最大ピーク温度としては、低温定着性と耐熱保存性の両立の観点から、50℃〜70℃が好ましく、55℃〜68℃がより好ましく、60℃〜65℃が特に好ましい。前記最大ピーク温度が、50℃より低い場合は、低温定着性は良くなるが耐熱保存性が悪化し、70℃より高い場合は逆に耐熱保存性は良くなるが低温定着性が悪化する。   The maximum peak temperature of the heat of fusion of the crystalline resin used as the binder resin for the toner is preferably 50 ° C. to 70 ° C., more preferably 55 ° C. to 68 ° C. from the viewpoint of achieving both low temperature fixability and heat resistant storage stability. 60 ° C. to 65 ° C. is particularly preferable. When the maximum peak temperature is lower than 50 ° C., the low temperature fixability is improved but the heat resistant storage stability is deteriorated. When the maximum peak temperature is higher than 70 ° C., the heat resistant storage stability is improved, but the low temperature fixability is deteriorated.

結晶性樹脂の軟化温度と融解熱の最大ピーク温度との比(軟化温度/融解熱の最大ピーク温度)は、0.8〜1.6であるが、0.8〜1.5が好ましく、0.8〜1.4がより好ましく、0.8〜1.3が特に好ましい。前記比が小さい程、樹脂が急峻に軟化する性状を持ち、低温定着性と耐熱保存性の両立の観点から優れている。   The ratio of the softening temperature of the crystalline resin to the maximum peak temperature of the heat of fusion (softening temperature / maximum peak temperature of the heat of fusion) is 0.8 to 1.6, preferably 0.8 to 1.5, 0.8 to 1.4 is more preferable, and 0.8 to 1.3 is particularly preferable. The smaller the ratio, the more rapidly the resin softens, which is superior from the viewpoint of both low-temperature fixability and heat-resistant storage stability.

トナーは、トナーの示差走査熱量計(DSC)により測定される昇温2回目の融解熱の最大ピーク温度が、50℃以上70℃以下の範囲にあり、且つ、昇温2回目の融解熱量が、30J/g以上、75J/g以下であることが望ましい。かかるトナーは、低温定着性と耐熱保存性をより高いレベルで両立し、且つ耐ホットオフセット性に優れるからである。昇温2回目の融解熱の最大ピーク温度が、50℃未満であると、高温環境下でトナーのブロッキングが発生し易くなる。また、昇温2回目の融解熱の最大ピーク温度が70℃を超えると、低温定着性が発現し難くなる。前記最大ピーク温度は、55℃以上、68℃以下であることがより好ましく、58℃以上、65℃以下であることが更に好ましい。   In the toner, the maximum peak temperature of the second heat of melting measured by a differential scanning calorimeter (DSC) of the toner is in the range of 50 ° C. or more and 70 ° C. or less, and the heat of fusion of the second temperature rising is 30 J / g or more and 75 J / g or less is desirable. This is because such toner achieves both low-temperature fixability and heat-resistant storage stability at a higher level and is excellent in hot offset resistance. When the maximum peak temperature of the heat of fusion at the second temperature increase is less than 50 ° C., toner blocking tends to occur in a high temperature environment. On the other hand, when the maximum peak temperature of the heat of fusion at the second temperature rise exceeds 70 ° C., the low-temperature fixability is hardly exhibited. The maximum peak temperature is more preferably 55 ° C. or more and 68 ° C. or less, and further preferably 58 ° C. or more and 65 ° C. or less.

トナーの昇温2回目の融解熱量が、30J/g未満であると、トナー中における結晶構造を有する部位が少なくなり、シャープメルト性が低下し、耐熱保存性と低温定着性のバランスが得られ難くなる。また、75J/gを超えると、トナーを溶融させて定着するために必要なエネルギーが大きくなり、定着装置によっては定着性が悪化してしまうことがある。また、前記融解熱量は、45J/g以上、70J/g以下であることがより好ましく、50J/g以上、60J/g以下であることが更に好ましい。   When the heat of fusion at the second temperature increase of the toner is less than 30 J / g, the number of sites having a crystal structure in the toner is reduced, sharp melt properties are lowered, and a balance between heat-resistant storage stability and low-temperature fixability is obtained. It becomes difficult. On the other hand, if it exceeds 75 J / g, the energy required to melt and fix the toner becomes large, and the fixability may deteriorate depending on the fixing device. The heat of fusion is more preferably 45 J / g or more and 70 J / g or less, and further preferably 50 J / g or more and 60 J / g or less.

トナーの融解熱の最大ピーク温度については、樹脂と同様に、示差走査熱量計(DSC)(例えば、TA−60WS及びDSC−60(島津製作所製))を用いて測定できる。融解熱の最大ピーク温度の測定に供する試料を、20℃から150℃まで昇温速度10℃/分間で昇温させた。次いで降温速度10℃/分間で0℃まで冷却した後、再び昇温速度10℃/分間で昇温して吸発熱変化を測定して、「吸発熱量」と「温度」とのグラフを描き、吸熱量の最大ピークに対応する温度を、昇温2回目の融解熱の最大ピーク温度とした。また、この時の前記最大ピーク温度を有する吸熱ピークの吸熱量を、昇温2回目の融解熱量とする。   The maximum peak temperature of the heat of fusion of the toner can be measured using a differential scanning calorimeter (DSC) (for example, TA-60WS and DSC-60 (manufactured by Shimadzu Corporation)) in the same manner as the resin. A sample used for measurement of the maximum peak temperature of heat of fusion was heated from 20 ° C. to 150 ° C. at a heating rate of 10 ° C./min. Next, after cooling to 0 ° C. at a temperature decrease rate of 10 ° C./min, the temperature is increased again at a temperature increase rate of 10 ° C./min to measure the endothermic change, and a graph of “endothermic amount” and “temperature” is drawn. The temperature corresponding to the maximum peak of the endothermic amount was taken as the maximum peak temperature of the heat of fusion at the second temperature increase. Further, the endothermic amount of the endothermic peak having the maximum peak temperature at this time is defined as the second heat of fusion.

トナーは、80℃における貯蔵弾性率G’(80)(Pa)が1.0×10以上、5.0×10以下であり、且つ、140℃における貯蔵弾性率G’(140)(Pa)が1.0×10以上、5.0×10以下であることが好ましい。貯蔵弾性率G’(80)(Pa)が1.0×10Pa未満であると、定着画像の連続出力後に、定着画像同士が貼り付くブロッキング現象が発生し易くなる。また、5.0×10Paを超えると、低温領域でのトナーの溶融性が低下し、定着画像の光沢が低くなる傾向にある。また、貯蔵弾性率G’(80)は、1.0×10Pa以上、1.0×10Pa以下であることがより好ましく、5.0×10Pa以上、1.0×10Pa以下であることが更に好ましい。 The toner has a storage elastic modulus G ′ (80) (Pa) at 80 ° C. of 1.0 × 10 4 or more and 5.0 × 10 5 or less, and a storage elastic modulus G ′ (140) (140) ( Pa) is preferably 1.0 × 10 3 or more and 5.0 × 10 4 or less. When the storage elastic modulus G ′ (80) (Pa) is less than 1.0 × 10 4 Pa, a blocking phenomenon in which the fixed images stick together after continuous output of the fixed images is likely to occur. On the other hand, if it exceeds 5.0 × 10 5 Pa, the melting property of the toner in a low temperature region is lowered and the gloss of the fixed image tends to be lowered. The storage elastic modulus G ′ (80) is more preferably 1.0 × 10 4 Pa or more and 1.0 × 10 5 Pa or less, and 5.0 × 10 4 Pa or more and 1.0 × 10. More preferably, it is 5 Pa or less.

トナーの貯蔵弾性率G’(140)(Pa)が1.0×10Pa未満であると、耐ホットオフセット性が悪化する傾向がある。また、5.0×10Paを超えると、定着画像の光沢が低くなる傾向にある。貯蔵弾性率G’(140)は、1.0×10Pa以上、1.0×10Pa以下であることがより好ましく、5.0×10Pa以上、1.0×10Pa以下であることが更に好ましい。 When the storage elastic modulus G ′ (140) (Pa) of the toner is less than 1.0 × 10 3 Pa, the hot offset resistance tends to deteriorate. On the other hand, if it exceeds 5.0 × 10 4 Pa, the gloss of the fixed image tends to be low. The storage elastic modulus G ′ (140) is more preferably 1.0 × 10 3 Pa or more and 1.0 × 10 4 Pa or less, 5.0 × 10 3 Pa or more, 1.0 × 10 4 Pa. More preferably, it is as follows.

トナーの動的粘弾特性値(貯蔵弾性率G’、損失弾性率G”)については、動的粘弾性測定装置(例えば、ARES(TAインスツルメント社製))を用いて測定することが可能である。周波数1Hz条件下で測定される。具体的には、トナー試料を、直径8mm、厚み1mm〜2mmのペレットに成型し、直径8mmのパラレルプレートに固定した後、40℃で安定させる。そして、周波数1Hz(6.28rad/s)、歪み量0.1%(歪み量制御モード)にて200℃まで昇温速度2.0℃/分間で昇温させて測定する。   The dynamic viscoelastic characteristic values (storage elastic modulus G ′, loss elastic modulus G ″) of the toner can be measured using a dynamic viscoelasticity measuring device (for example, ARES (manufactured by TA Instruments)). Measured under a frequency of 1 Hz, specifically, a toner sample is molded into pellets having a diameter of 8 mm and a thickness of 1 mm to 2 mm, fixed to a parallel plate having a diameter of 8 mm, and then stabilized at 40 ° C. Then, the temperature is raised to 200 ° C. at a temperature rising rate of 2.0 ° C./min at a frequency of 1 Hz (6.28 rad / s) and a strain amount of 0.1% (strain amount control mode).

トナー中におけるTHF可溶分のN元素の量は、0.3〜2.0wt%の範囲にあることが好ましく、0.5〜1.8wt%の範囲にあることがさらに好ましく、0.7〜1.6wt%であることがより好ましい。前記量が2.0wt%を超えると、トナーの溶融状態での粘弾性が高くなりすぎることによる定着性の悪化や光沢の低下、帯電性の悪化などが発生する可能性がある。また、前記量が0.3wt%未満であると、トナーの強靭性の低下による画像形成装置内での凝集や部材汚染、トナー溶融状態での粘弾性の低下による高温オフセットの発生の不具合が生じる可能性がある。   The amount of N element soluble in THF in the toner is preferably in the range of 0.3 to 2.0 wt%, more preferably in the range of 0.5 to 1.8 wt%, and 0.7 More preferably, it is -1.6 wt%. If the amount exceeds 2.0 wt%, the viscoelasticity of the toner in the melted state may become too high, resulting in a deterioration in fixing property, a decrease in gloss, and a deterioration in charging property. Further, if the amount is less than 0.3 wt%, problems such as aggregation in the image forming apparatus due to a decrease in toner toughness, contamination of members, and occurrence of high temperature offset due to a decrease in viscoelasticity in a toner melting state occur. there is a possibility.

前述したN元素の量については、vario MICRO cube(Elementar社製)を使用して測定することが可能である。具体的には、950℃の燃焼炉と、550℃の還元炉、ヘリウム流量=200ml/min、酸素流量=25〜30ml/minの条件でC元素、H元素、N元素を同時測定し、2回測定した値の平均値を算出する。なお、この測定方法でN元素の量が0.5wt%未満であった場合には、さらに微量窒素分析装置ND−100型(三菱化学株式会社製)によって測定を行う。電気炉温度(横型反応炉)については、熱分解部分=800℃、触媒部分=900℃とする。測定条件は、メインO流量=300ml/min、O流量=300ml/min、Ar流量=400ml/min、感度=Lowとし、ピリジン標準液で作成した検量線をともに定量を行う。なお、トナー中におけるTHF可溶分は、予めトナー5gをソックスレー抽出器に入れ、これを用いて70mLのTHF(テトラヒドロフラン)で20時間抽出を行ったものからTHFを加熱減圧除去することにより得られる。 The amount of the N element described above can be measured using a vario MICRO cube (manufactured by Elementar). Specifically, C element, H element, and N element were measured simultaneously under the conditions of 950 ° C. combustion furnace and 550 ° C. reduction furnace, helium flow rate = 200 ml / min, oxygen flow rate = 25-30 ml / min. The average value of the values measured once is calculated. In addition, when the amount of N element is less than 0.5 wt% in this measurement method, the measurement is further performed with a trace nitrogen analyzer ND-100 (manufactured by Mitsubishi Chemical Corporation). Regarding the electric furnace temperature (horizontal reactor), the pyrolysis portion = 800 ° C. and the catalyst portion = 900 ° C. The measurement conditions are the main O 2 flow rate = 300 ml / min, the O 2 flow rate = 300 ml / min, the Ar flow rate = 400 ml / min, and the sensitivity = Low, and the calibration curve prepared with the pyridine standard solution is quantified together. The THF-soluble matter in the toner can be obtained by placing 5 g of toner in a Soxhlet extractor in advance and extracting it with 70 mL of THF (tetrahydrofuran) for 20 hours. .

トナー中におけるTHF可溶分にウレア結合が存在することは、ウレア結合は少量であってもトナーの強靭性や定着時のオフセット耐性向上効果が期待できることから重要である。トナー中におけるTHF可溶分のウレア結合の存在は、13C−NMRによって確かめることが可能である。具体的には、分析するサンプル2gを、濃度が0.1mol/Lである水酸化カリウムのメタノール溶液200mlに浸し、50℃で24hrおいた後、溶液を除去し、残渣物をさらにイオン交換水でpHが中性になるまで洗浄し、残った固体を乾燥させる。乾燥後のサンプルを、ジメチルアセトアミド(DMAc)と重水素化ジメチルスルホキシド(DMSO−d6)の混合溶媒(体積比9:1)に、100mg/0.5mlの濃度で加え、70℃で12〜24時間溶解させた後50℃にし、13C−NMR測定を行う。なお、測定周波数は125.77MHz、1H_60°パルスは5.5μs、基準物質はテトラメチルシラン(TMS)を0.0ppmとする。サンプルにおけるウレア結合の存在は、標品となるポリウレアのウレア結合部位のカルボニル炭素に由来するシグナルの化学シフトにシグナルが見られるか否かで確認する。カルボニル炭素の化学シフトでは、一般に150〜160ppmの条件で確認される。ポリウレアの一例として、4,4’−ジフェニルメタンジイソシアネート(MDI)と水との反応物であるポリウレアのカルボニル炭素付近の13C−NMRスペクトルを図8に示す。153.27ppmにカルボニル炭素に由来するシグナルが見られる。   The presence of a urea bond in the THF soluble component in the toner is important because even if the urea bond is small, an effect of improving the toughness of the toner and the offset resistance during fixing can be expected. The presence of a urea-soluble urea bond in the toner can be confirmed by 13C-NMR. Specifically, 2 g of the sample to be analyzed was immersed in 200 ml of a potassium hydroxide methanol solution having a concentration of 0.1 mol / L, placed at 50 ° C. for 24 hours, the solution was removed, and the residue was further subjected to ion-exchanged water. Until the pH is neutral and dry the remaining solids. The sample after drying was added to a mixed solvent (volume ratio 9: 1) of dimethylacetamide (DMAc) and deuterated dimethylsulfoxide (DMSO-d6) at a concentration of 100 mg / 0.5 ml, and the mixture was stirred at 70 ° C. for 12-24. After dissolving for a period of time, the temperature is set to 50 ° C. and 13C-NMR measurement is performed. The measurement frequency is 125.77 MHz, the 1H_60 ° pulse is 5.5 μs, and the reference material is 0.0 ppm tetramethylsilane (TMS). Presence of urea binding in the sample is confirmed by whether or not a signal is seen in the chemical shift of the signal derived from the carbonyl carbon of the urea binding site of the polyurea used as a standard. The chemical shift of carbonyl carbon is generally confirmed under conditions of 150 to 160 ppm. As an example of polyurea, FIG. 8 shows a 13C-NMR spectrum around the carbonyl carbon of polyurea, which is a reaction product of 4,4′-diphenylmethane diisocyanate (MDI) and water. A signal derived from carbonyl carbon is seen at 153.27 ppm.

トナーに添加する離型剤としては、特に制限はなく、目的に応じて公知のものの中から適宜選択することができる。例えば、カルボニル基含有ワックス、ポリオレフィンワックス、長鎖炭化水素等のワックス類が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、カルボニル基含有ワックスが好ましい。カルボニル基含有ワックスとしては、例えば、ポリアルカン酸エステル、ポリアルカノールエステル、ポリアルカン酸アミド、ポリアルキルアミド、ジアルキルケトンなどが挙げられる。   There is no restriction | limiting in particular as a mold release agent added to a toner, According to the objective, it can select suitably from well-known things. For example, waxes such as carbonyl group-containing waxes, polyolefin waxes, long chain hydrocarbons and the like can be mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, a carbonyl group-containing wax is preferable. Examples of the carbonyl group-containing wax include polyalkanoic acid esters, polyalkanol esters, polyalkanoic acid amides, polyalkylamides, and dialkyl ketones.

また、ポリアルカン酸エステルとしては、例えば、カルナバワックス、モンタンワックス、トリメチロールプロパントリベヘネート、ペンタエリスリトールテトラベヘネート、ペンタエリスリトールジアセテートジベヘネート、グリセリントリベヘネート、1,18−オクタデカンジオールジステアレートなどが挙げられる。前記ポリアルカノールエステルとしては、例えば、トリメリット酸トリステアリル、ジステアリルマレエートなどが挙げられる。前記ポリアルカン酸アミドとしては、例えば、ジベヘニルアミドなどが挙げられる。前記ポリアルキルアミドとしては、例えば、トリメリット酸トリステアリルアミドなどが挙げられる。前記ジアルキルケトンとしては、例えば、ジステアリルケトンなどが挙げられる。これらカルボニル基含有ワックスの中でも、ポリアルカン酸エステルが特に好ましい。   Examples of the polyalkanoic acid ester include carnauba wax, montan wax, trimethylolpropane tribehenate, pentaerythritol tetrabehenate, pentaerythritol diacetate dibehenate, glycerol tribehenate, and 1,18- Examples include octadecane diol distearate. Examples of the polyalkanol ester include tristearyl trimellitic acid and distearyl maleate. Examples of the polyalkanoic acid amide include dibehenyl amide. Examples of the polyalkylamide include trimellitic acid tristearylamide. Examples of the dialkyl ketone include distearyl ketone. Of these carbonyl group-containing waxes, polyalkanoic acid esters are particularly preferred.

ポリオレフィンワッックスとしては、例えば、ポリエチレンワックス、ポリプロピレンワックスなどが挙げられる。また、長鎖炭化水素としては、例えば、パラフィンワッックス、サゾールワックスなどが挙げられる。   Examples of the polyolefin wax include polyethylene wax and polypropylene wax. Examples of long chain hydrocarbons include paraffin wax and sazol wax.

離型剤の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、50℃〜100℃が好ましく、60℃〜90℃がより好ましい。融点が50℃未満であると、耐熱保存性に悪影響を与えることがあり、100℃を超えると、低温での定着時にコールドオフセットを起こし易いことがある。離型剤の融点は、例えば、示差走査熱量計(TA−60WS及びDSC−60(島津製作所製))を用いて測定することができる。具体的には、まず、離型剤5.0mgをアルミニウム製の試料容器に入れ、該試料容器をホルダーユニットに載せ、電気炉中にセットする。次いで、窒素雰囲気下、0℃から昇温速度10℃/minで150℃まで昇温し、その後、150℃から降温速度10℃/minで0℃まで降温した後、更に昇温速度10℃/minで150℃まで昇温してDSC曲線を計測する。得られたDSC曲線から、DSC−60システム中の解析プログラムを用いて、2回目の昇温時における融解熱の最大ピーク温度を融点として求めることができる。   There is no restriction | limiting in particular as melting | fusing point of a mold release agent, Although it can select suitably according to the objective, 50 to 100 degreeC is preferable and 60 to 90 degreeC is more preferable. When the melting point is less than 50 ° C., the heat resistant storage stability may be adversely affected. When the melting point exceeds 100 ° C., cold offset may easily occur during fixing at a low temperature. The melting point of the release agent can be measured using, for example, a differential scanning calorimeter (TA-60WS and DSC-60 (manufactured by Shimadzu Corporation)). Specifically, first, 5.0 mg of the mold release agent is placed in an aluminum sample container, and the sample container is placed on a holder unit and set in an electric furnace. Next, the temperature was raised from 0 ° C. to 150 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, and then the temperature was lowered from 150 ° C. to 0 ° C. at a temperature lowering rate of 10 ° C./min. The temperature is raised to 150 ° C. in min and the DSC curve is measured. From the obtained DSC curve, using the analysis program in the DSC-60 system, the maximum peak temperature of the heat of fusion at the second temperature rise can be obtained as the melting point.

離型剤の溶融粘度としては、100℃における測定値として、5mPa・sec〜100mPa・secが好ましく、5mPa・sec〜50mPa・secがより好ましく、5mPa・sec〜20mPa・secが特に好ましい。溶融粘度が、5mPa・sec未満である場合には、離型性が低下することがある。また、100mPa・secより大きい場合には、耐ホットオフセット性、及び低温での離型性が悪化することがあるため、好ましくない。   The melt viscosity of the release agent is preferably 5 mPa · sec to 100 mPa · sec, more preferably 5 mPa · sec to 50 mPa · sec, and particularly preferably 5 mPa · sec to 20 mPa · sec as a measured value at 100 ° C. When the melt viscosity is less than 5 mPa · sec, the releasability may be lowered. On the other hand, when it is higher than 100 mPa · sec, the hot offset resistance and the releasability at a low temperature may be deteriorated, which is not preferable.

トナーにおける離型剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。1重量%〜20重量%であることが好ましく、3重量%〜10重量%であることがより好ましい。1重量%未満である場合、耐ホットオフセット性が悪化する傾向にある。また、20質量%を超えると、耐熱保存性、帯電性、転写性、耐ストレス性が悪化する傾向にあるため、好ましくない。   There is no restriction | limiting in particular as content of the mold release agent in a toner, According to the objective, it can select suitably. It is preferably 1% by weight to 20% by weight, and more preferably 3% by weight to 10% by weight. When it is less than 1% by weight, the hot offset resistance tends to deteriorate. On the other hand, if it exceeds 20% by mass, the heat resistant storage stability, chargeability, transferability, and stress resistance tend to deteriorate, which is not preferable.

トナーに用いられる着色剤としては、特に制限はなく、公知の着色剤から目的に応じて適宜選択することができる。着色剤の色としては、特に制限はなく、目的に応じて適宜選択することができる。ブラックトナー、シアントナー、マゼンタトナー及びイエロートナーから選択される少なくとも1種とすることができ、各色のトナーは着色剤の種類を適宜選択することにより得ることができるが、カラートナーであるのが好ましい。   There is no restriction | limiting in particular as a coloring agent used for a toner, According to the objective, it can select suitably from well-known coloring agents. There is no restriction | limiting in particular as a color of a coloring agent, According to the objective, it can select suitably. The toner can be at least one selected from black toner, cyan toner, magenta toner, and yellow toner, and each color toner can be obtained by appropriately selecting the type of colorant. preferable.

ブラック用の着色剤としては、例えばファーネスブラック、ランプブラック、アセチレンブラック、チャンネルブラック等のカーボンブラック(C.I.ピグメントブラック7)類、銅、鉄(C.I.ピグメントブラック11)、酸化チタン等の金属類、アニリンブラック(C.I.ピグメントブラック1)等の有機顔料等が挙げられる。また、マゼンタ用着色顔料としては、例えばC.I.ピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、21、22、23、30、31、32、37、38、39、40、41、48、48:1、49、50、51、52、53、53:1、54、55、57、57:1、58、60、63、64、68、81、83、87、88、89、90、112、114、122、123、150、163、177、179、184、202、206、207、209、211、269;C.I.ピグメントバイオレット19;C.I.バットレッド1、2、10、13、15、23、29、35等が挙げられる。また、シアン用の着色顔料としては、例えばC.I.ピグメントブルー2、3、15、15:1、15:2、15:3、15:4、15:6、16、17、60;C.I.バットブルー6;C.I.アシッドブルー45又フタロシアニン骨格にフタルイミドメチル基を1〜5個置換した銅フタロシアニン顔料、グリーン7、グリーン36等が挙げられる。また、イエロー用着色顔料としては、例えばC.I.ピグメントイエロー1、2、3、4、5、6、7、10、11、12、13、14、15、16、17、23、55、65、73、74、83、97、110、139、151、154、155、180、185;C.I.バットイエロー1、3、20、オレンジ36等が挙げられる。   Examples of the colorant for black include carbon black (CI pigment black 7) such as furnace black, lamp black, acetylene black and channel black, copper, iron (CI pigment black 11), and titanium oxide. And organic pigments such as aniline black (CI Pigment Black 1). Examples of the magenta color pigment include C.I. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 30, 31, 32, 37, 38, 39, 40, 41, 48, 48: 1, 49, 50, 51, 52, 53, 53: 1, 54, 55, 57, 57: 1, 58, 60, 63, 64, 68, 81, 83, 87, 88, 89, 90, 112, 114, 122, 123, 150, 163, 177, 179, 184, 202, 206, 207, 209, 211, 269; I. Pigment violet 19; C.I. I. Bat red 1, 2, 10, 13, 15, 23, 29, 35, etc. are mentioned. Examples of the color pigment for cyan include C.I. I. Pigment Blue 2, 3, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 17, 60; I. Bat Blue 6; C.I. I. Acid Blue 45 and copper phthalocyanine pigments having 1 to 5 phthalimidomethyl groups substituted on the phthalocyanine skeleton, Green 7, Green 36, and the like. Examples of the color pigment for yellow include C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 23, 55, 65, 73, 74, 83, 97, 110, 139, 151, 154, 155, 180, 185; I. Bat yellow 1, 3, 20, orange 36 and the like.

トナー中における着色剤の含有量は、1重量%〜15重量%であることが好ましく、3重量%〜10重量%であることがより好ましい。前記含有量が、1重量%未満であると、トナーの着色力が低下することがある。また、15重量%を超えると、トナー中での顔料の分散不良が起こり、着色力の低下及びトナーの電気特性の低下を招くことがある。着色剤については、樹脂と複合化されたマスターバッチとして使用してもよい。このような樹脂としては、特に制限はないが、結着樹脂との相溶性の点から、結着樹脂、又は結着樹脂と類似した構造の樹脂を用いることが好ましい。   The content of the colorant in the toner is preferably 1% by weight to 15% by weight, and more preferably 3% by weight to 10% by weight. When the content is less than 1% by weight, the coloring power of the toner may be lowered. On the other hand, if it exceeds 15% by weight, poor dispersion of the pigment in the toner occurs, which may lead to a reduction in coloring power and a decrease in toner electrical characteristics. About a coloring agent, you may use as a masterbatch compounded with resin. Such a resin is not particularly limited, but it is preferable to use a binder resin or a resin having a structure similar to the binder resin from the viewpoint of compatibility with the binder resin.

マスターバッチは、高せん断力をかけて、樹脂と着色剤を混合又は混練させて製造することができる。この際、着色剤と樹脂の相互作用を高めるために、有機溶媒を添加することが好ましい。また、いわゆるフラッシング法も着色剤のウエットケーキをそのまま用いることができ、乾燥する必要がない点で好適である。フラッシング法は、着色剤の水を含んだ水性ペーストを樹脂と有機溶媒と共に混合又は混練し、着色剤を樹脂側に移行させて水及び有機溶媒を除去する方法である。混合又は混練には、例えば、三本ロールミル等の高せん断分散装置を用いることができる。   The master batch can be manufactured by applying a high shear force and mixing or kneading the resin and the colorant. At this time, it is preferable to add an organic solvent in order to enhance the interaction between the colorant and the resin. Also, the so-called flushing method is preferable in that the wet cake of the colorant can be used as it is, and there is no need to dry it. The flushing method is a method in which an aqueous paste containing water of a colorant is mixed or kneaded together with a resin and an organic solvent, and the colorant is transferred to the resin side to remove water and the organic solvent. For mixing or kneading, for example, a high shear dispersion device such as a three-roll mill can be used.

トナーに適切な帯電能を付与するために、必要に応じて帯電制御剤をトナーに含有させることも可能である。帯電制御剤としては、公知の帯電制御剤がいずれも使用可能である。有色材料を用いると色調が変化することがあるため、無色乃至白色に近い材料が好ましい。例えば、トリフェニルメタン系染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、燐の単体又はその化合物、タングステンの単体又はその化合物、フッ素系活性剤、サリチル酸の金属塩、サリチル酸誘導体の金属塩などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。   In order to impart appropriate charging ability to the toner, a charge control agent can be contained in the toner as necessary. Any known charge control agent can be used as the charge control agent. Since a color tone may change when a colored material is used, a material that is colorless or nearly white is preferable. For example, triphenylmethane dyes, molybdate chelate pigments, rhodamine dyes, alkoxy amines, quaternary ammonium salts (including fluorine-modified quaternary ammonium salts), alkylamides, phosphorus alone or compounds thereof, tungsten alone or Examples thereof include fluorine compounds, metal salts of salicylic acid, and metal salts of salicylic acid derivatives. These may be used individually by 1 type and may use 2 or more types together.

帯電制御剤の含有量は、結着樹脂の種類、分散方法を含めたトナー製造方法によって決定されるものであり、一義的に限定されるものではないが、前記結着樹脂に対し0.01重量%〜5重量%が好ましく、0.02重量%〜2重量%がより好ましい。前記添加量が、5重量%を超えると、トナーの帯電性が大きすぎ、帯電制御剤の効果を減退させ、現像ローラとの静電気的吸引力が増大し、現像剤の流動性低下や、画像濃度の低下を招くことがある。また、0.01重量%未満であると、帯電立ち上り性や帯電量が十分でなく、トナー画像に影響を及ぼし易いことがある。   The content of the charge control agent is determined by the toner production method including the type of the binder resin and the dispersion method, and is not uniquely limited, but is 0.01% with respect to the binder resin. % By weight to 5% by weight is preferable, and 0.02% by weight to 2% by weight is more preferable. When the addition amount exceeds 5% by weight, the chargeability of the toner is too large, the effect of the charge control agent is reduced, the electrostatic attraction with the developing roller is increased, the developer fluidity is reduced, and the image The concentration may decrease. On the other hand, if it is less than 0.01% by weight, the charge rising property and the charge amount are not sufficient, and the toner image may be easily affected.

実施形態に係る画像形成装置に用いるトナーには、有機変性層状無機鉱物が含まれていても良い。この有機変性層状無機鉱物は、層状無機鉱物の層間に存在するイオンの少なくとも一部が有機物イオンで変性された有機変性層状無機鉱物である。前記層状無機鉱物は、厚み数nmの層が重ね合わさって形成される層状の無機鉱物である。前述の「変性された」とは、前記層状無機鉱物の層間に存在するイオンに有機物イオンを導入することと同義であり、広義にはインターカレーションである。層状無機鉱物の層間に存在するイオンの少なくとも一部が有機物イオンで変性された有機変性層状無機鉱物を含有させることで、次のようなことが可能になる。即ち、結晶性樹脂に対する結晶核剤として機能させて、トナーの結晶化度を上げたり、トナー油相に分散することでフィラーとして機能させてトナーの形状を不定形にしたりすることが可能になる。また、層状無機鉱物は、トナーの表層近傍に配置されることで最も大きな効果を発生するが、本発明における有機変性層状無機鉱物は、トナー表層近傍に均一に隙間なく配列することが分かっている。このため、トナー表層近傍の結着樹脂の構造粘性を効率的に高め、定着直後のような樹脂硬度の低い画像の状態であっても充分に画像が保護される。また、少ない添加量でも効率的に効果を発揮できるため、定着性への阻害も殆どないものと考えられる。   The toner used in the image forming apparatus according to the embodiment may contain an organically modified layered inorganic mineral. This organically modified layered inorganic mineral is an organically modified layered inorganic mineral in which at least some of the ions present between the layers of the layered inorganic mineral are modified with organic ions. The layered inorganic mineral is a layered inorganic mineral formed by overlapping layers having a thickness of several nm. The above-mentioned “modified” is synonymous with introducing organic ions into ions existing between the layers of the layered inorganic mineral, and in a broad sense is intercalation. By including an organically modified layered inorganic mineral in which at least some of the ions present between the layers of the layered inorganic mineral are modified with organic ions, the following becomes possible. That is, it can function as a crystal nucleating agent for the crystalline resin to increase the degree of crystallinity of the toner, or it can function as a filler by being dispersed in the toner oil phase to make the shape of the toner indefinite. . In addition, the layered inorganic mineral produces the greatest effect by being arranged in the vicinity of the toner surface layer. However, it is known that the organically modified layered inorganic mineral in the present invention is uniformly arranged in the vicinity of the toner surface layer without any gap. . For this reason, the structural viscosity of the binder resin in the vicinity of the toner surface layer is efficiently increased, and the image is sufficiently protected even in the state of an image having a low resin hardness just after fixing. Further, since the effect can be efficiently exhibited even with a small addition amount, it is considered that there is almost no hindrance to fixability.

トナー中における有機変性層状無機鉱物の存在状態については、次のようにすることで確認することが可能である。即ち、トナー粒子をエポキシ樹脂などに包埋した試料を、マイクロミクロトームやウルトラミクロトームで切削し、トナー断面を走査型電子顕微鏡(SEM)などで観察するのである。SEMによる観察の場合には、反射電子像で確認することが好ましく、有機変性層状無機鉱物の存在が強いコントラストで観察できるので好ましい。また、FIB−STEM(HD−2000、日立製作所製)を用いて、トナー粒子をエポキシ樹脂等に包埋した試料をイオンビームで切削し、トナーの断面を観察してもよい。この場合にも、反射電子像で確認することが視認のし易さから好ましい。   The presence state of the organically modified layered inorganic mineral in the toner can be confirmed as follows. That is, a sample in which toner particles are embedded in an epoxy resin or the like is cut with a micromicrotome or an ultramicrotome, and a cross section of the toner is observed with a scanning electron microscope (SEM) or the like. In the case of observation by SEM, it is preferable to confirm by a reflected electron image, and it is preferable because the presence of the organically modified layered inorganic mineral can be observed with a strong contrast. Further, using FIB-STEM (HD-2000, manufactured by Hitachi, Ltd.), a sample in which toner particles are embedded in an epoxy resin or the like may be cut with an ion beam, and the cross section of the toner may be observed. Also in this case, it is preferable to confirm with a reflected electron image because of easy visual recognition.

断面の観察により、トナー表面近傍の状態を確認することも可能である。トナー表面近傍は、次のように定義される。即ち、トナー粒子をエポキシ樹脂などに包埋した試料を、マイクロミクロトーム、ウルトラミクロトーム、FIB−STEM等で切削して得られるトナーの断面を観察する。そのときの観察像において、トナー最表面からトナー内部に0nm〜300nmの領域がトナー表面近傍である。   It is also possible to confirm the vicinity of the toner surface by observing the cross section. The vicinity of the toner surface is defined as follows. That is, a cross section of a toner obtained by cutting a sample in which toner particles are embedded in an epoxy resin or the like with a micromicrotome, ultramicrotome, FIB-STEM, or the like is observed. In the observed image at that time, a region of 0 nm to 300 nm from the outermost surface of the toner to the inside of the toner is near the toner surface.

前記層状無機鉱物としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、スメクタイト群粘土鉱物(モンモリロナイト、サポナイト、ヘクトライト等)、カオリン群粘土鉱物(カオリナイト等)、ベントナイト、アタパルジャイト、マガディアイト、カネマイトなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。   There is no restriction | limiting in particular as said layered inorganic mineral, According to the objective, it can select suitably. Examples thereof include smectite group clay minerals (montmorillonite, saponite, hectorite, etc.), kaolin group clay minerals (kaolinite, etc.), bentonite, attapulgite, magadiite, and kanemite. These may be used individually by 1 type and may use 2 or more types together.

前記有機変性層状無機鉱物としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、前記層状無機鉱物の層間に存在するイオンの少なくとも一部が有機物イオンで変性された有機変性層状無機鉱物などが挙げられる。これらの中でも、スメクタイト系の基本結晶構造を持つスメクタイト群粘土鉱物の層間のイオンの少なくとも一部が有機カチオンで変性されたものが、トナー表面近傍における分散安定性の観点で好ましい。モンモリロナイトの層間のイオンの少なくとも一部が有機カチオンで変性されたもの、ベントナイトの層間のイオンの少なくとも一部が有機カチオンで変性されたものが特に好ましい。   There is no restriction | limiting in particular as said organic modified layered inorganic mineral, According to the objective, it can select suitably. For example, an organically modified layered inorganic mineral in which at least a part of ions present between the layers of the layered inorganic mineral is modified with organic ions can be used. Among these, those in which at least part of ions between layers of the smectite group clay mineral having a smectite-based basic crystal structure are modified with an organic cation are preferable from the viewpoint of dispersion stability in the vicinity of the toner surface. Particularly preferred are those in which at least some of the ions between the layers of montmorillonite are modified with an organic cation and at least some of the ions between the layers of bentonite are modified with an organic cation.

前記有機変性層状無機鉱物が、前記層状無機鉱物の層間に存在するイオンの少なくとも一部が有機物イオンで変性されていることは、ガスクロマトグラフ質量分析法(GCMS)により確認することができる。例えば、試料であるトナー中の結着樹脂を溶媒により溶解させた溶液を濾過し、得られた固形物を熱分解装置にて熱分解し、GCMSにて有機物の構造を同定する方法が好適に挙げられる。具体的には、熱分解装置として、Py−2020D(フロンティア・ラボ社製)を用い、550℃にて熱分解を行った後、GCMS装置QP5000(島津製作所社製)にて同定する方法が挙げられる。   It can be confirmed by gas chromatography mass spectrometry (GCMS) that the organically modified layered inorganic mineral has at least part of the ions present between the layers of the layered inorganic mineral modified with organic ions. For example, a method of filtering a solution in which a binder resin in a toner as a sample is dissolved with a solvent, pyrolyzing the obtained solid with a thermal decomposition apparatus, and identifying the structure of the organic substance with GCMS is suitable. Can be mentioned. Specifically, as a thermal decomposition apparatus, Py-2020D (manufactured by Frontier Laboratories) is used, and after thermal decomposition at 550 ° C., a method of identifying with a GCMS apparatus QP5000 (manufactured by Shimadzu Corporation) is mentioned. It is done.

また、前記有機変性層状無機鉱物としては、前記層状無機鉱物の2価金属の一部を3価の金属に置換することにより、金属アニオンを導入し、更に該金属アニオンの少なくとも一部を有機アニオンで変性した層状無機化合物が挙げられる。   Further, as the organic modified layered inorganic mineral, a metal anion is introduced by replacing a part of the divalent metal of the layered inorganic mineral with a trivalent metal, and at least a part of the metal anion is converted into an organic anion. And a layered inorganic compound modified with (1).

前記有機変性層状無機鉱物としては、市販品を用いることができる。市販品としては、例えば、Bentone 3、Bentone 38、Bentone 38V(以上、レオックス社製)、チクソゲルVP(United catalyst社製)、クレイトン34、クレイトン40、クレイトンXL(以上、サザンクレイ社製)等のクオタニウム18ベントナイト;Bentone 27(レオックス社製)、チクソゲルLG(United catalyst社製)、クレイトンAF、クレイトンAPA(以上、サザンクレイ社製)等のステアラルコニウムベントナイト;クレイトンHT、クレイトンPS(以上、サザンクレイ社製)等のクオタニウム18/ベンザルコニウムベントナイト;クレイトンHY(サザンクレイ社製)等の有機変性モンモリロナイト;ルーセンタイトSPN(コープケミカル社製)等の有機変性スクメタイトなどが挙げられる。これらの中でも、クレイトンAF、クレイトンAPAが特に好ましい。   A commercially available product can be used as the organically modified layered inorganic mineral. Examples of commercially available products include Bentone 3, Bentone 38, Bentone 38V (manufactured by Leox), Thixogel VP (manufactured by United catalyst), Kraton 34, Kraton 40, Kraton XL (manufactured by Southern Clay). Quartium 18 bentonite; stearalkonium bentonite such as Bentone 27 (manufactured by Leox), Thixogel LG (manufactured by United catalyst), Clayton AF, Clayton APA (above, manufactured by Southern Clay), etc .; Clayton HT, Kraton PS (above, Southern) Quantum 18 / Benzalkonium bentonite such as Clay); Organic modified montmorillonite such as Clayton HY (Southern Clay); Lucentite SPN (Coop Chemical) Organic modified Sukumetaito of Ltd.) and the like. Among these, Clayton AF and Clayton APA are particularly preferable.

また、前記有機変性層状無機鉱物としては、DHT−4A(協和化学工業社製)を次のようにして変性させたものが特に好ましい。即ち、R1(OR2)nOSO3M(ただし、R1は炭素数13個のアルキル基、R2は炭素数2〜6個のアルキレン基、nは2〜10の整数、Mは1価の金属元素を表す)で表される前記有機物イオンを有する化合物で変性させたものである。R1(OR2)OSOMで表される前記有機イオンを有する化合物としては、例えば、ハイテノール330T(第一工業製薬社製)などが挙げられる。 Moreover, as said organic modified layered inorganic mineral, what modified | denatured DHT-4A (made by Kyowa Chemical Industry Co., Ltd.) as follows is especially preferable. That is, R1 (OR2) nOSO3M (wherein R1 is an alkyl group having 13 carbon atoms, R2 is an alkylene group having 2 to 6 carbon atoms, n is an integer of 2 to 10, and M is a monovalent metal element) These are modified with a compound having an organic ion represented by the formula: Examples of the compound having an organic ion represented by R1 (OR2) n OSO 3 M include Hytenol 330T (Daiichi Kogyo Seiyaku Co., Ltd.).

前記有機変性層状無機鉱物については、必要に応じて樹脂と混合し、複合化されたものをマスターバッチとして使用してもよい。その際、樹脂としては、特に制限はなく、目的に応じて公知のものの中から適宜選択することができる。   About the said organic modified layered inorganic mineral, you may mix with resin as needed, and you may use what was compounded as a masterbatch. In that case, there is no restriction | limiting in particular as resin, According to the objective, it can select suitably from well-known things.

前記有機変性層状無機鉱物のトナーに対する含有量としては、0.1質量%〜3.0質量%が好ましく、0.5質量%〜2.0質量%がより好ましく、1.0質量%〜1.5質量%が特に好ましい。含有量が、0.1質量%未満であると、層状無機鉱物の効果が発揮され難くなり、3.0質量%を超えると、低温定着性を阻害する傾向にある。   The content of the organically modified layered inorganic mineral with respect to the toner is preferably 0.1% by mass to 3.0% by mass, more preferably 0.5% by mass to 2.0% by mass, and 1.0% by mass to 1%. .5% by mass is particularly preferred. When the content is less than 0.1% by mass, the effect of the layered inorganic mineral is hardly exhibited. When the content exceeds 3.0% by mass, the low-temperature fixability tends to be inhibited.

前記有機物イオンを有し、前記層状無機鉱物の層間に存在するイオンの少なくとも一部を有機物イオンに変性可能な化合物である有機物イオン変性剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、第4級アルキルアンモニウム塩、フォスフォニウム塩、イミダゾリウム塩;炭素数1〜44の分岐、非分岐又は環状アルキル、炭素数1〜22の分岐、非分岐又は環状アルケニル、炭素数8〜32の分岐、非分岐又は環状アルコキシ、炭素数2〜22の分岐、非分岐又は環状ヒドロキシアルキル、エチレンオキサイド、プロピレンオキサイド等の骨格を有する硫酸塩、前記骨格を有するスルホン酸塩、前記骨格を有するカルボン酸塩、前記骨格を有するリン酸塩などが挙げられる。これらの中でも、第4級アルキルアンモニウム塩、エチレンオキサイド骨格を有するカルボン酸が好ましく、第4級アルキルアンモニウム塩が特に好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。前記第4級アルキルアンモニウムとしては、トリメチルステアリルアンモニウム、ジメチルステアリルベンジルアンモニウム、ジメチルオクタデシルアンモニウム、オレイルビス(2−ヒドロキシエチル)メチルアンモニウムなどが挙げられる。   There is no particular limitation on the organic ion modifier, which is a compound having the organic ions and capable of modifying at least some of the ions present between the layers of the layered inorganic mineral into organic ions, and is appropriately selected according to the purpose. For example, quaternary alkyl ammonium salts, phosphonium salts, imidazolium salts; branched, unbranched or cyclic alkyls having 1 to 44 carbon atoms, branched, unbranched or cyclic alkenyl atoms having 1 to 22 carbon atoms, Sulfates having a skeleton such as branched, unbranched or cyclic alkoxy having 8 to 32 carbon atoms, branched or unbranched or cyclic hydroxyalkyl having 2 to 22 carbon atoms, ethylene oxide, propylene oxide, sulfonates having the skeleton, Examples thereof include a carboxylate having the skeleton and a phosphate having the skeleton. Among these, quaternary alkyl ammonium salts and carboxylic acids having an ethylene oxide skeleton are preferable, and quaternary alkyl ammonium salts are particularly preferable. These may be used individually by 1 type and may use 2 or more types together. Examples of the quaternary alkylammonium include trimethylstearylammonium, dimethylstearylbenzylammonium, dimethyloctadecylammonium, oleylbis (2-hydroxyethyl) methylammonium and the like.

