JP2014176186A - Converter controller - Google Patents

Converter controller Download PDF

Info

Publication number
JP2014176186A
JP2014176186A JP2013046347A JP2013046347A JP2014176186A JP 2014176186 A JP2014176186 A JP 2014176186A JP 2013046347 A JP2013046347 A JP 2013046347A JP 2013046347 A JP2013046347 A JP 2013046347A JP 2014176186 A JP2014176186 A JP 2014176186A
Authority
JP
Japan
Prior art keywords
converter
current
voltage
command value
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013046347A
Other languages
Japanese (ja)
Other versions
JP6127592B2 (en
Inventor
Masakatsu Nomura
昌克 野村
Takanobu Yoshida
崇伸 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2013046347A priority Critical patent/JP6127592B2/en
Publication of JP2014176186A publication Critical patent/JP2014176186A/en
Application granted granted Critical
Publication of JP6127592B2 publication Critical patent/JP6127592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a converter controller capable of suppressing increase in DC voltage and DC current in the case of power regeneration in a power conversion device.SOLUTION: A converter controller in a device comprising a converter 13 whose AC side is connected to an AC power supply, a DC capacitor 14 connected between positive and negative output terminals of the converter 13, and an inverter whose DC side is connected to the DC capacitor 14 and whose AC side is connected to a load detects DC output voltage Vof the converter 13; and performs feedback control so that the DC detection voltage Vis approximately equal to a DC voltage instruction value V*. The converter controller comprises a control unit which raises a control response of the feedback control in a period when current of the inverter Iis larger than current of the converter I, and lowers the control response of the feedback control in a period when the current of the inverter Iis equal to or smaller than the current of the converter.

Description

本発明は、負荷への電力供給および負荷からの電力を電源側へ回生する電力変換装置におけるコンバータの制御装置に関する。   The present invention relates to a converter control device in a power conversion device that regenerates power supplied to a load and power from the load to a power source side.

図1に電力変換装置の一例を示す。図1において、三相の交流電源11はリアクトルおよびコンデンサから成るフィルタ回路12を介してコンバータ13の三相入力側に接続されている。   FIG. 1 shows an example of a power converter. In FIG. 1, a three-phase AC power supply 11 is connected to a three-phase input side of a converter 13 through a filter circuit 12 including a reactor and a capacitor.

コンバータ13は、例えばIGBTなどの半導体スイッチング素子を三相ブリッジ接続して構成され、正、負極端間にはDCコンデンサ(平滑コンデンサ)14が接続されている。   The converter 13 is configured by connecting semiconductor switching elements such as IGBTs in a three-phase bridge, and a DC capacitor (smoothing capacitor) 14 is connected between the positive and negative terminals.

15は、例えばIGBTなどの半導体スイッチング素子を三相ブリッジ接続して構成されたインバータであり、直流側は前記DCコンデンサ14の両端間に接続され、交流側は電動機などの負荷16に接続されている。   Reference numeral 15 denotes an inverter configured by connecting a semiconductor switching element such as an IGBT, for example, in a three-phase bridge. The DC side is connected between both ends of the DC capacitor 14, and the AC side is connected to a load 16 such as an electric motor. Yes.

尚上記のように構成された電力変換装置において、コンバータの直流出力電圧変動を抑制する方法は、従来、例えば特許文献1〜3に記載のものが提案されていた。   In addition, in the power converter device comprised as mentioned above, the method of suppressing the DC output voltage fluctuation | variation of a converter was conventionally proposed, for example in patent documents 1-3.

特開平8−223959号公報JP-A-8-223959 特開平10−257773号公報JP-A-10-257773 特開平11−150955号公報Japanese Patent Laid-Open No. 11-150955

図1のように構成された電力変換装置では、DCコンデンサ14の電圧VDCを一定になるようにコンバータ電流ICの制御を行う。ここで電動機のようにエネルギーを電源側に回生を行う負荷(16)が接続されている場合、エネルギーはインバータ15の動作により、一旦DCコンデンサ14に蓄えられ、次にコンバータ13の動作により交流電源11に送られる。 In the power converter configured as shown in FIG. 1, the converter current I C is controlled so that the voltage V DC of the DC capacitor 14 is constant. Here, when a load (16) that regenerates energy to the power source side is connected like an electric motor, the energy is temporarily stored in the DC capacitor 14 by the operation of the inverter 15, and then the AC power source by the operation of the converter 13 11 is sent.

このとき、回生電力の立ち上がりが急峻であり、コンバータ13の直流電圧制御が遅いと、直流電圧VDCが上昇し、過電圧となる。直流電圧VDCの制御応答を良くすると直流電圧が過電圧レベルまで上昇することを避けることができるが、コンバータ電流(図1のICの矢印と逆向きに流れる電流)が過大となり、過電圧故障となる可能性がある。 At this time, when the rise of the regenerative power is steep and the DC voltage control of the converter 13 is slow, the DC voltage V DC rises and becomes an overvoltage. If the control response of the DC voltage VDC is improved, the DC voltage can be prevented from rising to the overvoltage level, but the converter current (current flowing in the direction opposite to the arrow of I C in FIG. 1) becomes excessive, causing an overvoltage fault. There is a possibility.

本発明は上記課題を解決するものであり、その目的は、電力変換装置における電力回生時に、直流電圧と直流電流の上昇を抑制することができるコンバータの制御装置を提供することにある。   The present invention solves the above problems, and an object of the present invention is to provide a converter control device that can suppress an increase in DC voltage and DC current during power regeneration in the power conversion device.

上記課題を解決するための請求項1に記載のコンバータの制御装置は、交流側が交流電源に接続されたコンバータと、該コンバータの正、負出力端間に接続された平滑コンデンサと、直流側が前記平滑コンデンサに接続され、交流側が負荷に接続されたインバータとを備えた装置において、前記コンバータの直流出力電圧を検出し、該直流検出電圧が直流電圧指令値にほぼ等しくなるようにフィードバック制御するコンバータの制御装置であって、前記インバータの電流がコンバータの電流よりも大である期間は前記フィードバック制御の制御応答を高くし、前記インバータの電流がコンバータの電流以下である期間は前記フィードバック制御の制御応答を低くする制御部を備えたことを特徴としている。   The control apparatus for a converter according to claim 1 for solving the above-described problem includes a converter in which an AC side is connected to an AC power source, a smoothing capacitor connected between positive and negative output terminals of the converter, and a DC side in the converter In an apparatus including an inverter connected to a smoothing capacitor and having an AC side connected to a load, a converter that detects a DC output voltage of the converter and performs feedback control so that the DC detection voltage is substantially equal to a DC voltage command value The control device is configured