流動性改質や帯電量調整、電気特性の調整などの目的で、トナーに各種の外添剤を添加することが可能である。外添剤としては、特に制限はなく、公知のものの中から目的に応じて適宜選択することができる。例えば、シリカ微粒子、疎水化されたシリカ微粒子、脂肪酸金属塩(例えばステアリン酸亜鉛、ステアリン酸アルミニウムなど);金属酸化物(例えばチタニア、アルミナ、酸化錫、酸化アンチモンなど)又はこれらの疎水化物、フルオロポリマーなどが挙げられる。これらの中でも、疎水化されたシリカ微粒子、チタニア粒子、疎水化されたチタニア微粒子、が好適に挙げられる。   Various external additives can be added to the toner for purposes such as fluidity modification, charge amount adjustment, and electrical property adjustment. There is no restriction | limiting in particular as an external additive, According to the objective, it can select suitably from well-known things. For example, silica fine particles, hydrophobized silica fine particles, fatty acid metal salts (eg, zinc stearate, aluminum stearate, etc.); metal oxides (eg, titania, alumina, tin oxide, antimony oxide, etc.) or their hydrophobized products, fluoro Examples thereof include polymers. Among these, hydrophobized silica fine particles, titania particles, and hydrophobized titania fine particles are preferable.

疎水化されたシリカ微粒子としては、例えばHDK H2000、HDK H2000/4、HDK H2050EP、HVK21、HDK H1303(何れもヘキスト社製);R972、R974、RX200、RY200、R202、R805、R812(何れも日本アエロジル株式会社製)などが挙げられる。チタニア微粒子としては、例えばP−25(日本アエロジル株式会社製);STT−30、STT−65C−S(いずれも、チタン工業株式会社製);TAF−140(富士チタン工業株式会社製);MT−150W、MT−500B、MT−600B、MT−150A(何れもテイカ株式会社製)などが挙げられる。疎水化された酸化チタン微粒子としては、例えばT−805(日本アエロジル株式会社製);STT−30A、STT−65S−S(何れもチタン工業株式会社製);TAF−500T、TAF−1500T(何れも富士チタン工業株式会社製);MT−100S、MT−100T(何れもテイカ株式会社製);IT−S(石原産業株式会社製)などが挙げられる。   Examples of the hydrophobized silica fine particles include HDK H2000, HDK H2000 / 4, HDK H2050EP, HVK21, HDK H1303 (all manufactured by Hoechst); R972, R974, RX200, RY200, R202, R805, R812 (all Japan) Aerosil Co., Ltd.). Examples of titania fine particles include P-25 (manufactured by Nippon Aerosil Co., Ltd.); STT-30, STT-65C-S (both manufactured by Titanium Industry Co., Ltd.); TAF-140 (manufactured by Fuji Titanium Industry Co., Ltd.); MT -150W, MT-500B, MT-600B, MT-150A (all manufactured by Teika Co., Ltd.) and the like. Examples of the hydrophobized titanium oxide fine particles include T-805 (manufactured by Nippon Aerosil Co., Ltd.); STT-30A, STT-65S-S (both manufactured by Titanium Industry Co., Ltd.); TAF-500T, TAF-1500T (any Also manufactured by Fuji Titanium Industry Co., Ltd.); MT-100S, MT-100T (both manufactured by Teika Co., Ltd.); IT-S (produced by Ishihara Sangyo Co., Ltd.) and the like.

疎水化されたシリカ微粒子、疎水化されたチタニア微粒子、疎水化されたアルミナ微粒子は、親水性の微粒子をメチルトリメトキシシラン、メチルトリエトキシシラン、オクチルトリメトキシシラン等のシランカップリング剤で処理して得ることができる。疎水化処理剤としては、例えばジアルキルジハロゲン化シラン、トリアルキルハロゲン化シラン、アルキルトリハロゲン化シラン、ヘキサアルキルジシラザンなどのシランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤、シリコーンオイル、シリコーンワニスなどが挙げられる。   Hydrophobized silica fine particles, hydrophobized titania fine particles, and hydrophobized alumina fine particles are obtained by treating hydrophilic fine particles with a silane coupling agent such as methyltrimethoxysilane, methyltriethoxysilane, or octyltrimethoxysilane. Can be obtained. Examples of the hydrophobizing agent include silane coupling agents such as dialkyl dihalogenated silanes, trialkyl halogenated silanes, alkyl trihalogenated silanes, and hexaalkyldisilazanes, silylating agents, and silane coupling agents having a fluorinated alkyl group. , Organic titanate coupling agents, aluminum coupling agents, silicone oils, silicone varnishes, and the like.

無機微粒子の一次粒子の平均粒径は、1〜100nmであることが好ましく、3〜70nmであることがより好ましい。平均粒径が1nm未満であると、無機微粒子がトナー中に埋没し、その機能が有効に発揮されにくいことがある。また、100nmを超えると、静電潜像担持体表面を不均一に傷つけてしまうことがある。外添剤としては、無機微粒子や疎水化処理無機微粒子を併用することができる。疎水化処理された一次粒子の平均粒径が20nm以下の無機微粒子を少なくとも2種類含み、かつ30nm以上の無機微粒子を少なくとも1種類含むことがより好ましい。また、無機微粒子のBET法による比表面積は、20〜500m/gであることが好ましい。外添剤の添加量は、トナーに対し0.1〜5重量%であることが好ましく、0.3〜3重量%であることがより好ましい。外添剤として樹脂微粒子も添加することができる。例えばソープフリー乳化重合や懸濁重合、分散重合によって得られるポリスチレン;メタクリル酸エステル、アクリル酸エステルの共重合体;シリコーン、ベンゾグアナミン、ナイロン等の重縮合系;熱硬化性樹脂による重合体粒子が挙げられる。このような樹脂微粒子を併用することによってトナーの帯電性が強化でき、逆帯電のトナーを減少させ、地肌汚れを低減することができる。樹脂微粒子の添加量は、トナーに対し0.01〜5重量%であることが好ましく、0.1〜2重量%であることがより好ましい。 The average particle size of the primary particles of the inorganic fine particles is preferably 1 to 100 nm, and more preferably 3 to 70 nm. If the average particle size is less than 1 nm, the inorganic fine particles are buried in the toner, and the function may not be effectively exhibited. On the other hand, when the thickness exceeds 100 nm, the surface of the electrostatic latent image carrier may be damaged unevenly. As the external additive, inorganic fine particles or hydrophobic treated inorganic fine particles can be used in combination. More preferably, the hydrophobized primary particles include at least two types of inorganic fine particles having an average particle size of 20 nm or less and at least one type of inorganic fine particles of 30 nm or more. Moreover, it is preferable that the specific surface area by BET method of an inorganic fine particle is 20-500 m < 2 > / g. The amount of the external additive added is preferably 0.1 to 5% by weight and more preferably 0.3 to 3% by weight with respect to the toner. Resin fine particles can also be added as an external additive. For example, polystyrene obtained by soap-free emulsion polymerization, suspension polymerization, or dispersion polymerization; copolymer of methacrylic acid ester, acrylic acid ester; polycondensation system such as silicone, benzoguanamine, nylon; polymer particles made of thermosetting resin It is done. By using such resin fine particles in combination, the chargeability of the toner can be enhanced, the reversely charged toner can be reduced, and the background stain can be reduced. The amount of resin fine particles added is preferably 0.01 to 5% by weight, more preferably 0.1 to 2% by weight, based on the toner.

トナーの製法や材料は、条件を満たしていれば公知のものを全て使用可能であり、特に限定されるものではない。例えば、混練粉砕法や、水系媒体中にてトナー粒子を造粒する、いわゆるケミカル工法を例示することができる。ケミカル工法としては、例えば、モノマーを出発原料として製造する懸濁重合法、乳化重合法、シード重合法、分散重合法等;樹脂や樹脂前駆体を有機溶剤などに溶解して水系媒体中にて分散乃至乳化させる溶解懸濁法;溶解懸濁法において、活性水素基と反応可能な官能基を有する樹脂前駆体(反応性基含有プレポリマー)を含む油相組成物を、樹脂微粒子を含む水系媒体中に乳化乃至分散させ、該水系媒体中で、活性水素基含有化合物と、前記反応性基含有プレポリマーとを反応させる方法(製造方法(I));樹脂や樹脂前駆体と適当な乳化剤からなる溶液に水を加えて転相させる転相乳化法;これらの工法によって得られた樹脂粒子を水系媒体中に分散させた状態で凝集させて加熱溶融等により所望サイズの粒子に造粒する凝集法などが挙げられる。これらの中でも、溶解懸濁法、前記製造方法(I)、凝集法で得られるトナーが、結晶性樹脂による造粒性(粒度分布制御や、粒子形状制御等)の観点から好ましく、前記製造方法(I)で得られるトナーがより好ましい。   Any known toner production method and material can be used as long as the conditions are satisfied, and is not particularly limited. Examples thereof include a kneading and pulverizing method and a so-called chemical method of granulating toner particles in an aqueous medium. Chemical methods include, for example, suspension polymerization, emulsion polymerization, seed polymerization, dispersion polymerization, etc., in which monomers are used as starting materials; resins and resin precursors are dissolved in an organic solvent and the like in an aqueous medium. Dispersion or emulsification dissolution suspension method; in the dissolution suspension method, an oil phase composition containing a resin precursor (reactive group-containing prepolymer) having a functional group capable of reacting with an active hydrogen group, and an aqueous system containing resin fine particles A method of emulsifying or dispersing in a medium and reacting an active hydrogen group-containing compound with the reactive group-containing prepolymer in the aqueous medium (production method (I)); resin or resin precursor and an appropriate emulsifier A phase inversion emulsification method in which water is added to a solution consisting of the above-mentioned solutions; the resin particles obtained by these methods are aggregated in a state dispersed in an aqueous medium and granulated into particles of a desired size by heating and melting Agglomeration , And the like. Among these, the toner obtained by the dissolution suspension method, the production method (I), and the aggregation method is preferable from the viewpoint of granulation properties (particle size distribution control, particle shape control, etc.) by the crystalline resin, and the production method described above. The toner obtained in (I) is more preferable.

混練粉砕法は、例えば、少なくとも着色剤、結着樹脂、離型剤を有するトナー材料を溶融混練したものを、粉砕し、分級することにより、前記トナーの母体粒子を製造する方法である。溶融混練では、前記トナー材料を混合し、該混合物を溶融混練機に仕込んで溶融混練する。溶融混練機としては、例えば、一軸又は二軸の連続混練機や、ロールミルによるバッチ式混練機を用いることができる。例えば、神戸製鋼所製KTK型二軸押出機、東芝機械社製TEM型押出機、ケイシーケイ社製二軸押出機、池貝鉄工所製PCM型二軸押出機、ブス社製コニーダー等が好適に用いられる。この溶融混練は、結着樹脂の分子鎖の切断を招来しないような適正な条件で行うことが好ましい。具体的には、溶融混練温度は、結着樹脂の軟化点を参考にして行われ、該軟化点より高温過ぎると切断が激しく、低温すぎると分散が進まないことがある。   The kneading and pulverizing method is, for example, a method of producing the toner base particles by pulverizing and classifying a toner material having at least a colorant, a binder resin, and a release agent melted and kneaded. In melt kneading, the toner materials are mixed, and the mixture is charged into a melt kneader and melt kneaded. As the melt kneader, for example, a uniaxial or biaxial continuous kneader or a batch kneader using a roll mill can be used. For example, KTK type twin screw extruder manufactured by Kobe Steel, TEM type extruder manufactured by Toshiba Machine Co., Ltd., twin screw extruder manufactured by Casey Kay Co., Ltd. Used. This melt-kneading is preferably performed under appropriate conditions so as not to cause the molecular chains of the binder resin to be broken. Specifically, the melt-kneading temperature is determined with reference to the softening point of the binder resin. If the temperature is higher than the softening point, cutting is severe, and if the temperature is too low, dispersion may not proceed.

粉砕では、トナー材料の混練によって得られた混練物を粉砕する。この粉砕においては、まず、混練物を粗粉砕し、次いで微粉砕することが好ましい。この際ジェット気流中で衝突板に衝突させて粉砕したり、ジェット気流中で粒子同士を衝突させて粉砕したり、機械的に回転するローターとステーターの狭いギャップで粉砕する方式が好ましく用いられる。分級においては、粉砕で得られた粉砕物を分級して所定粒径の粒子に調整する。分級は、例えば、サイクロン、デカンター、遠心分離器等により、微粒子部分を取り除くことにより行うことができる。粉砕及び分級が終了した後に、粉砕物を遠心力などで気流中に分級し、所定の粒径のトナー母体粒子を製造することができる。   In the pulverization, the kneaded material obtained by kneading the toner material is pulverized. In this pulverization, it is preferable that the kneaded material is first coarsely pulverized and then finely pulverized. At this time, a method of pulverizing by colliding with a collision plate in a jet stream, pulverizing particles by colliding with each other in a jet stream, or pulverizing with a narrow gap between a mechanically rotating rotor and a stator is preferably used. In classification, the pulverized product obtained by pulverization is classified and adjusted to particles having a predetermined particle size. Classification can be performed, for example, by removing fine particle portions with a cyclone, a decanter, a centrifuge, or the like. After the pulverization and classification are completed, the pulverized product is classified into an air current by centrifugal force or the like, and toner base particles having a predetermined particle diameter can be produced.

溶解懸濁法は、例えば、少なくとも結着樹脂乃至樹脂前駆体、着色剤、及び離型剤を含有してなるトナー組成物を有機溶媒中に溶解乃至分散させた油相組成物を、水系媒体中で分散乃至乳化させることにより、トナーの母体粒子を製造する方法である。トナー組成物を溶解乃至分散させる場合に用いる有機溶媒としては、沸点が100℃未満の揮発性であることが、後の溶剤除去が容易になる点から好ましい。有機溶剤としては、例えば、酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート等のエステル系又はエステルエーテル系溶剤、ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のエーテル系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ−n−ブチルケトン、シクロヘキサノン等のケトン系溶剤、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、2−エチルヘキシルアルコール、ベンジルアルコール等のアルコール系溶剤、これらの2種以上の混合溶剤が挙げられる。   In the dissolution suspension method, for example, an oil phase composition in which a toner composition containing at least a binder resin or a resin precursor, a colorant, and a release agent is dissolved or dispersed in an organic solvent is used as an aqueous medium. In this method, toner base particles are produced by dispersing or emulsifying the toner. The organic solvent used for dissolving or dispersing the toner composition is preferably volatile with a boiling point of less than 100 ° C. from the viewpoint of easy removal of the solvent later. Examples of the organic solvent include ester solvents such as ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, diethyl ether, tetrahydrofuran, dioxane, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether. Ether solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butyl ketone, cyclohexanone and other ketone solvents, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, 2- Examples thereof include alcohol solvents such as ethylhexyl alcohol and benzyl alcohol, and mixed solvents of two or more of these.

溶解懸濁法では、油相組成物を水系媒体中で分散あるいは乳化させる際に、必要に応じて、乳化剤や分散剤を用いても良い。乳化剤又は分散剤としては、公知の界面活性剤、水溶性ポリマー等を用いることができる。界面活性剤としては、特に制限はなく、アニオン界面活性剤(アルキルベンゼンスルホン酸、リン酸エステル等)、カチオン界面活性剤(四級アンモニウム塩型、アミン塩型等)、両性界面活性剤(カルボン酸塩型、硫酸エステル塩型、スルホン酸塩型、リン酸エステル塩型等)、非イオン界面活性剤(AO付加型、多価アルコール型等)等が挙げられる。界面活性剤は、1種単独又は2種以上の界面活性剤を併用してもよい。   In the dissolution suspension method, when the oil phase composition is dispersed or emulsified in an aqueous medium, an emulsifier or a dispersant may be used as necessary. As the emulsifier or dispersant, known surfactants, water-soluble polymers and the like can be used. The surfactant is not particularly limited, and is an anionic surfactant (alkylbenzene sulfonic acid, phosphate ester, etc.), cationic surfactant (quaternary ammonium salt type, amine salt type, etc.), amphoteric surfactant (carboxylic acid). Salt type, sulfate salt type, sulfonate type, phosphate ester type, etc.), nonionic surfactants (AO addition type, polyhydric alcohol type, etc.) and the like. One surfactant may be used alone, or two or more surfactants may be used in combination.

水溶性ポリマーとしては、セルロース系化合物(例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース及びそれらのケン化物など)、ゼラチン、デンプン、デキストリン、アラビアゴム、キチン、キトサン、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリルアミド、アクリル酸(塩)含有ポリマー(ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリアクリル酸の水酸化ナトリウム部分中和物、アクリル酸ナトリウム−アクリル酸エステル共重合体)、スチレン−無水マレイン酸共重合体の水酸化ナトリウム(部分)中和物、水溶性ポリウレタン(ポリエチレングリコール、ポリカプロラクトンジオール等とポリイソシアネートの反応生成物等)などが挙げられる。また、乳化又は分散の助剤として、上記の有機溶剤及び可塑剤等を併用することもでき
る。
Examples of the water-soluble polymer include cellulosic compounds (eg, methylcellulose, ethylcellulose, hydroxyethylcellulose, ethylhydroxyethylcellulose, carboxymethylcellulose, hydroxypropylcellulose and saponified products thereof), gelatin, starch, dextrin, gum arabic, chitin, chitosan, Polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyethyleneimine, polyacrylamide, acrylic acid (salt) -containing polymer (sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, partially neutralized sodium hydroxide of polyacrylic acid, Sodium acrylate-acrylic acid ester copolymer), sodium hydroxide of styrene-maleic anhydride copolymer (parts) ) Neutralized product water-soluble polyurethane (polyethylene glycol, reaction products of polycaprolactone diol with polyisocyanate and the like) and the like. Moreover, said organic solvent, a plasticizer, etc. can also be used together as an auxiliary | assistant of emulsification or dispersion | distribution.

溶解懸濁法では、次のようにしてトナーを得ることが望ましい。即ち、少なくとも結着樹脂、活性水素基と反応可能な官能基を有する結着樹脂前駆体(反応性基含有プレポリマー)、着色剤、及び離型剤を含む油相組成物を用意する。この油相組成物を、樹脂微粒子を含む水系媒体中に分散又は乳化させる。そして、その油相組成物中や水系媒体中に含まれる活性水素基含有化合物と、反応性基含有プレポリマーとを反応させる方法(製造方法(I))によりトナーの母体粒子を造粒してトナーを得る。   In the dissolution suspension method, it is desirable to obtain toner as follows. That is, an oil phase composition including at least a binder resin, a binder resin precursor (reactive group-containing prepolymer) having a functional group capable of reacting with an active hydrogen group, a colorant, and a release agent is prepared. This oil phase composition is dispersed or emulsified in an aqueous medium containing resin fine particles. Then, toner base particles are granulated by a method (production method (I)) of reacting an active hydrogen group-containing compound contained in the oil phase composition or an aqueous medium with a reactive group-containing prepolymer. Get toner.

樹脂微粒子は、公知の重合方法を用いて形成することができるが、樹脂微粒子の水性分散液として得ることが好ましい。樹脂微粒子の水性分散液を調製する方法としては、例えば、以下の(a)〜(h)に示す方法が挙げられる。   The resin fine particles can be formed using a known polymerization method, but it is preferably obtained as an aqueous dispersion of resin fine particles. Examples of the method for preparing an aqueous dispersion of resin fine particles include the methods shown in the following (a) to (h).

(a)ビニルモノマーを出発原料として、懸濁重合法、乳化重合法、シード重合法及び分散重合法の何れかの重合反応により、直接、樹脂微粒子の水性分散液を調製する方法。
(b)ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂等の重付加乃至縮合系樹脂の前駆体(モノマー、オリゴマー等)又はその溶剤溶液を適当な分散剤の存在下で、水性媒体中に分散させる。その後、加熱又は硬化剤を添加して硬化させて、樹脂微粒子の水性分散液を調製する方法。
(c)ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂等の重付加乃至縮合系樹脂の前駆体(モノマー、オリゴマー等)又はその溶剤溶液(液体であることが好ましく、加熱により液状化してもよい)中に適当な乳化剤を溶解させる。その後、水を加えて転相乳化させて、樹脂微粒子の水性分散液を調製する方法。
(d)予め重合反応(例えば、付加重合、開環重合、重付加、付加縮合、縮合重合等)により合成した樹脂を機械回転式又はジェット式等の微粉砕機を用いて粉砕し、分級することによって樹脂微粒子を得る。その後、適当な分散剤の存在下、水中に分散させて、樹脂微粒子の水性分散液を調製する方法。
(e)予め重合反応(例えば、付加重合、開環重合、重付加、付加縮合、縮合重合等)により合成した樹脂を溶剤に溶解させた樹脂溶液を霧状に噴霧することにより樹脂微粒子を形成する。その後、樹脂微粒子を適当な分散剤の存在下、水中に分散させて、樹脂微粒子の水性分散液を調製する方法。
(f)予め重合反応(例えば、付加重合、開環重合、重付加、付加縮合、縮合重合等)により合成した樹脂を溶剤に溶解させた樹脂溶液に貧溶剤を添加する。あるいは、又は予め溶剤に加熱溶解させた樹脂溶液を冷却することにより樹脂微粒子を析出させ、溶剤を除去して樹脂微粒子を形成する。その後、樹脂微粒子を適当な分散剤の存在下、水中に分散させて、樹脂微粒子の水性分散液を調製する方法。
(g)重合反応(例えば、付加重合、開環重合、重付加、付加縮合、縮合重合等)によって合成した樹脂を用意する。この樹脂を溶剤に溶解させた樹脂溶液を、適当な分散剤の存在下、水性媒体中に分散させた後、加熱、減圧等によって溶剤を除去して、樹脂微粒子の水性分散液を調製する方法。
(h)重合反応(例えば、付加重合、開環重合、重付加、付加縮合、縮合重合等)によって合成した樹脂を用意する。この樹脂を溶剤に溶解させた樹脂溶液中に適当な乳化剤を溶解させた後、水を加えて転相乳化させて、樹脂微粒子の水性分散液を調製する方法。
(A) A method in which an aqueous dispersion of resin fine particles is directly prepared from a vinyl monomer as a starting material by any one of a suspension polymerization method, an emulsion polymerization method, a seed polymerization method and a dispersion polymerization method.
(B) A polyaddition or condensation resin precursor (monomer, oligomer, etc.) such as a polyester resin, polyurethane resin, or epoxy resin or a solvent solution thereof is dispersed in an aqueous medium in the presence of a suitable dispersant. Thereafter, a method of preparing an aqueous dispersion of resin fine particles by heating and adding a curing agent to cure.
(C) In precursors (monomers, oligomers, etc.) of polyaddition or condensation resins such as polyester resins, polyurethane resins, and epoxy resins, or solvent solutions thereof (preferably liquids, and may be liquefied by heating) A suitable emulsifier is dissolved. Thereafter, water is added to cause phase inversion emulsification to prepare an aqueous dispersion of resin fine particles.
(D) A resin synthesized in advance by a polymerization reaction (for example, addition polymerization, ring-opening polymerization, polyaddition, addition condensation, condensation polymerization, etc.) is pulverized and classified using a mechanical rotary type or jet type fine pulverizer. Thus, resin fine particles are obtained. Thereafter, a method of preparing an aqueous dispersion of resin fine particles by dispersing in water in the presence of an appropriate dispersant.
(E) Fine resin particles are formed by spraying a resin solution in which a resin synthesized in advance by a polymerization reaction (for example, addition polymerization, ring-opening polymerization, polyaddition, addition condensation, condensation polymerization, etc.) is dissolved in a solvent. To do. Thereafter, resin fine particles are dispersed in water in the presence of an appropriate dispersant to prepare an aqueous dispersion of resin fine particles.
(F) A poor solvent is added to a resin solution in which a resin synthesized in advance by a polymerization reaction (for example, addition polymerization, ring-opening polymerization, polyaddition, addition condensation, condensation polymerization, etc.) is dissolved in a solvent. Alternatively, resin fine particles are precipitated by cooling a resin solution previously dissolved in a solvent by heating, and the solvent is removed to form resin fine particles. Thereafter, resin fine particles are dispersed in water in the presence of an appropriate dispersant to prepare an aqueous dispersion of resin fine particles.
(G) A resin synthesized by a polymerization reaction (for example, addition polymerization, ring-opening polymerization, polyaddition, addition condensation, condensation polymerization, etc.) is prepared. A method of preparing an aqueous dispersion of resin fine particles by dispersing a resin solution obtained by dissolving this resin in a solvent in an aqueous medium in the presence of an appropriate dispersant and then removing the solvent by heating, decompression, etc. .
(H) A resin synthesized by a polymerization reaction (for example, addition polymerization, ring-opening polymerization, polyaddition, addition condensation, condensation polymerization, etc.) is prepared. A method of preparing an aqueous dispersion of resin fine particles by dissolving a suitable emulsifier in a resin solution obtained by dissolving this resin in a solvent and then adding water to cause phase inversion emulsification.

樹脂微粒子の体積平均粒径は10nm以上、300nm以下であることが好ましく、30nm以上、120nm以下であることがより好ましい。樹脂微粒子の体積平均粒径が10nm未満である場合や、300nmを超える場合には、トナーの粒度分布が悪化することがあるため好ましくない。   The volume average particle diameter of the resin fine particles is preferably 10 nm or more and 300 nm or less, and more preferably 30 nm or more and 120 nm or less. When the volume average particle size of the resin fine particles is less than 10 nm or exceeds 300 nm, the particle size distribution of the toner may be deteriorated, which is not preferable.

油相の固形分濃度は、40〜80%程度であることが好ましい。濃度が高すぎると、溶解乃至分散が困難になり、また粘度が高くなって扱いづらく、濃度が低すぎると、トナーの製造性が低下する。   The solid content concentration of the oil phase is preferably about 40 to 80%. If the concentration is too high, dissolution or dispersion becomes difficult, and the viscosity becomes high and difficult to handle. If the concentration is too low, the productivity of the toner decreases.

着色剤や離型剤等の結着樹脂以外のトナー組成物、及びそれらのマスターバッチ等は、それぞれ個別に有機溶剤に溶解乃至分散させた後、結着樹脂溶解液又は分散液に混合しても良い。水系媒体としては、水単独でもよいが、水と混和可能な溶剤を併用することもできる。混和可能な溶剤としては、アルコール(メタノール、イソプロパノール、エチレングリコールなど)、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類(メチルセルソルブなど)、低級ケトン類(アセトン、メチルエチルケトンなど)等が挙げられる。   Toner compositions other than the binder resin such as a colorant and a release agent, and their master batches are individually dissolved or dispersed in an organic solvent, and then mixed with the binder resin solution or dispersion. Also good. As an aqueous medium, water alone may be used, but a solvent miscible with water may be used in combination. Examples of miscible solvents include alcohol (methanol, isopropanol, ethylene glycol, etc.), dimethylformamide, tetrahydrofuran, cellosolves (methyl cellosolve, etc.), lower ketones (acetone, methyl ethyl ketone, etc.) and the like.

水系媒体中に分散させたり、水系媒体中で乳化させたりする方法としては、特に限定されるものではない。低速せん断式、高速せん断式、摩擦式、高圧ジェット式、超音波などの公知の設備を適用することが可能である。中でも、粒子の小粒径化の観点からは、高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は特に限定はないが、通常1000〜30000rpm、好ましくは5000〜20000rpmである。分散時の温度としては、通常、0〜150℃(加圧下)、好ましくは20〜80℃である。   The method for dispersing in an aqueous medium or emulsifying in an aqueous medium is not particularly limited. Known equipment such as a low-speed shearing type, a high-speed shearing type, a friction type, a high-pressure jet type, and an ultrasonic wave can be applied. Among these, the high-speed shearing method is preferable from the viewpoint of reducing the particle size of the particles. When a high-speed shearing disperser is used, the rotational speed is not particularly limited, but is usually 1000 to 30000 rpm, preferably 5000 to 20000 rpm. The temperature during dispersion is usually 0 to 150 ° C. (under pressure), preferably 20 to 80 ° C.

有機溶媒を、得られた乳化分散体から除去するための方法は、特に制限はなく、公知の方法を使用することができる。例えば、常圧または減圧下で系全体を撹拌しながら徐々に昇温し、液滴中の有機溶剤を完全に蒸発除去する方法を採用することができる。   The method for removing the organic solvent from the obtained emulsified dispersion is not particularly limited, and a known method can be used. For example, it is possible to employ a method in which the temperature of the entire system is gradually increased while stirring the system under normal pressure or reduced pressure to completely evaporate and remove the organic solvent in the droplets.

水系媒体に分散されたトナーの母体粒子を洗浄、乾燥する方法としては、公知の技術が用いられる。例えば、遠心分離機、フィルタープレスなどで固液分離した後、得られたトナーケーキを常温〜約40℃程度のイオン交換水に再分散させ、必要に応じて酸やアルカリでpH調整する。その後、再度固液分離するという工程を数回繰り返すことにより不純物や界面活性剤などを除去した後、気流乾燥機や循環乾燥機、減圧乾燥機、振動流動乾燥機などにより乾燥することによってトナー粉末を得る。この際、遠心分離などでトナーの微粒子成分を取り除いても良い。また、乾燥後に必要に応じて公知の分級機を用いて所望の粒径分布にすることができる。   As a method of washing and drying the toner base particles dispersed in the aqueous medium, a known technique is used. For example, after solid-liquid separation with a centrifuge, a filter press or the like, the obtained toner cake is re-dispersed in ion exchange water at about room temperature to about 40 ° C., and the pH is adjusted with acid or alkali as necessary. After that, the process of solid-liquid separation is repeated several times to remove impurities and surfactants, and then the toner powder is dried by an air dryer, circulation dryer, vacuum dryer, vibration fluid dryer, etc. Get. At this time, the fine particle component of the toner may be removed by centrifugation or the like. Moreover, it can be made a desired particle size distribution using a well-known classifier as needed after drying.

凝集法では、例えば、少なくとも結着樹脂からなる樹脂微粒子分散液、着色剤粒子分散液、必要に応じて離型剤粒子分散液を混合し、凝集させることによりトナー母体粒子を製造する方法である。樹脂微粒子分散液は、公知の方法、例えば乳化重合や、シード重合、転相乳化法等により得られる。また、着色剤粒子分散液や、離型剤粒子分散液は、公知の湿式分散法等により着色剤や、離型剤を水系媒体に分散させることで得られる。   In the aggregation method, for example, a toner base particle is produced by mixing and aggregating at least a resin fine particle dispersion composed of a binder resin, a colorant particle dispersion, and a release agent particle dispersion as necessary. . The resin fine particle dispersion is obtained by a known method, for example, emulsion polymerization, seed polymerization, phase inversion emulsification method or the like. The colorant particle dispersion and the release agent particle dispersion can be obtained by dispersing the colorant and the release agent in an aqueous medium by a known wet dispersion method or the like.

凝集状態の制御には、熱を加える、金属塩を添加する、pHを調整するなどの方法が好ましく用いられる。金属塩としては特に制限はなく、ナトリウム、カリウム等の塩を構成する一価の金属;カルシウム、マグネシウム等の塩を構成する二価の金属;アルミニウム等の塩を構成する三価の金属などが挙げられる。塩を構成する陰イオンとしては、例えば、塩化物イオン、臭化物イオン、ヨウ化物イオン、炭酸イオン、硫酸イオンが挙げられ、これらの中でも、塩化マグネシウムや塩化アルミニウム及びその複合体や多量体が好ましい。また、凝集の途中や凝集完了後に加熱することで樹脂微粒子同士の融着を促進することができ、トナーの均一性の観点から好ましい。さらに、加熱によりトナーの形状を制御することができ、通常、より加熱すればトナーは球状に近くなっていく。   For the control of the aggregation state, methods such as applying heat, adding a metal salt, and adjusting pH are preferably used. The metal salt is not particularly limited, and monovalent metals constituting salts such as sodium and potassium; divalent metals constituting salts such as calcium and magnesium; trivalent metals constituting salts such as aluminum and the like. Can be mentioned. Examples of the anion constituting the salt include chloride ion, bromide ion, iodide ion, carbonate ion, and sulfate ion. Among these, magnesium chloride, aluminum chloride, and a complex or multimer thereof are preferable. Also, heating between the agglomeration and after completion of the agglomeration can promote fusion between the resin fine particles, which is preferable from the viewpoint of toner uniformity. Furthermore, the shape of the toner can be controlled by heating. Normally, the toner becomes more spherical when heated further.

水系媒体に分散されたトナーの母体粒子を洗浄、乾燥する方法は、前述の方法等を用いることができる。また、トナーの流動性や保存性、現像性、転写性を高めるために、以上のようにして製造されたトナー母体粒子に更に疎水性シリカ微粉末等の無機微粒子を添加混合してもよい。   As the method for washing and drying the toner base particles dispersed in the aqueous medium, the above-described method and the like can be used. Further, in order to improve the fluidity, storage stability, developability and transferability of the toner, inorganic fine particles such as hydrophobic silica fine powder may be further added to and mixed with the toner base particles produced as described above.

添加剤の混合は一般の粉体の混合機が用いられるがジャケット等装備して、内部の温度を調節できることが好ましい。なお、添加剤に与える負荷の履歴を変えるには、途中又は漸次添加剤を加えていけばよい。この場合、混合機の回転数、転動速度、時間、温度等を変化させてもよい。又はじめに強い負荷を、比較的弱い負荷を与えてもよいし、その逆でもよい。使用できる混合設備としては、例えば、V型混合機、ロッキングミキサー、レーディゲミキサー、ナウターミキサー、ヘンシェルミキサー等が挙げられる。次いで、250メッシュ以上の篩を通過させて、粗大粒子、凝集粒子を除去し、トナーが得られる。   For mixing the additives, a general powder mixer is used, but it is preferable to equip a jacket or the like to adjust the internal temperature. In order to change the load history applied to the additive, the additive may be added midway or gradually. In this case, you may change the rotation speed, rolling speed, time, temperature, etc. of a mixer. Alternatively, a strong load may be applied first, a relatively weak load, or vice versa. Examples of the mixing equipment that can be used include a V-type mixer, a rocking mixer, a Ladige mixer, a Nauter mixer, and a Henschel mixer. Next, the toner is obtained by passing through a sieve of 250 mesh or more to remove coarse particles and aggregated particles.

トナーの形状、大きさ等については、特に制限はなく、目的に応じて適宜選択することができるが、以下のような、平均円形度、体積平均粒径、体積平均粒径と個数平均粒径との比(体積平均粒径/個数平均粒径)等を有していることが好ましい。   The shape, size, etc. of the toner are not particularly limited and can be appropriately selected according to the purpose. The average circularity, volume average particle size, volume average particle size and number average particle size are as follows. (Volume average particle diameter / number average particle diameter) and the like.

トナーの平均円形度は、トナーの形状と投影面積の等しい相当円の周囲長を実在粒子の周囲長で除した値である。この値は、0.950〜0.980であることが好ましく、0.960〜0.975であることがより好ましい。なお、平均円形度が0.950未満である粒子は、全体の15%以下であることが好ましい。平均円形度が0.950未満であると、満足できる転写性やチリのない高画質画像が得られないことがある。また、平均円形度が0.980を超えると、ブレードクリーニング等を採用している画像形成システムでは、感光体上及び転写ベルト等のクリーニング不良が発生する。そして、画像上の汚れ、例えば、写真画像等の画像面積率の高い画像形成の場合において、給紙不良等で未転写の画像を形成したトナーが感光体上に転写残トナーとなって蓄積した画像の地汚れが発生してしまうことがある。あるいは、感光体を接触帯電させる帯電ローラ等を汚染してしまい、本来の帯電能力を発揮できなくなってしまうことがある。   The average circularity of the toner is a value obtained by dividing the perimeter of an equivalent circle having the same toner shape and projected area by the perimeter of the actual particles. This value is preferably 0.950 to 0.980, and more preferably 0.960 to 0.975. In addition, it is preferable that the particle | grains whose average circularity is less than 0.950 are 15% or less of the whole. If the average circularity is less than 0.950, satisfactory transferability and high-quality images without dust may not be obtained. On the other hand, when the average circularity exceeds 0.980, in an image forming system employing blade cleaning or the like, poor cleaning occurs on the photoreceptor or the transfer belt. Then, in the case of image formation with a high image area ratio such as a photographic image, such as a photographic image, toner that has formed an untransferred image due to poor paper feed or the like has accumulated as a transfer residual toner on the photoreceptor. The image may be soiled. Alternatively, the charging roller that contacts and charges the photosensitive member may be contaminated, and the original charging ability may not be exhibited.

トナーの平均円形度は、次のようにして解析することが可能である。即ち、フロー式粒子像分析装置(「FPIA−2100」、シスメックス社製)を用いて計測し、解析ソフト(FPIA−2100Data Processing Program for FPIAversion00−10)を用いて解析する。具体的には、ガラス製の100mlビーカーに10重量%の界面活性剤(アルキルベンゼンスフォン酸塩、ネオゲンSC−A、第一工業製薬株式会社製)を0.1〜0.5ml添加する。そして、各トナー0.1〜0.5g添加しミクロスパーテルでかき混ぜ、次いでイオン交換水80mLを添加する。得られた分散液を超音波分散器(本多電子株式会社製)で3分間だけ分散処理する。得られた分散液を5,000〜15,000個/μLの濃度に調整した後、FPIA−2100にセットしてトナーの形状及び分布を測定する。この測定法は、平均円形度の測定再現性の点から、分散液の濃度を5,000〜15,000個/μLにすることが重要である。かかる濃度を実現するために、分散液に添加する界面活性剤量、トナー量を調整する必要がある。界面活性剤量は前述したトナー粒径の測定と同様に、トナーの疎水性によって必要量が異なり、多く添加すると泡によるノイズが発生し、少ないとトナーを十分に濡らすことができないため、分散が不十分となる。またトナー添加量は粒径により異なり、小粒径の場合は少なく、また大粒径の場合は多くする必要がある。例えば、トナー粒径が3μm〜10μmである場合には、トナー量を0.1g〜0.5g添加することにより、分散液濃度を5,000個/μl〜15,000個/μlに調整することが可能になる。   The average circularity of the toner can be analyzed as follows. That is, measurement is performed using a flow type particle image analyzer (“FPIA-2100”, manufactured by Sysmex Corporation), and analysis is performed using analysis software (FPIA-2100 Data Processing Program for FPIAversion 00-10). Specifically, 0.1 to 0.5 ml of 10% by weight of a surfactant (alkylbenzene sulfonate, Neogen SC-A, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is added to a glass 100 ml beaker. Then, 0.1 to 0.5 g of each toner is added, and the mixture is stirred with a micropartel, and then 80 mL of ion-exchanged water is added. The obtained dispersion is subjected to dispersion treatment for 3 minutes with an ultrasonic disperser (manufactured by Honda Electronics Co., Ltd.). The obtained dispersion is adjusted to a concentration of 5,000 to 15,000 / μL and then set on FPIA-2100 to measure the shape and distribution of the toner. In this measurement method, it is important that the concentration of the dispersion is 5,000 to 15,000 / μL from the viewpoint of measurement reproducibility of the average circularity. In order to realize such a concentration, it is necessary to adjust the amount of surfactant and the amount of toner added to the dispersion. Similar to the measurement of the toner particle size described above, the required amount of the surfactant varies depending on the hydrophobicity of the toner. If a large amount is added, noise due to bubbles is generated. If the amount is small, the toner cannot be sufficiently wetted. It becomes insufficient. Further, the amount of toner added varies depending on the particle size, and it is necessary to decrease the small particle size and increase the large particle size. For example, when the toner particle diameter is 3 μm to 10 μm, the dispersion concentration is adjusted to 5,000 / μl to 15,000 / μl by adding 0.1 g to 0.5 g of toner. It becomes possible.

トナーの体積平均粒径としては、特に制限はなく、目的に応じて適宜選択することができる。3μm〜10μmであることが好ましく、4μm〜7μmであることがより好ましい。体積平均粒径が3μm未満であると、二成分現像剤では現像装置における長期の撹拌においてキャリアの表面にトナーが融着し、キャリアの帯電能力を低下させることがある。また、10μmを超えると、高解像で高画質の画像を得ることが難しくなり、現像剤中のトナーの収支が行われた場合にトナーの粒径の変動が大きくなることがある。   The volume average particle diameter of the toner is not particularly limited and can be appropriately selected depending on the purpose. 3 μm to 10 μm is preferable, and 4 μm to 7 μm is more preferable. When the volume average particle size is less than 3 μm, in the two-component developer, the toner is fused to the surface of the carrier during a long period of stirring in the developing device, and the charging ability of the carrier may be lowered. On the other hand, if it exceeds 10 μm, it becomes difficult to obtain a high-resolution and high-quality image, and when the balance of the toner in the developer is performed, the fluctuation of the toner particle size may increase.

トナーにおける体積平均粒径と個数平均粒径との比(体積平均粒径/個数平均粒径)は、1.00〜1.25であることが好ましく、1.00〜1.15であることがより好ましい。体積平均粒径、及び体積平均粒径と個数平均粒径との比(体積平均粒径/個数平均粒径)については、粒度測定器(「マルチサイザーIII」、ベックマンコールター社製)を用いて測定することが可能である。具体的には、アパーチャー径100μmで測定し、解析ソフト(BeckmanCoulterMutlisizer 3 Version3.51)にて解析を行う。より詳しくは、ガラス製100mlビーカーに10重量%界面活性剤(アルキルベンゼンスフォン酸塩、ネオゲンSC−A、第一工業製薬株式会社製)を0.5ml添加する。そして、0.5gのトナーを添加しミクロスパーテルでかき混ぜ、イオン交換水80mlを添加する。得られた分散液を超音波分散器(W−113MK−II、本多電子株式会社製)で10分間だけ分散処理する。この分散液をマルチサイザーIIIにセットし、測定用溶液としてアイソトンIII(ベックマンコールター社製)を用いて粒径を測定する。測定にあたっては、装置が示す濃度が8±2%になるようにトナーサンプル分散液を滴下する。この測定法は、粒径の測定再現性の点から、濃度を8±2%にすることが重要である。この濃度範囲であれば粒径に誤差は生じない。   The ratio of the volume average particle diameter to the number average particle diameter (volume average particle diameter / number average particle diameter) in the toner is preferably 1.00 to 1.25, preferably 1.00 to 1.15. Is more preferable. About volume average particle diameter and ratio (volume average particle diameter / number average particle diameter) of volume average particle diameter and number average particle diameter, a particle size measuring device (“Multisizer III”, manufactured by Beckman Coulter, Inc.) is used. It is possible to measure. Specifically, measurement is performed with an aperture diameter of 100 μm, and analysis is performed with analysis software (Beckman Coulter Multisizer 3 Version 3.51). More specifically, 0.5 ml of 10 wt% surfactant (alkylbenzene sulfonate, Neogen SC-A, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is added to a 100 ml glass beaker. Then, 0.5 g of toner is added, and the mixture is stirred with a micropartel, and 80 ml of ion exchange water is added. The obtained dispersion is subjected to a dispersion treatment for 10 minutes with an ultrasonic disperser (W-113MK-II, manufactured by Honda Electronics Co., Ltd.). This dispersion is set in Multisizer III, and the particle size is measured using Isoton III (manufactured by Beckman Coulter, Inc.) as a measurement solution. In the measurement, the toner sample dispersion is dropped so that the concentration indicated by the apparatus is 8 ± 2%. In this measurement method, it is important to set the concentration to 8 ± 2% from the viewpoint of measurement reproducibility of the particle diameter. Within this concentration range, no error occurs in the particle size.

トナーの示差走査熱量計(DSC)による昇温1回目の融解熱ピークのショルダー温度Tsh1stと、昇温2回目の融解熱ピークのショルダー温度Tsh2ndの比Tsh2nd/Tsh1stの値は、0.90以上。1.10以下であることが好ましい。トナーの融解熱ピークのショルダー温度(Tsh1st、Tsh2nd)については、示差走査熱量計(DSC)(例えば、TA−60WS及びDSC−60(島津製作所製))を用いて測定することが可能である。具体的には、まず、5.0mgのトナーをアルミニウム製の試料容器に入れ、該試料容器をホルダーユニットに載せ、電気炉中にセットする。次いで、窒素雰囲気下、0℃から昇温速度10℃/minで150℃まで昇温させ、その後、150℃から降温速度10℃/minで0℃まで降温させ後、更に昇温速度10℃/minで150℃まで昇温してDSC曲線を計測する。得られたDSC曲線において、1回目の昇温時における吸熱ピーク温度をTm1st、2回目の昇温時における吸熱ピーク温度をTm2ndとする。このとき、吸熱ピークが複数ある場合は吸熱量が最大のものを選択する。それぞれの吸熱ピークについて、該吸熱ピークよりも低温側のベースラインと、吸熱ピークをなす低温側の傾斜の接線との交点を、それぞれTsh1st、Tsh2ndとする。   The value of the ratio Tsh2nd / Tsh1st between the shoulder temperature Tsh1st of the first heat-up melting peak and the shoulder heat Tsh2nd of the second heat-up melting peak measured by a differential scanning calorimeter (DSC) of the toner is 0.90 or more. It is preferable that it is 1.10 or less. The shoulder temperature (Tsh1st, Tsh2nd) of the melting heat peak of the toner can be measured using a differential scanning calorimeter (DSC) (for example, TA-60WS and DSC-60 (manufactured by Shimadzu Corporation)). Specifically, first, 5.0 mg of toner is put in an aluminum sample container, and the sample container is placed on a holder unit and set in an electric furnace. Next, the temperature was raised from 0 ° C. to 150 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, and then the temperature was lowered from 150 ° C. to 0 ° C. at a temperature lowering rate of 10 ° C./min. The temperature is raised to 150 ° C. in min and the DSC curve is measured. In the obtained DSC curve, the endothermic peak temperature at the first temperature rise is Tm1st, and the endothermic peak temperature at the second temperature rise is Tm2nd. At this time, when there are a plurality of endothermic peaks, the one with the largest endothermic amount is selected. For each endothermic peak, the intersections of the base line on the lower temperature side than the endothermic peak and the tangent line on the low temperature side forming the endothermic peak are denoted as Tsh1st and Tsh2nd, respectively.

トナーの結晶化度の値は、15%以上、30%以下であることが好ましく、20%以上、25%以下であることがより好ましい。該結晶化度の値が15%未満である場合、トナー中に含まれる非晶性部分の影響が大きくなり、結晶性樹脂特有の熱に対する急峻な粘弾性の応答が損なわれ、低温定着性の悪化や、耐熱保存性の悪化が生じることがあり、好ましくない。一方で、該結晶化度の値が30%より大きい場合、結晶性樹脂に起因した硬度の低下が抑制しきれず、現像器内での撹拌ストレスにより経時でキャリアフィルミングを生じたり、トナー及びキャリアの凝集体を生じて画像不良を生じたりすることがあり好ましくない。トナーの結晶化度については、例えば、次のようにして制御することが可能である。即ち、結晶性樹脂と非結晶性樹脂の混合比率を変えることや、結晶性樹脂の結晶化度を変える(モノマー組成を変更したり、結晶性部と非晶性部を持つブロック樹脂の結晶性部と非晶性部の比率を変更したりする等)。   The value of the crystallinity of the toner is preferably 15% or more and 30% or less, and more preferably 20% or more and 25% or less. When the crystallinity value is less than 15%, the influence of the amorphous part contained in the toner is increased, the sharp viscoelastic response to heat unique to the crystalline resin is impaired, and the low-temperature fixability is reduced. Deterioration and heat-resistant storage stability may occur, which is not preferable. On the other hand, when the crystallinity value is larger than 30%, the decrease in hardness due to the crystalline resin cannot be suppressed, and carrier filming may occur over time due to agitation stress in the developing device, or toner and carrier Image agglomerates and image defects may occur. The crystallinity of the toner can be controlled as follows, for example. That is, change the mixing ratio of crystalline resin and amorphous resin, change the crystallinity of crystalline resin (change monomer composition, crystallinity of block resin with crystalline part and amorphous part) Changing the ratio of part to amorphous part).

現像剤は、トナーと、キャリア等の適宜選択されたその他の成分と含有するものである。現像剤としては、キャリア粒子を含まない一成分現像剤であってもよいし、キャリア粒子を含む二成分現像剤であってもよい。近年の情報処理速度の向上に対応した高速プリンタ等に使用する場合には、寿命向上等の点で二成分現像剤が好ましい。一成分現像剤の場合、トナーの収支が行われても、トナーの粒子径の変動が少なく、現像剤担持体としての現像ローラへのトナーのフィルミングや、トナーを薄層化するためのブレード等の層厚規制部材へのトナーの融着がない。このため、現像手段の長期の使用(撹拌)においても、良好で安定した現像性及び画像が得られる。また、二成分現像剤の場合、長期にわたるトナーの収支が行われても、現像剤中のトナー粒子径の変動が少なく、現像手段における長期の撹拌においても、良好で安定した現像性が得られる。   The developer contains toner and other appropriately selected components such as a carrier. The developer may be a one-component developer not containing carrier particles or a two-component developer containing carrier particles. When used in a high-speed printer or the like corresponding to the recent improvement in information processing speed, a two-component developer is preferable from the standpoint of improving the life. In the case of a one-component developer, even if the balance of the toner is performed, there is little fluctuation in the particle diameter of the toner, and the filming of the toner onto the developing roller as the developer carrying member and the blade for thinning the toner There is no fusion of the toner to the layer thickness regulating member. Therefore, good and stable developability and images can be obtained even when the developing means is used for a long time (stirring). In the case of a two-component developer, even if toner balance is performed over a long period of time, there is little fluctuation in the toner particle diameter in the developer, and good and stable developability can be obtained even with long-term stirring in the developing means. .

二成分現像剤に用いられるキャリアとしては、特に制限はなく、目的に応じて適宜選択することができるが、芯材と、芯材を被覆する樹脂層(被覆層)とを有するものが好ましい。芯材としては、磁性を有する粒子であれば特に限定されるものではなく、例えば、フェライト、マグネタイト、鉄、ニッケル等が好適に挙げられる。また、近年著しく進む環境面への適応性を配慮した場合には、フェライトであれば、従来の銅−亜鉛系フェライトではなく、次のようなものを用いることが好適である。即ち、マンガンフェライト、マンガン−マグネシウムフェライト、マンガン−ストロンチウムフェライト、マンガン−マグネシウム−ストロンチウムフェライト、リチウム系フェライトなどである。   There is no restriction | limiting in particular as a carrier used for a two-component developer, Although it can select suitably according to the objective, What has a core material and the resin layer (coating layer) which coat | covers a core material is preferable. The core material is not particularly limited as long as it is magnetic particles, and suitable examples include ferrite, magnetite, iron, nickel, and the like. Further, when considering adaptability to environmental aspects that have been remarkably advanced in recent years, it is preferable to use the following as the ferrite, instead of the conventional copper-zinc ferrite. That is, manganese ferrite, manganese-magnesium ferrite, manganese-strontium ferrite, manganese-magnesium-strontium ferrite, lithium ferrite, and the like.

キャリアの芯材を被覆する被覆層は、少なくとも結着樹脂を含有しており、必要に応じて無機微粒子等の他の成分を含有していても良い。また、キャリアの被覆層を形成するための結着樹脂としては、特に制限はなく、公知の樹脂の中から目的に応じて適宜選択できる。例えば、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン等)やその変性品、スチレン、アクリル樹脂、アクリロニトリル、ビニルアセテート、ビニルアルコール、塩化ビニル、ビニルカルバゾール、ビニルエーテル等を含む架橋性共重合物;オルガノシロキサン結合からなるシリコーン樹脂又はその変性品(例えば、アルキッド樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン、ポリイミド等による変性品);ポリアミド;ポリエステル;ポリウレタン;ポリカーボネート;ユリア樹脂;メラミン樹脂;ベンゾグアナミン樹脂;エポキシ樹脂;アイオノマー樹脂;ポリイミド樹脂、及びこれらの誘導体等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、シリコーン樹脂が特に好ましい。   The coating layer covering the core material of the carrier contains at least a binder resin, and may contain other components such as inorganic fine particles as necessary. The binder resin for forming the carrier coating layer is not particularly limited and can be appropriately selected from known resins according to the purpose. For example, a crosslinkable copolymer containing polyolefin (eg, polyethylene, polypropylene, etc.) or a modified product thereof, styrene, acrylic resin, acrylonitrile, vinyl acetate, vinyl alcohol, vinyl chloride, vinyl carbazole, vinyl ether, etc .; consisting of an organosiloxane bond Silicone resins or modified products thereof (for example, modified products by alkyd resin, polyester resin, epoxy resin, polyurethane, polyimide, etc.); polyamides; polyesters; polyurethanes; polycarbonates; urea resins; melamine resins; Examples thereof include polyimide resins and derivatives thereof. These may be used individually by 1 type and may use 2 or more types together. Among these, a silicone resin is particularly preferable.

シリコーン樹脂としては、特に制限はなく、一般的に知られているシリコーン樹脂の中から目的に合わせて適宜選択することができる。例えば、オルガノシロキサン結合のみからなるストレートシリコーン樹脂、およびアルキド、ポリエステル、エポキシ、アクリル、ウレタンなどで変性したシリコーン樹脂が挙げられる。   There is no restriction | limiting in particular as a silicone resin, According to the objective, it can select suitably from the silicone resin generally known. For example, a straight silicone resin composed only of an organosiloxane bond and a silicone resin modified with alkyd, polyester, epoxy, acrylic, urethane, etc. can be mentioned.

ストレートシリコーン樹脂としては、KR271、KR272、KR282、KR252、KR255、KR152(信越化学工業社製)、SR2400、SR2405、SR2406(東レダウコーニングシリコーン社製)などが挙げられる。また、変性シリコーン樹脂の具体例としては、エポキシ変性物:ES−1001N、アクリル変性シリコーン:KR−5208、ポリエステル変性物:KR−5203、アルキッド変性物:KR−206、ウレタン変性物:KR−305(以上、信越化学工業社製)、エポキシ変性物:SR2115、アルキッド変性物:SR2110(東レダウコーニングシリコーン社製)等が挙げられる。なお、シリコーン樹脂は、単体で用いることも可能であるが、架橋反応性成分、帯電量調整成分等を同時に用いることも可能である。架橋反応性成分としては、シランカップリング剤等が挙げられる。更に、シランカップリング剤としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、オクチルトリメトキシシラン、アミノシランカップリング剤等が挙げられる。   Examples of the straight silicone resin include KR271, KR272, KR282, KR252, KR255, KR152 (manufactured by Shin-Etsu Chemical Co., Ltd.), SR2400, SR2405, SR2406 (manufactured by Toray Dow Corning Silicone). Specific examples of the modified silicone resin include epoxy modified product: ES-1001N, acrylic modified silicone: KR-5208, polyester modified product: KR-5203, alkyd modified product: KR-206, urethane modified product: KR-305. (Shin-Etsu Chemical Co., Ltd.), epoxy-modified product: SR2115, alkyd-modified product: SR2110 (manufactured by Toray Dow Corning Silicone), and the like. The silicone resin can be used alone, but it is also possible to use a crosslinking reactive component, a charge amount adjusting component, and the like at the same time. Examples of the crosslinking reactive component include a silane coupling agent. Furthermore, examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, octyltrimethoxysilane, and aminosilane coupling agent.

キャリア芯材を覆う被覆層には、必要に応じて微粒子を含有させてもよい。微粒子としては、特に制限はなく、従来公知の材料の中から目的に応じて適宜選択することができる。例えば、金属粉、酸化錫、酸化亜鉛、シリカ、酸化チタン、アルミナ、チタン酸カリウム、チタン酸バリウム、ホウ酸アルミニウム等の無機微粒子や、ポリアニリン、ポリアセチレン、ポリパラフェニレン、ポリ(パラ−フェニレンスルフィド)、ポリピロール、パリレン等の導電性高分子、カーボンブラック等の有機微粒子等が挙げられ、二種以上併用してもよい。それらの微粒子は、表面が導電性処理をされているものであってもよい。このような導電性処理の方法としては、微粒子の表面に、アルミニウム、亜鉛、銅、ニッケル、銀、又はこれらの合金、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンをドープした酸化スズ及び酸化ジルコニウム等を固溶体や融着の形態として被覆させる方法等が挙げられる。これらの中でも、酸化スズ、酸化インジウム、スズをドープした酸化インジウムを用いて導電性処理をする方法が好ましい。   The coating layer covering the carrier core material may contain fine particles as necessary. There is no restriction | limiting in particular as microparticles | fine-particles, According to the objective, it can select suitably from conventionally well-known materials. For example, inorganic fine particles such as metal powder, tin oxide, zinc oxide, silica, titanium oxide, alumina, potassium titanate, barium titanate, aluminum borate, polyaniline, polyacetylene, polyparaphenylene, poly (para-phenylene sulfide) , Conductive polymers such as polypyrrole and parylene, and organic fine particles such as carbon black, and two or more of them may be used in combination. Those fine particles may have a surface subjected to a conductive treatment. As a method of such a conductive treatment, aluminum, zinc, copper, nickel, silver, or an alloy thereof, zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin are formed on the surface of the fine particles. And indium oxide doped with antimony, tin oxide doped with antimony, zirconium oxide, and the like in the form of a solid solution or fusion. Among these, a method of conducting a conductive treatment using tin oxide, indium oxide, or indium oxide doped with tin is preferable.

被覆層のキャリア中での含有率としては、5重量%以上であることが好ましく、5重量%以上、10重量%以下であることがより好ましい。また、被覆層の厚さとしては、0.1μm〜5μmであることが好ましく、0.3μm〜2μmであることが更に好ましい。被覆層の厚さについては、例えば、次のようにして求めることができる。即ち、FIB(集束イオンビーム)でキャリア断面を作成後、透過型電子顕微鏡(TEM)、走査型透過電子顕微鏡(STEM)を用いて50点以上のキャリア断面を観察し、求めた膜厚の平均値として算出する。   The content of the coating layer in the carrier is preferably 5% by weight or more, and more preferably 5% by weight or more and 10% by weight or less. Moreover, as thickness of a coating layer, it is preferable that they are 0.1 micrometer-5 micrometers, and it is still more preferable that they are 0.3 micrometer-2 micrometers. About the thickness of a coating layer, it can obtain | require as follows, for example. That is, after creating a carrier cross-section with FIB (focused ion beam), the cross-section of the carrier at 50 points or more was observed with a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM), and the average thickness obtained Calculate as a value.

キャリアへの被覆層の形成法としては、特に制限はなく、従来公知の被覆層形成方法を使用することが可能である。結着樹脂又は結着樹脂前駆体を始めとする上述の被覆層用の原料を溶解した被覆層溶液を、芯材の表面に噴霧法又は浸漬法等を用いて塗布する方法などが挙げられる。芯材表面に被覆層溶液を塗布し、塗布層が形成されたキャリアを加熱することにより、結着樹脂又は結着樹脂前駆体の重合反応を促進させることが好ましい。加熱処理は、被覆層形成後、引き続きコート装置内で行っても良い。あるいは、被覆層形成後、通常の電気炉や焼成キルン等、別の加熱手段によって行っても良い。加熱処理温度としては、使用する被覆層の構成材料によって異なるため、一概に決められるものではないが、120℃〜350℃程度であることが好ましい。被覆層構成材料の分解温度以下であることが特に好ましい。なお、被覆層構成材料の分解温度としては、220℃程度までの上限温度であることが好ましく、加熱処理時間としては、5分〜120分間程度であることが好ましい。   There is no restriction | limiting in particular as a formation method of the coating layer to a carrier, It is possible to use a conventionally well-known coating layer formation method. Examples thereof include a method in which a coating layer solution in which the above-described coating layer raw materials such as a binder resin or a binder resin precursor are dissolved is applied to the surface of the core using a spraying method, a dipping method, or the like. It is preferable to promote the polymerization reaction of the binder resin or the binder resin precursor by applying the coating layer solution on the surface of the core material and heating the carrier on which the coating layer is formed. The heat treatment may be continued in the coating apparatus after the coating layer is formed. Or you may carry out by another heating means, such as a normal electric furnace and a baking kiln, after coating layer formation. The heat treatment temperature varies depending on the constituent material of the coating layer to be used, and is not generally determined, but is preferably about 120 to 350 ° C. It is particularly preferable that the temperature is equal to or lower than the decomposition temperature of the coating layer constituting material. The decomposition temperature of the coating layer constituting material is preferably an upper limit temperature of up to about 220 ° C., and the heat treatment time is preferably about 5 minutes to 120 minutes.

キャリアの体積平均粒径は、10〜100μmの範囲であることが好ましく、20〜65μmの範囲であることがより好ましい。キャリアの体積平均粒径が10μm未満であると、芯材粒子の均一性が低下することに起因するキャリア付着が発生するので好ましくない。また、100μmを超える場合には、画像細部の再現性が悪く精細な画像が得られなくなるので好ましくない。体積平均粒径の測定方法としては、粒度分布を測定できる機器であれば特に制限はなく、例えば、マイクロトラック粒度分布計:モデルHRA9320―X100(日機装(株)製)を用いて測定することができる。   The volume average particle diameter of the carrier is preferably in the range of 10 to 100 μm, and more preferably in the range of 20 to 65 μm. If the volume average particle size of the carrier is less than 10 μm, carrier adhesion due to a decrease in the uniformity of the core material particles occurs, which is not preferable. On the other hand, if it exceeds 100 μm, the reproducibility of image details is poor and a fine image cannot be obtained, which is not preferable. The method for measuring the volume average particle size is not particularly limited as long as it is a device capable of measuring the particle size distribution, and for example, it can be measured using a Microtrac particle size distribution analyzer: Model HRA9320-X100 (manufactured by Nikkiso Co., Ltd.). it can.

キャリアの体積抵抗率は、9[log(Ω・cm)]以上、16[log(Ω・cm)]以下であることが好ましく、10[log(Ω・cm)]以上、14[log(Ω・cm)]以下であることがより好ましい。体積抵抗率が9[log(Ω・cm)]未満である場合には、非画像部でのキャリア付着が生じて好ましくない。また、16[log(Ω・cm)]より大きい場合には、現像時、エッジ部における画像濃度が強調される、いわゆるエッジ効果が顕著になり好ましくない。体積抵抗率は必要に応じて、キャリアの被覆層の膜厚、導電性の微粒子の含有量を調整することで、前述した範囲内で任意に調整可能である。   The volume resistivity of the carrier is preferably 9 [log (Ω · cm)] or more and 16 [log (Ω · cm)] or less, preferably 10 [log (Ω · cm)] or more and 14 [log (Ω). -Cm)] is more preferable. When the volume resistivity is less than 9 [log (Ω · cm)], carrier adhesion occurs in the non-image area, which is not preferable. On the other hand, if it is larger than 16 [log (Ω · cm)], the so-called edge effect, in which the image density at the edge portion is emphasized during development, is not preferable. The volume resistivity can be arbitrarily adjusted within the above-described range by adjusting the thickness of the carrier coating layer and the content of the conductive fine particles as necessary.

キャリアの体積抵抗率については、次のようにして測定することができる。即ち、電極間距離0.2cm、表面積2.5cm×4cmの電極1a、電極1bを収容したフッ素樹脂製容器からなるセルに、キャリアを充填する。そして、落下高さ:1cm、タッピングスピード:30回/min、タッピング回数:10回の条件でタッピングを行う。次に、両電極間に1000Vの直流電圧を印加し、30秒後の抵抗値r[Ω]を、ハイレジスタンスメーター4329A(横川ヒューレットパッカード(株)製:HighResistance Meter)により測定する。そして、「R=Log[r×(2.5cm×4cm)/0.2cm]」という計算式を用いて、体積抵抗率R[log(Ω・cm)]を算出する。   The volume resistivity of the carrier can be measured as follows. That is, a carrier is filled in a cell made of a fluororesin container containing electrodes 1a and 1b having a distance between electrodes of 0.2 cm and a surface area of 2.5 cm × 4 cm. Then, tapping is performed under the conditions of drop height: 1 cm, tapping speed: 30 times / min, and tapping frequency: 10 times. Next, a DC voltage of 1000 V is applied between both electrodes, and a resistance value r [Ω] after 30 seconds is measured by a high resistance meter 4329A (manufactured by Yokogawa Hewlett-Packard Co., Ltd .: High Resistance Meter). Then, the volume resistivity R [log (Ω · cm)] is calculated using a calculation formula “R = Log [r × (2.5 cm × 4 cm) /0.2 cm]”.

現像剤が二成分現像剤である場合には、二成分現像剤におけるキャリアに対するトナーの質量比が2.0〜12.0重量%であることが好ましく、2.5〜10.0重量%であることがより好ましい。   When the developer is a two-component developer, the mass ratio of the toner to the carrier in the two-component developer is preferably 2.0 to 12.0% by weight, and 2.5 to 10.0% by weight. More preferably.

トナーの結着樹脂として用いる結晶性樹脂の重量平均分子量(Mw)は、定着性の観点から、2,000〜100,000が好ましく、5,000〜60,000がより好ましく、8,000〜30,000が特に好ましい。前記重量平均分子量が、2,000より小さい場合は耐ホットオフセット性が悪化する傾向にあり、100,000より大きい場合は低温定着性が悪化する傾向にある。   The weight average molecular weight (Mw) of the crystalline resin used as the binder resin for the toner is preferably 2,000 to 100,000, more preferably 5,000 to 60,000, and more preferably 8,000 to 50,000, from the viewpoint of fixability. 30,000 is particularly preferred. When the weight average molecular weight is less than 2,000, the hot offset resistance tends to deteriorate, and when it exceeds 100,000, the low-temperature fixability tends to deteriorate.

樹脂の重量平均分子量(Mw)については、ゲルパーミエーションクロマトグラフイー(GPC)測定装置(例えば、GPC−8220GPC(東ソー社製))を用いて測定することが可能である。カラムとしては、TSKgel SuperHZM―H 15cm 3連(東ソー社製)を使用する。測定する樹脂を、テトラヒドロフラン(THF)(安定剤含有、和光純薬製)にて0.15質量%溶液にし、0.2μmフィルターで濾過した後、その濾液を試料として用いる。前述のTHF試料溶液を測定装置に100μl注入し、温度40℃の環境下にて、流速0.35ml/分間で測定する。試料の分子量測定にあたっては、数種の単分散ポリスチレン標準試料により作製された検量線の対数値とカウント数との関係から算出する。前述の標準ポリスチレン試料としては、昭和電工社製ShowdexSTANDARDのStd.No S−7300、S−210、S−390、S−875、S−1980、S−10.9、S−629、S−3.0、S−0.580、トルエンを用いることが可能である。検出器にはRI(屈折率)検出器を用いる。   The weight average molecular weight (Mw) of the resin can be measured using a gel permeation chromatography (GPC) measuring device (for example, GPC-8220 GPC (manufactured by Tosoh Corporation)). As a column, TSKgel SuperHZM-H 15 cm triple (made by Tosoh Corporation) is used. The resin to be measured is made into a 0.15 mass% solution with tetrahydrofuran (THF) (containing a stabilizer, manufactured by Wako Pure Chemical Industries), filtered through a 0.2 μm filter, and the filtrate is used as a sample. 100 μl of the above-mentioned THF sample solution is injected into a measuring apparatus, and measurement is performed at a flow rate of 0.35 ml / min in an environment at a temperature of 40 ° C. In measuring the molecular weight of the sample, the sample is calculated from the relationship between the logarithmic value of the calibration curve prepared from several monodisperse polystyrene standard samples and the number of counts. Examples of the standard polystyrene sample described above include Showdex STANDARD Std. No S-7300, S-210, S-390, S-875, S-1980, S-10.9, S-629, S-3.0, S-0.580, toluene can be used. is there. An RI (refractive index) detector is used as the detector.

トナーの結着樹脂として用いられる結晶性樹脂は、結晶性ポリエステルユニットを有する樹脂を有するものであることが好ましい。トナーとして好適な融点設計を行い易く、紙への結着性に優れるからである。結晶性ポリエステルユニットを有する結晶性樹脂の結着樹脂全体における割合は、50質量%以上、好ましくは60質量%以上、より好ましくは75質量%以上、更に好ましくは90質量%以上であることが望ましい。結晶性ポリエステルユニットを有する結晶性樹脂の割合が多くなるほど、トナーの低温定着性が向上するからである。   The crystalline resin used as the binder resin for the toner preferably has a resin having a crystalline polyester unit. This is because it is easy to design a melting point suitable as a toner and has excellent binding properties to paper. The ratio of the crystalline resin having a crystalline polyester unit to the whole binder resin is 50% by mass or more, preferably 60% by mass or more, more preferably 75% by mass or more, and further preferably 90% by mass or more. . This is because as the proportion of the crystalline resin having a crystalline polyester unit increases, the low-temperature fixability of the toner improves.

結晶性ポリエステルユニットを有する結晶性樹脂としては、結晶性ポリエステルユニットのみからなる樹脂(単に、結晶性ポリエステル樹脂ともいう)が挙げられる。また、結晶性ポリエステルユニットを連結させた樹脂や、結晶性ポリエステルユニットと他のポリマーを結合させた樹脂(いわゆるブロックポリマー、グラフトポリマー)などでもよい。結晶性ポリエステルユニットのみからなる結晶性樹脂は、結晶構造をとる部分が多いものの、外力により容易に変形し易いことがある。その理由としては、結晶性ポリエステルのすべての部分を結晶化させることが困難であり、結晶化していない部分(非結晶部位)の分子鎖の自由度が高いために容易に変形し易いからである。また、結晶構造をとっている部分に関しても、一般に、その高次構造は分子鎖が折りたたまれながら面を形成したものが重なる、いわゆるラメラ構造となり、そのラメラ層間には大きな結合力が働かないため容易にラメラ層がずれ易いからである。トナー用の結着樹脂が外力により容易に変形してしまうと、画像形成装置内での変形凝集、部材への付着あるいは固着、最終的に出力される画像の傷付きなどの問題が発生する可能性がある。このため、結着樹脂としても外力に対してある程度の変形に耐え得るもの、強靭性を有するものでなければならない。樹脂の強靭性付与の観点からは、凝集エネルギーの大きいウレタン結合部位、ウレア結合部位、フェニレン部位を有するような結晶性ポリエステルユニットを連結させた樹脂が好ましい。また、結晶性ポリエステルユニットと他のポリマーを結合させた樹脂(いわゆるブロックポリマー、グラフトポリマー)でもよい。この中でも特に、ウレタン結合部位やウレア結合部位を分子鎖中に具備する樹脂がよい。非結晶部位やラメラ層間に大きな分子間力による擬似架橋点を形成させることができると考えられる上、紙への定着後においても紙に対して濡れやすく定着強度を高めることができるからである。   Examples of the crystalline resin having a crystalline polyester unit include a resin composed of only a crystalline polyester unit (also simply referred to as a crystalline polyester resin). Further, a resin in which a crystalline polyester unit is connected, or a resin in which a crystalline polyester unit and another polymer are bonded (so-called block polymer or graft polymer) may be used. A crystalline resin composed only of a crystalline polyester unit has a portion having a crystal structure, but may be easily deformed by an external force. The reason is that it is difficult to crystallize all the parts of the crystalline polyester, and it is easy to deform because of the high degree of freedom of the molecular chain of the non-crystallized part (non-crystalline part). . In addition, regarding the portion having a crystal structure, generally, the higher order structure is a so-called lamellar structure in which molecular surfaces are folded while forming a plane, and a large bonding force does not work between the lamellar layers. This is because the lamellar layer is easily displaced. If the binder resin for toner is easily deformed by an external force, problems such as deformation / aggregation in the image forming apparatus, adhesion to or sticking to a member, and damage to the final output image may occur. There is sex. For this reason, the binder resin must be able to withstand a certain degree of deformation against external force and have toughness. From the viewpoint of imparting toughness of the resin, a resin in which a crystalline polyester unit having a urethane bond site, a urea bond site, and a phenylene site having large cohesive energy is connected is preferable. Also, a resin (so-called block polymer or graft polymer) in which a crystalline polyester unit and another polymer are bonded may be used. Among these, a resin having a urethane bond site or a urea bond site in the molecular chain is particularly preferable. This is because it is considered that a pseudo-crosslinking point due to a large intermolecular force can be formed between an amorphous part and a lamellar layer, and the fixing strength can be increased easily after being fixed on the paper.

本発明者らが鋭意検討を行ったところ、結着樹脂として結晶性樹脂を主成分とするトナーでは、次のような現象が起こることを見出した。即ち、従来、低温定着性に有効と考えられていた融点以上で急激に粘弾性を低下させる性質(シャープメルト性)が、紙種によって定着可能温度領域を大きく異ならせる原因になっているのである。そこで、従来の低温定着性に優れるトナーに使用される結着樹脂の分子量としては高めの成分、具体的にはゲル拡散クロマトグラフィ(GPC)におけるポリスチレン換算の分子量が100,000以上である成分を一定量以上含有させる。更に、重量平均分子量を一定の範囲内に収めることによって、紙種によらず一定温度かつ一定速度で定着を可能にすることができることを見出した。   As a result of intensive studies by the present inventors, it has been found that the following phenomenon occurs in a toner mainly composed of a crystalline resin as a binder resin. In other words, the property of sharply decreasing viscoelasticity above the melting point, which has been considered effective for low-temperature fixability (sharp melt property), causes the temperature range that can be fixed to vary greatly depending on the paper type. . Therefore, the molecular weight of the binder resin used in the conventional toner having excellent low-temperature fixability is a high component, specifically, a component having a polystyrene-reduced molecular weight of 100,000 or more in gel diffusion chromatography (GPC) is constant. Add more than the amount. Further, it has been found that fixing the weight average molecular weight within a certain range enables fixing at a constant temperature and at a constant speed regardless of the type of paper.

分子量が100,000以上である成分については、5%以上の割合で含有させることが好ましく、7%以上の割合で含有させることがより好ましく、9%以上の割合で含有させることが更に好ましい。分子量が100,000以上である成分を5%以上含有させることで、トナーの溶融後の流動性や粘弾性の温度依存性が小さくなる。このため、定着時において熱が伝わりやすい薄紙であっても熱がトナーに伝わり難い厚紙であってもトナーの流動性や弾性率に大きく違いが生じ難く、定着装置としては一定温度かつ一定速度で定着することが可能となる。分子量が100,000以上である成分の割合を5%未満にすると、トナー溶融後の流動性や粘弾性が温度によって大きく変わるため、例えば薄紙における定着ではトナーの変形性が大きくなりすぎてしまう。そして、定着部材への接着面積が増大し、その結果、定着部材からの離型がうまくできずに紙の巻きつきが発生することがある。   The component having a molecular weight of 100,000 or more is preferably contained in a proportion of 5% or more, more preferably in a proportion of 7% or more, and further preferably in a proportion of 9% or more. By containing 5% or more of a component having a molecular weight of 100,000 or more, the temperature dependency of the fluidity and viscoelasticity of the toner after melting is reduced. For this reason, even if it is a thin paper that easily transfers heat during fixing, even if it is a thick paper that does not easily transfer heat to the toner, there is no significant difference in toner fluidity and elastic modulus, and the fixing device has a constant temperature and a constant speed. It becomes possible to fix. If the proportion of the component having a molecular weight of 100,000 or more is less than 5%, the fluidity and viscoelasticity after melting the toner vary greatly depending on the temperature. For example, in fixing on thin paper, the deformability of the toner becomes too large. Then, the adhesion area to the fixing member is increased, and as a result, the paper can be wound around without being able to release from the fixing member well.

結晶性樹脂は前述の通りシャープメルト性を有しているが、溶融状態におけるトナーの内部凝集力や粘弾性は樹脂の分子量や構造によって大きく異なる。例えば、凝集エネルギーの大きな連結基であるウレタン結合やウレア結合を有する場合、溶融時においても比較的低温であればゴムのような弾性体に近い挙動を示す。この一方、高温になるのに従って高分子鎖の熱運動エネルギーが増大していく。このため、徐々に結合間の凝集が解れて粘性体に近づいていく。このような樹脂をトナー用結着樹脂として用いると、定着温度が低いときには問題なく定着ができたとしても、定着温度が高温であるときにはトナー溶融時の内部凝集力が小さいことから、定着時にトナー画像の上側が定着部材に付着してしまう。これにより、いわゆるホットオフセット現象を発生させることがあり、画像品位が著しく損なわれる。ホットオフセットを回避するためにウレタン結合やウレア結合部位を多くすると、高温での定着においては問題なく行うことができる。この反面、低温で定着を行う場合には画像光沢が低く、紙への溶融含浸が不十分となり画像が紙から離脱しやすい状態になる。特に厚みがあり表面の凹凸が多い紙への定着を行う場合には、定着時のトナーへの熱の伝達効率が低いために定着状態がさらに悪化したり、凹部にて定着部材でトナーに圧力が十分にかからないため特に弾性的な状態にあるトナーの定着状態は著しく悪くなる。   The crystalline resin has a sharp melt property as described above, but the internal cohesive force and viscoelasticity of the toner in the molten state vary greatly depending on the molecular weight and structure of the resin. For example, when it has a urethane bond or urea bond, which is a linking group having a large cohesive energy, it behaves like an elastic body such as rubber at a relatively low temperature even when melted. On the other hand, as the temperature increases, the thermal kinetic energy of the polymer chain increases. For this reason, the agglomeration between the bonds is gradually released, and it approaches the viscous body. When such a resin is used as a binder resin for the toner, even if the fixing can be performed without any problem when the fixing temperature is low, the internal cohesive force when the toner is melted is small when the fixing temperature is high. The upper side of the image adheres to the fixing member. As a result, a so-called hot offset phenomenon may occur, and image quality is significantly impaired. In order to avoid hot offset, if the number of urethane bonds or urea bonds is increased, fixing at a high temperature can be performed without any problem. On the other hand, when fixing is performed at a low temperature, the image gloss is low, melt impregnation into the paper is insufficient, and the image is easily detached from the paper. In particular, when fixing to paper with a large thickness and unevenness on the surface, the heat transfer efficiency to the toner during fixing is low, so that the fixing state is further deteriorated, or pressure is applied to the toner with the fixing member in the recess. Since the toner is not sufficiently applied, the fixing state of the toner which is in an especially elastic state is remarkably deteriorated.

溶融後の粘弾性を制御する手段として分子量を考えた場合、当然ながら分子量が大きくなるほど分子鎖の移動に障害が多くなるため粘弾性が大きくなる。さらに、分子量が比較的大きくなると絡まりが発生するために弾性的な挙動を示すようになる。紙への定着性に着目して考えると、分子量が小さいほうが溶融時の粘度が低いため好ましい反面、ある程度の弾性がなければホットオフセットが発生してしまう。しかしながら、分子量を全体的に上げてしまうと、定着性が損なわれ、特に厚紙においては定着時のトナーへの熱の伝達効率が低いために定着状態がさらに悪化する。そこで、結着樹脂の分子量全体としてはあまり大きくしすぎないようにしつつ、高分子量の結晶性成分を含むようにする。これにより、溶融後の粘弾性を好適に制御でき、薄紙や厚紙といった紙種によらず一定温度かつ一定速度で定着可能なトナーを得ることができる。   When the molecular weight is considered as a means for controlling the viscoelasticity after melting, as a matter of course, the larger the molecular weight, the more obstacles to the movement of the molecular chain, so the viscoelasticity increases. Further, when the molecular weight is relatively large, entanglement occurs, and thus elastic behavior is exhibited. Considering the fixability to paper, a smaller molecular weight is preferable because the viscosity at the time of melting is lower. On the other hand, if there is no elasticity, hot offset occurs. However, if the molecular weight is increased as a whole, the fixability is impaired, and particularly in the case of thick paper, the heat transfer efficiency to the toner at the time of fixing is low, and the fixing state is further deteriorated. Therefore, the molecular weight of the binder resin is not excessively increased, and a high molecular weight crystalline component is included. Thereby, the viscoelasticity after melting can be suitably controlled, and a toner that can be fixed at a constant temperature and at a constant speed regardless of the type of paper such as thin paper or thick paper can be obtained.

なお、重量平均分子量の範囲は20,000以上、70,000以下であることが好ましく、より好ましくは、30,000以上、60,000以下である。また、特に好ましくは35,000以上、50,000以下である。重量平均分子量が70,000を超えるような場合、結着樹脂全体が高分子量すぎるため定着性が悪化し、光沢が低すぎたり、定着後の画像が外的ストレスで容易に欠落するため好ましくない。また、20,000未満である場合には、たとえ高分子量成分が多く存在していたとしてもトナー溶融時の内部凝集力が低くなりすぎることから、ホットオフセットや定着部材への紙の巻きつきを引き起こすので好ましくない。   The range of the weight average molecular weight is preferably 20,000 or more and 70,000 or less, more preferably 30,000 or more and 60,000 or less. Further, it is particularly preferably 35,000 or more and 50,000 or less. When the weight average molecular weight exceeds 70,000, the whole binder resin is too high in molecular weight, so that the fixing property is deteriorated, the gloss is too low, and the image after fixing is easily lost due to external stress. . Also, if it is less than 20,000, even if a high molecular weight component is present, the internal cohesive force at the time of melting the toner becomes too low. Because it causes, it is not preferable.

所定の分子量分布を有するような結着樹脂を有するトナーを得る方法としては、分子量分布の異なる2種類以上の樹脂を併用する、重合時に分子量分布が制御された樹脂を使用する方法がある。分子量分布の異なる2種類以上の樹脂を併用する場合、少なくとも相対的に高分子量の樹脂と低分子量の樹脂の2種類を使用する。高分子量の樹脂としては、あらかじめ分子量の大きな樹脂を使用してもよいし、末端にイソシアネート基を有する変性樹脂をトナーの製造過程で伸長させて高分子量体を形成させても良い。後者の方が、高分子量体をトナー中に均一に存在させることができ、結着樹脂を有機溶媒中に溶解させる工程があるような製造方法においてははじめから高分子量である樹脂よりも溶解させることが容易であるため好ましい。   As a method for obtaining a toner having a binder resin having a predetermined molecular weight distribution, there is a method using two or more kinds of resins having different molecular weight distributions together and using a resin whose molecular weight distribution is controlled during polymerization. When two or more kinds of resins having different molecular weight distributions are used in combination, at least two kinds of relatively high molecular weight resins and low molecular weight resins are used. As the high molecular weight resin, a resin having a large molecular weight may be used in advance, or a modified resin having an isocyanate group at the terminal may be elongated in the production process of the toner to form a high molecular weight body. In the latter method, the high molecular weight body can be uniformly present in the toner, and in the production method in which the binder resin is dissolved in the organic solvent, the high molecular weight resin is first dissolved than the high molecular weight resin. It is preferable because it is easy.

高分子量の樹脂(イソシアネート基を有する変性樹脂も含む)と低分子量の樹脂の2種類で結着樹脂が構成される場合の比率としては、次のような比率が好ましい。即ち、高分子量の樹脂/低分子量の樹脂の比が、5/95〜60/40、好ましくは8/92〜50/50、より好ましくは12/88〜35/65、さらに好ましくは15/85〜25/75である。5/95よりも高分子量体が少ない場合、あるいは60/40よりも高分子量体が多い場合には、上記の分子量分布を有する結着樹脂を有するトナーを得るのが困難となる。   As a ratio in the case where the binder resin is composed of a high molecular weight resin (including a modified resin having an isocyanate group) and a low molecular weight resin, the following ratio is preferable. That is, the ratio of high molecular weight resin / low molecular weight resin is 5 / 95-60 / 40, preferably 8 / 92-50 / 50, more preferably 12 / 88-35 / 65, and even more preferably 15/85. ~ 25/75. When the number of high molecular weight substances is less than 5/95, or when the number of high molecular weight substances is larger than 60/40, it becomes difficult to obtain a toner having a binder resin having the molecular weight distribution described above.

重合時に分子量分布が制御された樹脂を使用する場合に、前述のような樹脂を得る方法としては、縮重合や重付加、付加縮合のような重合形態であれば2官能のモノマーの他に官能基数の異なるモノマーを少量添加することにより分子量分布を広げることができる。官能基数の異なるモノマーとしては、3官能以上のモノマー、単官能のモノマーがある。3官能以上のモノマーを使用すると分岐構造が生成するため、結晶性を有する樹脂を使用する場合には結晶構造を形成しにくくなる場合がある。単官能のモノマーを使用すれば、単官能のモノマーにより重合反応が停止することで2種類以上の樹脂を用いる場合における低分子量の樹脂を精製させつつ、一部は重合反応が進行し高分子量成分となる。   In the case of using a resin whose molecular weight distribution is controlled at the time of polymerization, as a method of obtaining the above-mentioned resin, in addition to a bifunctional monomer, a functional form other than a bifunctional monomer can be used as long as it is a polymerization form such as polycondensation, polyaddition or addition condensation. The molecular weight distribution can be broadened by adding a small amount of monomers having different numbers of groups. Monomers having different numbers of functional groups include tri- or higher functional monomers and monofunctional monomers. When a tri- or higher functional monomer is used, a branched structure is generated. Therefore, when a resin having crystallinity is used, it may be difficult to form a crystal structure. If a monofunctional monomer is used, the polymerization reaction is stopped by the monofunctional monomer, so that the low molecular weight resin in the case of using two or more types of resins is purified, and a part of the polymerization reaction proceeds to increase the high molecular weight component. It becomes.

結晶性ポリエステルユニットとしては、例えば、ポリオールとポリカルボン酸とから合成される重縮合ポリエステルユニット、ラクトン開環重合物、ポリヒドロキシカルボン酸などが挙げられる。これらの中でも、ジオールとジカルボン酸との重縮合ポリエステルユニットが、結晶性発現の観点から好ましい。   Examples of the crystalline polyester unit include a polycondensation polyester unit synthesized from a polyol and a polycarboxylic acid, a lactone ring-opening polymer, and a polyhydroxycarboxylic acid. Among these, a polycondensation polyester unit of diol and dicarboxylic acid is preferable from the viewpoint of crystallinity.

ポリオールとしては、例えば、ジオール、3価〜8価又はそれ以上のポリオールなどが挙げられる。ジオールとしては特に制限はなく、目的に応じて適宜選択することができる。例えば、直鎖型脂肪族ジオール、分岐型脂肪族ジオール等の脂肪族ジオール;炭素数が4〜36であるアルキレンエーテルグリコール;炭素数が4〜36である脂環式ジオール;前記脂環式ジオールのアルキレンオキサイド(以下、AOと略記する);ビスフェノール類のAO付加物;ポリラクトンジオール;ポリブタジエンジオール;カルボキシル基を有するジオール、スルホン酸基又はスルファミン酸基を有するジオール、及びこれらの塩等のその他の官能基を有するジオールなどが挙げられる。これらの中でも鎖炭素数が2〜36である脂肪族ジオールが好ましく、直鎖型脂肪族ジオールがより好ましい。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。   Examples of the polyol include diols, trivalent to octavalent or higher polyols. There is no restriction | limiting in particular as diol, According to the objective, it can select suitably. For example, aliphatic diols such as linear aliphatic diols and branched aliphatic diols; alkylene ether glycols having 4 to 36 carbon atoms; alicyclic diols having 4 to 36 carbon atoms; Alkylene oxide (hereinafter abbreviated as AO); AO adduct of bisphenols; polylactone diol; polybutadiene diol; diol having a carboxyl group, diol having a sulfonic acid group or sulfamic acid group, and other salts thereof A diol having a functional group of Among these, an aliphatic diol having 2 to 36 chain carbon atoms is preferable, and a linear aliphatic diol is more preferable. These may be used individually by 1 type and may use 2 or more types together.

直鎖型脂肪族ジオールのジオール全体に対する含有量は、80mol%以上であることが好ましく、90mol%以上であることがより好ましい。含有量が80mol%以上であると、樹脂の結晶性が向上し、低温定着性と耐熱保存性の両立性が良く、樹脂硬度が向上する傾向にある点で好ましい。   The content of the linear aliphatic diol with respect to the entire diol is preferably 80 mol% or more, and more preferably 90 mol% or more. When the content is 80 mol% or more, the crystallinity of the resin is improved, the compatibility between low-temperature fixability and heat-resistant storage stability is good, and the resin hardness tends to be improved.

直鎖型脂肪族ジオールとしては特に制限はなく、目的に応じて適宜選択することができる。例えば、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、1,13−トリデカンジオール、1,14−テトラデカンジオール、1,18−オクタデカンジオール、1,20−エイコサンジオールなどが挙げられる。これらのうち、入手容易性を考慮するとエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,10−デカンジオールが好ましい。   There is no restriction | limiting in particular as linear aliphatic diol, According to the objective, it can select suitably. For example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9 -Nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1,18-octadecanediol, 1,20 -Eicosanediol and the like. Among these, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol are preferable in view of availability.

鎖炭素数が2〜36である分岐型脂肪族ジオールとしては特に制限はなく、目的に応じて適宜選択することができる。例えば、1,2−プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、テトラデカンジオール、ネオペンチルグリコール、2,2−ジエチル−1,3−プロパンジオールなどが挙げられる。   The branched aliphatic diol having 2 to 36 chain carbon atoms is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 1,2-propylene glycol, butanediol, hexanediol, octanediol, decanediol, dodecanediol, tetradecanediol, neopentyl glycol, 2,2-diethyl-1,3-propanediol and the like can be mentioned.

炭素数が4〜36であるアルキレンエーテルグリコールとしては特に制限はなく、目的に応じて適宜選択することができる。例えば、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなどが挙げられる。   The alkylene ether glycol having 4 to 36 carbon atoms is not particularly limited and may be appropriately selected depending on the intended purpose. Examples include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and the like.

炭素数が4〜36である脂環式ジオールとしては特に制限はなく、目的に応じて適宜選択することができ、例えば、1,4−シクロヘキサンジメタノール、水素添加ビスフェノールAなどが挙げられる。   The alicyclic diol having 4 to 36 carbon atoms is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 1,4-cyclohexanedimethanol and hydrogenated bisphenol A.

脂環式ジオールのアルキレンオキサイド(以下、AOと略記する)としては、特に制限はなく、目的に応じて適宜選択することができる。例えばエチレンオキサイド(以下、EOと略記する)、プロピレンオキサイド(以下、POと略記する)、ブチレンオキサイド(以下、BOと略記する)等の付加物(付加モル数1〜30)などが挙げられる。   There is no restriction | limiting in particular as alkylene oxide (henceforth AO) of alicyclic diol, According to the objective, it can select suitably. Examples thereof include adducts (number of added moles of 1 to 30) such as ethylene oxide (hereinafter abbreviated as EO), propylene oxide (hereinafter abbreviated as PO), butylene oxide (hereinafter abbreviated as BO), and the like.

ビスフェノール類としては特に制限はなく、目的に応じて適宜選択することができる。例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS等のAO(EO、PO、BO等)付加物(付加モル数2〜30)などが挙げられる。   There is no restriction | limiting in particular as bisphenol, According to the objective, it can select suitably. For example, AO (EO, PO, BO, etc.) adducts such as bisphenol A, bisphenol F, bisphenol S and the like (addition mole number: 2 to 30) and the like can be mentioned.

ポリラクトンジオールとしては特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリ−ε−カプロラクトンジオールなどが挙げられる。   There is no restriction | limiting in particular as polylactone diol, According to the objective, it can select suitably, For example, poly-epsilon-caprolactone diol etc. are mentioned.

カルボキシル基を有するジオールとしては特に制限はなく、目的に応じて適宜選択することができる。例えば、2,2−ジメチロールプロピオン酸(DMPA)、2,2−ジメチロールブタン酸、2,2−ジメチロールヘプタン酸、2,2−ジメチロールオクタン酸等の炭素数6〜24のジアルキロールアルカン酸などが挙げられる。   There is no restriction | limiting in particular as diol which has a carboxyl group, According to the objective, it can select suitably. For example, dialkyl having 6 to 24 carbon atoms such as 2,2-dimethylolpropionic acid (DMPA), 2,2-dimethylolbutanoic acid, 2,2-dimethylolheptanoic acid, 2,2-dimethyloloctanoic acid, etc. Examples thereof include roll alkanoic acid.

スルホン酸基又は前記スルファミン酸基を有するジオールとしては特に制限はなく、目的に応じて適宜選択することができる。例えば、N,N−ビス(2−ヒドロキシエチル)スルファミン酸及びN,N−ビス(2−ヒドロキシエチル)スルファミン酸PO2モル付加物等のスルファミン酸ジオール、[N,N−ビス(2−ヒドロキシアルキル)スルファミン酸(アルキル基の炭素数1〜6)及びそのAO付加物(AOとしてはEO又はPOなど、AOの付加モル数1〜6);ビス(2−ヒドロキシエチル)ホスフェートなどが挙げられる。   There is no restriction | limiting in particular as diol which has a sulfonic acid group or the said sulfamic acid group, According to the objective, it can select suitably. For example, sulfamic acid diols such as N, N-bis (2-hydroxyethyl) sulfamic acid and N, N-bis (2-hydroxyethyl) sulfamic acid PO2 molar adduct, [N, N-bis (2-hydroxyalkyl) ) Sulphamic acid (alkyl group having 1 to 6 carbon atoms) and AO adducts thereof (such as EO or PO as AO, 1 to 6 moles of AO added); bis (2-hydroxyethyl) phosphate and the like.

中和塩基を有するジオールの中和塩基としては特に制限はなく、目的に応じて適宜選択することができる。例えば、炭素数が3〜30である3級アミン(トリエチルアミン等)、アルカリ金属(ナトリウム塩等)などが挙げられる。これらの中でも、炭素数が2〜12であるアルキレングリコール、カルボキシル基を有するジオール、ビスフェノール類のAO付加物、及びこれらの併用が好ましい。   There is no restriction | limiting in particular as a neutralization base of the diol which has a neutralization base, According to the objective, it can select suitably. Examples thereof include tertiary amines having 3 to 30 carbon atoms (such as triethylamine) and alkali metals (such as sodium salts). Among these, alkylene glycols having 2 to 12 carbon atoms, diols having a carboxyl group, AO adducts of bisphenols, and combinations thereof are preferable.

必要に応じて用いられる、3価〜8価又はそれ以上のポリオールとしては特に制限はなく、目的に応じて適宜選択することができる。例えば、アルカンポリオール及びその分子内又は分子間脱水物(例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ソルビタン、ポリグリセリン等)、糖類及びその誘導体(例えば、ショ糖、メチルグルコシド等)等の炭素数が3〜36である3価〜8価又はそれ以上の多価脂肪族アルコール;トリスフェノール類(トリスフェノールPA等)のAO付加物(付加モル数2〜30);ノボラック樹脂(フェノールノボラック、クレゾールノボラック等)のAO付加物(付加モル数2〜30);ヒドロキシエチル(メタ)アクリレートと他のビニル系モノマーとの共重合物等のアクリルポリオールなどが挙げられる。これらの中でも、3価〜8価又はそれ以上の多価脂肪族アルコール及びノボラック樹脂のAO付加物が好ましく、ノボラック樹脂のAO付加物がより好ましい。   There is no restriction | limiting in particular as a trivalent-octavalent or more polyol used as needed, According to the objective, it can select suitably. For example, alkane polyols and intramolecular or intermolecular dehydrates (eg, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, sorbitan, polyglycerin, etc.), sugars and derivatives thereof (eg, sucrose, methyl glucoside) Etc.) Trivalent to octavalent or higher polyhydric aliphatic alcohols having 3 to 36 carbon atoms; AO adducts of trisphenols (trisphenol PA, etc.) (added mole number 2 to 30); AO adducts (addition mole number: 2 to 30) of resins (phenol novolac, cresol novolac, etc.); acrylic polyols such as copolymers of hydroxyethyl (meth) acrylate and other vinyl monomers, and the like. Among these, trivalent to octavalent or higher polyhydric aliphatic alcohols and novolak resin AO adducts are preferred, and novolak resin AO adducts are more preferred.

ポリカルボン酸としては、例えば、ジカルボン酸、3価〜6価又はそれ以上のポリカルボン酸などが挙げられる。ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、直鎖型脂肪族ジカルボン酸、分岐型脂肪族ジカルボン酸等の脂肪族ジカルボン酸;芳香族ジカルボン酸などが好適に挙げられる。これらの中でも、直鎖型脂肪族ジカルボン酸がより好ましい。   Examples of the polycarboxylic acid include dicarboxylic acid, trivalent to hexavalent or higher polycarboxylic acid. There is no restriction | limiting in particular as dicarboxylic acid, According to the objective, it can select suitably. Suitable examples include aliphatic dicarboxylic acids such as linear aliphatic dicarboxylic acids and branched aliphatic dicarboxylic acids; and aromatic dicarboxylic acids. Among these, linear aliphatic dicarboxylic acid is more preferable.

脂肪族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸、デシルコハク酸等の炭素数4〜36のアルカンジカルボン酸;ドデセニルコハク酸、ペンタデセニルコハク酸、オクタデセニルコハク酸などのアルケニルコハク酸、マレイン酸、フマール酸、シトラコン酸等の炭素数4〜36のアルケンジカルボン酸;ダイマー酸(2量化リノール酸)等の炭素数6〜40の脂環式ジカルボン酸などが好適に挙げられる。   There is no restriction | limiting in particular as aliphatic dicarboxylic acid, According to the objective, it can select suitably. Examples thereof include alkanedicarboxylic acids having 4 to 36 carbon atoms such as succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, decylsuccinic acid; dodecenylsuccinic acid, pentadecenylsuccinic acid, octadecenyl Alkenyl dicarboxylic acids having 4 to 36 carbon atoms such as alkenyl succinic acid such as succinic acid, maleic acid, fumaric acid and citraconic acid; alicyclic dicarboxylic acids having 6 to 40 carbon atoms such as dimer acid (dimerized linoleic acid), etc. Are preferable.

芳香族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、フタル酸、イソフタル酸、テレフタル酸、t−ブチルイソフタル酸、2,6−ナフタレンジカルボン酸、4,4′−ビフェニルジカルボン酸等の炭素数が8〜36である芳香族ジカルボン酸などが好適に挙げられる。また、必要に応じて用いられる3価〜6価又はそれ以上のポリカルボン酸としては、例えば、トリメリット酸、ピロメリット酸等の炭素数9〜20の芳香族ポリカルボン酸などが挙げられる。   There is no restriction | limiting in particular as aromatic dicarboxylic acid, According to the objective, it can select suitably. For example, aromatic dicarboxylic acids having 8 to 36 carbon atoms such as phthalic acid, isophthalic acid, terephthalic acid, t-butylisophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, etc. are suitable. It is mentioned in. Examples of the trivalent to hexavalent or higher polycarboxylic acid used as needed include aromatic polycarboxylic acids having 9 to 20 carbon atoms such as trimellitic acid and pyromellitic acid.

ジカルボン酸、又は3価〜6価もしくはそれ以上のポリカルボン酸としては、上述したものの酸無水物又は炭素数1〜4の低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステル等)を用いてもよい。ジカルボン酸の中でも、脂肪族ジカルボン酸(好ましくは、アジピン酸、セバシン酸、ドデカンジカルボン酸、テレフタル酸、イソフタル酸等)を単独で用いることが特に好ましい。脂肪族ジカルボン酸と共に前記芳香族ジカルボン酸(好ましくは、テレフタル酸、イソフタル酸、t−ブチルイソフタル酸等;これら芳香族ジカルボン酸の低級アルキルエステル類等)を共重合したものも、同様に好ましい。芳香族ジカルボン酸の共重合量としては、20mol%以下であることが好ましい。   As the dicarboxylic acid or the trivalent to hexavalent or higher polycarboxylic acid, acid anhydrides as described above or lower alkyl esters having 1 to 4 carbon atoms (methyl ester, ethyl ester, isopropyl ester, etc.) may be used. Good. Of the dicarboxylic acids, it is particularly preferable to use an aliphatic dicarboxylic acid (preferably adipic acid, sebacic acid, dodecanedicarboxylic acid, terephthalic acid, isophthalic acid, etc.) alone. A copolymer obtained by copolymerizing the above-mentioned aromatic dicarboxylic acid (preferably terephthalic acid, isophthalic acid, t-butylisophthalic acid, etc .; lower alkyl esters of these aromatic dicarboxylic acids, etc.) with the aliphatic dicarboxylic acid is also preferable. The copolymerization amount of the aromatic dicarboxylic acid is preferably 20 mol% or less.

ラクトン開環重合物としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトン、ε−カプロラクトン等の炭素数が3〜12であるモノラクトン(環中のエステル基数1個)等のラクトン類を金属酸化物、有機金属化合物等の触媒を用いて、開環重合させて得られるラクトン開環重合物;開始剤としてグリコール(例えば、エチレングリコール、ジエチレングリコール等)を用い、炭素数が3〜12であるモノラクトン類を開環重合させて得られる、末端にヒドロキシル基を有するラクトン開環重合物などが挙げられる。   There is no restriction | limiting in particular as a lactone ring-opening polymer, According to the objective, it can select suitably. For example, lactones such as β-propiolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone, and other monolactones having 3 to 12 carbon atoms (one ester group in the ring) as metal oxides, Lactone ring-opening polymer obtained by ring-opening polymerization using a catalyst such as an organometallic compound; monolactones having 3 to 12 carbon atoms using glycol (for example, ethylene glycol, diethylene glycol, etc.) as an initiator And a lactone ring-opening polymer having a hydroxyl group at the terminal obtained by ring-opening polymerization.

炭素数が3〜12であるモノラクトンとしては特に制限はなく、目的に応じて適宜選択することができる。結晶性の観点からε−カプロラクトンが好ましい。また、ラクトン開環重合物としては、市販品を用いてもよく、例えば、ダイセル社製のPLACCELシリーズのH1P、H4、H5、H7等の高結晶性ポリカプロラクトンなどが挙げられる。   The monolactone having 3 to 12 carbon atoms is not particularly limited and may be appropriately selected depending on the purpose. From the viewpoint of crystallinity, ε-caprolactone is preferred. Moreover, as a lactone ring-opening polymerization product, you may use a commercial item, For example, highly crystalline polycaprolactone, such as H1P, H4, H5, H7 of the PLACEL series made from Daicel, etc. are mentioned.

ポリヒドロキシカルボン酸の調製方法としては特に制限はなく、目的に応じて適宜選択することができる。例えば、グリコール酸、乳酸(L体、D体、ラセミ体等)等のヒドロキシカルボン酸を直接脱水縮合する方法;グリコリド、ラクチド(L体、D体、ラセミ体等)などのヒドロキシカルボン酸の2分子間又は3分子間脱水縮合物に相当する炭素数が4〜12である環状エステル(環中のエステル基数2〜3個)を金属酸化物、有機金属化合物等の触媒を用いて、開環重合する方法などが挙げられるが、分子量の調整の観点から開環重合する方法が好ましい。環状エステルの中でも、結晶性の観点からL−ラクチド及びD−ラクチドが好ましい。また、これらのポリヒドロキシカルボン酸は、末端がヒドロキシル基やカルボキシル基となるように変性したものであってもよい。   There is no restriction | limiting in particular as a preparation method of polyhydroxycarboxylic acid, According to the objective, it can select suitably. For example, a method of directly dehydrating and condensing hydroxycarboxylic acids such as glycolic acid and lactic acid (L-form, D-form, racemic form, etc.); 2 of hydroxycarboxylic acids such as glycolide and lactide (L-form, D-form, racemic form, etc.) Ring opening of cyclic ester (2 to 3 ester groups in the ring) corresponding to intermolecular or trimolecular dehydration condensate using a catalyst such as a metal oxide or an organometallic compound Although the method of superposing | polymerizing etc. is mentioned, the method of ring-opening polymerization is preferable from a viewpoint of adjustment of molecular weight. Among the cyclic esters, L-lactide and D-lactide are preferable from the viewpoint of crystallinity. These polyhydroxycarboxylic acids may be modified so that the terminal is a hydroxyl group or a carboxyl group.

結晶性ポリエステルユニットを連結させた樹脂を得る方法としては、あらかじめ末端にヒドロキシル基等の活性水素を有する結晶性ポリエステルユニットを作製し、ポリイソシアネートで連結する方法などが挙げられる。この手段を用いると樹脂骨格中にウレタン結合部位を導入することができるため、樹脂の強靭性を高めることができる。ポリイソシアネートとしては、例えば、ジイソシアネート、3価以上のポリイソシアネートなどが挙げられる。前記ジイソシアネートとしては特に制限はなく、目的に応じて適宜選択することができる。例えば、芳香族ジイソシアネート類、脂肪族ジイソシアネート類、脂環式ジイソシアネート類、芳香脂肪族ジイソシアネート類などが挙げられる。これらの中でも、NCO基中の炭素を除く炭素数が、6〜20の芳香族ジイソシアネート、2〜18の脂肪族ジイソシアネート、4〜15の脂環式ジイソシアネート、8〜15の芳香脂肪族ジイソシアネート、これらのジイソシアネートの変性物(ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物等)、これらの2種以上の混合物などが好ましい。また、必要に応じて、3価以上のイソシアネートを併用してもよい。   Examples of a method for obtaining a resin in which a crystalline polyester unit is linked include a method in which a crystalline polyester unit having an active hydrogen such as a hydroxyl group at the terminal is prepared in advance and linked with polyisocyanate. When this means is used, a urethane bond site can be introduced into the resin skeleton, so that the toughness of the resin can be increased. Examples of the polyisocyanate include diisocyanate, trivalent or higher polyisocyanate, and the like. There is no restriction | limiting in particular as said diisocyanate, According to the objective, it can select suitably. Examples thereof include aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and araliphatic diisocyanates. Among these, the carbon number except carbon in the NCO group is 6-20 aromatic diisocyanate, 2-18 aliphatic diisocyanate, 4-15 alicyclic diisocyanate, 8-15 araliphatic diisocyanate, these Preferred is a modified product of diisocyanate (urethane group, carbodiimide group, allophanate group, urea group, burette group, uretdione group, uretoimine group, isocyanurate group, oxazolidone group-containing modified product), and a mixture of two or more of these. . Moreover, you may use together trivalent or more isocyanate as needed.

芳香族ジイソシアネート類としては特に制限はなく、目的に応じて適宜選択することができる。例えば、1,3−及び/又は1,4−フェニレンジイソシアネート、2,4−及び/又は2,6−トリレンジイソシアネート(TDI)、粗製TDI、2,4′−及び/又は4,4′−ジフェニルメタンジイソシアネート(MDI)、粗製MDI[粗製ジアミノフェニルメタン〔ホルムアルデヒドと芳香族アミン(アニリン)又はその混合物との縮合生成物;ジアミノジフェニルメタンと少量(例えば5〜20質量%)の3官能以上のポリアミンとの混合物〕のホスゲン化物:ポリアリルポリイソシアネート(PAPI)]、1,5−ナフチレンジイソシアネート、4,4′,4"−トリフェニルメタントリイソシアネート、m−及びp−イソシアナトフェニルスルホニルイソシアネートなどが挙げられる。   There is no restriction | limiting in particular as aromatic diisocyanate, According to the objective, it can select suitably. For example, 1,3- and / or 1,4-phenylene diisocyanate, 2,4- and / or 2,6-tolylene diisocyanate (TDI), crude TDI, 2,4'- and / or 4,4'- Diphenylmethane diisocyanate (MDI), crude MDI [crude diaminophenylmethane [condensation product of formaldehyde and an aromatic amine (aniline) or a mixture thereof; A mixture of the following: Can be mentioned.

脂肪族ジイソシアネート類としては特に制限はなく、目的に応じて適宜選択することができる。例えば、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,6,11−ウンデカントリイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6−ジイソシアナトメチルカプロエート、ビス(2−イソシアナトエチル)フマレート、ビス(2−イソシアナトエチル)カーボネート、2−イソシアナトエチル−2,6−ジイソシアナトヘキサノエートなどが挙げられる。   There is no restriction | limiting in particular as aliphatic diisocyanate, According to the objective, it can select suitably. For example, ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanate Examples include natomethyl caproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate.

脂環式ジイソシアネート類としては特に制限はなく、目的に応じて適宜選択することができる。例えば、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン−4,4′−ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水添TDI)、ビス(2−イソシアナトエチル)−4−シクロヘキセン−1,2−ジカルボキシレート、2,5−及び2,6−ノルボルナンジイソシアネートなどが挙げられる。   There is no restriction | limiting in particular as alicyclic diisocyanate, According to the objective, it can select suitably. For example, isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated TDI), bis (2-isocyanatoethyl) -4-cyclohexene- Examples include 1,2-dicarboxylate, 2,5- and 2,6-norbornane diisocyanate.

芳香脂肪族ジイソシアネート類としては特に制限はなく、目的に応じて適宜選択することができる。例えば、m−及びp−キシリレンジイソシアネート(XDI)、α,α,α′,α′−テトラメチルキシリレンジイソシアネート(TMXDI)などが挙げられる。   There is no restriction | limiting in particular as araliphatic diisocyanate, According to the objective, it can select suitably. Examples thereof include m- and p-xylylene diisocyanate (XDI), α, α, α ′, α′-tetramethylxylylene diisocyanate (TMXDI), and the like.

ジイソシアネートの変性物としては特に制限はなく、目的に応じて適宜選択することができる。例えば、ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物などが挙げられる。具体的には、ウレタン変性MDI、カルボジイミド変性MDI、トリヒドロカルビルホスフェート変性MDI等の変性MDI、イソシアネート含有プレポリマー等のウレタン変性TDIなどのジイソシアネートの変性物;これらジイソシアネートの変性物の2種以上の混合物(例えば、変性MDIとウレタン変性TDIとの併用)などが挙げられる。これらのジイソシアネートの中でも、NCO基中の炭素を除く炭素数が、6〜15の芳香族ジイソシアネート、4〜12の脂肪族ジイソシアネート、4〜15の脂環式ジイソシアネートが好ましく、TDI、MDI、HDI、水添MDI、及びIPDIが特に好ましい。   There is no restriction | limiting in particular as a modified product of diisocyanate, According to the objective, it can select suitably. For example, urethane group, carbodiimide group, allophanate group, urea group, burette group, uretdione group, uretoimine group, isocyanurate group, oxazolidone group-containing modified product and the like can be mentioned. Specifically, modified MDI such as urethane-modified MDI, carbodiimide-modified MDI, trihydrocarbyl phosphate-modified MDI, and modified diisocyanates such as urethane-modified TDI such as isocyanate-containing prepolymers; a mixture of two or more of these modified diisocyanates (For example, combined use of modified MDI and urethane-modified TDI). Among these diisocyanates, aromatic diisocyanates having 6 to 15 carbon atoms excluding carbon in the NCO group, 4 to 12 aliphatic diisocyanates, and 4 to 15 alicyclic diisocyanates are preferable, and TDI, MDI, HDI, Hydrogenated MDI and IPDI are particularly preferred.

結晶性ポリエステルユニットと他のポリマーを結合させた樹脂を得る方法としては、結晶性ポリエステルユニットと他のポリマーユニットを予め別々に作製し、それらを結合させる方法が挙げられる。また、結晶性ポリエステルユニットと、他のポリマーユニットの何れかとを作製し、次いで作製したユニットの存在下で、もう一方のポリマーを重合することによって結合させる方法でもよい。また、結晶性ポリエステルユニットと他のポリマーユニットとを同じ反応場で同時あるいは逐次重合させることにより得る方法でもよい。設計意図通りに反応を制御させ易いという観点からすると、一つ目あるいは二つ目の方法が好ましい。   Examples of a method for obtaining a resin in which a crystalline polyester unit and another polymer are bonded include a method in which a crystalline polyester unit and another polymer unit are separately prepared in advance and bonded together. Alternatively, a method may be used in which a crystalline polyester unit and any of other polymer units are produced and then bonded by polymerizing the other polymer in the presence of the produced unit. Moreover, the method obtained by polymerizing a crystalline polyester unit and another polymer unit simultaneously or sequentially in the same reaction field may be used. From the viewpoint of easily controlling the reaction as designed, the first or second method is preferable.

一つ目の方法としては、結晶性ポリエステルユニットを連結させた樹脂を得る方法と同様、あらかじめ末端にヒドロキシル基等の活性水素を有するユニットを作製し、ポリイソシアネートで連結する方法などが挙げられる。ポリイソシアネートについてものものが使用できる他、一方のユニットの末端にイソシアネート基を導入し、他方のユニットの活性水素と反応させる方法でも得ることができる。この手段を用いると樹脂骨格中にウレタン結合部位を導入することができるため、樹脂の強靭性を高めることができる。   As the first method, a method in which a unit having an active hydrogen such as a hydroxyl group at the terminal is prepared in advance and connected with polyisocyanate, as in the method for obtaining a resin in which crystalline polyester units are connected, may be mentioned. In addition to those used for polyisocyanates, it can also be obtained by introducing an isocyanate group at the end of one unit and reacting with the active hydrogen of the other unit. When this means is used, a urethane bond site can be introduced into the resin skeleton, so that the toughness of the resin can be increased.

二つ目の方法としては、結晶性ポリエステルユニットを先に作成する場合には、次のような方法を例示することができる。即ち、後に作成するポリマーユニットが非結晶性ポリエステルユニット、ポリウレタンユニット、ポリウレアユニット等であれば、次のようにする。結晶性ポリエステルユニットの末端のヒドロキシル基あるいはカルボキシル基と、他のポリマーユニットを得るためのモノマーを反応させる。これにより、結晶性ポリエステルユニットと他のポリマーを結合させた樹脂を得ることができる。   As the second method, when the crystalline polyester unit is prepared first, the following method can be exemplified. That is, if the polymer unit to be created later is an amorphous polyester unit, a polyurethane unit, a polyurea unit or the like, the following is performed. The terminal hydroxyl group or carboxyl group of the crystalline polyester unit is reacted with a monomer for obtaining another polymer unit. Thereby, the resin which combined the crystalline polyester unit and the other polymer can be obtained.

非結晶性ポリエステルユニットとしては、例えばポリオールとポリカルボン酸とから合成される重縮合ポリエステルユニットが挙げられる。ポリオール及びポリカルボン酸については前述の結晶性ポリエステルユニットで例示したものが使用できる。結晶性を持たないように設計するためには、ポリマー骨格に屈曲点や分岐点を多く持たせるようにすればよい。屈曲点を持たせるには、例えば、ポリオールとして、ビスフェノールA、ビスフェノールF、ビスフェノールS等のAO(EO、PO、BO等)付加物(付加モル数2〜30)などのビスフェノール及びその誘導体、ポリカルボン酸として、フタル酸、イソフタル酸、t−ブチルイソフタル酸を使用すればよい。また分岐点の導入には3価以上のポリオールやポリカルボン酸を使用すればよい。   As an amorphous polyester unit, the polycondensation polyester unit synthesize | combined from a polyol and polycarboxylic acid is mentioned, for example. As the polyol and polycarboxylic acid, those exemplified in the above-mentioned crystalline polyester unit can be used. In order to design so as not to have crystallinity, the polymer skeleton may be provided with many bending points and branch points. In order to give an inflection point, for example, as a polyol, bisphenol such as bisphenol A, bisphenol F, bisphenol S, etc. AO (EO, PO, BO, etc.) adduct (addition mole number 2 to 30) and its derivatives, poly As the carboxylic acid, phthalic acid, isophthalic acid, or t-butylisophthalic acid may be used. In addition, a trivalent or higher polyol or polycarboxylic acid may be used to introduce the branch point.

ポリウレタンユニットとしては、ジオール、3価〜8価又はそれ以上のポリオール等のポリオールと、ジイソシアネート、3価以上のポリイソシアネート等のポリイソシアネートとから合成されるポリウレタンユニットなどが挙げられる。これらの中でも、ジオールとジイソシアネートとから合成されるポリウレタンユニットが好ましい。ジオール及び3価〜8価又はそれ以上のポリオールとしては、ポリエステル樹脂において挙げた前記ジオール及び前記3価〜8価又はそれ以上のポリオールと同様のものが挙げられる。ジイソシアネート及び3価以上のポリイソシアネートとしては、前述のジイソシアネート及び3価以上のポリイソシアネートと同様のものが挙げられる。   Examples of the polyurethane unit include a polyurethane unit synthesized from a polyol such as a diol, a trivalent to octavalent or higher polyol, and a polyisocyanate such as a diisocyanate or a trivalent or higher polyisocyanate. Among these, a polyurethane unit synthesized from diol and diisocyanate is preferable. Examples of the diol and the trivalent to octavalent or higher polyol include those similar to the diol and the trivalent to octavalent or higher polyol cited in the polyester resin. Examples of the diisocyanate and the trivalent or higher polyisocyanate include the same diisocyanates and trivalent or higher polyisocyanates.

ポリウレアユニットとしては、ジアミン、3価以上のポリアミン等のポリアミンと、ジイソシアネート、3価以上のポリイソシアネート等のポリイソシアネートとから合成されるポリウレアユニット等が挙げられる。ジアミンとしては特に制限はなく、目的に応じて適宜選択することができ、例えば脂肪族ジアミン類、芳香族ジアミン類が挙げられる。これらの中でも、炭素数が2〜18である脂肪族ジアミン類、炭素数が6〜20である芳香族ジアミン類が好ましい。また、必要に応じて、3価以上のアミン類を使用してもよい。炭素数が2〜18である脂肪族ジアミン類としては特に制限はなく、目的に応じて適宜選択することができる。例えば、エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の炭素数が2〜6であるアルキレンジアミン;ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン,トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等の炭素数が4〜18であるポリアルキレンジアミン;ジアルキルアミノプロピルアミン、トリメチルヘキサメチレンジアミン、アミノエチルエタノールアミン、2,5−ジメチル−2,5−ヘキサメチレンジアミン、メチルイミノビスプロピルアミン等の前記アルキレンジアミン又は前記ポリアルキレンジアミンの炭素数1〜4のアルキル又は炭素数が2〜4であるヒドロキシアルキル置換体;1,3−ジアミノシクロヘキサン、イソホロンジアミン、メンセンジアミン、4,4′−メチレンジシクロヘキサンジアミン(水添メチレンジアニリン)等の炭素数4〜15の脂環式ジアミン;ピペラジン、N−アミノエチルピペラジン、1,4−ジアミノエチルピペラジン、1,4−ビス(2−アミノ−2−メチルプロピル)ピペラジン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等の炭素数が4〜15である複素環式ジアミン;キシリレンジアミン、テトラクロル−p−キシリレンジアミン等の炭素数が8〜15である芳香環含有脂肪族アミン類などが挙げられる。炭素数6〜20の芳香族ジアミン類としては特に制限はなく、目的に応じて適宜選択することができ、例えば、1,2−、1,3−及び1,4−フェニレンジアミン、2,4′−及び4,4′−ジフェニルメタンジアミン、クルードジフェニルメタンジアミン(ポリフェニルポリメチレンポリアミン)、ジアミノジフェニルスルホン、ベンジジン、チオジアニリン、ビス(3,4−ジアミノフェニル)スルホン、2,6−ジアミノピリジン、m−アミノベンジルアミン、トリフェニルメタン−4,4′,4"−トリアミン、ナフチレンジアミン等の非置換芳香族ジアミン;2,4−及び2,6−トリレンジアミン、クルードトリレンジアミン、ジエチルトリレンジアミン、4,4′−ジアミノ−3,3′−ジメチルジフェニルメタン、4,4′−ビス(o−トルイジン)、ジアニシジン、ジアミノジトリルスルホン、1,3−ジメチル−2,4−ジアミノベンゼン、1,3−ジメチル−2,6−ジアミノベンゼン、1,4−ジイソプロピル−2,5−ジアミノベンゼン、2,4−ジアミノメシチレン、1−メチル−3,5−ジエチル−2,4−ジアミノベンゼン、2,3−ジメチル−1,4−ジアミノナフタレン、2,6−ジメチル−1,5−ジアミノナフタレン、3,3′,5,5′−テトラメチルベンジジン、3,3′,5,5′−テトラメチル−4,4′−ジアミノジフェニルメタン、3,5−ジエチル−3′−メチル−2′,4−ジアミノジフェニルメタン、3,3′−ジエチル−2,2′−ジアミノジフェニルメタン、4,4′−ジアミノ−3,3′−ジメチルジフェニルメタン、3,3′,5,5′−テトラエチル−4,4′−ジアミノベンゾフェノン、3,3′,5,5′−テトラエチル−4,4′−ジアミノジフェニルエーテル、3,3′,5,5′−テトライソプロピル−4,4′−ジアミノジフェニルスルホン等の炭素数1〜4の核置換アルキル基を有する芳香族ジアミン;非置換芳香族ジアミン乃至前記炭素数1〜4の核置換アルキル基を有する芳香族ジアミンの異性体の種々の割合の混合物;メチレンビス−o−クロロアニリン、4−クロロ−o−フェニレンジアミン、2−クロル−1,4−フェニレンジアミン、3−アミノ−4−クロロアニリン、4−ブロモ−1,3−フェニレンジアミン、2,5−ジクロル−1,4−フェニレンジアミン、5−ニトロ−1,3−フェニレンジアミン、3−ジメトキシ−4−アミノアニリン;4,4′−ジアミノ−3,3′−ジメチル−5,5′−ジブロモジフェニルメタン、3,3′−ジクロロベンジジン、3,3′−ジメトキシベンジジン、ビス(4−アミノ−3−クロロフェニル)オキシド、ビス(4−アミノ−2−クロロフェニル)プロパン、ビス(4−アミノ−2−クロロフェニル)スルホン、ビス(4−アミノ−3−メトキシフェニル)デカン、ビス(4−アミノフェニル)スルフイド、ビス(4−アミノフェニル)テルリド、ビス(4−アミノフェニル)セレニド、ビス(4−アミノ−3−メトキシフェニル)ジスルフイド、4,4′−メチレンビス(2−ヨードアニリン)、4,4′−メチレンビス(2−ブロモアニリン)、4,4′−メチレンビス(2−フルオロアニリン)、4−アミノフェニル−2−クロロアニリン等の核置換電子吸引基(Cl、Br、I、F等のハロゲン;メトキシ、エトキシ等のアルコキシ基;ニトロ基など)を有する芳香族ジアミン;4,4′−ジ(メチルアミノ)ジフェニルメタン、1−メチル−2−メチルアミノ−4−アミノベンゼン等の二級アミノ基を有する芳香族ジアミン〔前記非置換芳香族ジアミン、前記炭素数1〜4の核置換アルキル基を有する芳香族ジアミン、及びこれらの異性体の種々の割合の混合物、前記核置換電子吸引基を有する芳香族ジアミンの一級アミノ基の一部又は全部がメチル、エチルなどの低級アルキル基で二級アミノ基に置き換ったもの〕などが挙げられる。   Examples of the polyurea unit include a polyurea unit synthesized from a polyamine such as a diamine or a trivalent or higher polyamine and a polyisocyanate such as a diisocyanate or a trivalent or higher polyisocyanate. There is no restriction | limiting in particular as diamine, According to the objective, it can select suitably, For example, aliphatic diamines and aromatic diamine are mentioned. Among these, aliphatic diamines having 2 to 18 carbon atoms and aromatic diamines having 6 to 20 carbon atoms are preferable. Moreover, you may use trivalent or more amines as needed. The aliphatic diamine having 2 to 18 carbon atoms is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine and other alkylene diamines having 2 to 6 carbon atoms; diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetra Polyalkylenediamine having 4 to 18 carbon atoms such as ethylenepentamine and pentaethylenehexamine; dialkylaminopropylamine, trimethylhexamethylenediamine, aminoethylethanolamine, 2,5-dimethyl-2,5-hexamethylenediamine, Alkyl having 1 to 4 carbon atoms or hydroxyalkyl substitution having 2 to 4 carbon atoms of the alkylenediamine or polyalkylenediamine such as methyliminobispropylamine Alicyclic diamines having 4 to 15 carbon atoms such as 1,3-diaminocyclohexane, isophoronediamine, mensendiamine, 4,4'-methylenedicyclohexanediamine (hydrogenated methylenedianiline); piperazine, N-aminoethyl Piperazine, 1,4-diaminoethylpiperazine, 1,4-bis (2-amino-2-methylpropyl) piperazine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] heterocyclic diamine having 4 to 15 carbon atoms such as undecane; aromatic ring-containing aliphatic amines having 8 to 15 carbon atoms such as xylylenediamine and tetrachloro-p-xylylenediamine Is mentioned. The aromatic diamine having 6 to 20 carbon atoms is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 1,2-, 1,3- and 1,4-phenylenediamine, 2,4 '-And 4,4'-diphenylmethanediamine, crude diphenylmethanediamine (polyphenylpolymethylenepolyamine), diaminodiphenylsulfone, benzidine, thiodianiline, bis (3,4-diaminophenyl) sulfone, 2,6-diaminopyridine, m- Unsubstituted aromatic diamines such as aminobenzylamine, triphenylmethane-4,4 ', 4 "-triamine, naphthylenediamine; 2,4- and 2,6-tolylenediamine, crude tolylenediamine, diethyltolylenediamine Amine, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4 ' -Bis (o-toluidine), dianisidine, diaminoditolyl sulfone, 1,3-dimethyl-2,4-diaminobenzene, 1,3-dimethyl-2,6-diaminobenzene, 1,4-diisopropyl-2,5 -Diaminobenzene, 2,4-diaminomesitylene, 1-methyl-3,5-diethyl-2,4-diaminobenzene, 2,3-dimethyl-1,4-diaminonaphthalene, 2,6-dimethyl-1,5 -Diaminonaphthalene, 3,3 ', 5,5'-tetramethylbenzidine, 3,3', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, 3,5-diethyl-3'-methyl- 2 ', 4-diaminodiphenylmethane, 3,3'-diethyl-2,2'-diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenyl Tan, 3,3 ', 5,5'-tetraethyl-4,4'-diaminobenzophenone, 3,3', 5,5'-tetraethyl-4,4'-diaminodiphenyl ether, 3,3 ', 5,5 Aromatic diamine having a C1-C4 nucleus-substituted alkyl group such as' -tetraisopropyl-4,4'-diaminodiphenylsulfone; unsubstituted aromatic diamine or the above-mentioned C1-C4 nucleus-substituted alkyl group Mixtures of various proportions of isomers of aromatic diamines; methylenebis-o-chloroaniline, 4-chloro-o-phenylenediamine, 2-chloro-1,4-phenylenediamine, 3-amino-4-chloroaniline, 4 -Bromo-1,3-phenylenediamine, 2,5-dichloro-1,4-phenylenediamine, 5-nitro-1,3-phenylenediamine, 3-di Toxi-4-aminoaniline; 4,4'-diamino-3,3'-dimethyl-5,5'-dibromodiphenylmethane, 3,3'-dichlorobenzidine, 3,3'-dimethoxybenzidine, bis (4-amino -3-chlorophenyl) oxide, bis (4-amino-2-chlorophenyl) propane, bis (4-amino-2-chlorophenyl) sulfone, bis (4-amino-3-methoxyphenyl) decane, bis (4-aminophenyl) ) Sulfide, bis (4-aminophenyl) telluride, bis (4-aminophenyl) selenide, bis (4-amino-3-methoxyphenyl) disulfide, 4,4'-methylenebis (2-iodoaniline), 4,4 '-Methylenebis (2-bromoaniline), 4,4'-methylenebis (2-fluoroaniline), 4- Aromatic diamines having a nucleus-substituted electron withdrawing group such as aminophenyl-2-chloroaniline (halogens such as Cl, Br, I and F; alkoxy groups such as methoxy and ethoxy; nitro groups); 4,4′-di An aromatic diamine having a secondary amino group such as (methylamino) diphenylmethane, 1-methyl-2-methylamino-4-aminobenzene [the unsubstituted aromatic diamine, the C1-C4 nucleus-substituted alkyl group. A part of or all of the primary amino group of the aromatic diamine having a nucleus-substituted electron-withdrawing group is a lower alkyl group such as methyl or ethyl, and a secondary amino group. And the like).

ジアミンとして、これらの他、ジカルボン酸(ダイマー酸等)と過剰の(酸1モル当り2モル以上の)前記ポリアミン(前記アルキレンジアミン、前記ポリアルキレンポリアミン等)との縮合により得られる低分子量ポリアミドポリアミン等のポリアミドポリアミン;ポリエーテルポリオール(ポリアルキレングリコール等)のシアノエチル化物の水素化物等のポリエーテルポリアミンなどが挙げられる。また、アミン化合物のアミノ基をケトン化合物などによりキャッピングしたものを用いてもよい。これらの中でも、前記ジアミンと前記ジイソシアネートとから合成されるポリウレアユニットが好ましい。ジイソシアネート及び3価以上のポリイソシアネートとしては、ジイソシアネート及び3価以上のポリイソシアネートと同様のものが挙げられる。   In addition to these, low molecular weight polyamide polyamines obtained by condensation of dicarboxylic acids (dimer acids, etc.) and excess (more than 2 moles per mole of acid) polyamines (the alkylenediamine, polyalkylenepolyamine, etc.) And polyether polyamines such as hydrides of cyanoethylated polyether polyols (polyalkylene glycol and the like). Moreover, you may use what capped the amino group of the amine compound with the ketone compound etc. Among these, a polyurea unit synthesized from the diamine and the diisocyanate is preferable. Examples of the diisocyanate and the trivalent or higher polyisocyanate include those similar to the diisocyanate and the trivalent or higher polyisocyanate.

ビニル系ポリマーユニットは、ビニル系モノマーを単独重合又は共重合したポリマーユニットである。ビニル系モノマーとしては、次に列記するものが挙げられる。
(1)ビニル系炭化水素
(2)カルボキシル基含有ビニル系モノマー及びその塩
(3)スルホン基含有ビニル系モノマー、ビニル系硫酸モノエステル化物及びこれらの塩
(4)燐酸基含有ビニル系モノマー及びその塩
(5)ヒドロキシル基含有ビニル系モノマー
(6)含窒素ビニル系モノマー
(7)エポキシ基含有ビニル系モノマー
(8)ビニルエステル、ビニル(チオ)エーテル、ビニルケトン、ビニルスルホン類
(9)その他のビニル系モノマー
(10)イソシアナートエチル(メタ)アクリレート、m−イソプロペニル−α,α−ジメチルベンジルイソシアネートなど
(11)フッ素原子元素含有ビニル系モノマー
The vinyl polymer unit is a polymer unit obtained by homopolymerizing or copolymerizing vinyl monomers. Examples of vinyl monomers include those listed below.
(1) Vinyl hydrocarbons (2) Carboxyl group-containing vinyl monomers and salts thereof (3) Sulfone group-containing vinyl monomers, vinyl sulfate monoesters and their salts (4) Phosphate group-containing vinyl monomers and their salts Salt (5) Hydroxyl group-containing vinyl monomer (6) Nitrogen-containing vinyl monomer (7) Epoxy group-containing vinyl monomer (8) Vinyl ester, vinyl (thio) ether, vinyl ketone, vinyl sulfones (9) Other vinyls Monomer (10) Isocyanatoethyl (meth) acrylate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, etc. (11) Fluorine atom element-containing vinyl monomers

上記(1)のビニル系炭化水素としては、脂肪族ビニル系炭化水素、脂環式ビニル系炭化水素、芳香族ビニル系炭化水素などが挙げられる。更に、脂肪族ビニル系炭化水素としては、例えばエチレン、プロピレンレン、ブテン、イソブチレン、ぺンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセン、それら以外のα−オレフィンなどのアルケン類が挙げられる。加えて、例えば、ブタジエン、イソプレン、1,4−ペンタジエン、1,6−ヘキサジエン、1,7−オクタジエン等のアルカジエン類も挙げられる。また、脂環式ビニル系炭化水素としては、例えば、シクロヘキセン、(ジ)シクロペンタジエン、ビニルシクロヘキセン、エチリデンビシクロヘプテンなどのモノ−又はジ−シクロアルケン及びアルカジエン類が挙げられる。加えて、例えば、ピネン、リモネン、インデン等のテルペン類も挙げられる。また、芳香族ビニル系炭化水素としては、スチレン及びそのハイドロカルビル(アルキル、シクロアルキル、アラルキル及び/又はアルケニル)置換体や、ビニルナフタレンなどが挙げられる。なお、スチレン及びそのハイドロカルビル(アルキル、シクロアルキル、アラルキル及び/又はアルケニル)置換体としては、例えば、α−メチルスチレン、ビニルトルエン、2,4−ジメチルスチレン、エチルスチレンなどが挙げられる。加えて、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン、クロチルベンゼン、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、トリビニルベンゼンなども挙げられる。   Examples of the vinyl hydrocarbon (1) include aliphatic vinyl hydrocarbons, alicyclic vinyl hydrocarbons, and aromatic vinyl hydrocarbons. Furthermore, examples of the aliphatic vinyl hydrocarbon include alkenes such as ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, and other α-olefins. In addition, for example, alkadienes such as butadiene, isoprene, 1,4-pentadiene, 1,6-hexadiene, 1,7-octadiene are also included. Examples of alicyclic vinyl hydrocarbons include mono- or di-cycloalkenes and alkadienes such as cyclohexene, (di) cyclopentadiene, vinylcyclohexene, and ethylidenebicycloheptene. In addition, for example, terpenes such as pinene, limonene, and indene are also included. Examples of the aromatic vinyl hydrocarbon include styrene and its hydrocarbyl (alkyl, cycloalkyl, aralkyl and / or alkenyl) substituted products, vinyl naphthalene, and the like. Examples of styrene and its hydrocarbyl (alkyl, cycloalkyl, aralkyl and / or alkenyl) substituted products include α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, and ethylstyrene. In addition, isopropyl styrene, butyl styrene, phenyl styrene, cyclohexyl styrene, benzyl styrene, crotyl benzene, divinyl benzene, divinyl toluene, divinyl xylene, trivinyl benzene, and the like are also included.

上記(2)のカルボキシル基含有ビニル系モノマー及びその塩としては、炭素数3〜30の不飽和モノカルボン酸、不飽和ジカルボン酸並びにその無水物及びそのモノアルキル(炭素数1〜24)エステルなどが挙げられる。より詳しくは、(メタ)アクリル酸、(無水)マレイン酸、マレイン酸モノアルキルエステル、フマル酸、フマル酸モノアルキルエステル、クロトン酸、イタコン酸などである。また、イタコン酸モノアルキルエステル、イタコン酸グリコールモノエーテル、シトラコン酸、シトラコン酸モノアルキルエステル、桂皮酸等のカルボキシル基含有ビニル系モノマーなどである。   Examples of the carboxyl group-containing vinyl monomer (2) and salts thereof include unsaturated monocarboxylic acids having 3 to 30 carbon atoms, unsaturated dicarboxylic acids, anhydrides thereof, and monoalkyl (1 to 24 carbon atoms) esters thereof. Is mentioned. More specifically, (meth) acrylic acid, (anhydrous) maleic acid, maleic acid monoalkyl ester, fumaric acid, fumaric acid monoalkyl ester, crotonic acid, itaconic acid and the like. Also, it is a carboxyl group-containing vinyl monomer such as itaconic acid monoalkyl ester, itaconic acid glycol monoether, citraconic acid, citraconic acid monoalkyl ester, or cinnamic acid.

上記(3)のスルホン基含有ビニル系モノマー、ビニル系硫酸モノエステル化物及びこれらの塩としては、炭素数2〜14のアルケンスルホン酸、例えはビニルスルホン酸、(メタ)アリルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸;及びその炭素数2〜24のアルキル誘導体、例えばα−メチルスチレンスルホン酸等;スルホ(ヒドロキシ)アルキル−(メタ)アクリレートもしくは(メタ)アクリルアミド、例えば、スルホプロピル(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロキシプロピルスルホン酸、2−(メタ)アクリロイルアミノ−2,2−ジメチルエタンスルホン酸、2−(メタ)アクリロイルオキシエタンスルホン酸、3−(メタ)アクリロイルオキシ−2−ヒドロキシプロパンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、3−(メタ)アクリルアミド−2−ヒドロキシプロパンスルホン酸、アルキル(炭素数3〜18)アリルスルホコハク酸、ポリ(n=2〜30)オキシアルキレン(エチレン、プロピレン、ブチレン:単独、ランダム、ブロックでもよい)モノ(メタ)アクリレートの硫酸エステル[ポリ(n=5〜15)オキシプロピレンモノメタクリレート硫酸エステル等]、ポリオキシエチレン多環フェニルエーテル硫酸エステルなどが挙げられる。   Examples of the (3) sulfone group-containing vinyl monomer, vinyl sulfate monoester product, and salts thereof include alkene sulfonic acids having 2 to 14 carbon atoms, such as vinyl sulfonic acid, (meth) allyl sulfonic acid, and methyl vinyl. Sulfonic acid, styrene sulfonic acid; and alkyl derivatives thereof having 2 to 24 carbon atoms, such as α-methylstyrene sulfonic acid, etc .; sulfo (hydroxy) alkyl- (meth) acrylate or (meth) acrylamide, such as sulfopropyl (meth) Acrylate, 2-hydroxy-3- (meth) acryloxypropylsulfonic acid, 2- (meth) acryloylamino-2,2-dimethylethanesulfonic acid, 2- (meth) acryloyloxyethanesulfonic acid, 3- (meth) Acryloyloxy-2-hydroxypropanesulfone 2- (meth) acrylamido-2-methylpropanesulfonic acid, 3- (meth) acrylamide-2-hydroxypropanesulfonic acid, alkyl (3 to 18 carbon atoms) allylsulfosuccinic acid, poly (n = 2 to 30) oxy Alkylene (ethylene, propylene, butylene: single, random or block) mono (meth) acrylate sulfate [poly (n = 5-15) oxypropylene monomethacrylate sulfate, etc.], polyoxyethylene polycyclic phenyl ether sulfate Examples include esters.

上記(4)の燐酸基含有ビニル系モノマー及びその塩としては、(メタ)アクリロイルオキシアルキル燐酸モノエステル、例えば、2−ヒドロキシエチル(メタ)アクリロイルホスフェート、フェニル−2−アクリロイロキシエチルホスフェート、(メタ)アクリロイルオキシアルキル(炭素数1〜24)ホスホン酸類、例えば、2−アクリロイルオキシエチルホスホン酸;及びそれらの塩などが挙げられる。なお、上記(2)〜(4)の塩としては、例えばアルカリ金属塩(ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(カルシウム塩、マグネシウム塩等)、アンモニウム塩、アミン塩又は4級アンモニウム塩が挙げられる。   Examples of the phosphoric acid group-containing vinyl monomer (4) and salts thereof include (meth) acryloyloxyalkyl phosphoric acid monoesters such as 2-hydroxyethyl (meth) acryloyl phosphate, phenyl-2-acryloyloxyethyl phosphate, ( (Meth) acryloyloxyalkyl (C1-C24) phosphonic acids, for example, 2-acryloyloxyethylphosphonic acid; and salts thereof. Examples of the salts (2) to (4) include alkali metal salts (sodium salts, potassium salts, etc.), alkaline earth metal salts (calcium salts, magnesium salts, etc.), ammonium salts, amine salts, or quaternary grades. An ammonium salt is mentioned.

上記(5)のヒドロキシル基含有ビニル系モノマーとしては、ヒドロキシスチレン、N−メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、(メタ)アリルアルコール、クロチルアルコール、イソクロチルアルコール、1−ブテン−3−オール、2−ブテン−1−オール、2−ブテン−1,4−ジオール、プロパルギルアルコール、2−ヒドロキシエチルプロペニルエーテル、庶糖アリルエーテルなどが挙げられる。   Examples of the hydroxyl group-containing vinyl monomer (5) include hydroxystyrene, N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, (meth) Allyl alcohol, crotyl alcohol, isocrotyl alcohol, 1-buten-3-ol, 2-buten-1-ol, 2-butene-1,4-diol, propargyl alcohol, 2-hydroxyethylpropenyl ether, sucrose allyl Examples include ether.

上記(6)の含窒素ビニル系モノマーとしては、アミノ基含有ビニル系モノマー:アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、t−ブチルアミノエチルメタクリレート、N−アミノエチル(メタ)アクリルアミド、(メタ)アリルアミン、モルホリノエチル(メタ)アクリレート、4−ビニルピリジン、2−ビニルピリジン、クロチルアミン、N,N−ジメチルアミノスチレン、メチル−α−アセトアミノアクリレート、ビニルイミダゾール、N−ビニルピロ一ル、N−ビニルチオピロリドン、N−アリールフェニレンジアミン、アミノカルバゾール、アミノチアゾール、アミノインドール、アミノピロール、アミノイミダゾール、アミノメルカプトチアゾール、及びこれらの塩などが挙げられる。また、アミド基含有ビニル系モノマー;(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−ブチルアクリルアミド、ジアセトンアクリルアミド、N−メチロール(メタ)アクリルアミド、N,N−メチレン−ビス(メタ)アクリルアミド、桂皮酸アミド、N,N−ジメチルアクリルアミド、N,N−ジベンジルアクリルアミド、メタクリルホルムアミド、N−メチル−N−ビニルアセトアミド、N−ビニルピロリドンなども挙げられる。また、ニトリル基含有ビニル系モノマー:(メタ)アクリロニトリル、シアノスチレン、シアノアクリレ一トなども挙げられる。また、4級アンモニウムカチオン基含有ビニル系モノマー:ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリルアミド、ジアリルアミン等の3級アミン基含有ビニル系モノマーの4級化物(メチルクロライド、ジメチル硫酸、ベンジルクロライド、ジメチルカーボネート等の4級化剤を用いて4級化したもの)なども挙げられる。また、ニトロ基含有ビニル系モノマー:ニトロスチレンなども挙げられる。   Examples of the nitrogen-containing vinyl monomer (6) include amino group-containing vinyl monomers: aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, t-butylaminoethyl methacrylate, N -Aminoethyl (meth) acrylamide, (meth) allylamine, morpholinoethyl (meth) acrylate, 4-vinylpyridine, 2-vinylpyridine, crotylamine, N, N-dimethylaminostyrene, methyl-α-acetaminoacrylate, vinylimidazole N-vinylpyrrole, N-vinylthiopyrrolidone, N-arylphenylenediamine, aminocarbazole, aminothiazole, aminoindole, aminopyrrole, aminoimidazole, aminomercaptothia Lumpur, and their salts. Also, amide group-containing vinyl monomers: (meth) acrylamide, N-methyl (meth) acrylamide, N-butyl acrylamide, diacetone acrylamide, N-methylol (meth) acrylamide, N, N-methylene-bis (meth) acrylamide And cinnamic acid amide, N, N-dimethylacrylamide, N, N-dibenzylacrylamide, methacrylformamide, N-methyl-N-vinylacetamide, N-vinylpyrrolidone and the like. In addition, nitrile group-containing vinyl monomers: (meth) acrylonitrile, cyanostyrene, cyanoacrylate, and the like are also included. Also, quaternary ammonium cation group-containing vinyl monomers: tertiary amine groups such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylamide, diethylaminoethyl (meth) acrylamide, diallylamine and the like Also included are quaternized vinyl monomers (quaternized with a quaternizing agent such as methyl chloride, dimethyl sulfate, benzyl chloride, dimethyl carbonate). Further, nitro group-containing vinyl monomers: nitrostyrene and the like can also be mentioned.

上記(7)のエポキシ基含有ビニル系モノマーとしては、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、p−ビニルフェニルフェニルオキサイドなどが挙げられる。   Examples of the epoxy group-containing vinyl monomer (7) include glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, and p-vinylphenylphenyl oxide.

上記(8)のビニルエステルとしては、例えば酢酸ビニル、ビニルブチレート、プロピオン酸ビニル、酪酸ビニル、ジアリルフタレート、ジアリルアジペート、イソプロペニルアセテート、ビニルメタクリレート、メチル−4−ビニルベンゾエート、シクロヘキシルメタクリレート、ベンジルメタクリレート、フェニル(メタ)アクリレート、ビニルメトキシアセテート、ビニルベンゾエート、エチル−α−エトキシアクリレート、炭素数1〜50のアルキル基を有するアルキル(メタ)アクリレート[メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート等]、ジアルキルフマレート(2個のアルキル基は、炭素数2〜8の、直鎖、分枝鎖もしくは脂環式の基である)、ジアルキルマレエート(2個のアルキル基は、炭素数2〜8の、直鎖、分枝鎖もしくは脂環式の基である)、ポリ(メタ)アリロキシアルカン類[ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシエタン、テトラアリロキシプロパン、テトラアリロキシブタン、テトラメタアリロキシエタン等]等、ポリアルキレングリコール鎖を有するビニル系モノマー[ポリエチレングリコール(分子量300)モノ(メタ)アクリレート、ポリプロピレングリコール(分子量500)モノアクリレート、メチルアルコールエチレンオキサイド10モル付加物(メタ)アクリレート、ラウリルアルコールエチレンオキサイド30モル付加物(メタ)アクリレート等]、ポリ(メタ)アクリレート類[多価アルコール類のポリ(メタ)アクリレート:エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等]などが挙げられる。   Examples of the vinyl ester (8) include vinyl acetate, vinyl butyrate, vinyl propionate, vinyl butyrate, diallyl phthalate, diallyl adipate, isopropenyl acetate, vinyl methacrylate, methyl-4-vinylbenzoate, cyclohexyl methacrylate, and benzyl methacrylate. , Phenyl (meth) acrylate, vinyl methoxyacetate, vinyl benzoate, ethyl-α-ethoxy acrylate, alkyl (meth) acrylate having an alkyl group having 1 to 50 carbon atoms [methyl (meth) acrylate, ethyl (meth) acrylate, propyl (Meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate , Heptadecyl (meth) acrylate, eicosyl (meth) acrylate, etc.], dialkyl fumarate (two alkyl groups are linear, branched or alicyclic groups having 2 to 8 carbon atoms), dialkyl Maleates (two alkyl groups are straight, branched or alicyclic groups having 2 to 8 carbon atoms), poly (meth) allyloxyalkanes [diallyloxyethane, triaryloxy Ethane, Tetraallyloxyethane, Tetraallyloxypropane, Tetraallyloxybutane, Tetrametaallyloxyethane, etc.] and other vinyl monomers having a polyalkylene glycol chain [polyethylene glycol (molecular weight 300) mono (meth) acrylate, polypropylene glycol (Molecular weight 500) Monoacrylate, methyl alcohol ethylene oxide 10 mol Adduct (meth) acrylate, lauryl alcohol ethylene oxide 30 mole adduct (meth) acrylate, etc.], poly (meth) acrylates [poly (meth) acrylate of polyhydric alcohols: ethylene glycol di (meth) acrylate, propylene Glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, polyethylene glycol di (meth) acrylate, etc.].

また、上記(8)のビニル(チオ)エーテルとしては、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテル、ヒニルブチルエーテル、ビニル−2−エチルヘキシルエーテル、ビニルフェニルエーテル、ビニル−2−メトキシエチルエーテル、メトキシブタジエン、ビニル−2−ブトキシエチルエーテル、3,4−ジヒトロ−1,2−ピラン、2−ブトキシ−2′−ビニロキシジエチルエーテル、ビニル−2−エチルメルカプトエチルエーテル、アセトキシスチレン、フェノキシスチレンなどが挙げられる。   Examples of the vinyl (thio) ether of (8) above include vinyl methyl ether, vinyl ethyl ether, vinyl propyl ether, hinyl butyl ether, vinyl-2-ethylhexyl ether, vinyl phenyl ether, vinyl-2-methoxyethyl ether. , Methoxybutadiene, vinyl-2-butoxyethyl ether, 3,4-dibutyro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether, vinyl-2-ethylmercaptoethyl ether, acetoxystyrene, phenoxystyrene Etc.

また、上記(8)のビニルケトンとしては、例えはビニルメチルケトン、ビニルエチルケトン、ビニルフェニルケトンなどが挙げられる。   Examples of the vinyl ketone (8) include vinyl methyl ketone, vinyl ethyl ketone, and vinyl phenyl ketone.

また、上記(8)のビニルスルホン類としては、例えばジビニルサルファイド、p−ビニルジフェニルサルファイド、ビニルエチルサルファイド、ビニルエチルスルフォン、ジビニルスルフォン、ジビニルスルフォキサイドなどが挙げられる。   Examples of the vinyl sulfones (8) include divinyl sulfide, p-vinyl diphenyl sulfide, vinyl ethyl sulfide, vinyl ethyl sulfone, divinyl sulfone, and divinyl sulfoxide.

また、上記(9)におけるその他のビニル系モノマーとしては、イソシアナートエチル(メタ)アクリレート、m−イソプロペニル−α,α−ジメチルベンジルイソシアネートなどが挙げられる。   Examples of other vinyl monomers in (9) include isocyanate ethyl (meth) acrylate and m-isopropenyl-α, α-dimethylbenzyl isocyanate.

また、上記(10)のフッ素原子元素含有ビニル系モノマーとしては、4−フルオロスチレン、2,3,5,6−テトラフルオロスチレン、ペンタフルオロフェニル(メタ)アクリレート、ペンタフルオロベンジル(メタ)アクリレート、ペルフルオロシクロヘキシル(メタ)アクリレート、ペルフルオロシクロヘキシルメチル(メタ)アクリレート、2,2,2−トリフルオロエチル(メタ)アクリレート2,2,3,3−テトラフルオロプロピル(メタ)アクリレート、1H,1H,4H−ヘキサフルオロブチル(メタ)アクリレート、1H,1H,5H−オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H−ドデカフルオロヘプチル(メタ)アクリレート、ペルフルオロオクチル(メタ)アクリレート、2−ペルフルオロオクチルエチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレート、トリヒドロペルフルオロウンデシル(メタ)アクリレート、ペルフルオロノルボニルメチル(メタ)アクリレート、1H−ペルフルオロイソボルニル(メタ)アクリレート2−(N−ブチルペルフルオロオクタンスルホンアミド)エチル(メタ)アクリレート、2−(N−エチルペルフルオロオクタンスルホンアミド)エチル(メタ)アクリレート、並びにα−フルオロアクリル酸から誘導された対応する化合物、ビス−ヘキサフルオロイソプロピルイタコネート、ビス−ヘキサフルオロイソプロピルマレエート、ビス−ペルフルオロオクチルイタコネート、ビス−ペルフルオロオクチルマレエート、ビス−トリフルオロエチルイタコネート及びビス−トリフルオロエチルマレエート、ビニルヘプタフルオロブチレート、ビニルペルフルオロヘプタノエート、ビニルペルフルオロノナノエート及びビニルペルフルオロオクタノエートなどが挙げられる。   The fluorine atom element-containing vinyl monomer (10) is 4-fluorostyrene, 2,3,5,6-tetrafluorostyrene, pentafluorophenyl (meth) acrylate, pentafluorobenzyl (meth) acrylate, Perfluorocyclohexyl (meth) acrylate, perfluorocyclohexylmethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 4H- Hexafluorobutyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, 1H, 1H, 7H-dodecafluoroheptyl (meth) acrylate, perfluorooctyl (meth) acrylate, 2-perfluoro Octylethyl (meth) acrylate, heptadecafluorodecyl (meth) acrylate, trihydroperfluoroundecyl (meth) acrylate, perfluoronorbornylmethyl (meth) acrylate, 1H-perfluoroisobornyl (meth) acrylate 2- (N- Butyl perfluorooctanesulfonamido) ethyl (meth) acrylate, 2- (N-ethylperfluorooctanesulfonamido) ethyl (meth) acrylate, and the corresponding compound derived from α-fluoroacrylic acid, bis-hexafluoroisopropyl itaconate Bis-hexafluoroisopropyl maleate, bis-perfluorooctyl itaconate, bis-perfluoro octyl maleate, bis-trifluoroethyl itaconate and bis -Trifluoroethyl maleate, vinyl heptafluorobutyrate, vinyl perfluoroheptanoate, vinyl perfluorononanoate and vinyl perfluorooctanoate.

結着樹脂としては、主鎖にウレア結合を有する結晶性樹脂を含むことが好ましい。Solubility Parameter Values(Polymer handbook 4th Ed)によれば、ウレア結合の凝集エネルギーは50,230[J/mol]である。この数値は、ウレタン結合の凝集エネルギー(26,370[J/mol]])の2倍程度あるため、少量であってもトナーの強靭性や定着時のオフセット耐性向上効果が期待できる。主鎖にウレア結合を有する樹脂を得るには、ポリイソシアネート化合物と、ポリアミン化合物を反応させる方法を例示することができる。あるいはポリイソシアネート化合物と水を反応させ、イソシアネートの加水分解によって発生したアミノ基と残りのイソシアネート基を反応させる方法でもよい。また、主鎖にウレア結合を有する樹脂を得るのにあたり、前述の化合物のほかに、ポリオール化合物も同時に反応させることで樹脂設計の自由度を広げることができる。   The binder resin preferably includes a crystalline resin having a urea bond in the main chain. According to Solubility Parameter Values (Polymer handbook 4th Ed), the cohesive energy of urea bonds is 50,230 [J / mol]. Since this value is about twice the cohesive energy of urethane bonds (26,370 [J / mol]), it can be expected that toner toughness and an effect of improving offset resistance during fixing can be expected even with a small amount. In order to obtain a resin having a urea bond in the main chain, a method of reacting a polyisocyanate compound and a polyamine compound can be exemplified. Alternatively, a method of reacting a polyisocyanate compound with water and reacting an amino group generated by hydrolysis of the isocyanate and the remaining isocyanate group may be used. In addition, in obtaining a resin having a urea bond in the main chain, in addition to the above-mentioned compounds, a polyol compound can be reacted at the same time to increase the degree of freedom in resin design.

ポリイソシアネートとしては、ジイソシアネート、3価以上のポリイソシアネート(以下、低分子量ポリイソシアネートとも記載する)のほか、イソシアネート基を末端や側鎖に有するようなポリマー(以下、プレポリマーとも記載する)を使用してもよい。プレポリマーの作成方法としては、低分子量ポリイソシアネートと後述のポリアミン化合物を、イソシアネート過剰量で反応させて末端にイソシアネート基を有するポリウレアプレポリマーを得る方法を例示することができる。また、低分子量ポリイソシアネートとポリオール化合物とを、イソシアネート過剰量で反応させて末端にイソシアネート基を有するプレポリマーを得る方法でもよい。これらの方法で得られるプレポリマーは単独で使用してもよいし、同じ方法で得られる2種類以上のプレポリマー、あるいは前記2とおりの方法で得られる2種類以上のプレポリマーを併用してもよい。さらには、プレポリマーと低分子量ポリイソシアネートを1種類あるいは複数種併用してもよい。   As polyisocyanate, diisocyanate, trivalent or higher polyisocyanate (hereinafter also referred to as low molecular weight polyisocyanate), and polymers having an isocyanate group at the terminal or side chain (hereinafter also referred to as prepolymer) are used. May be. Examples of the method for producing the prepolymer include a method of obtaining a polyurea prepolymer having an isocyanate group at the terminal by reacting a low molecular weight polyisocyanate with a polyamine compound described below in an excess amount of isocyanate. Alternatively, a method may be used in which a low molecular weight polyisocyanate and a polyol compound are reacted with an excess amount of isocyanate to obtain a prepolymer having an isocyanate group at the terminal. The prepolymers obtained by these methods may be used alone, or two or more types of prepolymers obtained by the same method, or two or more types of prepolymers obtained by the above two methods may be used in combination. Good. Furthermore, the prepolymer and the low molecular weight polyisocyanate may be used alone or in combination.

ポリイソシアネートの使用比率は、イソシアネート基[NCO]と、ポリアミンのアミノ基[NH2}の等量比[NCO]/[NH2]、あるいはポリオールの水酸基[OH]の当量比[NCO]/[OH]で表すことができる。これらの比率は、通常5/1〜1.01/1であることが好ましく、4/1〜1.2/1であることがより好ましく、2.5/1〜1.5/1であることが更に好ましい。[NCO]のモル比が5を超えるとウレタン結合やウレア結合が多くなりすぎて、最終的に得られる樹脂をトナー用の結着樹脂として使用すると溶融状態における弾性率が高すぎ定着性が悪化する可能性がある。また、[NCO]のモル比が1.01未満であると、重合度が高くなり生成するプレポリマーの分子量が大きくなるため、トナーを製造するのにあたり他の材料との混合が困難になる。もしくは溶融状態における弾性率が高すぎ定着性が悪化する可能性があるので好ましくない。   The ratio of polyisocyanate used is equivalent ratio [NCO] / [NH2] of isocyanate group [NCO] and amino group [NH2} of polyamine, or equivalent ratio [NCO] / [OH] of hydroxyl group [OH] of polyol. Can be expressed as These ratios are usually preferably 5/1 to 1.01 / 1, more preferably 4/1 to 1.2 / 1, and 2.5 / 1 to 1.5 / 1. More preferably. When the molar ratio of [NCO] exceeds 5, urethane bonds and urea bonds increase too much, and when the finally obtained resin is used as a binder resin for toner, the elastic modulus in the molten state is too high and the fixability deteriorates. there's a possibility that. Further, when the [NCO] molar ratio is less than 1.01, the degree of polymerization increases and the molecular weight of the prepolymer to be produced increases, so that it is difficult to mix with other materials in the production of toner. Alternatively, the elastic modulus in the molten state is too high, and the fixability may be deteriorated.

ポリアミンとしては、ジアミン、3価以上のポリアミンなどが挙げられる。また、ポリオールとしては、前述のようなジオール、3価〜8価又はそれ以上のポリオール(以下、低分子量ポリオールとも記載する)のほか、水酸基を末端や側鎖に有するようなポリマー(以下、高分子量ポリオールとの記載する)を使用してもよい。また、高分子量ポリオールの作成方法としては、低分子量ポリイソシアネートと低分子量ポリオールを、水酸基過剰量で反応させて末端に水酸基を有するポリウレタンを得る方法が挙げられる。また、ポリカルボン酸と低分子量ポリオール化合物とを、水酸基過剰量で反応させて末端に水酸基を有するポリエステルを得る方法でもよい。   Examples of polyamines include diamines and trivalent or higher polyamines. Examples of the polyol include diols as described above, trivalent to octavalent or higher polyols (hereinafter also referred to as low molecular weight polyols), and polymers having hydroxyl groups at the terminals and side chains (hereinafter referred to as high molecular weights). (Described as molecular weight polyol) may be used. Moreover, as a preparation method of high molecular weight polyol, the method of making the polyurethane which has a hydroxyl group at the terminal by making low molecular weight polyisocyanate and low molecular weight polyol react with an excess amount of hydroxyl groups is mentioned. Moreover, the method of obtaining the polyester which has a hydroxyl group at the terminal by making polycarboxylic acid and a low molecular-weight polyol compound react with hydroxyl group excess amount may be sufficient.

水酸基を末端に有するポリウレタンあるいはポリエステルを調整するためには、低分子量ポリオールと低分子量ポリイソシアネートの比率[OH]/[NCO]、あるいは低分子量ポリオールとポリカルボン酸の比率[OH]/[COOH]を次のようにする。即ち、2/1〜1/1にすることが好ましく、1.5/1〜1/1にすることがより好ましく、1.3/1〜1.02/1にすることが更に好ましい。水酸基のモル比が2を超えると重合反応が進まないため所望の高分子量ポリオールが得られなくなる。また、1.02を下回ると重合度が高くなり得られる高分子量ポリオールの分子量が大きくなりすぎるためトナーを製造するのにあたり他の材料との混合が困難になる、もしくは溶融状態における弾性率が高すぎ定着性が悪化する可能性があるため好ましくない。ポリカルボン酸としては、前述のジカルボン酸、3価〜6価又はそれ以上のポリカルボン酸が挙げられる。   In order to adjust the polyurethane or polyester having a hydroxyl group at the terminal, the ratio [OH] / [NCO] of the low molecular weight polyol and the low molecular weight polyisocyanate, or the ratio [OH] / [COOH] of the low molecular weight polyol and the polycarboxylic acid. As follows. That is, it is preferably 2/1 to 1/1, more preferably 1.5 / 1 to 1/1, and still more preferably 1.3 / 1 to 1.02 / 1. When the molar ratio of the hydroxyl groups exceeds 2, the polymerization reaction does not proceed, and the desired high molecular weight polyol cannot be obtained. On the other hand, if it is less than 1.02, the degree of polymerization increases and the molecular weight of the resulting high molecular weight polyol becomes too large, making it difficult to mix with other materials in the production of toner, or having a high elastic modulus in the molten state. This is not preferable because fixing ability may be deteriorated. Examples of the polycarboxylic acid include the aforementioned dicarboxylic acids, trivalent to hexavalent or higher polycarboxylic acids.

樹脂に結晶性を発揮させるためには、主鎖に結晶性を有するポリマーユニットを導入すればよい。トナー用の結着樹脂として好適な融点を有するような結晶性ポリマーユニットとしては、結晶性ポリエステルユニット、ポリアクリル酸やポリメタクリル酸の長鎖アルキルエステルユニット等が挙げられる。結晶性ポリエステルユニットは末端アルコールのものを簡便に作製することができ、ポリオール化合物としてウレア結合を有する樹脂への導入が行い易いため好ましい。   In order for the resin to exhibit crystallinity, a polymer unit having crystallinity in the main chain may be introduced. Examples of the crystalline polymer unit having a melting point suitable as a binder resin for toner include a crystalline polyester unit and a long-chain alkyl ester unit of polyacrylic acid or polymethacrylic acid. As the crystalline polyester unit, a terminal alcohol can be easily prepared, and it is preferable because it can be easily introduced into a resin having a urea bond as a polyol compound.

結晶性ポリエステルユニットとしては、例えば、ポリオールとポリカルボン酸とから合成される重縮合ポリエステルユニット、ラクトン開環重合物、ポリヒドロキシカルボン酸などが挙げられる。これらの中でも、ジオールとジカルボン酸との重縮合ポリエステルユニットが、結晶性発現の観点から好ましい。ジオールとしては、前述のポリオールの中であげられたジオールを使用することができる。その中でも鎖炭素数が2〜36の脂肪族ジオールが好ましく、直鎖型脂肪族ジオールがより好ましい。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。これらのうち、入手容易性を考慮するとエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,10−デカンジオールが好ましい。   Examples of the crystalline polyester unit include a polycondensation polyester unit synthesized from a polyol and a polycarboxylic acid, a lactone ring-opening polymer, and a polyhydroxycarboxylic acid. Among these, a polycondensation polyester unit of diol and dicarboxylic acid is preferable from the viewpoint of crystallinity. As the diol, the diols mentioned in the aforementioned polyols can be used. Among these, an aliphatic diol having 2 to 36 chain carbon atoms is preferable, and a linear aliphatic diol is more preferable. These may be used individually by 1 type and may use 2 or more types together. Among these, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol are preferable in view of availability.

直鎖型脂肪族ジオールのジオール全体に対する含有量は、80mol%以上であることが好ましく、90mol%以上であることがより好ましい。含有量が80mol%以上であると、樹脂の結晶性が向上し、低温定着性と耐熱保存性の両立性が良く、樹脂硬度が向上する傾向にある点で好ましい。   The content of the linear aliphatic diol with respect to the entire diol is preferably 80 mol% or more, and more preferably 90 mol% or more. When the content is 80 mol% or more, the crystallinity of the resin is improved, the compatibility between low-temperature fixability and heat-resistant storage stability is good, and the resin hardness tends to be improved.

ジカルボン酸としては、前述のポリカルボン酸の中で挙げられたジカルボン酸を使用することができる。中でも、直鎖型脂肪族ジカルボン酸がより好ましい。また、ジカルボン酸の中でも、脂肪族ジカルボン酸(好ましくは、アジピン酸、セバシン酸、ドデカンジカルボン酸、テレフタル酸、イソフタル酸等)を単独で用いることが特に好ましい。脂肪族ジカルボン酸と共に芳香族ジカルボン酸(好ましくは、テレフタル酸、イソフタル酸、t−ブチルイソフタル酸等;これら芳香族ジカルボン酸の低級アルキルエステル類等)を共重合したものも同様に好ましい。芳香族ジカルボン酸の共重合量は、20mol%以下であることが好ましい。   As dicarboxylic acid, the dicarboxylic acid mentioned in the above-mentioned polycarboxylic acid can be used. Of these, linear aliphatic dicarboxylic acids are more preferable. Of the dicarboxylic acids, it is particularly preferable to use an aliphatic dicarboxylic acid (preferably, adipic acid, sebacic acid, dodecanedicarboxylic acid, terephthalic acid, isophthalic acid, etc.) alone. A copolymer of an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid (preferably terephthalic acid, isophthalic acid, t-butylisophthalic acid, etc .; lower alkyl esters of these aromatic dicarboxylic acids, etc.) is also preferred. The copolymerization amount of the aromatic dicarboxylic acid is preferably 20 mol% or less.

結着樹脂としてウレア結合を具備する樹脂を使用し、着色剤、離型剤、帯電制御剤など結着樹脂以外のトナー構成材料と混合し、粒子化することでトナーを得ることができる。ポリイソシアネート化合物と、ポリアミン化合物および/または水とを、必要に応じて着色剤、離型剤、帯電制御剤など結着樹脂以外のトナー構成材料と混合することで、ウレア結合を形成させてもよい。特に、ポリイソシアネート化合物としてプレポリマーを使用することで、トナー中に均一に高分子量のウレア結合を有する結晶性樹脂をトナー中に導入できるため、トナーの熱特性や帯電性が均一であり定着性とトナーの対ストレス性の両立をし易いので好ましい。さらに、プレポリマーとしては、低分子量ポリイソシアネートとポリオール化合物とをイソシアネート過剰量で反応させて得られるプレポリマーのほうが粘弾性が抑えられるため好ましい。ポリオール化合物としては、ポリカルボン酸と低分子量ポリオール化合物とを、水酸基過剰量で反応させて末端に水酸基を有するポリエステルがトナーに適した熱特性を得やすいため好ましい。さらには、ポリエステルが結晶性ポリエステルユニットからなる場合、トナー中の高分子量成分がシャープメルトとなり低温定着性に優れたトナーが得られるため好ましい。また、トナーが水系媒体中で造粒することによって得られるものである場合、分散媒の水がポリイソシアネート化合物と反応することで温和な条件でウレア結合を形成させることができる。   By using a resin having a urea bond as the binder resin, and mixing with a toner constituent material other than the binder resin such as a colorant, a release agent, and a charge control agent, the toner can be obtained. Even if a urea bond is formed by mixing a polyisocyanate compound, a polyamine compound and / or water with a toner constituent material other than a binder resin such as a colorant, a release agent, and a charge control agent as necessary. Good. In particular, by using a prepolymer as the polyisocyanate compound, a crystalline resin having a high molecular weight urea bond can be uniformly introduced into the toner, so that the toner has uniform heat characteristics and chargeability and is fixable. And the toner are easy to achieve both stress resistance. Furthermore, as the prepolymer, a prepolymer obtained by reacting a low molecular weight polyisocyanate with a polyol compound in an excess amount of isocyanate is preferable because viscoelasticity is suppressed. As the polyol compound, a polyester having a hydroxyl group at the terminal by reacting a polycarboxylic acid with a low molecular weight polyol compound in an excessive amount of hydroxyl group is preferable because thermal characteristics suitable for the toner can be easily obtained. Furthermore, it is preferable that the polyester is composed of a crystalline polyester unit because the high molecular weight component in the toner becomes a sharp melt and a toner having excellent low-temperature fixability can be obtained. Further, when the toner is obtained by granulating in an aqueous medium, a urea bond can be formed under mild conditions by the water of the dispersion medium reacting with the polyisocyanate compound.

トナーを構成する結着樹脂については、1種単独で使用してもよいし、2種以上を併用してもよい。また、異なる重量平均分子量の結着樹脂を併用しても良く、少なくとも第1の結晶性樹脂と、第1の結晶性樹脂よりも重量平均分子量Mwが大きい第2の結晶性樹脂を含むことが、優れた低温定着性と耐ホットオフセット性を両立することが出来る点で好ましい。また、第2の結晶性樹脂は、イソシアネート基を有する変性結晶性樹脂である結着樹脂前駆体を使用し、活性水素基を有する化合物と反応させることで、樹脂を伸長させてなるものであることが好ましい。この場合、結着樹脂前駆体と活性水素基を有する化合物の反応は、トナー製造過程で行われることがより好ましく、重量平均分子量が大きい結晶性樹脂をトナー中に均一に分散することができ、トナー粒子間の特性のバラツキを抑えることができる。また、第1の結晶性樹脂は、主鎖にウレタン結合及び/又はウレア基結合を有する結晶性樹脂であり、且つ、第2の結晶性樹脂は、第1の結晶性樹脂を変性した結着樹脂前駆体を、活性水素基を有する化合物と反応させ、伸長させてなるものであることが好ましい。第1の結晶性樹脂と第2の結晶性樹脂の組成構造を近づけることによって、2種の結着樹脂がトナー中でより均一に分散しやすくなり、トナー粒子間の特性のバラツキを更に抑えることができる。また、結晶性樹脂と非結晶性樹脂とを併用してもよく、結着樹脂の主成分が結晶性樹脂であることが好ましい。   The binder resin constituting the toner may be used alone or in combination of two or more. In addition, binder resins having different weight average molecular weights may be used in combination, and include at least a first crystalline resin and a second crystalline resin having a weight average molecular weight Mw larger than that of the first crystalline resin. It is preferable in that both excellent low-temperature fixability and hot offset resistance can be achieved. The second crystalline resin is obtained by extending a resin by using a binder resin precursor that is a modified crystalline resin having an isocyanate group and reacting with a compound having an active hydrogen group. It is preferable. In this case, the reaction between the binder resin precursor and the compound having an active hydrogen group is more preferably performed in the toner production process, and a crystalline resin having a large weight average molecular weight can be uniformly dispersed in the toner. Variations in characteristics between toner particles can be suppressed. The first crystalline resin is a crystalline resin having a urethane bond and / or a urea group bond in the main chain, and the second crystalline resin is a binder obtained by modifying the first crystalline resin. It is preferable that the resin precursor is reacted with a compound having an active hydrogen group and elongated. By bringing the composition structures of the first crystalline resin and the second crystalline resin close to each other, the two types of binder resins can be more easily dispersed in the toner, thereby further suppressing variation in characteristics between toner particles. Can do. Further, a crystalline resin and an amorphous resin may be used in combination, and the main component of the binder resin is preferably a crystalline resin.

樹脂におけるテトラヒドロフラン可溶分、分子量分布、重量平均分子量(Mw)については、それぞれゲルパーミエーションクロマトグラフイー(GPC)測定装置(例えば、HLC−8220GPC(東ソー社製))を用いて測定することが可能である。カラムとしては、TSKgel SuperHZM―H 15cm 3連(東ソー社製)を使用する。測定対象となる樹脂を、テトラヒドロフラン(THF)(安定剤含有、和光純薬製)にて0.15質量%溶液にし、0.2μmフィルターで濾過した後、その濾液を試料として用いる。THF試料溶液を測定装置に100μl注入し、温度40℃の環境下にて、流速0.35ml/分間で測定する。   The tetrahydrofuran soluble content, molecular weight distribution, and weight average molecular weight (Mw) in the resin can be measured using a gel permeation chromatography (GPC) measuring device (for example, HLC-8220 GPC (manufactured by Tosoh Corporation)). Is possible. As a column, TSKgel SuperHZM-H 15 cm triple (made by Tosoh Corporation) is used. The resin to be measured is made into a 0.15 mass% solution with tetrahydrofuran (THF) (containing stabilizer, manufactured by Wako Pure Chemical Industries), filtered through a 0.2 μm filter, and the filtrate is used as a sample. 100 μl of the THF sample solution is injected into the measuring apparatus, and measurement is performed at a flow rate of 0.35 ml / min in an environment at a temperature of 40 ° C.

樹脂の分子量については、単分散ポリスチレン標準試料により作成された検量線を用いて計算を行う。前述した標準ポリスチレン試料としては、昭和電工社製ShowdexSTANDARDシリーズおよびトルエンを用いる。そして、次の3種類の単分散ポリスチレン標準試料のTHF溶液を作成し上記の条件で測定を行い、ピークトップの保持時間を単分散ポリスチレン標準試料の光散乱分子量として検量線を作成する。
・溶液A:S−7450:2.5mg、S−678:2.5mg、S−46.5:2.5mg、S−2.90:2.5mg、THF:50ml
・溶液B:S−3730:2.5mg、S−257:2.5mg、S−19.8:2.5mg、S−0.580:2.5mg、THF:50ml
・溶液C:S−1470:2.5mg、S−112:2.5mg、S−6.93:2.5mg、トルエン:2.5mg、THF:50ml
The molecular weight of the resin is calculated using a calibration curve created from a monodisperse polystyrene standard sample. As the standard polystyrene sample described above, ShowdexSTANDARD series manufactured by Showa Denko KK and toluene are used. Then, THF solutions of the following three types of monodisperse polystyrene standard samples are prepared and measured under the above conditions, and a calibration curve is created using the peak top retention time as the light scattering molecular weight of the monodisperse polystyrene standard sample.
Solution A: S-7450: 2.5 mg, S-678: 2.5 mg, S-46.5: 2.5 mg, S-2.90: 2.5 mg, THF: 50 ml
Solution B: S-3730: 2.5 mg, S-257: 2.5 mg, S-19.8: 2.5 mg, S-0.580: 2.5 mg, THF: 50 ml
Solution C: S-1470: 2.5 mg, S-112: 2.5 mg, S-6.93: 2.5 mg, Toluene: 2.5 mg, THF: 50 ml

検出器には、RI(屈折率)検出器を用いる。100,000以上の分子量である成分の割合、及び250,000以上の分子量である成分の割合は、積分分子量分布曲線において、分子量=100,000、及び分子量=250,000と、曲線との交点から調べることができる。   An RI (refractive index) detector is used as the detector. The proportion of the component having a molecular weight of 100,000 or more and the proportion of the component having a molecular weight of 250,000 or more are the intersection of the curve with the molecular weight = 100,000 and the molecular weight = 250,000 in the integral molecular weight distribution curve. You can check from.

高分子量の樹脂成分は、結着樹脂全体と樹脂構造が近いという条件を満足する必要があり、結着樹脂として結晶性を有するのであれば、高分子量の成分も同様に結晶性を有する必要がある。高分子量成分が他の樹脂成分と構造が大きく異なる場合、高分子体は容易に相分離し海島状態となるためトナー全体への粘弾性や凝集力の向上への寄与が期待できない。高分子量の成分と結着樹脂全体との結晶性構造の含有比率としては、次の比率で判断する。即ち、テトラヒドロフラン(THF)と酢酸エチルとの混合溶媒(混合重量比=50:50)に対する不溶分の示差走査熱量計(DSC)における吸熱量(ΔH(H))と、トナーのDSCにおける吸熱量(ΔH(T))の比率(ΔH(H)/ΔH(T))である。この比率が0.2〜1.25の範囲にあることが好ましく、0.3〜1.0の範囲にあることがより好ましく、0.4〜0.8の範囲にあることが特に好ましい。   The high molecular weight resin component must satisfy the condition that the resin structure is close to that of the entire binder resin, and if the binder resin has crystallinity, the high molecular weight component also needs to have crystallinity. is there. When the high molecular weight component is significantly different in structure from the other resin components, the polymer is easily phase-separated and becomes a sea-island state, so that it cannot be expected to contribute to improvement of viscoelasticity and cohesive force on the whole toner. The content ratio of the crystalline structure between the high molecular weight component and the entire binder resin is determined by the following ratio. That is, the endothermic amount (ΔH (H)) in the differential scanning calorimeter (DSC) of the insoluble matter in the mixed solvent of tetrahydrofuran (THF) and ethyl acetate (mixing weight ratio = 50: 50) and the endothermic amount in the DSC of the toner. It is a ratio (ΔH (H) / ΔH (T)) of (ΔH (T)). This ratio is preferably in the range of 0.2 to 1.25, more preferably in the range of 0.3 to 1.0, and particularly preferably in the range of 0.4 to 0.8.

テトラヒドロフラン(THF)と酢酸エチルの混合溶媒(混合比率は重量比で50:50)に対する不溶分を得る具体的な試験方法としては、次のような方法を例示することができる。即ち、常温(20℃)の上記混合溶媒40gに対してトナー0.4gを添加し20分振とう混合をした後、遠心分離機により不溶成分を沈降させて上澄み液を除去したものを真空乾燥させることにより得る方法である。   The following method can be exemplified as a specific test method for obtaining an insoluble content in a mixed solvent of tetrahydrofuran (THF) and ethyl acetate (mixing ratio is 50:50 by weight). That is, after adding 0.4 g of toner to 40 g of the above mixed solvent at normal temperature (20 ° C.) and mixing with shaking for 20 minutes, the insoluble components were settled by a centrifuge and the supernatant was removed in vacuum. It is a method obtained by making it.

実施形態に係る複写機において、中間転写ベルト61が経時的に伸びていくと、ベルト周長が経時的に大きくなっていくことから、各色のトナー像の重ね合わせズレ量が大きくなっていく。このため、中間転写ベルト61の無端状の基材層としては、経時的な伸びの少ない高強度の材料からなるものを採用することが望ましい。また、中間転写ベルト61には、1次転写バイアスや2次転写バイアスなどの高電圧が印加されることから、難燃性に優れた材料からなることが望ましい。これらの要求に対応するために、中間転写ベルト61の基材層としては、高強度で高耐熱樹脂であるポリイミド樹脂やポリアミドイミド樹脂からなるものを用いることが一般的である。   In the copying machine according to the embodiment, as the intermediate transfer belt 61 extends with time, the belt circumferential length increases with time, and the amount of misalignment of the toner images of the respective colors increases. For this reason, as the endless base material layer of the intermediate transfer belt 61, it is desirable to employ a material made of a high-strength material with little elongation over time. Further, since a high voltage such as a primary transfer bias or a secondary transfer bias is applied to the intermediate transfer belt 61, it is desirable that the intermediate transfer belt 61 is made of a material having excellent flame retardancy. In order to meet these requirements, the base layer of the intermediate transfer belt 61 is generally made of a polyimide resin or a polyamide-imide resin that is a high strength and high heat resistance resin.

ところが、ポリイミド樹脂やポリアミドイミド樹脂からなる基材層は、高強度であるが故に表面硬度も高いものである。このため、その表面にトナー像を転写する際にトナー層に高い圧力をかけてトナーの局部的な凝集を誘発させることから、画像の一部が転写されない、いわゆる中抜け画像を発生させ易い。また、感光体や記録シートPとの接触追従性が劣ることから、接触不良による転写圧ムラによる濃度ムラを発生させることがある。特に、記録シートとしてエンボス紙、和紙、クラフト紙のような表面性の粗いものが使用されると、2次転写ニップで中間転写ベルト61の表面が記録シートの表面の微妙な凹凸に良好に密着することができない。このため、シート表面凹凸にならった濃淡むらや色調のむらを発生させ易くなる。   However, the base material layer made of polyimide resin or polyamideimide resin is high in strength and therefore has high surface hardness. For this reason, when a toner image is transferred to the surface, high pressure is applied to the toner layer to induce local aggregation of the toner, so that it is easy to generate a so-called hollow image in which a part of the image is not transferred. Further, since the contact followability with the photosensitive member or the recording sheet P is inferior, density unevenness due to uneven transfer pressure due to poor contact may occur. In particular, when a rough surface such as embossed paper, Japanese paper, or kraft paper is used as the recording sheet, the surface of the intermediate transfer belt 61 adheres well to the fine irregularities on the surface of the recording sheet at the secondary transfer nip. Can not do it. For this reason, it becomes easy to generate the shading unevenness and the color tone unevenness according to the sheet surface unevenness.

次に、本発明者らが行った実験について説明する。
まず、本発明者らは、第1トナーから第13トナーまでの13種類のトナーを製造した。その製造方法について説明する。
Next, experiments conducted by the present inventors will be described.
First, the inventors manufactured 13 types of toners from the first toner to the thirteenth toner. The manufacturing method will be described.

まず、ウレタン変性結晶性ポリエステル樹脂A−1を製造した。具体的には、冷却管、撹拌機及び窒素導入管を備えた反応槽を用意した。そして、この反応槽に、202重量部(1.00mol)のセバシン酸と、15重量部(0.10mol)のアジピン酸と、177重量部(1.50mol)の1,6−ヘキサンジオールと、0.5重量部の縮合触媒たるテトラブトキシチタネートとを入れた。それらを、窒素気流下にて180℃で、生成する水を留去しながら8時間反応させた。次いで、220℃まで徐々に昇温しながら、窒素気流下にて、生成する水及び1,6−ヘキサンジオールを留去しながら4時間反応させた。さらに、5〜20mmHgの減圧下にて、重量平均分子量(Mw)を約12,000に到達させるまで反応を行い、結晶性ポリエステル樹脂A'−1を得た。得られた結晶性ポリエステル樹脂A'−1の重量平均分子量(Mw)は、12,000であった。   First, urethane-modified crystalline polyester resin A-1 was produced. Specifically, a reaction tank equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe was prepared. In this reactor, 202 parts by weight (1.00 mol) sebacic acid, 15 parts by weight (0.10 mol) adipic acid, 177 parts by weight (1.50 mol) 1,6-hexanediol, 0.5 part by weight of tetrabutoxy titanate as a condensation catalyst was added. They were reacted at 180 ° C. under a nitrogen stream for 8 hours while distilling off generated water. Subsequently, it was made to react for 4 hours, distilling off produced | generated water and 1, 6- hexanediol in nitrogen stream, heating up gradually to 220 degreeC. Further, the reaction was performed under a reduced pressure of 5 to 20 mmHg until the weight average molecular weight (Mw) reached about 12,000 to obtain a crystalline polyester resin A′-1. The weight average molecular weight (Mw) of the obtained crystalline polyester resin A′-1 was 12,000.

得られた結晶性ポリエステル樹脂A’−1を、冷却管、撹拌機及び窒素導入管を備えた反応槽中に移した。そして、350重量部の酢酸エチルと、30重量部(0.12mol)の4,4'−ジフェニルメタンジイソシアネート(MDI)とを加え、窒素気流下にて80℃で5時間反応させた。次いで、減圧下にて酢酸エチルを留去してウレタン変性結晶性ポリエステル樹脂A−1を得た。得られたウレタン変性結晶性ポリエステル樹脂A−1の重量平均分子量(Mw)は、22,000であり、融点は62℃であった。   The obtained crystalline polyester resin A′-1 was transferred to a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introducing tube. Then, 350 parts by weight of ethyl acetate and 30 parts by weight (0.12 mol) of 4,4′-diphenylmethane diisocyanate (MDI) were added and reacted at 80 ° C. for 5 hours under a nitrogen stream. Subsequently, ethyl acetate was distilled off under reduced pressure to obtain urethane-modified crystalline polyester resin A-1. The resulting urethane-modified crystalline polyester resin A-1 had a weight average molecular weight (Mw) of 22,000 and a melting point of 62 ° C.

次に、ウレタン変性結晶性ポリエステル樹脂A−2を製造した。冷却管、撹拌機、及び窒素導入管を備えた反応槽を用意した。その反応槽に、202重量部(1.00mol)のセバシン酸と、189重量部(1.60mol)の1,6−ヘキサンジオールと、0.5重量部の縮合触媒たるジブチル錫オキサイドとを入れた。そして、窒素気流下にて180℃で、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下にて生成する水及び1,6−ヘキサンジオールを留去しながら4時間反応させた。更に、5〜20mmHgの減圧下にて、重量平均分子量(Mw)をおよそ6,000に到達させるまで反応を行い、結晶性ポリエステル樹脂A'−2を得た。得られた結晶性ポリエステル樹脂A'−2の重量平均分子量(Mw)は、6,000であった。次いで、得られた結晶性ポリエステル樹脂A'−2を、冷却管、撹拌機及び窒素導入管を備えた反応槽中に移した。そして、300重量部の酢酸エチルと、38重量部(0.15mol)の4,4'−ジフェニルメタンジイソシアネート(MDI)とを加え、窒素気流下にて80℃で5時間反応させた。次いで、減圧下にて酢酸エチルを留去してウレタン変性結晶性ポリエステル樹脂A−2を得た。得られたウレタン変性結晶性ポリエステル樹脂A−2の重量平均分子量(Mw)は、10,000であり、融点は64℃であった。   Next, urethane-modified crystalline polyester resin A-2 was produced. A reaction vessel equipped with a cooling tube, a stirrer, and a nitrogen introduction tube was prepared. In the reactor, 202 parts by weight (1.00 mol) of sebacic acid, 189 parts by weight (1.60 mol) of 1,6-hexanediol, and 0.5 parts by weight of dibutyltin oxide as a condensation catalyst are placed. It was. And it was made to react for 8 hours, distilling off the water to produce | generate at 180 degreeC under nitrogen stream. Then, while gradually raising the temperature to 220 ° C., the reaction was carried out for 4 hours while distilling off the water and 1,6-hexanediol produced under a nitrogen stream. Furthermore, the reaction was performed under a reduced pressure of 5 to 20 mmHg until the weight average molecular weight (Mw) reached about 6,000 to obtain a crystalline polyester resin A′-2. The obtained crystalline polyester resin A′-2 had a weight average molecular weight (Mw) of 6,000. Next, the obtained crystalline polyester resin A′-2 was transferred into a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe. Then, 300 parts by weight of ethyl acetate and 38 parts by weight (0.15 mol) of 4,4′-diphenylmethane diisocyanate (MDI) were added and reacted at 80 ° C. for 5 hours under a nitrogen stream. Subsequently, ethyl acetate was distilled off under reduced pressure to obtain urethane-modified crystalline polyester resin A-2. The resulting urethane-modified crystalline polyester resin A-2 had a weight average molecular weight (Mw) of 10,000 and a melting point of 64 ° C.

次に、ウレタン変性結晶性ポリエステル樹脂A−3を製造した。具体的には、冷却管、撹拌機、及び窒素導入管を備えた反応槽を用意した。この反応槽の中に、185重量部(0.91mol)のセバシン酸と、13重量部(0.09mol)のアジピン酸と、106重量部(1.18mol)の1,4−ブタンジオールとを入れた。更に、0.5重量部の縮合触媒たるチタニウムジヒドロキシビス(トリエタノールアミネート)を入れ、窒素気流下にて180℃で、生成する水を留去しながら8時間反応させた。次いで、220℃まで徐々に昇温しながら、窒素気流下にて生成する水及び1,4−ブタンジオールを留去しながら4時間反応させた。更に、5〜20mmHgの減圧下にて、重量平均分子量(Mw)を約14,000に到達させるまで反応を行い、結晶性ポリエステル樹脂A’−3を得た。得られた結晶性ポリエステル樹脂A’−3の重量平均分子量(Mw)は14,000であった。得られた結晶性ポリエステル樹脂A’−3を、冷却管、撹拌機及び窒素導入管を備えた反応槽中に移した。そして、250重量部の酢酸エチルと、12重量部(0.07mol)のヘキサメチレンジイソシアネート(HDI)とを加え、窒素気流下にて80℃で5時間反応させた。次いで、減圧下にて酢酸エチルを留去してウレタン変性結晶性ポリエステル樹脂A−3を得た。得られたウレタン変性結晶性ポリエステル樹脂A−3の重量平均分子量(Mw)は39,000であり、融点は63℃であった。   Next, urethane-modified crystalline polyester resin A-3 was produced. Specifically, a reaction tank equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe was prepared. In this reaction vessel, 185 parts by weight (0.91 mol) of sebacic acid, 13 parts by weight (0.09 mol) of adipic acid, and 106 parts by weight (1.18 mol) of 1,4-butanediol were added. I put it in. Further, 0.5 parts by weight of titanium dihydroxybis (triethanolaminate) as a condensation catalyst was added, and the reaction was performed at 180 ° C. for 8 hours while distilling off the generated water under a nitrogen stream. Next, while gradually raising the temperature to 220 ° C., the reaction was carried out for 4 hours while distilling off the water and 1,4-butanediol produced under a nitrogen stream. Further, the reaction was performed under a reduced pressure of 5 to 20 mmHg until the weight average molecular weight (Mw) reached about 14,000 to obtain a crystalline polyester resin A′-3. The obtained crystalline polyester resin A′-3 had a weight average molecular weight (Mw) of 14,000. The obtained crystalline polyester resin A′-3 was transferred to a reaction vessel equipped with a cooling tube, a stirrer, and a nitrogen introducing tube. And 250 weight part ethyl acetate and 12 weight part (0.07 mol) hexamethylene diisocyanate (HDI) were added, and it was made to react at 80 degreeC under nitrogen stream for 5 hours. Subsequently, ethyl acetate was distilled off under reduced pressure to obtain urethane-modified crystalline polyester resin A-3. The resulting urethane-modified crystalline polyester resin A-3 had a weight average molecular weight (Mw) of 39,000 and a melting point of 63 ° C.

次に、結晶性ポリエステル樹脂A−4を製造した。具体的には、冷却管、撹拌機、及び窒素導入管を備えた反応槽を用意した。この反応槽の中に、185重量部(0.91mol)のセバシン酸と、13重量部(0.09mol)のアジピン酸と、125重量部(1.39mol)の1,4−ブタンジオールとを入れた。更に、0.5重量部の縮合触媒たるチタニウムジヒドロキシビス(トリエタノールアミネート)を入れ、窒素気流下にて180℃で、生成する水を留去しながら8時間反応させた。次いで、220℃まで徐々に昇温しながら、窒素気流下にて生成する水及び1,4−ブタンジオールを留去しながら4時間反応させた。更に、さらに5〜20mmHgの減圧下にて、重量平均分子量(Mw)を約10,000に到達させるまで反応を行い、結晶性ポリエステル樹脂A−4を得た。得られた結晶性ポリエステル樹脂A−4の重量平均分子量(Mw)は9,500であり、融点は57℃であった。   Next, crystalline polyester resin A-4 was produced. Specifically, a reaction tank equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe was prepared. In this reaction vessel, 185 parts by weight (0.91 mol) of sebacic acid, 13 parts by weight (0.09 mol) of adipic acid, and 125 parts by weight (1.39 mol) of 1,4-butanediol were added. I put it in. Further, 0.5 parts by weight of titanium dihydroxybis (triethanolaminate) as a condensation catalyst was added, and the reaction was performed at 180 ° C. for 8 hours while distilling off the generated water under a nitrogen stream. Next, while gradually raising the temperature to 220 ° C., the reaction was carried out for 4 hours while distilling off the water and 1,4-butanediol produced under a nitrogen stream. Further, the reaction was performed under reduced pressure of 5 to 20 mmHg until the weight average molecular weight (Mw) reached about 10,000 to obtain crystalline polyester resin A-4. The obtained crystalline polyester resin A-4 had a weight average molecular weight (Mw) of 9,500 and a melting point of 57 ° C.

次に、結晶性ポリエステル樹脂A−5を製造した。具体的には、冷却管、撹拌機、及び窒素導入管を備えた反応槽を用意した。この反応槽の中に、202重量部(1.00mol)のセバシン酸と、130重量部(1.10mol)の1,6−ヘキサンジオールと、0.5重量部の縮合触媒たるテトラブトキシチタネートとを入れた。そして、窒素気流下にて180℃で、生成する水を留去しながら8時間反応させた。次いで、220℃まで徐々に昇温しながら、窒素気流下にて生成する水及び1,6−ヘキサンジオールを留去しながら4時間反応させた。更に、5〜20mmHgの減圧下にて、重量平均分子量(Mw)を約30,000に到達させるまで反応を行い、結晶性ポリエステル樹脂A−5を得た。得られた結晶性ポリエステル樹脂A−5の重量平均分子量(Mw)は27,000であり、融点は62℃であった。   Next, crystalline polyester resin A-5 was produced. Specifically, a reaction tank equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe was prepared. In this reactor, 202 parts by weight (1.00 mol) of sebacic acid, 130 parts by weight (1.10 mol) of 1,6-hexanediol, 0.5 parts by weight of tetrabutoxy titanate as a condensation catalyst, Put. And it was made to react for 8 hours, distilling off the water to produce | generate at 180 degreeC under nitrogen stream. Next, while gradually raising the temperature to 220 ° C., the reaction was carried out for 4 hours while distilling off the water and 1,6-hexanediol produced under a nitrogen stream. Further, the reaction was carried out under reduced pressure of 5 to 20 mmHg until the weight average molecular weight (Mw) reached about 30,000 to obtain crystalline polyester resin A-5. The obtained crystalline polyester resin A-5 had a weight average molecular weight (Mw) of 27,000 and a melting point of 62 ° C.

次に、結晶性部と非晶性部からなるブロック樹脂A−6を製造した。具体的には、冷却管、撹拌機、及び窒素導入管を備えた反応槽を用意した。この反応槽の中に、25質量部(0.33mol)の1,2−プロピレングリコールと、170重量部のメチルエチルケトン(MEK)とを入れて攪拌した。その後、147重量部(0.59mol)の4,4’−ジフェニルメタンジイソシアネート(MDI)を加え、80℃で5時間反応させて末端にイソシアネート基を有する非晶性部c−1のMEK溶液を得た。冷却管、撹拌機、及び窒素導入管を備えた反応槽を別に用にした。この反応槽の中に、202重量部(1.00mol)のセバシン酸と、160重量部(1.35mol)の1,6−ヘキサンジオールと、0.5重量部の縮合触媒たるテトラブトキシチタネートとを入れた。そして、窒素気流下にて180℃で、生成する水を留去しながら8時間反応させた。次いで、220℃まで徐々に昇温しながら、窒素気流下にて生成する水及び1,6−ヘキサンジオールを留去しながら4時間反応させた。更に、5〜20mmHgの減圧下にて、重量平均分子量(Mw)を約9,000に到達させるまで反応を行い、結晶性ポリエステル樹脂A’−6を得た。得られた結晶性ポリエステル樹脂A’−6の重量平均粒径(Mw)は8,500であり、融点は63℃であった。次いで、前述した非晶性部c−1のMEK溶液340重量部に、結晶性部として、320重量部のMEKに320重量部の結晶性ポリエステル樹脂A’−6を溶解させた溶液を加えて、窒素気流下にて80℃で5時間反応させた。そして、減圧下にてMEKを留去してブロック樹脂A−6を得た。得られたブロック樹脂A−6の重量平均分子量(Mw)は26,000であり、融点は62℃であった。   Next, a block resin A-6 composed of a crystalline part and an amorphous part was produced. Specifically, a reaction tank equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe was prepared. In this reaction vessel, 25 parts by mass (0.33 mol) of 1,2-propylene glycol and 170 parts by weight of methyl ethyl ketone (MEK) were added and stirred. Thereafter, 147 parts by weight (0.59 mol) of 4,4′-diphenylmethane diisocyanate (MDI) was added and reacted at 80 ° C. for 5 hours to obtain a MEK solution of amorphous part c-1 having an isocyanate group at the terminal. It was. A reaction vessel equipped with a cooling tube, a stirrer, and a nitrogen introducing tube was used separately. In this reaction vessel, 202 parts by weight (1.00 mol) of sebacic acid, 160 parts by weight (1.35 mol) of 1,6-hexanediol, 0.5 parts by weight of tetrabutoxy titanate as a condensation catalyst, Put. And it was made to react for 8 hours, distilling off the water to produce | generate at 180 degreeC under nitrogen stream. Next, while gradually raising the temperature to 220 ° C., the reaction was carried out for 4 hours while distilling off the water and 1,6-hexanediol produced under a nitrogen stream. Further, the reaction was carried out under reduced pressure of 5 to 20 mmHg until the weight average molecular weight (Mw) reached about 9,000 to obtain crystalline polyester resin A′-6. The obtained crystalline polyester resin A′-6 had a weight average particle diameter (Mw) of 8,500 and a melting point of 63 ° C. Next, a solution prepared by dissolving 320 parts by weight of crystalline polyester resin A′-6 in 320 parts by weight of MEK as a crystalline part was added to 340 parts by weight of the MEK solution of the amorphous part c-1. The mixture was reacted at 80 ° C. for 5 hours under a nitrogen stream. And MEK was distilled off under pressure reduction and block resin A-6 was obtained. The obtained block resin A-6 had a weight average molecular weight (Mw) of 26,000 and a melting point of 62 ° C.

次に、ウレタン変性結晶性ポリエステル樹脂B−1を製造した。具体的には、冷却管、撹拌機、及び窒素導入管を備えた反応槽を用意した。この反応槽の中に、113重量部(0.56mol)のセバシン酸と、109重量部(0.56mol)のテレフタル酸ジメチルと、132重量部(1.12mol)の1,6−ヘキサンジオールとを入れた。更に、0.5重量部の縮合触媒たるチタニウムジヒドロキシビス(トリエタノールアミネート)を入れ、窒素気流下にて180℃で、生成する水、メタノールを留去しながら8時間反応させた。次いで、220℃まで徐々に昇温しながら、窒素気流下にて生成する水及び1,6−ヘキサンジオールを留去しながら4時間反応させた。更に、5〜20mmHgの減圧下にて、重量平均分子量(Mw)を約35,000に到達させるまで反応を行い、結晶性ポリエステル樹脂B’−1を得た。得られた結晶性ポリエステル樹脂B’−1の重量平均分子量(Mw)は34,000であった。次いで、得られた結晶性ポリエステル樹脂B’−1を、冷却管、撹拌機及び窒素導入管を備えた反応槽中に移した。そして、200重量部の酢酸エチルと、10重量部(0.06mol)のヘキサメチレンジイソシアネート(HDI)とを加え、窒素気流下にて80℃で5時間反応させた。次いで、減圧下にて酢酸エチルを留去してウレタン変性結晶性ポリエステル樹脂B−1を得た。得られたウレタン変性結晶性ポリエステル樹脂B−1の重量平均分子量(Mw)は63,000であり、融点は65℃であった。   Next, urethane-modified crystalline polyester resin B-1 was produced. Specifically, a reaction tank equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe was prepared. In this reactor, 113 parts by weight (0.56 mol) sebacic acid, 109 parts by weight (0.56 mol) dimethyl terephthalate, 132 parts by weight (1.12 mol) 1,6-hexanediol, Put. Further, 0.5 part by weight of titanium dihydroxybis (triethanolamate) as a condensation catalyst was added, and the reaction was carried out for 8 hours at 180 ° C. while distilling off generated water and methanol under a nitrogen stream. Next, while gradually raising the temperature to 220 ° C., the reaction was carried out for 4 hours while distilling off the water and 1,6-hexanediol produced under a nitrogen stream. Further, the reaction was carried out under reduced pressure of 5 to 20 mmHg until the weight average molecular weight (Mw) reached about 35,000 to obtain crystalline polyester resin B′-1. The obtained crystalline polyester resin B′-1 had a weight average molecular weight (Mw) of 34,000. Next, the obtained crystalline polyester resin B′-1 was transferred into a reaction vessel equipped with a cooling tube, a stirrer, and a nitrogen introducing tube. And 200 weight part ethyl acetate and 10 weight part (0.06 mol) hexamethylene diisocyanate (HDI) were added, and it was made to react at 80 degreeC under nitrogen stream for 5 hours. Subsequently, ethyl acetate was distilled off under reduced pressure to obtain urethane-modified crystalline polyester resin B-1. The obtained urethane-modified crystalline polyester resin B-1 had a weight average molecular weight (Mw) of 63,000 and a melting point of 65 ° C.

次に、結晶性ポリエステル樹脂B−2を製造した。具体的には、冷却管、撹拌機、及び窒素導入管を備えた反応槽を用意した。この反応槽の中に、230重量部(1.00mol)のドデカン二酸と、118重量部(1.00mol)の1,6−ヘキサンジオールと、0.5重量部の縮合触媒たるテトラブトキシチタネートとを入れた。そして、窒素気流下にて180℃で、生成する水を留去しながら8時間反応させた。次いで、220℃まで徐々に昇温しながら、窒素気流下にて生成する水及び1,6−ヘキサンジオールを留去しながら4時間反応させた。更に、5〜20mmHgの減圧下にて、重量平均分子量(Mw)を約50,000に到達させるまで反応を行い、結晶性ポリエステル樹脂B−2を得た。得られた結晶性ポリエステル樹脂B−2の重量平均分子量(Mw)は52,000であり、融点は66℃であった。   Next, crystalline polyester resin B-2 was produced. Specifically, a reaction tank equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe was prepared. In this reaction vessel, 230 parts by weight (1.00 mol) of dodecanedioic acid, 118 parts by weight (1.00 mol) of 1,6-hexanediol, and 0.5 parts by weight of tetrabutoxy titanate as a condensation catalyst. And put. And it was made to react for 8 hours, distilling off the water to produce | generate at 180 degreeC under nitrogen stream. Next, while gradually raising the temperature to 220 ° C., the reaction was carried out for 4 hours while distilling off the water and 1,6-hexanediol produced under a nitrogen stream. Further, the reaction was performed under a reduced pressure of 5 to 20 mmHg until the weight average molecular weight (Mw) reached about 50,000 to obtain a crystalline polyester resin B-2. The obtained crystalline polyester resin B-2 had a weight average molecular weight (Mw) of 52,000 and a melting point of 66 ° C.

次に、結晶性樹脂前駆体B’−3を製造した。具体的には、冷却管、撹拌機、及び窒素導入管を備えた反応槽を用意した。この反応槽の中に、202重量部(1.00mol)のセバシン酸と、122重量部(1.03mol)の1,6−ヘキサンジオールと、0.5重量部の縮合触媒たるチタニウムジヒドロキシビス(トリエタノールアミネートとを入れた。そして、窒素気流下にて180℃で、生成する水を留去しながら8時間反応させた。次いで、220℃まで徐々に昇温しながら、窒素気流下にて生成する水及び1,6−ヘキサンジオールを留去しながら4時間反応させた。更に、5〜20mmHgの減圧下にて重量平均分子量(Mw)を約25,000に到達させるまで反応を行った。得られた結晶性樹脂を、冷却管、撹拌機及び窒素導入管を備えた反応槽中に移した。そして、300重量部の酢酸エチル300と、27重量部(0.16mol)のヘキサメチレンジイソシアネート(HDI)とを加え、窒素気流下にて80℃で5時間反応させた。これにより、末端にイソシアネート基を有する結晶性樹脂前駆体B’−3の50重量%酢酸エチル溶液を得た。得られた結晶性樹脂前駆体B’−3の酢酸エチル溶液の10重量部を、10重量部のテトラヒドロフラン(THF)と混合し、これに1重量部のジブチルアミンを添加して、2時間撹拌した。得られた溶液を試料としてGPC測定を行った結果、結晶性樹脂前駆体B’−3の重量平均分子量(Mw)は54,000であった。また、前記溶液から溶媒を除去して得られた試料についてDSC測定を行った結果、結晶性樹脂前駆体B’−3の融点は57℃であった。   Next, a crystalline resin precursor B′-3 was produced. Specifically, a reaction tank equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe was prepared. In this reaction vessel, 202 parts by weight (1.00 mol) of sebacic acid, 122 parts by weight (1.03 mol) of 1,6-hexanediol, 0.5 parts by weight of titanium dihydroxybis (condensation catalyst) Triethanolaminate was added, and the reaction was allowed to proceed for 8 hours while distilling off the generated water at 180 ° C. under a nitrogen stream, and then gradually increased to 220 ° C. under a nitrogen stream. The reaction was carried out for 4 hours while distilling off the water and 1,6-hexanediol, and the reaction was continued under a reduced pressure of 5 to 20 mmHg until the weight average molecular weight (Mw) reached about 25,000. The obtained crystalline resin was transferred into a reaction vessel equipped with a cooling tube, a stirrer, and a nitrogen introduction tube, and 300 parts by weight of ethyl acetate 300 and 27 parts by weight (0.16 mol) of helium. Samethylene diisocyanate (HDI) was added and allowed to react for 5 hours under a nitrogen stream at 80 ° C. Thus, a 50 wt% ethyl acetate solution of a crystalline resin precursor B′-3 having an isocyanate group at the terminal was obtained. 10 parts by weight of an ethyl acetate solution of the obtained crystalline resin precursor B′-3 was mixed with 10 parts by weight of tetrahydrofuran (THF), and 1 part by weight of dibutylamine was added thereto, As a result of GPC measurement using the obtained solution as a sample, the weight average molecular weight (Mw) of the crystalline resin precursor B′-3 was 54,000. As a result of performing DSC measurement on the sample obtained by removing, the melting point of the crystalline resin precursor B′-3 was 57 ° C.

以上、結晶性樹脂の製造に使用した原材料、及び結晶性樹脂の物性について、表1〜表3にまとめて示す。

Figure 2014178665
Figure 2014178665
Figure 2014178665
The raw materials used for the production of the crystalline resin and the physical properties of the crystalline resin are collectively shown in Tables 1 to 3.
Figure 2014178665
Figure 2014178665
Figure 2014178665

次に、非結晶性樹脂C−1を製造した。具体的には、冷却管、撹拌機及び窒素挿入管を備えた反応槽を用意した。この反応槽の中に、222重量部のビスフェノールA EO2mol付加物と、129重量部のビスフェノールA PO2mol付加物と、166重量部のイソフタル酸と、0.5重量部のテトラブトキシチタネートとを入れた。そして、窒素気流下にて230℃、常圧で、生成する水を留去しながら8時間反応させた。次いで、5~20mmHgの減圧下にて反応させ、酸価が2になった時点で180℃に冷却し、35重量部の無水トリメリット酸を加えて常圧で3時間反応させて、非結晶性樹脂C−1を得た。得られた非結晶性樹脂C−1の重量平均分子量(Mw)は8,000であり、ガラス転移温度(Tg)は62℃であった。   Next, an amorphous resin C-1 was produced. Specifically, a reaction vessel equipped with a cooling tube, a stirrer, and a nitrogen insertion tube was prepared. In this reactor, 222 parts by weight of bisphenol A EO 2 mol adduct, 129 parts by weight of bisphenol A PO 2 mol adduct, 166 parts by weight of isophthalic acid, and 0.5 parts by weight of tetrabutoxy titanate were added. . And it was made to react for 8 hours, distilling off the water to produce | generate at 230 degreeC and a normal pressure under nitrogen stream. Next, the reaction was carried out under reduced pressure of 5 to 20 mmHg, and when the acid value reached 2, it was cooled to 180 ° C., 35 parts by weight of trimellitic anhydride was added, and the reaction was carried out at normal pressure for 3 hours. Resin C-1 was obtained. The obtained amorphous resin C-1 had a weight average molecular weight (Mw) of 8,000 and a glass transition temperature (Tg) of 62 ° C.

次に、非結晶性樹脂前駆体C’−2を製造した。具体的には、冷却管、撹拌機及び窒素挿入管を備えた反応槽を用意した。この反応槽の中に、720重量部のビスフェノールA EO2mol付加物と、90重量部のビスフェノールA PO2mol付加物と、290重量部のテレフタル酸と、1重量部のテトラブトキシチタネートとを入れた。そして、窒素気流下にて230℃、常圧で、生成する水を留去しながら8時間反応させた。次いで、10〜15mmHgの減圧下にて7時間反応させて、非結晶性樹脂を得た。その後、冷却管、撹拌機及び窒素挿入管を備えた反応槽を用意した。この反応槽の中に、400重量部の前記非結晶性樹脂と、95重量部のイソホロンジイソシアネートと、500重量部の酢酸エチルとを入れた。そして、窒素気流下にて80℃で8時間反応させて、末端にイソシアネート基を有する非結晶性樹脂前駆体C’−2の50重量%酢酸エチル溶液を得た。   Next, an amorphous resin precursor C′-2 was produced. Specifically, a reaction vessel equipped with a cooling tube, a stirrer, and a nitrogen insertion tube was prepared. In this reaction vessel, 720 parts by weight of bisphenol A EO 2 mol adduct, 90 parts by weight of bisphenol A PO 2 mol adduct, 290 parts by weight of terephthalic acid, and 1 part by weight of tetrabutoxy titanate were placed. And it was made to react for 8 hours, distilling off the water to produce | generate at 230 degreeC and a normal pressure under nitrogen stream. Subsequently, it was made to react under reduced pressure of 10-15 mmHg for 7 hours, and amorphous resin was obtained. Then, the reaction tank provided with the cooling pipe, the stirrer, and the nitrogen insertion pipe was prepared. In this reaction vessel, 400 parts by weight of the amorphous resin, 95 parts by weight of isophorone diisocyanate, and 500 parts by weight of ethyl acetate were placed. And it was made to react at 80 degreeC under nitrogen stream for 8 hours, and the 50 weight% ethyl acetate solution of the amorphous resin precursor C'-2 which has an isocyanate group at the terminal was obtained.

次に、グラフト重合体を製造した。具体的には、攪拌棒及び温度計をセットした反応容器を用意した。この反応容器の中に、480重量部のキシレンと、100重量部の低分子量ポリエチレン(三洋化成工業社製サンワックスLEL−400:軟化点128℃)とを入れて充分溶解して窒素置換を行った。その後、740重量部のスチレンと、100重量部のアクリロニトリルと、60重量部のアクリル酸ブチルと、36重量部のジ−t−ブチルパーオキシヘキサヒドロテレフタレートと、100重量部のキシレンとの混合溶液を用意した。この混合溶液を、170℃で3時間滴下して重合し、更にこの温度で30分間保持した。次いで、脱溶剤を行ってグラフト重合体を合成した。得られたグラフト重合体の重量平均分子量(Mw)は24,000であり、ガラス転移温度(Tg)は67℃であった。   Next, a graft polymer was produced. Specifically, a reaction vessel in which a stirring bar and a thermometer were set was prepared. In this reaction vessel, 480 parts by weight of xylene and 100 parts by weight of low molecular weight polyethylene (Sanwax LEL-400 manufactured by Sanyo Chemical Industries, Ltd .: softening point 128 ° C.) were sufficiently dissolved and replaced with nitrogen. It was. Thereafter, a mixed solution of 740 parts by weight of styrene, 100 parts by weight of acrylonitrile, 60 parts by weight of butyl acrylate, 36 parts by weight of di-t-butylperoxyhexahydroterephthalate, and 100 parts by weight of xylene. Prepared. This mixed solution was polymerized dropwise at 170 ° C. for 3 hours, and further maintained at this temperature for 30 minutes. Subsequently, the solvent was removed to synthesize a graft polymer. The obtained graft polymer had a weight average molecular weight (Mw) of 24,000 and a glass transition temperature (Tg) of 67 ° C.

次に、第1離型剤分散液を調整した。具体的には、撹拌棒及び温度計をセットした容器に、50重量部のパラフィンワックス(日本精鑞社製、HNP−9、炭化水素系ワックス、融点75℃、SP値8.8)と、30重量部のグラフト重合体と、420重量部の酢酸エチルとを仕込んだ。そして、撹拌下で80℃まで昇温し、80℃のまま5時間保持した後、1時問で30℃に冷却した。そして、ビーズミル(ウルトラビスコミル、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒、0.5mmジルコニアビーズを80体積%充填、3パスの条件で、分散を行って第1離型剤分散液を得た。   Next, a first release agent dispersion was prepared. Specifically, in a container set with a stirring bar and a thermometer, 50 parts by weight of paraffin wax (manufactured by Nippon Seiki Co., Ltd., HNP-9, hydrocarbon wax, melting point 75 ° C., SP value 8.8), 30 parts by weight of graft polymer and 420 parts by weight of ethyl acetate were charged. And it heated up to 80 degreeC under stirring, and after hold | maintaining for 5 hours with 80 degreeC, it cooled to 30 degreeC by 1 hour. Then, using a bead mill (Ultra Visco Mill, manufactured by Imex Co., Ltd.), the liquid feeding speed is 1 kg / hr, the disk peripheral speed is 6 m / sec, and 0.5 mm zirconia beads are filled with 80% by volume, and dispersion is performed under the condition of 3 passes. Thus, a first release agent dispersion was obtained.

次に、マスターバッチを製造した。具体的には、原材料として、100重量部の結晶性ポリウレタン樹脂A−1と、100重量部のカーボンブラック(Printex35、デグサ社製)(DBP吸油量:42mL/100g、pH:9.5)と、50重量部のイオン交換水とを用意した。これらを、ヘンシェルミキサー(三井鉱山株式会社製)を用いて混合した。得られた混合物を、二本ロールを用いて混練した。混練温度は90℃から混練を始め、その後、50℃まで徐々に冷却していった。得られた混練物をパルペライザー(ホソカワミクロン株式会社製)で粉砕して第1マスターバッチを製造した。次の表4に従って、第1マスターバッチと同様にして第2、第3、第4、第5、第6マスターバッチをそれぞれ製造した。

Figure 2014178665
Next, a master batch was manufactured. Specifically, 100 parts by weight of crystalline polyurethane resin A-1 and 100 parts by weight of carbon black (Printex 35, manufactured by Degussa) (DBP oil absorption: 42 mL / 100 g, pH: 9.5) are used as raw materials. 50 parts by weight of ion exchange water was prepared. These were mixed using a Henschel mixer (Mitsui Mining Co., Ltd.). The obtained mixture was kneaded using two rolls. The kneading temperature started kneading from 90 ° C., and then gradually cooled to 50 ° C. The obtained kneaded material was pulverized with a pulverizer (manufactured by Hosokawa Micron Corporation) to produce a first masterbatch. According to the following Table 4, the 2nd, 3rd, 4th, 5th, 6th masterbatch was manufactured similarly to the 1st masterbatch, respectively.
Figure 2014178665

次に、第2油相、第3油相、第4油相、及び第7油相を製造した。具体的には、温度計及び撹拌機を備えた容器に、54重量部のウレタン変性結晶性ポリエステル樹脂A−3を入れ、固形分濃度が50重量%となる量の酢酸エチルを加えて、樹脂の融点以上まで加熱してよく溶解させた。これに、非結晶性樹脂C−1の20重量%酢酸エチル溶液を100重量部と、60重量部の上記第1離型剤分散液と、12重量部の第2マスターバッチとを加えた。そして、50℃にてTK式ホモミキサー(特殊機化株式会社製)で回転数5,000rpmで撹拌し、均一に溶解、分散させて第2油相を得た。なお、第2油相の温度は容器内にて50℃に保つようにし、結晶化しないように作成から5時間以内に使用した。第3油相、第4油相、第7油相についても、結晶性樹脂Aの種類及び添加量、結晶性樹脂Bの種類及び添加量、非結晶性樹脂Cの添加量、並びにマスターバッチの種類を次の表5に従って変更しただけで、同様に作製した。なお、表5中の結晶性樹脂(B)、及び非結晶性樹脂前駆体C−2については、結晶性樹脂B−1及び結晶性樹脂B−2何れかを使用する場合は、油相作製段階で他のトナー材料と共に溶解、分散させた。また、結着樹脂前駆体B’−3、又は非結晶性樹脂前駆体C−2を使用する場合は、油相作製段階では添加せず、後述のトナー母体作製時に油相に添加して溶解、分散させた。

Figure 2014178665
Next, the 2nd oil phase, the 3rd oil phase, the 4th oil phase, and the 7th oil phase were manufactured. Specifically, in a container equipped with a thermometer and a stirrer, 54 parts by weight of urethane-modified crystalline polyester resin A-3 is added, and ethyl acetate is added in an amount such that the solid content concentration is 50% by weight. It was heated to above the melting point of and dissolved well. To this, 100 parts by weight of a 20% by weight ethyl acetate solution of the amorphous resin C-1, 60 parts by weight of the first release agent dispersion and 12 parts by weight of the second masterbatch were added. Then, the mixture was stirred at 5,000 rpm with a TK homomixer (manufactured by Tokushu Kika Co., Ltd.) at 50 ° C., and uniformly dissolved and dispersed to obtain a second oil phase. The temperature of the second oil phase was kept at 50 ° C. in the container and was used within 5 hours from the preparation so as not to crystallize. For the third oil phase, the fourth oil phase, and the seventh oil phase, the kind and addition amount of the crystalline resin A, the kind and addition amount of the crystalline resin B, the addition amount of the amorphous resin C, and the master batch It produced similarly, only changing the kind according to following Table 5. In addition, about crystalline resin (B) in Table 5, and amorphous resin precursor C-2, when using either crystalline resin B-1 or crystalline resin B-2, oil phase preparation It was dissolved and dispersed with other toner materials in stages. Further, when using the binder resin precursor B′-3 or the non-crystalline resin precursor C-2, it is not added at the oil phase preparation stage, but is added to the oil phase and dissolved at the time of the toner base preparation described later. , Dispersed.
Figure 2014178665

次に、樹脂微粒子の水分散液を製造した。具体的には、攪拌棒及び温度計をセットした反応容器を用意した。この反応容器の中に、600質量部の水と、120重量部のスチレンと、100重量部のメタクリル酸と、45重量部のアクリル酸ブチルと、10重量部のアルキルアリルスルホコハク酸ナトリウム塩(エレミノールJS−2、三洋化成工業製)とを入れた。更に、1重量部の過硫酸アンモニウムを入れて、400回転/分で20分攪拌したところ、白色の乳濁液が得られた。この乳濁液を加熱して、系内温度75℃まで昇温し、6時間反応させた。更に、30重量部の1%過硫酸アンモニウム水溶液を加え、75℃で6時間熟成して樹脂微粒子の水分散液を得た。この樹脂微粒子の水分散液中に含まれる粒子の体積平均粒径は80nmであり、樹脂分の重量平均分子量(Mw)は160,000であり、ガラス転移温度(Tg)は74℃であった。   Next, an aqueous dispersion of resin fine particles was produced. Specifically, a reaction vessel in which a stirring bar and a thermometer were set was prepared. In this reaction vessel, 600 parts by weight of water, 120 parts by weight of styrene, 100 parts by weight of methacrylic acid, 45 parts by weight of butyl acrylate and 10 parts by weight of alkylallylsulfosuccinate sodium salt (eleminol) JS-2, manufactured by Sanyo Chemical Industries). Furthermore, when 1 part by weight of ammonium persulfate was added and stirred at 400 rpm for 20 minutes, a white emulsion was obtained. This emulsion was heated to raise the temperature in the system to 75 ° C. and reacted for 6 hours. Furthermore, 30 parts by weight of a 1% aqueous solution of ammonium persulfate was added and aged at 75 ° C. for 6 hours to obtain an aqueous dispersion of resin fine particles. The volume average particle diameter of particles contained in the aqueous dispersion of the resin fine particles was 80 nm, the weight average molecular weight (Mw) of the resin was 160,000, and the glass transition temperature (Tg) was 74 ° C. .

次に、第1水相を製造した。具体的には、990重量部の水と、83重量部の樹脂微粒子の水分散液と、37重量部のドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5重量%水溶液(エレミノールMON−7、三洋化成工業株式会社製)と、90重量部の酢酸エチルとを混合、撹拌して第1水相を得た。   Next, the 1st water phase was manufactured. Specifically, 990 parts by weight of water, 83 parts by weight of an aqueous dispersion of resin fine particles, 37 parts by weight of a 48.5% by weight aqueous solution of sodium dodecyl diphenyl ether disulfonate (Eleminol MON-7, Sanyo Chemical Industries Ltd.) The first aqueous phase was obtained by mixing and stirring 90 parts by weight of ethyl acetate.

次に、第2トナー母体、第3トナー母体、第6トナー母体、及び第13トナー母体を製造した。具体的には、撹拌機及び温度計をセットした容器を用意した。この容器の中に、520重量部の第1水相を入れて40℃まで加熱した。50℃に保った235重量部の第2油相に、25重量部の結晶性樹脂前駆体B’−3の酢酸エチル溶液を添加し、TK式ホモミキサー(特殊機化株式会社製)にて回転数5,000rpmで撹拌し、均一に溶解、分散して第2’油相を調製した。40〜50℃に保持したままの第1水相をTK式ホモミキサー(特殊機化工業株式会社製)にて13,000rpmで攪拌しながら、第2’油相を添加し、1分間乳化して第2乳化スラリーを得た。次いで、撹拌機及び温度計をセットした容器内に、第2乳化スラリーを投入し、60℃で6時間脱溶剤して、第2スラリーを得た。得られた第2スラリーを減圧濾過した後、以下の洗浄処理を行った。即ち、濾過ケーキに100重量部のイオン交換水を加え、TKホモミキサーで混合(回転数6,000rpmで5分間した後に濾過した(第1工程)。この第1工程で得られた濾過ケーキに100重量部の10重量%水酸化ナトリウム水溶液を加え、TKホモミキサーで混合(回転数6,000rpmで10分間)した後、減圧濾過した(第2工程)。この第2工程で得られた濾過ケーキに100重量部の10重量%塩酸を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後に濾過した(第3工程)。この第3工程で得られた濾過ケーキに300重量部のイオン交換水を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後に濾過する操作を2回行って第2濾過ケーキを得た(第4工程)。得られた第2濾過ケーキを循風乾燥機にて45℃で48時間乾燥した。その後、目開き75μmメッシュで篩いにかけて、第2トナー母体を製造した。同様に、第3油相、第4油相、第7油相をそれぞれ用いて、第3トナー母体、第6トナー母体、第13トナー母体を製造した。   Next, a second toner base, a third toner base, a sixth toner base, and a thirteenth toner base were manufactured. Specifically, a container in which a stirrer and a thermometer were set was prepared. In this container, 520 parts by weight of the first aqueous phase was placed and heated to 40 ° C. To 235 parts by weight of the second oil phase maintained at 50 ° C., 25 parts by weight of the ethyl acetate solution of the crystalline resin precursor B′-3 was added, and TK type homomixer (manufactured by Tokushu Kika Co., Ltd.) was used. The mixture was stirred at a rotational speed of 5,000 rpm, and uniformly dissolved and dispersed to prepare a second ′ oil phase. While stirring the first aqueous phase kept at 40 to 50 ° C. at 13,000 rpm with a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.), the second 'oil phase is added and emulsified for 1 minute. Thus, a second emulsified slurry was obtained. Next, the second emulsified slurry was put into a container in which a stirrer and a thermometer were set, and the solvent was removed at 60 ° C. for 6 hours to obtain a second slurry. The obtained second slurry was filtered under reduced pressure, and then the following washing treatment was performed. That is, 100 parts by weight of ion-exchanged water was added to the filter cake and mixed with a TK homomixer (filtered after 5 minutes at a rotation speed of 6,000 rpm (first step). The filter cake obtained in the first step was added to the filter cake. 100 parts by weight of 10% by weight aqueous sodium hydroxide solution was added, mixed with a TK homomixer (rotation speed: 6,000 rpm for 10 minutes), and then filtered under reduced pressure (second step). 100 parts by weight of 10% by weight hydrochloric acid was added to the cake, mixed with a TK homomixer (rotation speed: 6,000 rpm for 5 minutes), and then filtered (third step). Part of ion-exchanged water was added, mixed with a TK homomixer (rotation speed: 6,000 rpm for 5 minutes), and then filtered twice to obtain a second filter cake (fourth step). The second filter cake was dried with a circulating dryer for 48 hours at 45 ° C. Thereafter, the second toner base was produced by sieving with a mesh opening of 75 μm, similarly, the third oil phase and the fourth oil phase. A third toner base, a sixth toner base, and a thirteenth toner base were manufactured using the seventh oil phase, respectively.

次に、第4トナー母体を製造した。具体的には、第3トナー母体を製造したときの脱溶剤条件(60℃、6時間)を、70℃、3時間に変更した点の他は、第3トナー母体と同様にして第4トナー母体を製造した。   Next, a fourth toner base was produced. Specifically, the fourth toner is the same as the third toner base except that the solvent removal conditions (60 ° C., 6 hours) when the third toner base is manufactured are changed to 70 ° C. and 3 hours. The mother body was manufactured.

また、第5トナー母体を製造した。具体的には、第3トナー母体を製造したときの脱溶剤条件を、40℃、10時間に変更した点の他は、第3トナー母体と同様にして第5トナー母体を製造した。   In addition, a fifth toner base was produced. Specifically, the fifth toner base was manufactured in the same manner as the third toner base except that the solvent removal conditions when the third toner base was manufactured were changed to 40 ° C. and 10 hours.

また、第7トナー母体を製造した。具体的には、第6トナー母体を製造したときの加熱条件(45℃、48時間)を、55℃、24時間に変更した点の他は第6トナー母体と同様にして第7トナー母体を製造した。   A seventh toner base was also produced. Specifically, the seventh toner base is changed in the same manner as the sixth toner base except that the heating conditions (45 ° C., 48 hours) when the sixth toner base is manufactured are changed to 55 ° C., 24 hours. Manufactured.

また、第8トナー母体を製造した。具体的には、第6トナー母体を製造したときの加熱条件を、35℃、96時間に変更した点の他は第6トナー母体と同様にして第8トナー母体を製造した。   In addition, an eighth toner base was produced. Specifically, an eighth toner base was manufactured in the same manner as the sixth toner base except that the heating conditions when the sixth toner base was manufactured were changed to 35 ° C. and 96 hours.

また、第9トナー母体を製造した。具体的には、第4油相に0.06重量部の造核剤(ADEKA社製 アデカスタブNA−11、融点400℃)を加えた点の他は、第6トナー母体と同様にして第9トナー母体を製造した。   A ninth toner base was also produced. Specifically, the ninth oil base was the same as the sixth toner base except that 0.06 part by weight of a nucleating agent (ADEKA STAB NA-11, melting point 400 ° C., manufactured by ADEKA) was added to the fourth oil phase. A toner base was produced.

また、第10トナー母体を製造した。具体的には、第4油相に1.1重量部の造核剤(ADEKA社製 アデカスタブNA−11、融点400℃)を加えた点の他は第6トナー母体と同様にして第10トナー母体を製造した。   A tenth toner base was also produced. Specifically, the tenth toner is the same as the sixth toner base except that 1.1 parts by weight of a nucleating agent (ADEKA STAB NA-11, ADEKA smelting point 400 ° C.) is added to the fourth oil phase. The mother body was manufactured.

次に、第5油相、第6油相を製造した。具体的には、温度計及び撹拌機を備えた容器を用意した。この容器の中に、54重量部のウレタン変性結晶性ポリエステル樹脂A−4と、20重量部のウレタン変性結晶性ポリエステル樹脂B−2とを入れた。そして、固形分濃度が50重量%となる量の酢酸エチルを加えて、樹脂の融点以上まで加熱してよく溶解させた。これに、40重量部の非結晶性樹脂C−1の50重量%酢酸エチル溶液と、60重量部の第1離型剤分散液と、12重量部の第3マスターバッチとを加えた。そして、50℃にてTK式ホモミキサー(特殊機化株式会社製)で回転数5,000rpmで撹拌し、均一に溶解、分散させて第5油相を得た。なお、第5油相の温度は容器内にて50℃に保つようにし、結晶化しないように作成から5時間以内に使用した。第6油相についても、結晶性樹脂Aの種類及び添加量、結晶性樹脂Bの種類及び添加量、非結晶性樹脂Cの添加量、並びにマスターバッチの種類を、表6に従って変更しただけで、同様に製造した。

Figure 2014178665
Next, the 5th oil phase and the 6th oil phase were manufactured. Specifically, a container equipped with a thermometer and a stirrer was prepared. In this container, 54 parts by weight of urethane-modified crystalline polyester resin A-4 and 20 parts by weight of urethane-modified crystalline polyester resin B-2 were placed. Then, an amount of ethyl acetate in which the solid content concentration is 50% by weight was added and heated to the melting point of the resin or higher and dissolved well. To this, 40 parts by weight of an amorphous resin C-1 50% by weight ethyl acetate solution, 60 parts by weight of the first release agent dispersion, and 12 parts by weight of the third master batch were added. Then, the mixture was stirred at 50 ° C. with a TK homomixer (made by Tokushu Kika Co., Ltd.) at a rotation speed of 5,000 rpm, and uniformly dissolved and dispersed to obtain a fifth oil phase. The temperature of the fifth oil phase was kept at 50 ° C. in the container and was used within 5 hours from the preparation so as not to crystallize. For the sixth oil phase, the types and addition amounts of the crystalline resin A, the types and addition amounts of the crystalline resin B, the addition amounts of the non-crystalline resin C, and the types of the master batch were changed according to Table 6. Manufactured in the same manner.
Figure 2014178665

次に、第2水相を製造した。具体的には、990重量部の水と、37重量部のドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5重量%水溶液(エレミノールMON−7、三洋化成工業株式会社製)と、90重量部の酢酸エチルとを混合撹拌して第2水相を得た。   Next, a second aqueous phase was produced. Specifically, 990 parts by weight of water, 37 parts by weight of a 48.5% by weight aqueous solution of sodium dodecyl diphenyl ether disulfonate (Eleminol MON-7, manufactured by Sanyo Chemical Industries, Ltd.), 90 parts by weight of ethyl acetate, Were mixed and stirred to obtain a second aqueous phase.

次に、第11トナー母体と、第12トナー母体とを製造した。具体的には、撹拌機及び温度計をセットした容器を用意した。この容器の中に、520重量部の第2水相を入れて40℃まで加熱した。そして、40〜50℃に保持したまま、TK式ホモミキサー(特殊機化工業株式会社製)にて13,000rpmで攪拌しながら、第5油相を添加し、1分間乳化させて第11乳化スラリーを得た。次いで、撹拌機及び温度計をセットした容器内に、第11乳化スラリーを投入し、60℃で6時間脱溶剤して、第11スラリーを得た。得られた第11スラリーを減圧濾過した後、以下の洗浄処理を行った。即ち、濾過ケーキに100重量部のイオン交換水を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後に濾過した(第1工程)。この第1工程で得られた濾過ケーキに100重量部の10重量%水酸化ナトリウム水溶液を加え、TKホモミキサーで混合(回転数6,000rpmで10分間)した後、減圧濾過した(第2工程)。この第2工程で得られた濾過ケーキに100重量部の10重量%塩酸を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後に濾過した(第3工程)。この第3工程で得られた濾過ケーキに300重量部のイオン交換水を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後に濾過する操作を2回行って、第11濾過ケーキを得た。得られた第11濾過ケーキを循風乾燥機にて45℃で48時間乾燥した。その後、目開き75μmメッシュで篩いにかけて、第11トナー母体を製造した。同様に、第6油相を用いる点の他は同様にして、第12トナー母体を製造した。   Next, an eleventh toner base and a twelfth toner base were manufactured. Specifically, a container in which a stirrer and a thermometer were set was prepared. In this container, 520 parts by weight of the second aqueous phase was placed and heated to 40 ° C. And while maintaining at 40-50 degreeC, stirring at 13,000 rpm with TK type | system | group homomixer (made by Tokushu Kika Kogyo Co., Ltd.), a 5th oil phase is added and it emulsifies for 1 minute, and becomes 11th emulsification. A slurry was obtained. Next, the eleventh emulsified slurry was put into a container in which a stirrer and a thermometer were set, and the solvent was removed at 60 ° C. for 6 hours to obtain an eleventh slurry. The resulting eleventh slurry was filtered under reduced pressure and then subjected to the following washing treatment. That is, 100 parts by weight of ion-exchanged water was added to the filter cake, mixed with a TK homomixer (5 minutes at a rotation speed of 6,000 rpm), and then filtered (first step). To the filter cake obtained in the first step, 100 parts by weight of 10% by weight aqueous sodium hydroxide solution was added, mixed with a TK homomixer (rotation speed: 6,000 rpm for 10 minutes), and then filtered under reduced pressure (second step) ). 100 parts by weight of 10 wt% hydrochloric acid was added to the filter cake obtained in the second step, mixed with a TK homomixer (5 minutes at a rotation speed of 6,000 rpm), and then filtered (third step). The filter cake obtained in the third step was added with 300 parts by weight of ion exchange water, mixed with a TK homomixer (5 minutes at a rotation speed of 6,000 rpm), and then filtered twice. I got a cake. The obtained eleventh filter cake was dried at 45 ° C. for 48 hours in a circulating air dryer. Thereafter, it was sieved with a mesh having an opening of 75 μm to produce an eleventh toner base. Similarly, a twelfth toner base was produced in the same manner except that the sixth oil phase was used.

次に、結晶性樹脂粒子分散液A−2を製造した。具体的には、60重量部のウレタン変性結晶性ポリエステル樹脂A−2に、60重量部の酢酸エチルを加えて50℃で混合撹拌して溶解させて樹脂溶液を得た。次いで、120重量部の水と、6重量部のドデシルジフェニルエーテルジスルホン酸ナトリウムの48.3重量%水溶液(エレミノールMON−7、三洋化成工業株式会社製)と、2.4重量部の2重量%の水酸化ナトリウム水溶液とを混合して水相を得た。この水相に、120重量部の前記樹脂溶液を加え、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて乳化した後、マントンゴーリン高圧ホモジナイザー(ゴーリン社製)で乳化処理して、乳化スラリーA−2を得た。次いで、撹拌機及び温度計をセットした容器内に、乳化スラリーA−2を投入し、60℃で4時間脱溶剤して、結晶性樹脂粒子分散液A−2を得た。得られた結晶性樹脂粒子分散液A−2中の粒子の体積平均粒径を、粒度分布測定装置(LA−920、堀場製作所製)で測定したところ、0.15μmであった。   Next, a crystalline resin particle dispersion A-2 was produced. Specifically, 60 parts by weight of ethyl acetate was added to 60 parts by weight of the urethane-modified crystalline polyester resin A-2, and the mixture was stirred and dissolved at 50 ° C. to obtain a resin solution. Next, 120 parts by weight of water, 6 parts by weight of a 48.3% by weight aqueous solution of sodium dodecyl diphenyl ether disulfonate (Eleminol MON-7, manufactured by Sanyo Chemical Industries, Ltd.) and 2.4 parts by weight of 2% by weight An aqueous phase was obtained by mixing with an aqueous sodium hydroxide solution. To this aqueous phase, 120 parts by weight of the resin solution is added, emulsified using a homogenizer (IKA, Ultra Tarrax T50), and then emulsified with a Menton Gorin high-pressure homogenizer (Gorin) to give an emulsified slurry. A-2 was obtained. Next, the emulsified slurry A-2 was charged into a container in which a stirrer and a thermometer were set, and the solvent was removed at 60 ° C. for 4 hours to obtain a crystalline resin particle dispersion A-2. It was 0.15 micrometer when the volume average particle diameter of the particle | grains in obtained crystalline resin particle dispersion A-2 was measured with the particle size distribution analyzer (LA-920, product made from Horiba, Ltd.).

次に、結晶性樹脂粒子分散液B−1を製造した。具体的には、60重量部のウレタン変性結晶性ポリエステル樹脂B−1に、60重量部の酢酸エチルを加えて50℃で混合撹拌して溶解させて樹脂溶液を得た。次いで、120重量部の水と、6重量部のドデシルジフェニルエーテルジスルホン酸ナトリウムの48.3重量%水溶液(エレミノールMON−7、三洋化成工業株式会社製)と、2.4重量部の2重量%の水酸化ナトリウム水溶液とを混合して水相を得た。この水相に、120重量部の前記樹脂溶液を加え、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて乳化した後、マントンゴーリン高圧ホモジナイザー(ゴーリン社製)で乳化処理して、乳化スラリーB−1を得た。次いで、撹拌機及び温度計をセットした容器内に、乳化スラリーB−1を投入し、60℃で4時間脱溶剤して、結晶性樹脂粒子分散液B−1を得た。得られた結晶性樹脂粒子分散液B−1中の粒子の体積平均粒径を、粒度分布測定装置(LA−920、堀場製作所製)で測定したところ、0.16μmであった。   Next, a crystalline resin particle dispersion B-1 was produced. Specifically, 60 parts by weight of ethyl acetate was added to 60 parts by weight of urethane-modified crystalline polyester resin B-1, mixed and stirred at 50 ° C. to obtain a resin solution. Next, 120 parts by weight of water, 6 parts by weight of a 48.3% by weight aqueous solution of sodium dodecyl diphenyl ether disulfonate (Eleminol MON-7, manufactured by Sanyo Chemical Industries, Ltd.) and 2.4 parts by weight of 2% by weight An aqueous phase was obtained by mixing with an aqueous sodium hydroxide solution. To this aqueous phase, 120 parts by weight of the resin solution is added, emulsified using a homogenizer (IKA, Ultra Tarrax T50), and then emulsified with a Menton Gorin high-pressure homogenizer (Gorin) to give an emulsified slurry. B-1 was obtained. Subsequently, the emulsified slurry B-1 was put into a container in which a stirrer and a thermometer were set, and the solvent was removed at 60 ° C. for 4 hours to obtain a crystalline resin particle dispersion B-1. It was 0.16 micrometer when the volume average particle diameter of the particle | grains in obtained crystalline resin particle dispersion B-1 was measured with the particle size distribution measuring apparatus (LA-920, Horiba, Ltd. make).

次に、非結晶性樹脂粒子分散液C−1を製造した。60重量部の非結晶性樹脂C−1に、60重量部の酢酸エチルを加えて混合撹拌して溶解させて樹脂溶液を得た。次いで、120重量部の水と、6重量部のドデシルジフェニルエーテルジスルホン酸ナトリウムの48.3重量%水溶液(エレミノールMON−7、三洋化成工業株式会社製)と、2.4重量部の2重量%の水酸化ナトリウム水溶液とを混合して水相を得た。この水相に、120重量部の前記樹脂溶液を加え、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて乳化した後、マントンゴーリン高圧ホモジナイザー(ゴーリン社製)で乳化処理して、乳化スラリーC−1を得た。次いで、撹拌機及び温度計をセットした容器内に、乳化スラリーC−1を投入し、60℃で4時間脱溶剤して、非結晶性樹脂粒子分散液C−1を得た。得られた非結晶性樹脂粒子分散液C−1中の粒子の体積平均粒径を、粒度分布測定装置(LA−920、堀場製作所製)で測定したところ、0.15μmであった。   Next, an amorphous resin particle dispersion C-1 was produced. 60 parts by weight of ethyl acetate was added to 60 parts by weight of the amorphous resin C-1, mixed, stirred and dissolved to obtain a resin solution. Next, 120 parts by weight of water, 6 parts by weight of a 48.3% by weight aqueous solution of sodium dodecyl diphenyl ether disulfonate (Eleminol MON-7, manufactured by Sanyo Chemical Industries, Ltd.) and 2.4 parts by weight of 2% by weight An aqueous phase was obtained by mixing with an aqueous sodium hydroxide solution. To this aqueous phase, 120 parts by weight of the resin solution is added, emulsified using a homogenizer (IKA, Ultra Tarrax T50), and then emulsified with a Menton Gorin high-pressure homogenizer (Gorin) to give an emulsified slurry. C-1 was obtained. Next, the emulsified slurry C-1 was put into a container in which a stirrer and a thermometer were set, and the solvent was removed at 60 ° C. for 4 hours to obtain an amorphous resin particle dispersion C-1. It was 0.15 micrometer when the volume average particle diameter of the particle | grains in the obtained amorphous resin particle dispersion C-1 was measured with the particle size distribution measuring apparatus (LA-920, Horiba, Ltd. make).

次に、第2離型剤分散液を製造した。具体的には、25重量部のパラフィンワックス(日本精鑞社製、HNP−9、融点75℃)と、5重量部のアニオン界面活性剤(三洋化成工業製:エレミノールMON−7)と、200重量部の水とを混合し、95℃で溶融させた。次いで、この溶融液をホモジナイザー(IKA社製、ウルトラタラックスT50)で乳化させた後、マントンゴーリン高圧ホモジナイザー(ゴーリン社製)で乳化処理して、第2離型剤分散液を得た。   Next, the 2nd mold release agent dispersion liquid was manufactured. Specifically, 25 parts by weight of paraffin wax (manufactured by Nippon Seiki Co., Ltd., HNP-9, melting point: 75 ° C.), 5 parts by weight of an anionic surfactant (manufactured by Sanyo Chemical Industries: Eleminol MON-7), 200 Part by weight of water was mixed and melted at 95 ° C. Next, the melt was emulsified with a homogenizer (IKA, Ultra Tarrax T50), and then emulsified with a Menton Gorin high-pressure homogenizer (Gorin) to obtain a second release agent dispersion.

次に、着色剤分散液を調整した。具体的には、20重量部のカーボンブラック(Printex35、デグサ社製)と、2重量部のアニオン界面活性剤(エレミノールMON−7、三洋化成工業株式会社製)と、80重量部の水とを混合した。そして、TK式ホモミキサー(特殊機化株式会社製)で分散して着色剤分散液を得た。   Next, a colorant dispersion was prepared. Specifically, 20 parts by weight of carbon black (Printex 35, manufactured by Degussa), 2 parts by weight of an anionic surfactant (Eleminol MON-7, manufactured by Sanyo Chemical Industries, Ltd.), and 80 parts by weight of water. Mixed. And it disperse | distributed with TK type | system | group homomixer (made by Special Machine Co., Ltd.), and obtained the coloring agent dispersion liquid.

次に、第1トナー母体を製造した。具体的には、190重量部の結晶性樹脂粒子分散液A−2と、63重量部の結晶性樹脂粒子分散液B−1と、63重量部の非結晶性樹脂粒子分散液C−1と、46重量部の第2離型剤分散液と、17重量部の着色剤分散液と、600重量部の水とを混合した。そして、2重量%の水酸化ナトリウム水溶液でpH10に調節した。次いで、撹拌下、この溶液に50重量部の10重量%の塩化マグネシウム水溶液を徐々に滴下しながら60℃まで加熱した。凝集粒子の体積平均粒径が5.3μmに成長するまで60℃に維持し、第1スラリーを得た。得られた第1スラリーを減圧濾過した後、第11トナーと同様の洗浄処理(第1工程〜第4工程)を行って、第1濾過ケーキを得た。得られた第1濾過ケーキを循風乾燥機にて45℃で48時間乾燥した。その後、目開き75μmメッシュで篩いにかけて、第1トナー母体を得た。   Next, a first toner base was manufactured. Specifically, 190 parts by weight of crystalline resin particle dispersion A-2, 63 parts by weight of crystalline resin particle dispersion B-1, and 63 parts by weight of amorphous resin particle dispersion C-1 46 parts by weight of the second release agent dispersion, 17 parts by weight of the colorant dispersion, and 600 parts by weight of water were mixed. The pH was adjusted to 10 with a 2% by weight aqueous sodium hydroxide solution. Next, 50 parts by weight of a 10% by weight magnesium chloride aqueous solution was gradually added dropwise to the solution under stirring while heating to 60 ° C. The first slurry was obtained by maintaining the temperature at 60 ° C. until the volume average particle diameter of the aggregated particles grew to 5.3 μm. The obtained first slurry was filtered under reduced pressure, and then the same washing treatment as the eleventh toner (first step to fourth step) was performed to obtain a first filter cake. The obtained 1st filter cake was dried at 45 degreeC with the circulating air dryer for 48 hours. Thereafter, the mixture was sieved with an opening of 75 μm mesh to obtain a first toner base.

次に、第1トナーから第13トナーまでを製造した。具体的には、100重量部の第1トナー母体と、外添剤たる2.0重量部の疎水性シリカ(HDK−2000、ワッカー・ケミー社製)とを、ヘンシェルミキサー(三井鉱山株式会社製)を用いて、周速30m/秒で30秒間混合して1分間休止した。同様の混合及び休止を5サイクル行った後、目開きが35μmのメッシュで篩いにかけて第1トナーを製造した。使用するトナー母体を第2〜第13に変更した点の他は同様にして、第2トナー〜第13トナーを製造した。   Next, first to thirteenth toners were manufactured. Specifically, 100 parts by weight of the first toner base and 2.0 parts by weight of hydrophobic silica (HDK-2000, manufactured by Wacker Chemie) as an external additive were combined with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.). ), And mixed for 30 seconds at a peripheral speed of 30 m / second and rested for 1 minute. After 5 cycles of the same mixing and resting, the first toner was manufactured by sieving with a mesh having an opening of 35 μm. The second to thirteenth toners were produced in the same manner except that the toner base to be used was changed to the second to thirteenth.

次に、本発明者らは、第8油相、第9油相、及び第10油相を製造した。具体的には、 温度計及び撹拌機を備えた容器に、31.5重量部のウレタン変性結晶性ポリエステル樹脂A−1を入れた。そして、固形分濃度が50重量%となる量の酢酸エチルを加えて、樹脂の融点以上まで加熱してよく溶解させた。これに、非結晶性樹脂C−1の50重量%酢酸エチル溶液を100重量部と、60重量部の上記第1離型剤分散液と、12重量部の第1マスターバッチとを加えた。そして、50℃の条件下においてTK式ホモミキサー(特殊機化株式会社製)にて回転数5,000rpmで撹拌し、均一に溶解、分散させて第8油相を得た。なお、第8油相の温度は容器内にて50℃に保つようにし、結晶化させないように作成から5時間以内に使用した。第9油相、第10油相についても、結晶性樹脂Aの種類及び添加量、結晶性樹脂Bの種類及び添加量、非結晶性樹脂Cの添加量、並びにマスターバッチの種類を、次の表7に従って変更しただけで、同様に作製した。なお、表9中の結着樹脂前駆体B’−3については、油相作製段階では添加せず、後述のトナー母体作製時に前記油相に添加して溶解、分散させた。

Figure 2014178665
Next, the inventors produced an eighth oil phase, a ninth oil phase, and a tenth oil phase. Specifically, 31.5 parts by weight of urethane-modified crystalline polyester resin A-1 was placed in a container equipped with a thermometer and a stirrer. Then, an amount of ethyl acetate in which the solid content concentration is 50% by weight was added and heated to the melting point of the resin or higher and dissolved well. To this, 100 parts by weight of a 50% by weight ethyl acetate solution of amorphous resin C-1, 60 parts by weight of the first release agent dispersion, and 12 parts by weight of the first master batch were added. Then, the mixture was stirred at 5,000 rpm with a TK homomixer (manufactured by Tokushu Kika Co., Ltd.) under the condition of 50 ° C., and uniformly dissolved and dispersed to obtain an eighth oil phase. The temperature of the eighth oil phase was kept at 50 ° C. in the container and was used within 5 hours from the preparation so as not to crystallize. For the ninth oil phase and the tenth oil phase, the types and addition amounts of the crystalline resin A, the types and addition amounts of the crystalline resin B, the addition amounts of the amorphous resin C, and the types of the master batch are as follows. It produced similarly, only changing according to Table 7. The binder resin precursor B′-3 in Table 9 was not added in the oil phase preparation stage, but was added to the oil phase and dissolved and dispersed during the toner base preparation described later.
Figure 2014178665

次に、第11油相、第12油相、第13油相、第14油相、第15油相、及び第16油相を製造した。具体的には、まず、上述した第8油相に、1重量部の合成スメクタイト化合物(ルーセンタイトSPN、コープケミカル社製)を加えて第11油相(11)を得た。また、第8油相に、2重量部の合成スメクタイト化合物(ルーセンタイトSPN、コープケミカル社製)を加えて第12油相を得た。また、第9油相に、1重量部の合成スメクタイト化合物(ルーセンタイトSPN、コープケミカル社製)1質量部を加えて第13油相を得た。また、第9油相に、2重量部の合成スメクタイト化合物(ルーセンタイトSPN、コープケミカル社製)を加えて第14油相を得た。また、第10油相に、1重量部の合成スメクタイト化合物(ルーセンタイトSPN、コープケミカル社製)を加えて第15油相を得た。また、第10油相に、2重量部の合成スメクタイト化合物(ルーセンタイトSPN、コープケミカル社製)を加えて第16油相を得た。   Next, an 11th oil phase, a 12th oil phase, a 13th oil phase, a 14th oil phase, a 15th oil phase, and a 16th oil phase were produced. Specifically, first, 1 part by weight of a synthetic smectite compound (Lucentite SPN, manufactured by Corp Chemical Co.) was added to the eighth oil phase described above to obtain an eleventh oil phase (11). Moreover, 2 parts by weight of a synthetic smectite compound (Lucentite SPN, manufactured by Corp Chemical Co.) was added to the eighth oil phase to obtain a twelfth oil phase. Further, 1 part by weight of 1 part by weight of a synthetic smectite compound (Lucentite SPN, manufactured by Co-op Chemical Co.) was added to the ninth oil phase to obtain a 13th oil phase. Also, 2 parts by weight of a synthetic smectite compound (Lucentite SPN, manufactured by Corp Chemical Co.) was added to the ninth oil phase to obtain a fourteenth oil phase. Further, 1 part by weight of a synthetic smectite compound (Lucentite SPN, manufactured by Corp Chemical Co.) was added to the 10th oil phase to obtain a 15th oil phase. In addition, 2 parts by weight of a synthetic smectite compound (Lucentite SPN, manufactured by Corp Chemical Co.) was added to the 10th oil phase to obtain a 16th oil phase.

次に、第17油相を製造した。具体的には、非結晶性樹脂C−1の50重量%酢酸エチル溶液を100重量部と、60重量部の上記第1離型剤分散液とを混合した。混合液を、50℃の条件下にてTK式ホモミキサー(特殊機化株式会社製)で回転数5,000rpmで撹拌し、均一に溶解、分散させて第17油相を得た。   Next, the 17th oil phase was manufactured. Specifically, 100 parts by weight of 50 wt% ethyl acetate solution of amorphous resin C-1 and 60 parts by weight of the first release agent dispersion were mixed. The mixed liquid was stirred at 5,000 rpm with a TK homomixer (manufactured by Tokushu Kika Co., Ltd.) under the condition of 50 ° C., and uniformly dissolved and dispersed to obtain a 17th oil phase.

次に、第14トナー母体〜第23トナー母体を製造した。具体的には、撹拌機及び温度計をセットした容器内に、520重量部の第1水相を入れて40℃〜50℃まで加熱した。また、50℃に保たれた235重量部の第8油相に、結晶性樹脂前駆体B’−3の酢酸エチル溶液を25重量部だけ添加した。そして、これをTK式ホモミキサー(特殊機化株式会社製)にて回転数5,000rpmで撹拌し、均一に溶解、分散して第8’油相を得た。40〜50℃に保持したままの第1水相をTK式ホモミキサー(特殊機化工業株式会社製)にて回転数13,000rpmで攪拌しながら、第8’油相を添加し、1分間乳化させて第8乳化スラリーを得た。次いで、撹拌機及び温度計をセットした容器内に、第8乳化スラリー8を投入し、60℃で6時間だけ脱溶剤して、第8スラリーを得た。得られた第8スラリーを減圧濾過した後、以下の洗浄処理を行った。
(1)濾過ケーキに100重量部のイオン交換水100重量部を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後、濾過した。
(2)前記(1)の濾過ケーキに100重量部の10重量%水酸化ナトリウム水溶液を加え、TKホモミキサーで混合(回転数6,000rpmで10分間)した後、減圧濾過した。
(3)前記(2)の濾過ケーキに100重量部の10重量%塩酸を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後、濾過した。
(4)前記(3)の濾過ケーキに300重量部のイオン交換水を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後に濾過する操作を2回行い、第8濾過ケーキを得た。得られた第8濾過ケーキを循風乾燥機にて45℃で48時間乾燥した。その後、目開き75μmのメッシュで篩いにかけて、第14トナー母体を得た。
使用する油相を変えた点の他は同様にして、第15トナー母体〜第23トナー母体を得た。なお、第15,16,17,18,19,20,21,22,23トナー母体には、第9,10,11,12,13,14,15,16,17油相がそれぞれ個別に用いられている。
Next, 14th toner base to 23rd toner base were manufactured. Specifically, 520 parts by weight of the first aqueous phase was placed in a container equipped with a stirrer and a thermometer and heated to 40 ° C to 50 ° C. Further, only 25 parts by weight of the ethyl acetate solution of the crystalline resin precursor B′-3 was added to 235 parts by weight of the eighth oil phase maintained at 50 ° C. This was stirred with a TK homomixer (manufactured by Tokushu Kika Co., Ltd.) at a rotation speed of 5,000 rpm, and uniformly dissolved and dispersed to obtain an 8 'oil phase. While stirring the first aqueous phase kept at 40 to 50 ° C. with a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) at a rotation speed of 13,000 rpm, the 8 ′ oil phase was added and 1 minute was added. An eighth emulsified slurry was obtained by emulsification. Next, the eighth emulsified slurry 8 was put into a container equipped with a stirrer and a thermometer, and the solvent was removed at 60 ° C. for 6 hours to obtain an eighth slurry. The obtained eighth slurry was filtered under reduced pressure, and then the following washing treatment was performed.
(1) 100 parts by weight of ion-exchanged water (100 parts by weight) was added to the filter cake, mixed with a TK homomixer (5 minutes at a rotation speed of 6,000 rpm), and then filtered.
(2) 100 parts by weight of 10% by weight sodium hydroxide aqueous solution was added to the filter cake of (1), mixed with a TK homomixer (rotation speed: 6,000 rpm for 10 minutes), and then filtered under reduced pressure.
(3) 100 parts by weight of 10% by weight hydrochloric acid was added to the filter cake of (2), mixed with a TK homomixer (5 minutes at 6,000 rpm), and then filtered.
(4) 300 parts by weight of ion-exchanged water is added to the filter cake of (3), mixed with a TK homomixer (5 minutes at a rotation speed of 6,000 rpm), and then filtered twice to obtain an eighth filter cake. Got. The obtained 8th filter cake was dried at 45 degreeC with the circulating air dryer for 48 hours. Thereafter, the mixture was sieved with a mesh having an opening of 75 μm to obtain a fourteenth toner base.
The 15th toner base to the 23rd toner base were obtained in the same manner except that the oil phase used was changed. The ninth, tenth, eleventh, twelfth, thirteenth, fourteenth, fifteenth, fifteenth, seventeenth and seventeenth oil phases are used individually for the fifteenth, sixteenth, seventeenth, eighteenth, nineteenth, twenty-first, twenty-first, twenty-second and twenty-third toner. It has been.

次に、第14トナー〜第23トナーを製造した。具体的には、100重量部の第14トナー母体と、外添剤としての1.0重量部の疎水性シリカ(HDK−2000、ワッカー・ケミー社製)とを、ヘンシェルミキサー(三井鉱山株式会社製)にて混合した。混合条件は、周速30m/秒、30秒間の混合の後、1分間休止する処理を5サイクルである。混合の後、35μmの目開きのメッシュで篩いにかけて、第14トナーを得た。また、第15,16,17,18,19,20,21,22,23トナー母体を用いた点の他は同様にして、第15,16,17,18,19,20,21,22,23トナーを得た。   Next, 14th to 23rd toners were produced. Specifically, 100 parts by weight of the 14th toner base and 1.0 part by weight of hydrophobic silica (HDK-2000, manufactured by Wacker Chemie) as an external additive were combined with a Henschel mixer (Mitsui Mining Co., Ltd.). Mixed). The mixing condition is 5 cycles of a process of stopping for 1 minute after mixing for 30 seconds at a peripheral speed of 30 m / second. After mixing, the mixture was sieved with a mesh having a mesh size of 35 μm to obtain a 14th toner. Similarly, the fifteenth, sixteenth, seventeenth, eighteenth, nineteenth, twenty-first, twenty-second, twenty-third, and twenty-third toner base material are used in the same manner, except that the fifteenth, sixteenth, seventeenth, eighteenth, nineteenth, twenty-first, twenty-first, twenty-second, and twenty-two. 23 toners were obtained.

次に、第1トナー〜第23トナーのそれぞれについて、トナー体積固有抵抗値を測定した。具体的には、ガード電極を有する直径φ18mmの円筒状の電極をもつ容器に、試料となるトナーを3.0g計量し、荷重6000MPaを印加しながら加圧整形して、ペレットを作成した。また、前記電極を使用して交流ブリッジ型の抵抗測定装置(安藤電気製TR?10C型)を用い周波数1KHzにおける体積固有抵抗を求めた。   Next, the toner volume specific resistance value was measured for each of the first toner to the 23rd toner. Specifically, 3.0 g of toner serving as a sample was weighed into a container having a cylindrical electrode having a diameter of φ18 mm having a guard electrode, and pressure-shaped while applying a load of 6000 MPa to prepare a pellet. Further, the volume resistivity at a frequency of 1 KHz was obtained using an AC bridge type resistance measuring device (TR-10C type manufactured by Ando Electric Co., Ltd.) using the electrodes.

次に、第1トナー〜第23トナーのそれぞれについて、メタノール疎水化度を測定した。具体的には、粉体濡れ性試験機(WET−100P、レスカ社製)を用意した。100mlのビーカーに所定量の純水(イオン交換水または市販の精製水)とメタノールとを入れ、蓋をして超音波分散器を用いて均一分散させた。均一分散させたメタノール水溶液中に、0.5gのトナーを精秤して添加し、スターラーを250rpmで回転させながら撹拌した。更に、メタノールを1.3ml/minで添加していった。水溶液にトナーが沈降、分散しはじめると溶液の透過度が低下する。この透過度降下開始点時の、総メタノール/(総メタノール+水)の割合(%)を、トナー疎水化度とした。   Next, the degree of hydrophobicity of methanol was measured for each of the first to 23rd toners. Specifically, a powder wettability tester (WET-100P, manufactured by Reska Corporation) was prepared. A 100 ml beaker was charged with a predetermined amount of pure water (ion exchange water or commercially available purified water) and methanol, and the cap was covered and uniformly dispersed using an ultrasonic disperser. In a uniformly dispersed aqueous methanol solution, 0.5 g of toner was precisely weighed and added, and stirred while rotating the stirrer at 250 rpm. Further, methanol was added at 1.3 ml / min. As the toner begins to settle and disperse in the aqueous solution, the permeability of the solution decreases. The ratio (%) of total methanol / (total methanol + water) at the start of the decrease in the transmittance was defined as the toner hydrophobicity.

第1トナー〜第13トナーの性状を次の表8に示す。また、第14トナー〜第23トナーの性状を次の表9に示す。

Figure 2014178665
Figure 2014178665
Table 8 shows properties of the first to thirteenth toners. The properties of the 14th to 23rd toners are shown in Table 9 below.
Figure 2014178665
Figure 2014178665

次に、実施形態に係る複写機のプリンタ部1と同様の構成を備えるプリンタ試験機を用意した。このプリンタ試験機は、図3に示される潤滑剤塗布装置によって感光体3(Y,M,C,K)に潤滑剤粉末を塗布し、図5に示される潤滑剤塗布手段によって2次転写対向ローラ72に潤滑剤粉末を塗布する。また、ベルトクリーニング装置(75)に設けられた潤滑剤塗布装置により、中間転写ベルト61に潤滑剤粉末を塗布する。この潤滑剤塗布装置の構成は、図3に示されるものとほぼ同様である。なお、2次転写対向ローラ72に潤滑剤粉末を塗布することで、2次転写対向ローラ72の表面をクリーニングするクリーニングブレードのめくれを防止することができる。   Next, a printer tester having the same configuration as the printer unit 1 of the copying machine according to the embodiment was prepared. In this printer tester, the lubricant powder is applied to the photoreceptor 3 (Y, M, C, K) by the lubricant application device shown in FIG. 3, and the secondary transfer is opposed by the lubricant application means shown in FIG. Lubricant powder is applied to the roller 72. Further, the lubricant powder is applied to the intermediate transfer belt 61 by a lubricant application device provided in the belt cleaning device (75). The configuration of this lubricant application device is substantially the same as that shown in FIG. In addition, by applying the lubricant powder to the secondary transfer counter roller 72, it is possible to prevent the cleaning blade that cleans the surface of the secondary transfer counter roller 72 from turning up.

プリンタ試験機には、中間転写ベルト61として、ポリイミドからなるものを搭載した。この中間転写ベルト61は、次のようにして製造されたものである。即ち、ポリアミック酸の溶液中にカーボンブラックを分散させ、その分散液を金属ドラムに流入して乾燥させる。その後、金属ドラムから剥離したフィルムを高温度下で伸長させてポリイミドフィルムを形成し、適当な大きさに切り出してポリイミド樹脂からなる無端状の中間転写ベルト61を製造した。フィルム成形については、次のようにして行った。即ち、一般的な方法に従って、カーボンブラックを分散したポリマー溶液を円筒金型に注入し、100〜200℃に加熱しつつ円筒金型を回転させて遠心成形によってフィルム状に成膜した。このようにして得られたフィルムを半硬化した状態で脱型して鉄芯に被せ、300〜450℃でポリイミド化反応を進行させ硬化させて中間転写ベルト61を得るようにした。このとき、カーボン量、焼成温度、硬化速度等を変更してベルトの抵抗を調整することができる。このように作られた中間転写ベルト61のヤング率は3000MPaであった。ヤング率(引張り弾性)の測定はJIS K7127に準拠して行った。また、表面摩擦係数は0.45であった。 表面摩擦係数の測定には、新東科学製HEIDON TRIBOGEAR μs 94iを用いた。 なお、この表面摩擦係数は、中間転写ベルト61をプリンタ試験機にセットして1時間以上の定常運転を行った後に測定したものであるので、表面に潤滑剤粉末が付着している状態の値である。   The printer tester was equipped with an intermediate transfer belt 61 made of polyimide. The intermediate transfer belt 61 is manufactured as follows. That is, carbon black is dispersed in a polyamic acid solution, and the dispersion is poured into a metal drum and dried. Thereafter, the film peeled off from the metal drum was stretched at a high temperature to form a polyimide film, cut into an appropriate size, and an endless intermediate transfer belt 61 made of polyimide resin was manufactured. The film molding was performed as follows. That is, according to a general method, a polymer solution in which carbon black was dispersed was poured into a cylindrical mold, and the film was formed into a film by centrifugal molding while rotating the cylindrical mold while heating at 100 to 200 ° C. The film thus obtained was demolded in a semi-cured state and covered with an iron core, and the polyimide transfer reaction was allowed to proceed at 300 to 450 ° C. to be cured to obtain an intermediate transfer belt 61. At this time, the resistance of the belt can be adjusted by changing the carbon amount, the firing temperature, the curing speed, and the like. The intermediate transfer belt 61 thus produced had a Young's modulus of 3000 MPa. The Young's modulus (tensile elasticity) was measured according to JIS K7127. The surface friction coefficient was 0.45. For the measurement of the surface friction coefficient, HEIDON TRIBOGEAR μs 94i manufactured by Shinto Kagaku was used. The surface friction coefficient is measured after the intermediate transfer belt 61 is set in the printer tester and the steady operation is performed for one hour or more. Therefore, the surface friction coefficient is a value in a state where the lubricant powder adheres to the surface. It is.

感光体3Y,M,C,Kについては、その表面摩擦係数をできるだけ小さくして、後述する表面摩擦係数A>表面摩擦係数Bという条件を満足させるために、表面摩擦係数の小さな材料からなる表面層を被覆してもよい。感光体の表面層に使用される材料としては、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、オレフィン−ビニルモノマー共重合体、塩素化ポリエーテル、アリール、フェノール、ポリアセタール、ポリアミド、ポリアミドイミド、ポリアクリレート、ポリアリルスルホン、ポリブチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリエチン、ポリエチレンテレフタレート、ポリイミド、アクリル、ポリメチルペンテン、ポリプロピレン、ポリフェニレンオキシド、ポリスルホン、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポキシ等の樹脂が挙げられる。   For the photoreceptors 3Y, 3M, 3C, and 3K, the surface friction coefficient is made as small as possible, and the surface made of a material having a small surface friction coefficient in order to satisfy the condition of surface friction coefficient A> surface friction coefficient B described later. The layer may be coated. Materials used for the surface layer of the photoreceptor include styrene-acrylonitrile copolymer, styrene-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, olefin-vinyl monomer copolymer, chlorinated polyether, aryl , Phenol, polyacetal, polyamide, polyamideimide, polyacrylate, polyallylsulfone, polybutylene, polybutylene terephthalate, polycarbonate, polyethersulfone, polyethyne, polyethylene terephthalate, polyimide, acrylic, polymethylpentene, polypropylene, polyphenylene oxide, polysulfone, polyurethane , Resins such as polyvinyl chloride, polyvinylidene chloride, and epoxy.

これらの樹脂に摩擦係数を低下させる目的でフッ素樹脂粒子、ポリオレフィン樹脂粒子、シリコーン樹脂粒子等の潤滑剤を添加するとよい。フッ素樹脂粒子の具体例としては、テトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニリデン、フッ化ビニル及びパーフルオロアルキルビニルエーテルなどの重合体、及びそれらの共重合体が挙げられる。また、ポリオレフィン樹脂粒子の具体例としては、エチレン、プロピレン、ブテン等のオレフィンの単独重合体、異種オレフィンとの共重合体、またはそれらの熱変性物の粒子を表し、具体的にはポリエチレン、ポリプロピレン、ポリブテン、ポリヘキセン、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレン−プロピレン−ヘキセン共重合体などが挙げられる。また、シリコーン樹脂粒子の具体例としては、シロキサン結合が三次元で結合し、網目構造をとり、珪素原子にアルキル基、アリール基、アミノ置換アルキル基、ジアルキルシリコーンなど置換されたもので有機溶媒に不溶なもの、が挙げられる。   A lubricant such as fluorine resin particles, polyolefin resin particles, and silicone resin particles may be added to these resins for the purpose of reducing the friction coefficient. Specific examples of the fluororesin particles include polymers such as tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, chlorotrifluoroethylene, vinylidene fluoride, vinyl fluoride and perfluoroalkyl vinyl ether, and copolymers thereof. Can be mentioned. Specific examples of polyolefin resin particles include homopolymers of olefins such as ethylene, propylene, and butene, copolymers with different olefins, or particles of heat-modified products thereof. Specifically, polyethylene, polypropylene , Polybutene, polyhexene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-propylene-hexene copolymer, and the like. As specific examples of the silicone resin particles, siloxane bonds are three-dimensionally bonded, have a network structure, and silicon atoms are substituted with alkyl groups, aryl groups, amino-substituted alkyl groups, dialkyl silicones, and the like in organic solvents. Insoluble.

このような表面層を設けた感光体の表面摩擦係数は、一般的に0.1〜0.3程度になる。中間転写ベルト61の表面摩擦係数は、表面の粗さによってばらつくが、一般的にその材質から0.35〜0.7程度である。   The surface friction coefficient of a photoreceptor provided with such a surface layer is generally about 0.1 to 0.3. The surface friction coefficient of the intermediate transfer belt 61 varies depending on the roughness of the surface, but is generally about 0.35 to 0.7 from the material.

次に、本発明者らが行った実験について説明する。
本発明者らは、和紙タイプの記録シート(株式会社リコー社製、連量175kgレザック紙、A4サイズ)をプリンタ試験機にセットした。そして、プリンタ試験機に、第1トナー〜第13トナーを順次セットして、それぞれのトナーで記録シートに全面ハーフトーン画像(1枚目)を出力した。得られた全面ハーフトーン画像について、シート表面の凹凸にならった濃度ムラの有無を目視で確認して、○=濃度ムラなし、△=濃度ムラがあるが許容範囲内、×=許容範囲を超える濃度ムラがある、の3段階で評価した。また、普通紙からなる記録シートにパッチ画像を出力した。パッチ画像としては、画像面積率1[cm]×1[cm]の大きさのものであって、トナー付着量が0.85[mg/cm]であるものを、通紙幅方向に均等間隔に5ヶ並べて形成した。得られた各パッチ画像を1次転写した直後の中間転写ベルト61上におけるトナー量を測定し、測定結果に基づいて1次転写率(1次転写後トナー量/1次転写前トナー量)を算出した。
Next, experiments conducted by the present inventors will be described.
The present inventors set a Japanese paper type recording sheet (manufactured by Ricoh Co., Ltd., continuous weight 175 kg resack paper, A4 size) in a printer testing machine. Then, the first to thirteenth toners were sequentially set on the printer testing machine, and a full-tone halftone image (first sheet) was output to the recording sheet with each toner. For the entire halftone image obtained, the presence or absence of density unevenness following unevenness on the surface of the sheet was visually confirmed. ○ = no density unevenness, Δ = density unevenness within acceptable range, x = exceeding acceptable range The evaluation was made in three stages: density unevenness. A patch image was output on a recording sheet made of plain paper. A patch image having an image area ratio of 1 [cm 2 ] × 1 [cm 2 ] and a toner adhesion amount of 0.85 [mg / cm 2 ] is used in the sheet passing width direction. Five of them were arranged at equal intervals. The amount of toner on the intermediate transfer belt 61 immediately after primary transfer of each obtained patch image is measured, and the primary transfer rate (the amount of toner after primary transfer / the amount of toner before primary transfer) is determined based on the measurement result. Calculated.

この実験については、まず、中間転写ベルト61に潤滑剤粉末を塗布する潤滑剤塗布装置におけるコイルバネとしてバネ定数の比較的大きいものを搭載した条件で行った。中間転写ベルト61の表面摩擦係数(潤滑剤塗布後)と、感光体の表面摩擦係数(潤滑剤塗布後)とを測定したところ、前者の表面摩擦係数の方が0.03だけ大きかった。次に、中間転写ベルト61に潤滑剤粉末を塗布する潤滑剤塗布装置におけるコイルバネとしてバネ定数の比較的小さいものを搭載した条件で同様の実験を行って濃度ムラを評価した。中間転写ベルト61の表面摩擦係数(潤滑剤塗布後)と、感光体の表面摩擦係数(潤滑剤塗布後)とを測定したところ、両者は同じ値であった。実験室については、高温高湿環境(温度28℃、相対湿度80%)に設定した。   This experiment was performed under the condition that a coil spring having a relatively large spring constant is mounted as a coil spring in a lubricant application device that applies lubricant powder to the intermediate transfer belt 61. When the surface friction coefficient (after applying the lubricant) of the intermediate transfer belt 61 and the surface friction coefficient (after applying the lubricant) of the photoreceptor were measured, the former surface friction coefficient was 0.03 larger. Next, density unevenness was evaluated by performing a similar experiment under the condition that a coil spring having a relatively small spring constant was mounted in a lubricant application device for applying lubricant powder to the intermediate transfer belt 61. When the surface friction coefficient (after applying the lubricant) of the intermediate transfer belt 61 and the surface friction coefficient (after applying the lubricant) of the photosensitive member were measured, they were the same value. The laboratory was set in a high temperature and high humidity environment (temperature 28 ° C., relative humidity 80%).

また、デジタルフルカラー複写機(リコー社製imagioMP C4500)の定着部を改造したプリンタ試験機を用意して、プリントテストを行った。このプリントテストでは、記録シートとして、株式会社リコー社製のタイプ6200紙を用いた。プリント条件としては、紙送りの線速=200〜220[mm/秒]、定着ニップにおける面圧=1.0[kgf/cm]、定着ニップの紙送り方向長さ(ニップ幅)=10.0[mm]を採用した。定着温度を変化させながら、それぞれの定着温度条件でテスト画像を出力して、定着装置におけるコールドオフセットやホットオフセットの発生状況を確認した。そして、コールドオフセットを引き起こさないコールドオフセット温度(定着下限温度)や、ホットオフセットを引き起こさないホットオフセット温度(定着上限温度)を求めた。 In addition, a printer test machine in which the fixing unit of a digital full-color copying machine (Imagio MP C4500 manufactured by Ricoh Co., Ltd.) was modified was prepared and a print test was performed. In this print test, type 6200 paper manufactured by Ricoh Co., Ltd. was used as the recording sheet. As printing conditions, the linear speed of paper feed = 200 to 220 [mm / sec], the surface pressure at the fixing nip = 1.0 [kgf / cm 2 ], the length of the fixing nip in the paper feeding direction (nip width) = 10 0.0 [mm] was adopted. While changing the fixing temperature, a test image was output under each fixing temperature condition, and the occurrence of cold offset and hot offset in the fixing device was confirmed. Then, a cold offset temperature (fixing lower limit temperature) that does not cause a cold offset and a hot offset temperature (fixing upper limit temperature) that does not cause a hot offset were obtained.

より詳しくは、定着下限温度については、定着温度(定着部材温度)を2℃刻みで変化させながら、テスト画像を担持させた記録紙をそれぞれの定着温度の条件で定着装置に通紙した。そして、通紙後の記録紙において、コールドオフセットの発生の有無を確認して、コールドオフセットを発生させない最低温度を定着下限温度とした。そして、定着下限温度について、3段階にランク分けした。100℃(以上)〜115℃(未満)を○、115℃(以上)〜130℃(未満)を△、130℃以上を×とするランク分けである。このような定着下限温度のランク分けを、13種類のトナーについてそれぞれ行った。   More specifically, regarding the lower limit fixing temperature, the recording paper carrying the test image was passed through the fixing device under the conditions of the respective fixing temperatures while changing the fixing temperature (fixing member temperature) in increments of 2 ° C. Then, in the recording paper after passing the paper, the presence or absence of occurrence of cold offset was confirmed, and the lowest temperature at which cold offset did not occur was defined as the minimum fixing temperature. Then, the fixing lower limit temperature was ranked in three stages. The ranking is 100 ° C. (above) to 115 ° C. (less than) ○, 115 ° C. (above) to 130 ° C. (below) Δ, and 130 ° C. or more x. Such ranking of the minimum fixing temperature was performed for each of 13 types of toners.

また、定着上限温度については、定着温度を2℃刻みで変化させながら、テスト画像を担持させた記録紙をそれぞれの定着温度の条件で定着装置に通紙した。そして、通紙後の記録紙において、ホットオフセットの発生の有無を確認して、ホットオフセットを発生させない最高温度を定着上限温度とした。そして、定着上限温度について、3段階にランク分けした。190℃以上を○、180℃(以上)〜190℃(未満)を△、180℃未満を×とするランク分けである。このような定着上限温度のランク分けを、13種類のトナーについてそれぞれ行った。   Regarding the upper limit fixing temperature, the recording paper carrying the test image was passed through the fixing device under the conditions of the respective fixing temperatures while changing the fixing temperature in increments of 2 ° C. Then, on the recording paper after passing the paper, the presence or absence of occurrence of hot offset was confirmed, and the maximum temperature at which hot offset did not occur was defined as the upper limit fixing temperature. Then, the fixing upper limit temperature was ranked in three stages. The ranks are 190 ° C or higher for ◯, 180 ° C (over) to 190 ° C (less than) Δ, and less than 180 ° C for x. Such a fixing upper limit temperature ranking was performed for each of the 13 types of toner.

この実験の結果を、次の表10、表11に示す。

Figure 2014178665

Figure 2014178665
The results of this experiment are shown in Tables 10 and 11 below.
Figure 2014178665

Figure 2014178665

表10や表11に示されるように、ベルトの表面摩擦係数A=感光体の表面摩擦係数Bという条件にした実験(以下、「摩擦係数を同じにした実験」という)や、A>Bという条件にした実験(以下、「感光体摩擦を小さくした実験」という)では、次のようになった。即ち、第1トナー、第2トナー、第11トナー、第13トナー、第14トナー〜第23トナーを用いた場合にだけ、濃度ムラの評価結果(凹凸紙への出力画像評価)が×になった。試しに、実験室の温度条件を高温高湿の環境から常温常湿の環境に変更して、同様の「摩擦係数を同じにした実験」や「感光体摩擦を小さくした実験」を行った。すると、23種類の全てのトナーにおいて、1次転写率が向上した。そして、第1トナー、第2トナー、第14トナー〜第22トナーを用いた実験では、濃度ムラの評価結果が△に向上した。但し、第11トナー、第13、第23トナーを用いた実験では、濃度ムラの評価結果は×のままであった。このことから、表10や表11に示される実験結果のうち、「摩擦係数を同じにした実験」や「感光体摩擦を小さくした実験」の結果においては、次のようなことが考えられる。即ち、第1トナー、第2トナー、第14トナー〜第22トナーを用いた実験で濃度ムラの評価結果がそれぞれ×になっているのは、画像全体の1次転写率が低くなっているのが原因になっていると考えられる。また、第11トナー、第13トナー、第23トナーを用いた場合の濃度ムラの評価結果がそれぞれ×になっているのは、画像全体のうち、記録シート表面の凹部に対応する領域の1次転写率が低くなっているのが原因になっていると考えられる。   As shown in Tables 10 and 11, an experiment under the condition that the surface friction coefficient A of the belt is equal to the surface friction coefficient B of the photosensitive member (hereinafter referred to as “an experiment with the same friction coefficient”), or A> B. In an experiment under conditions (hereinafter referred to as “experiment with reduced photoreceptor friction”), the results were as follows. That is, only when the first toner, the second toner, the eleventh toner, the thirteenth toner, the fourteenth toner to the twenty-third toner are used, the density unevenness evaluation result (evaluation of the output image on the uneven paper) becomes x. It was. As a test, the temperature conditions in the laboratory were changed from a high temperature and high humidity environment to a normal temperature and normal humidity environment, and the same “experiment with the same friction coefficient” and “experiment with reduced photoconductor friction” were performed. As a result, the primary transfer rate was improved for all 23 types of toner. In the experiment using the first toner, the second toner, and the 14th to 22nd toners, the evaluation result of the density unevenness was improved to Δ. However, in the experiment using the eleventh toner, the thirteenth toner, and the twenty-third toner, the evaluation result of the density unevenness remained “x”. From this, among the experimental results shown in Tables 10 and 11, the following can be considered in the results of “experiment with the same friction coefficient” and “experiment with reduced photoconductor friction”. That is, in the experiment using the first toner, the second toner, and the 14th toner to the 22nd toner, the evaluation result of the density unevenness is x, respectively, because the primary transfer rate of the entire image is low. This is considered to be the cause. In addition, the evaluation results of density unevenness when the eleventh toner, the thirteenth toner, and the twenty-third toner are used are x, respectively. This is probably due to the low transfer rate.

第11トナーや第23トナーは、表8や表9に示されるように、結晶性樹脂にウレタン結合もウレア結合も具備していないものである。また、第13トナーは、表8に示されるように結晶性樹脂にウレタン結合を有しているものの、「C/(C+A)」の解が0.01という非常に小さな数値になっている。即ち、結着樹脂全体における結晶性樹脂の割合が少なくなっている。他のトナーのうち、第13トナーの次に前記解が小さいのは、第7トナー、第14トナー、第17トナーの0.15である。これらの結果、次のようなトナーを用いることで、表面凹凸に富んだ記録シートを用いる場合であっても、凹凸にならった濃度ムラを抑えた画像を形成し得ることがわかった。即ち、結晶性樹脂としてウレタン結合又はウレア結合の何れかを具備するものを用い、且つ、「C/(C+A)」の解を0.15以上にする程度に結着樹脂全体における結晶性樹脂の割合が高くなっている結着樹脂を母材樹脂とするトナーである。試しに、本発明者らは、これまで説明した23種類のトナーの他にも、様々なトナーを製造して実験を行った。すると、結晶性樹脂にウレタン結合又はウレア結合を有し、且つ「C/(C+A)」の解を0.15以上にする結着樹脂を母材樹脂とするトナーであれば、シート表面の凹凸にならった濃度ムラを抑えることができた。なお、「C/(C+A)」の解を0.15以上にするトナーには、定着性を損なうことなく結晶性部位をトナー内部まで均一微分散して表面偏在させないという利点もある。更には、硬度の高いウレタン結合及びウレア結合のうち少なくとも何れか1つを含有させることで、結晶性部位と非結晶性部位とを混在させても適度な変形性と弾性とを両立させることが可能になると考えられる。   As shown in Tables 8 and 9, the 11th toner and the 23rd toner are those in which neither the urethane bond nor the urea bond is provided in the crystalline resin. Further, as shown in Table 8, the 13th toner has a urethane bond in the crystalline resin, but the solution of “C / (C + A)” is a very small value of 0.01. That is, the ratio of the crystalline resin in the entire binder resin is reduced. Among the other toners, the solution having the smallest solution after the 13th toner is 0.15 of the 7th toner, the 14th toner, and the 17th toner. As a result, it was found that by using the following toner, it is possible to form an image that suppresses uneven density unevenness even when a recording sheet rich in surface irregularities is used. That is, as the crystalline resin, a resin having either a urethane bond or a urea bond is used, and the crystalline resin in the entire binder resin is adjusted so that the solution of “C / (C + A)” is 0.15 or more. The toner uses a binder resin having a high ratio as a base resin. As a trial, the present inventors made various toners and conducted experiments in addition to the 23 types of toners described so far. Then, if the toner has a urethane resin or a urea bond in the crystalline resin and the binder resin that makes the solution of “C / (C + A)” 0.15 or more, the toner is a base material resin. Concentration unevenness that was similar to that was suppressed. In addition, a toner having a solution of “C / (C + A)” of 0.15 or more has an advantage that the crystalline portion is uniformly and finely dispersed within the toner without deteriorating the fixing property and the surface is not unevenly distributed. Furthermore, by containing at least one of a urethane bond and a urea bond having high hardness, it is possible to achieve both appropriate deformability and elasticity even if a crystalline part and an amorphous part are mixed. It will be possible.

しかしながら、かかるトナーであっても、ベルトの表面摩擦係数Aを感光体の表面摩擦係数Bよりも大きくしていない場合には、次のような現象を引き起こしてしまう。即ち、高温高湿環境下にて、1次転写率が大きく低下して、画像全体の濃度不足や、画像全体の濃度不足に起因するシート表面の凹凸にならった濃度ムラを引き起こしてしまう。   However, even such a toner causes the following phenomenon if the surface friction coefficient A of the belt is not larger than the surface friction coefficient B of the photoreceptor. That is, in a high temperature and high humidity environment, the primary transfer rate is greatly reduced, resulting in insufficient density of the entire image and uneven density on the sheet surface due to insufficient density of the entire image.

結晶性樹脂にウレタン結合又はウレア結合を有し、且つ「C/(C+A)」の解を0.15以上にする結着樹脂を母材樹脂とするトナーを用いた場合の詳細メカニズムは不明である。但し、次のようなメカニズムが働いていると憶測できる。即ち、結晶性ポリエステルを主成分とするトナーでは、結晶性高分子材料固有の変形特性に由来して、感光体や用紙などの転写部での接触部材との接触追従性がよくなり、転写圧の変化によるシート表面凹部の転写率低下が現れ難くなったと推測される。   The detailed mechanism in the case of using a toner having a binder resin that has a urethane bond or a urea bond in the crystalline resin and the solution of “C / (C + A)” is 0.15 or more is not known. is there. However, it can be speculated that the following mechanism works. In other words, the toner mainly composed of crystalline polyester has improved contact followability with a contact member at a transfer portion such as a photoconductor or paper because of the deformation characteristics inherent to the crystalline polymer material. It is presumed that a decrease in the transfer rate of the concave portion on the sheet surface due to the change in the thickness hardly appears.

結晶性樹脂にウレタン結合又はウレア結合を有し、且つ「C/(C+A)」の解を0.15以上にする結着樹脂を母材樹脂とするトナーを用いた場合に、1次転写率が低下してしまうという現象は、従来では想定されていなかったものである。本発明者らが追実験を行ったところ、全結着樹脂に対して結晶性ポリエステル樹脂を50質量%以上含有させたトナーにおいて、高温高湿環境下における1次転写率の低下が顕著に発生することがわかった。理由としては、多量に含まれる結晶性ポリエステルが何らかの理由で十分結晶化しておらず、トナー中の結晶性ポリエステル部分に体積固有抵抗が局所的に低い箇所があることが考えられる。また、かかる箇所が親水性の表面としてトナー表面に露出し、高温高湿条件で水分吸着、電荷流出した可能性も考えられる。結晶性ポリエステルを多量に含有するトナーの1次転写率の低下については、結晶性ポリエステルの結晶化をより確実に行うだけでは十分に抑えることができない。また、結晶化をより確実に行った上で、トナー表面の結晶性ポリエステルの副作用がでないように、結晶性ポリエステル含有量を減らすなどすれば、トナーの疎水化度や体積固有抵抗をそれぞれ厳密に調整すればある程度まで抑えることが可能になるかもしれない。しかし、そのような厳密な調整は、他のトナー特性の悪化、特に低温定着性の悪化などといった副作用を伴うと考えられる。   When a toner having a urethane resin or urea bond in a crystalline resin and a binder resin whose base material resin makes the solution of “C / (C + A)” 0.15 or more is used, the primary transfer rate The phenomenon of decreasing is not previously assumed. As a result of further experiments by the present inventors, a toner in which the crystalline polyester resin is contained in an amount of 50% by mass or more with respect to the total binder resin, the primary transfer rate is significantly reduced in a high temperature and high humidity environment. I found out that The reason is considered that the crystalline polyester contained in a large amount is not sufficiently crystallized for some reason, and there is a portion where the volume specific resistance is locally low in the crystalline polyester portion in the toner. In addition, there is a possibility that such a portion is exposed on the toner surface as a hydrophilic surface, and water is adsorbed and charges are discharged under high temperature and high humidity conditions. The reduction in the primary transfer rate of a toner containing a large amount of crystalline polyester cannot be sufficiently suppressed only by more reliably crystallizing the crystalline polyester. In addition, if the content of the crystalline polyester is reduced so that there is no side effect of the crystalline polyester on the toner surface after performing the crystallization more reliably, the degree of hydrophobicity and volume resistivity of the toner can be strictly controlled. If adjusted, it may be possible to suppress to a certain extent. However, such a strict adjustment is considered to have side effects such as deterioration of other toner characteristics, particularly deterioration of low-temperature fixability.

次に、本発明者らは、第14トナー〜第23トナーについてそれぞれ、平均円形度を測定した。具体的には、測定装置として、フロー式粒子像分析装置(「FPIA−2100」、シスメックス社製)を用いた。そして、解析ソフト(FPIA−2100Data Processing Program for FPIAversion00−10)を用いて解析を行った。より詳しくは、100ml容量のガラス製ビーカーに、10質量%界面活性剤(アルキルベンゼンスフォン酸塩、ネオゲンSC−A、第一工業製薬株式会社製)を0.1〜0.5ml添加した。次いで、試料トナー0.1〜0.5gを添加してミクロスパーテルでかき混ぜた後、80mlのイオン交換水を添加して分散液を得た。この分散液を超音波分散器(本多電子株式会社製)で3分間分散処理した。処理後の分散液を、5,000〜15,000個/μlのトナー濃度に調整する。平均円形度の測定再現性の観点から、分散液のトナー濃度を5,000〜15,000個/μlにすることが望ましいからである。界面活性剤量については、前述したトナー粒径の測定と同様に、トナーの疎水性に応じて必要量が異なる。過剰に添加すると泡によるノイズが発生し、添加量が不足するとトナーを十分に濡らすことができないことから分散が不十分となる。また、トナーの添加量は粒径によって異なり、小粒径の場合は少なくする一方で、大粒径の場合は多くする必要がある。トナー粒径が3μm〜10μmである場合には、0.1g〜0.5gのトナーを添加することにより、分散液のトナー濃度を5,000個/μl〜15,000個/μlに調整することが可能である。このようにしてトナー濃度を調整した分散液をフロー式粒子像分析装置にセットし、解析ソフトを用いて平均円形度を解析した。なお、トナー粒子の形状や粒径分布を測定する際にも、トナーの分散液の濃度を適切に調整する。調整にあたっては、添加する界面活性剤量やトナー量など、目標とするトナー濃度に応じた条件に変更する必要がある。   Next, the inventors measured the average circularity of each of the 14th to 23rd toners. Specifically, a flow type particle image analyzer (“FPIA-2100”, manufactured by Sysmex Corporation) was used as a measuring device. Then, analysis was performed using analysis software (FPIA-2100 Data Processing Program for FPIAversion 00-10). More specifically, 0.1 to 0.5 ml of 10% by mass surfactant (alkylbenzene sulfonate, Neogen SC-A, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to a 100 ml glass beaker. Next, 0.1 to 0.5 g of the sample toner was added and stirred with a microspatel, and then 80 ml of ion exchange water was added to obtain a dispersion. This dispersion was subjected to a dispersion treatment for 3 minutes with an ultrasonic disperser (manufactured by Honda Electronics Co., Ltd.). The dispersion after treatment is adjusted to a toner density of 5,000 to 15,000 / μl. This is because, from the viewpoint of measurement reproducibility of the average circularity, it is desirable to set the toner concentration of the dispersion to 5,000 to 15,000 / μl. As for the amount of the surfactant, the required amount varies depending on the hydrophobicity of the toner, as in the measurement of the toner particle diameter described above. When excessively added, noise due to bubbles is generated, and when the added amount is insufficient, the toner cannot be sufficiently wetted, resulting in insufficient dispersion. Further, the amount of toner added varies depending on the particle size, and it is necessary to reduce the amount when the particle size is small, while increasing the amount when the particle size is large. When the toner particle diameter is 3 μm to 10 μm, the toner concentration of the dispersion is adjusted to 5,000 / μl to 15,000 / μl by adding 0.1 g to 0.5 g of toner. It is possible. The dispersion liquid whose toner concentration was adjusted in this way was set in a flow type particle image analyzer, and the average circularity was analyzed using analysis software. In addition, when measuring the shape and particle size distribution of the toner particles, the concentration of the toner dispersion is appropriately adjusted. In the adjustment, it is necessary to change the conditions according to the target toner concentration, such as the amount of surfactant to be added and the amount of toner.

次に、本発明者らは、トナーのかさ体積比を測定した。具体的には、第14トナー〜第23トナーについて、それぞれ次のようにしてかさ体積比を測定した。まず、トナーを10gだけ、有栓メスシリンダー(ガラス製、容量50mLの規格品)に投入し、栓をした後に、10回上下に強く振って、トナー粒子間に空気を含ませる。次に、振り終わると同時に静置し、静置時間を計測する。静置後、5分後、20分後、24時間後の体積をシリンダーの目盛りで読み取って、それぞれの結果を、5分後かさ体積V1[ml]、20分後かさ体積V2[ml]、24時間後かさ体積V3[ml]とした。そして、V2/V1の解を第1かさ体積比とした。また、V3/V1の解を第2かさ体積比とした。また、10[g]/V3の解を、静置後24時間のトナーのかさ密度として求めた。この結果を、次の表12に示す。

Figure 2014178665
Next, the inventors measured the bulk volume ratio of the toner. Specifically, the bulk volume ratio of each of the 14th to 23rd toners was measured as follows. First, only 10 g of toner is put into a closed graduated cylinder (made of glass, standard product with a capacity of 50 mL), plugged, and then shaken up and down 10 times to contain air between the toner particles. Next, let it stand as soon as it finishes swinging, and measure the standing time. After standing, the volume after 5 minutes, 20 minutes, and 24 hours was read on the cylinder scale, and the respective results were shown as bulk volume V1 [ml] after 5 minutes, bulk volume V2 [ml] after 20 minutes, After 24 hours, the bulk volume was set to V3 [ml]. And the solution of V2 / V1 was made into the 1st bulk volume ratio. The solution of V3 / V1 was defined as the second bulk volume ratio. The solution of 10 [g] / V3 was determined as the bulk density of the toner for 24 hours after standing. The results are shown in Table 12 below.
Figure 2014178665

本発明者らは、鋭意検討の結果、本発明のトナーにおいて好ましい粉体特性として、過剰な自重圧縮が起こらず、かつ補給後に適度な速度で圧縮が進むトナーであることが好ましいことが解った。具体的には、「V3/V1.≧0.71、V2/V1.≧0.79」という条件を満たし、且つ、トナーの静置後24時間のかさ密度が0.44〜0.51g/mlであることが好ましい。これらの粉体特性は、トナーが現像装置の中でスクリュー部材によって撹拌されているときや、長期間放置された後にスクリュー部材によって撹拌され始めたときに、トナー凝集を起こし難くする効果があるものと考えられる。こうした粉体特性を得るための手段としては、トナー母体粒子の形状、表面性、粒径、外添剤付着量などが寄与するものと考えられる。特に、低温定着性を阻害せずに粉体特性を好ましいものとするためには、ウレタン結合及び/又はウレア結合を具備するトナー材料を用いることや、高分子量体を配合することが、トナー形状を制御する上で優れていると考えられる。よって、トナー材料としてウレタン結合及び/又はウレア結合を用いたり、高分子量体を配合したりすることは、トナー硬度の向上による外添剤埋没の抑制、変形によるトナー接触面積の増加抑制、付着性抑制などをもたらしていると考えられる。   As a result of intensive studies, the present inventors have found that it is preferable that the toner of the present invention is a toner that does not cause excessive self-compression and that is compressed at an appropriate speed after replenishment. . Specifically, the conditions of “V3 / V1. ≧ 0.71, V2 / V1. ≧ 0.79” are satisfied, and the bulk density at 24 hours after the toner is left is 0.44 to 0.51 g / Preferably it is ml. These powder characteristics have the effect of making it difficult for toner aggregation to occur when the toner is agitated by the screw member in the developing device or when the toner starts to be agitated after being left for a long period of time. it is conceivable that. As means for obtaining such powder characteristics, it is considered that the shape, surface property, particle size, external additive adhesion amount and the like of the toner base particles contribute. In particular, in order to make powder characteristics favorable without hindering low-temperature fixability, it is possible to use a toner material having a urethane bond and / or a urea bond, or to blend a high molecular weight body. It is thought that it is excellent in controlling. Therefore, using a urethane bond and / or urea bond as a toner material, or blending a high molecular weight substance, suppresses burying of an external additive by improving toner hardness, suppresses an increase in toner contact area by deformation, and adherence. It is thought that it has brought about suppression.

次に、実施形態に係る複写機の特徴的な構成について説明する。実施形態に係る複写機では、トナーとして、ウレタン結合及びウレア結合のうち少なくとも何れか一方を主鎖に具備する結晶性樹脂を含有するものであり、且つ、「C/(C+A)」の解を0.15以上にするものを用いるようになっている。そして、感光体の表面摩擦係数Bを中間転写ベルト61の表面摩擦係数Aよりも低い値にするように、感光体、中間転写ベルト61にそれぞれ潤滑剤を塗布する。かかる構成では、転写圧ムラに起因する濃淡ムラや色調ムラの発生を長期間に渡って安定して抑えることができる。また、トナーの疎水化度や体積固有抵抗値を厳密に調整することなく、高温高湿の環境下におけるトナー像の1次転写率の低下を抑えることができる。   Next, a characteristic configuration of the copier according to the embodiment will be described. In the copying machine according to the embodiment, the toner contains a crystalline resin having at least one of a urethane bond and a urea bond in the main chain, and the solution of “C / (C + A)” is obtained. What makes it 0.15 or more is used. Then, a lubricant is applied to the photoconductor and the intermediate transfer belt 61 so that the surface friction coefficient B of the photoconductor is lower than the surface friction coefficient A of the intermediate transfer belt 61. With such a configuration, it is possible to stably suppress the occurrence of shading unevenness and color tone unevenness due to transfer pressure unevenness over a long period of time. Further, it is possible to suppress a decrease in the primary transfer rate of the toner image in a high-temperature and high-humidity environment without strictly adjusting the degree of hydrophobicity and volume resistivity of the toner.

なお、表8における表面摩擦係数Aや表面摩擦係数Bは、何れも潤滑剤粉末を塗布した条件における数値である。感光体や中間転写ベルトに潤滑剤を塗布しない構成の場合には、それらの無垢の表面について、中間転写ベルト61の表面摩擦係数Aを、感光体の表面摩擦係数Bよりも大きくすればよい。   In addition, the surface friction coefficient A and the surface friction coefficient B in Table 8 are both numerical values under the condition where the lubricant powder is applied. In the case where the lubricant is not applied to the photoconductor and the intermediate transfer belt, the surface friction coefficient A of the intermediate transfer belt 61 may be made larger than the surface friction coefficient B of the photoconductor for those solid surfaces.

中間転写ベルト61としては、基材のヤング率が3000[MPa]以上であるものを用いている。なお、実施形態に係る複写機では、中間転写ベルト61として、基材層だけからなるものを用いているが、基材層の他に、表面層などの他の層を設けた場合には、基材層について、ヤング率を3000[MPa]以上にすればよい。   As the intermediate transfer belt 61, a belt having a Young's modulus of 3000 [MPa] or more is used. In the copying machine according to the embodiment, the intermediate transfer belt 61 includes only a base material layer. However, in addition to the base material layer, when other layers such as a surface layer are provided, What is necessary is just to make Young's modulus 3000 or more MPa about a base material layer.

中間転写ベルトの基材層としては、ポリイミド又はポリイミドアミドからなるものを採用している。   As the base material layer of the intermediate transfer belt, one made of polyimide or polyimide amide is employed.

トナーとしては、次のようなものを用いるようになっている。即ち、テトラヒドロフラン可溶分のゲル拡散クロマトグラフィー測定によって100000以上の分子量であると測定される樹脂の割合が全樹脂中の7[%]以上であり、重量平均分子量が20000以上、70000以下であるトナーである。   The following toner is used. That is, the ratio of the resin measured to have a molecular weight of 100,000 or more by gel diffusion chromatography measurement of tetrahydrofuran-soluble content is 7% or more in the total resin, and the weight average molecular weight is 20000 or more and 70000 or less. Toner.

また、トナーとしては、次のようなものを用いるようになっている。即ち、温度28[℃]、相対湿度80[%]の環境下における体積固有抵抗値LogRが9.5〜10.5[Log(Ω・cm)]であるトナーである。   In addition, the following toner is used. That is, the toner has a volume resistivity value LogR of 9.5 to 10.5 [Log (Ω · cm)] in an environment with a temperature of 28 [° C.] and a relative humidity of 80 [%].

また、トナーとしては、疎水化度が35〜50[%]であるものを用いるようになっている。   As the toner, toner having a hydrophobicity of 35 to 50% is used.

また、トナーとしては、次のようなものを用いるようになっている。即ち、示差走査熱量計(DSC)による昇温2回目の融解熱の最大ピーク温度が50[℃]以上、70[℃]以下の範囲であり、且つ、昇温2回目の融解熱量が30[J/g]以上、75[J/g]以下の範囲であるトナーである。   In addition, the following toner is used. That is, the maximum peak temperature of the heat of fusion at the second temperature increase by a differential scanning calorimeter (DSC) is in the range of 50 [° C.] to 70 [° C.], and the heat of fusion at the second temperature increase is 30 [ J / g] and 75 [J / g] or less.

また、トナーとしては、テトラヒドロフラン及び酢酸エチルの混合溶媒に対する不溶分の示差走査熱量計(DSC)による吸熱量の吸熱量測定結果△H(H)[J/g]と、DSCによる吸熱量測定結果△H(T)[J/g]とを次のようにするものを用いている。即ち、「△H(H)/△H(T)」を0.5〜1.25の範囲にするトナーである。   As the toner, the endothermic measurement result ΔH (H) [J / g] of the endothermic amount with a differential scanning calorimeter (DSC) of the insoluble matter in the mixed solvent of tetrahydrofuran and ethyl acetate, and the endothermic measurement result with DSC. ΔH (T) [J / g] is used as follows. That is, the toner makes “ΔH (H) / ΔH (T)” in the range of 0.5 to 1.25.

また、トナーとしては、次のようなものを用いるようになっている。即ち、結晶性樹脂として、第1の結晶性樹脂と、第1の結晶性樹脂よりも重量平均分子量が大きい第2の結晶性樹脂とを含むトナーである。   In addition, the following toner is used. That is, the toner includes a first crystalline resin and a second crystalline resin having a weight average molecular weight larger than that of the first crystalline resin as the crystalline resin.

また、トナーとしては、第2の結晶性樹脂が末端にイソシアネート基を有する変性結晶性樹脂を伸長させたものであるトナーを用いるようになっている。   Further, as the toner, a toner in which the second crystalline resin is obtained by extending a modified crystalline resin having an isocyanate group at the terminal is used.

以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
[態様A]
トナー像を担持する像担持体(例えば感光体3)と、前記像担持体上のトナー像を中間転写体(例えば中間転写ベルト61)の表面に中間転写する中間転写手段(例えば1次転写ローラ62Y,M,C,K)とを備える画像形成装置であって、前記トナーが、ウレタン結合及びウレア結合のうち少なくとも何れか一方を主鎖に具備する結晶性樹脂を含有するものであり、且つ、前記トナーのX線回折スペクトルにおける前記結晶性樹脂の結晶構造に由来するスペクトルの積分強度をC、前記X線回折スペクトルにおける非結晶性樹脂の非結晶構造に由来するスペクトルの積分強度をAでそれぞれ表した場合に、「C/(C+A)」の解が0.15以上であり、前記像担持体の表面摩擦係数が前記中間転写体の表面摩擦係数よりも低い値であることを特徴とするものである。
What has been described above is merely an example, and the present invention has a specific effect for each of the following modes.
[Aspect A]
An image carrier (e.g., photoreceptor 3) that carries a toner image, and intermediate transfer means (e.g., primary transfer roller) that intermediately transfers the toner image on the image carrier onto the surface of an intermediate transfer member (e.g., intermediate transfer belt 61). 62Y, M, C, K), wherein the toner contains a crystalline resin having at least one of a urethane bond and a urea bond in the main chain, and , C is the integrated intensity of the spectrum derived from the crystalline structure of the crystalline resin in the X-ray diffraction spectrum of the toner, and A is the integrated intensity of the spectrum derived from the amorphous structure of the amorphous resin in the X-ray diffraction spectrum. In each case, the solution of “C / (C + A)” is 0.15 or more, and the surface friction coefficient of the image carrier is lower than the surface friction coefficient of the intermediate transfer member. And it is characterized in and.

[態様B]
態様Bは、態様Aであって、前記中間転写体の基材のヤング率が3000[MPa]以上であることを特徴とするものである。
[Aspect B]
Aspect B is Aspect A, wherein the Young's modulus of the base material of the intermediate transfer member is 3000 [MPa] or more.

[態様C]
態様Cは、態様A又は態様Bであって、前記中間転写体の基材がポリイミド又はポリイミドアミドからなることを特徴とするものである。
[Aspect C]
Aspect C is Aspect A or Aspect B, wherein the substrate of the intermediate transfer member is made of polyimide or polyimide amide.

[態様D]
態様Dは、態様A〜Cの何れかであって、前記トナーのテトラヒドロフラン可溶分のゲル拡散クロマトグラフィー測定によって100000以上の分子量であると測定される樹脂の割合が全樹脂中の7[%]以上であり、且つ、前記トナーの重量平均分子量が20000以上、70000以下であることを特徴とするものである。
[Aspect D]
Aspect D is any one of Aspects A to C, and the ratio of the resin measured as having a molecular weight of 100,000 or more by gel diffusion chromatography measurement of the tetrahydrofuran-soluble content of the toner is 7 [% In addition, the weight average molecular weight of the toner is 20000 or more and 70000 or less.

[態様E]
態様Eは、態様A〜Dの何れかにおいて、温度28[℃]、相対湿度80[%]の環境下における前記トナーの体積固有抵抗値LogRが9.5〜10.5[Log(Ω・cm)]であることを特徴とするものである。
[Aspect E]
In the aspect E, in any one of the aspects A to D, the volume specific resistance value LogR of the toner in an environment of a temperature of 28 [° C.] and a relative humidity of 80 [%] is 9.5 to 10.5 [Log (Ω · cm)].

[態様F]
態様Fは、態様A〜Eの何れかであって、前記トナーの疎水化度が35〜50[%]であることを特徴とするものである。
[Aspect F]
Aspect F is any one of Aspects A to E, characterized in that the degree of hydrophobicity of the toner is 35 to 50 [%].

[態様G]
態様Gは、態様A〜Fの何れかにおいて、前記トナーの示差走査熱量計(DSC)による昇温2回目の融解熱の最大ピーク温度が50[℃]以上、70[℃]以下の範囲であり、且つ、昇温2回目の融解熱量が30[J/g]以上、75[J/g]以下の範囲であることを特徴とするものである。
[Aspect G]
In the aspect G, in any of the aspects A to F, the maximum peak temperature of the second heat of fusion by the differential scanning calorimeter (DSC) of the toner is in the range of 50 [° C.] to 70 [° C.]. And the heat of fusion at the second temperature rise is in the range of 30 [J / g] to 75 [J / g].

[態様H]
態様Hは、態様A〜Gの何れかであって、前記トナーのテトラヒドロフラン及び酢酸エチルの混合溶媒に対する不溶分の示差走査熱量計(DSC)による吸熱量の吸熱量測定結果△H(H)[J/g]を、前記トナーの示差走査熱量計(DSC)による吸熱量測定結果△H(T)[J/g]で除算した結果(△H(H)/△H(T))が、0.5〜1.25であることを特徴とするものである。
[Aspect H]
Aspect H is any one of Aspects A to G, and the endothermic endothermic measurement result ΔH (H) of the insoluble content of the toner in the mixed solvent of tetrahydrofuran and ethyl acetate with a differential scanning calorimeter (DSC) [ J / g] is divided by the endothermic measurement result ΔH (T) [J / g] of the toner with a differential scanning calorimeter (DSC) (ΔH (H) / ΔH (T)). It is 0.5 to 1.25.

[態様I]
態様Iは、態様A〜Hの何れかであって、前記トナーが、前記結晶性樹脂として、第1の結晶性樹脂と、前記第1の結晶性樹脂よりも重量平均分子量が大きい第2の結晶性樹脂とを含むものであることを特徴とするものである。
[Aspect I]
Aspect I is any one of Aspects A to H, wherein the toner includes a first crystalline resin as the crystalline resin and a second weight average molecular weight higher than that of the first crystalline resin. A crystalline resin is included.

[態様J]
態様Jは、態様Iであって、前記第2の結晶性樹脂が末端にイソシアネート基を有する変性結晶性樹脂を伸長させたものであることを特徴とするものである。
[Aspect J]
Aspect J is Aspect I, characterized in that the second crystalline resin is obtained by extending a modified crystalline resin having an isocyanate group at the terminal.

3Y,M,C,K:感光体(像担持体)
61:中間転写ベルト(中間転写体)
62Y,M,C,K:1次転写ローラ(中間転写手段)
3Y, M, C, K: photoconductor (image carrier)
61: Intermediate transfer belt (intermediate transfer member)
62Y, M, C, K: primary transfer roller (intermediate transfer means)

特開2009−134108号公報JP 2009-134108 A

Claims (12)

像担持体と、前記像担持体上のトナー像を中間転写体の表面に中間転写する中間転写手段とを備える画像形成装置であって、
前記トナーが、ウレタン結合及びウレア結合のうち少なくとも何れか一方を主鎖に具備する結晶性樹脂を含有するものであり、
前記トナーのX線回折スペクトルにおける前記結晶性樹脂の結晶構造に由来するスペクトルの積分強度をC、前記X線回折スペクトルにおける非結晶性樹脂の非結晶構造に由来するスペクトルの積分強度をAでそれぞれ表した場合に、「C/(C+A)」の解が0.15以上であり、
且つ、前記像担持体の表面摩擦係数が前記中間転写体の表面摩擦係数よりも低い値であることを特徴とする画像形成装置。
An image forming apparatus comprising: an image carrier; and an intermediate transfer unit that intermediate-transfers a toner image on the image carrier to the surface of the intermediate transfer member,
The toner contains a crystalline resin having at least one of a urethane bond and a urea bond in the main chain;
The integrated intensity of the spectrum derived from the crystalline structure of the crystalline resin in the X-ray diffraction spectrum of the toner is C, and the integrated intensity of the spectrum derived from the amorphous structure of the amorphous resin in the X-ray diffraction spectrum is A. When expressed, the solution of “C / (C + A)” is 0.15 or more,
The image forming apparatus is characterized in that the surface friction coefficient of the image carrier is lower than the surface friction coefficient of the intermediate transfer member.
請求項1の画像形成装置であって、
前記中間転写体の基材のヤング率が3000[MPa]以上であることを特徴とする画像形成装置。
The image forming apparatus according to claim 1,
An image forming apparatus, wherein the intermediate transfer member has a Young's modulus of 3000 [MPa] or more.
請求項1又は2の画像形成装置であって、
前記中間転写体の基材がポリイミド又はポリイミドアミドからなることを特徴とする画像形成装置。
The image forming apparatus according to claim 1, wherein:
An image forming apparatus, wherein the base material of the intermediate transfer member is made of polyimide or polyimide amide.
請求項1乃至3の何れかの画像形成装置であって、
前記トナーのテトラヒドロフラン可溶分のゲル拡散クロマトグラフィー測定によって100000以上の分子量であると測定される樹脂の割合が全樹脂中の7[%]以上であり、且つ、前記トナーの重量平均分子量が20000以上、70000以下であることを特徴とする画像形成装置。
The image forming apparatus according to any one of claims 1 to 3,
The ratio of the resin, which is determined to have a molecular weight of 100,000 or more by gel diffusion chromatography measurement of the tetrahydrofuran-soluble content of the toner, is 7% or more of the total resin, and the weight average molecular weight of the toner is 20000. The image forming apparatus is characterized by being 70000 or less.
請求項1乃至4の何れかの画像形成装置において、
温度28[℃]、相対湿度80[%]の環境下における前記トナーの体積固有抵抗値LogRが9.5〜10.5[Log(Ω・cm)]であることを特徴とする画像形成装置。
The image forming apparatus according to any one of claims 1 to 4,
The image forming apparatus, wherein the toner has a volume specific resistance LogR of 9.5 to 10.5 [Log (Ω · cm)] in an environment of a temperature of 28 [° C.] and a relative humidity of 80 [%]. .
請求項1乃至5の何れかの画像形成装置であって、
前記トナーの疎水化度が35〜50[%]であることを特徴とする画像形成装置。
The image forming apparatus according to claim 1,
An image forming apparatus, wherein the toner has a hydrophobicity of 35 to 50%.
請求項1乃至6の何れかの画像形成装置において、
前記トナーの示差走査熱量計(DSC)による昇温2回目の融解熱の最大ピーク温度が50[℃]以上、70[℃]以下の範囲であり、且つ、昇温2回目の融解熱量が30[J/g]以上、75[J/g]以下の範囲であることを特徴とする画像形成装置。
The image forming apparatus according to claim 1,
The maximum peak temperature of the second heat of melting by the differential scanning calorimeter (DSC) of the toner is in the range of 50 [° C.] to 70 [° C.] and the heat of fusion of the second temperature increase is 30. An image forming apparatus having a range of [J / g] to 75 [J / g].
請求項1乃至7の何れかの画像形成装置であって、
前記トナーのテトラヒドロフラン及び酢酸エチルの混合溶媒に対する不溶分の示差走査熱量計(DSC)による吸熱量の吸熱量測定結果△H(H)[J/g]を、前記トナーの示差走査熱量計(DSC)による吸熱量測定結果△H(T)[J/g]で除算した結果(△H(H)/△H(T))が、0.5〜1.25であることを特徴とする画像形成装置。
The image forming apparatus according to claim 1,
The result of endothermic measurement ΔH (H) [J / g] of the endothermic amount of the toner insoluble in the mixed solvent of tetrahydrofuran and ethyl acetate with the differential scanning calorimeter (DSC) of the toner. The endothermic measurement result ΔH (T) [J / g] (ΔH (H) / ΔH (T)) divided by 0.5) is 0.5 to 1.25. Forming equipment.
請求項1乃至8の何れかの画像形成装置であって、
前記トナーが、前記結晶性樹脂として、第1の結晶性樹脂と、前記第1の結晶性樹脂よりも重量平均分子量が大きい第2の結晶性樹脂とを含むものであることを特徴とする画像形成装置。
The image forming apparatus according to any one of claims 1 to 8,
The image forming apparatus, wherein the toner includes, as the crystalline resin, a first crystalline resin and a second crystalline resin having a weight average molecular weight larger than that of the first crystalline resin. .
請求項9の画像形成装置であって、
前記第2の結晶性樹脂が末端にイソシアネート基を有する変性結晶性樹脂を伸長させたものであることを特徴とする画像形成装置。
The image forming apparatus according to claim 9, wherein
An image forming apparatus, wherein the second crystalline resin is obtained by extending a modified crystalline resin having an isocyanate group at a terminal.
請求項1乃至10の何れかの画像形成装置であって、
前記トナーは、第1かさ体積比(V2/V1)が0.79以上であるという条件を具備するものであることを特徴とする画像形成装置。
The image forming apparatus according to claim 1,
The image forming apparatus according to claim 1, wherein the toner has a condition that a first bulk volume ratio (V2 / V1) is 0.79 or more.
請求項11の画像形成装置であって、
前記トナーは、第2かさ体積比(V3/V1)が0.71以上であり、且つ、トナーの静置24時間後のかさ密度が0.44〜0.51[g/ml]であるという条件を具備するものであることを特徴とする画像形成装置。
The image forming apparatus according to claim 11, comprising:
The toner has a second bulk volume ratio (V3 / V1) of 0.71 or more, and a bulk density after standing for 24 hours of toner is 0.44 to 0.51 [g / ml]. An image forming apparatus characterized by satisfying conditions.
JP2013201925A 2013-02-14 2013-09-27 Image forming apparatus Pending JP2014178665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201925A JP2014178665A (en) 2013-02-14 2013-09-27 Image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013026268 2013-02-14
JP2013026268 2013-02-14
JP2013201925A JP2014178665A (en) 2013-02-14 2013-09-27 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2014178665A true JP2014178665A (en) 2014-09-25

Family

ID=51698621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201925A Pending JP2014178665A (en) 2013-02-14 2013-09-27 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2014178665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181756A (en) * 2016-03-30 2017-10-05 コニカミノルタ株式会社 Image forming method

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219897A (en) * 2003-01-17 2004-08-05 Ricoh Co Ltd Image forming apparatus, toner cartridge, and process cartridge
JP2005031421A (en) * 2003-07-14 2005-02-03 Fuji Xerox Co Ltd Intermediate transfer body and image forming apparatus equipped with intermediate transfer body
JP2005300816A (en) * 2004-04-09 2005-10-27 Canon Inc The development method
JP2006003859A (en) * 2004-05-17 2006-01-05 Ricoh Co Ltd Image forming apparatus
JP2006085086A (en) * 2004-09-17 2006-03-30 Ricoh Co Ltd Image forming apparatus, process cartridge and image forming method
JP2006251131A (en) * 2005-03-09 2006-09-21 Konica Minolta Business Technologies Inc Belt driving device
JP2006330457A (en) * 2005-05-27 2006-12-07 Ricoh Co Ltd Image forming device
JP2007114630A (en) * 2005-10-24 2007-05-10 Tomoegawa Paper Co Ltd Method for evaluating electrophotographic toner, and electrophotographic toner
JP2007127776A (en) * 2005-11-02 2007-05-24 Ricoh Co Ltd Electrostatic charge image developing toner, carrier, developer, image forming method, and image forming device
JP2007248666A (en) * 2006-03-15 2007-09-27 Canon Inc Toner and image forming method
JP2008225174A (en) * 2007-03-14 2008-09-25 Canon Inc Developer and development method
JP2009014926A (en) * 2007-07-03 2009-01-22 Fuji Xerox Co Ltd Image forming apparatus
JP2009042394A (en) * 2007-08-07 2009-02-26 Ricoh Co Ltd Seamless belt for electrophotography, and manufacturing method therefor
JP2010077419A (en) * 2008-08-26 2010-04-08 Sanyo Chem Ind Ltd Crystalline resin particle
JP2012027212A (en) * 2010-07-22 2012-02-09 Canon Inc Toner
JP2012042941A (en) * 2010-07-22 2012-03-01 Canon Inc Toner
JP2012042508A (en) * 2010-08-12 2012-03-01 Canon Inc Manufacturing method of toner
JP2012042939A (en) * 2010-07-22 2012-03-01 Canon Inc Toner
JP2012042940A (en) * 2010-07-22 2012-03-01 Canon Inc Toner
JP2014092605A (en) * 2012-11-01 2014-05-19 Ricoh Co Ltd Electrophotographic toner, two-component developer, and image forming apparatus
JP2014092608A (en) * 2012-11-01 2014-05-19 Ricoh Co Ltd Image forming apparatus and image forming method

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219897A (en) * 2003-01-17 2004-08-05 Ricoh Co Ltd Image forming apparatus, toner cartridge, and process cartridge
JP2005031421A (en) * 2003-07-14 2005-02-03 Fuji Xerox Co Ltd Intermediate transfer body and image forming apparatus equipped with intermediate transfer body
JP2005300816A (en) * 2004-04-09 2005-10-27 Canon Inc The development method
JP2006003859A (en) * 2004-05-17 2006-01-05 Ricoh Co Ltd Image forming apparatus
JP2006085086A (en) * 2004-09-17 2006-03-30 Ricoh Co Ltd Image forming apparatus, process cartridge and image forming method
JP2006251131A (en) * 2005-03-09 2006-09-21 Konica Minolta Business Technologies Inc Belt driving device
JP2006330457A (en) * 2005-05-27 2006-12-07 Ricoh Co Ltd Image forming device
JP2007114630A (en) * 2005-10-24 2007-05-10 Tomoegawa Paper Co Ltd Method for evaluating electrophotographic toner, and electrophotographic toner
JP2007127776A (en) * 2005-11-02 2007-05-24 Ricoh Co Ltd Electrostatic charge image developing toner, carrier, developer, image forming method, and image forming device
JP2007248666A (en) * 2006-03-15 2007-09-27 Canon Inc Toner and image forming method
JP2008225174A (en) * 2007-03-14 2008-09-25 Canon Inc Developer and development method
JP2009014926A (en) * 2007-07-03 2009-01-22 Fuji Xerox Co Ltd Image forming apparatus
JP2009042394A (en) * 2007-08-07 2009-02-26 Ricoh Co Ltd Seamless belt for electrophotography, and manufacturing method therefor
JP2010077419A (en) * 2008-08-26 2010-04-08 Sanyo Chem Ind Ltd Crystalline resin particle
JP2012027212A (en) * 2010-07-22 2012-02-09 Canon Inc Toner
JP2012042941A (en) * 2010-07-22 2012-03-01 Canon Inc Toner
JP2012042939A (en) * 2010-07-22 2012-03-01 Canon Inc Toner
JP2012042940A (en) * 2010-07-22 2012-03-01 Canon Inc Toner
JP2012042508A (en) * 2010-08-12 2012-03-01 Canon Inc Manufacturing method of toner
JP2014092605A (en) * 2012-11-01 2014-05-19 Ricoh Co Ltd Electrophotographic toner, two-component developer, and image forming apparatus
JP2014092608A (en) * 2012-11-01 2014-05-19 Ricoh Co Ltd Image forming apparatus and image forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181756A (en) * 2016-03-30 2017-10-05 コニカミノルタ株式会社 Image forming method

Similar Documents

Publication Publication Date Title
US9720339B2 (en) Toner, developer using the toner, image forming apparatus
JP6060692B2 (en) Toner, developer, and image forming apparatus
JP6194601B2 (en) Toner, developer and image forming apparatus
JP2013148862A (en) Toner, developer and image forming apparatus
JP2014178648A (en) Toner, developer, and image forming apparatus
JP2014235400A (en) Image forming apparatus and image forming method
JP2011149999A (en) Toner, developer, and image forming method
JP2017015817A (en) Toner, developer, developer storage unit, and image forming apparatus
JP2014092605A (en) Electrophotographic toner, two-component developer, and image forming apparatus
JP2017003909A (en) Two-component developer, developer storage unit, and image forming apparatus
JP2014066999A (en) Image forming device
JP6175756B2 (en) Toner, developer, toner container, process cartridge, and image forming apparatus
JP6028421B2 (en) Method for producing toner for electrophotography
JP2014178665A (en) Image forming apparatus
JP2014149370A (en) Toner, developer, image forming apparatus, process cartridge, and fixation image
JP6578903B2 (en) Toner, toner storage unit and image forming apparatus
JP2019164200A (en) Toner, developer, toner storage unit, image forming apparatus, and image forming method
JP6237019B2 (en) Toner, developer, toner cartridge, and image forming apparatus
JP6127537B2 (en) Toner, developer, and image forming apparatus
JP2014066996A (en) Image forming device
JP2014112191A (en) Carrier for developer, toner, developer, developing device, container with developer inside, and image forming apparatus
JP2021086053A (en) Photoluminescent toner, toner set, and storage unit, and image forming method and image forming apparatus
JP2016170401A (en) Toner, toner storage unit and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171110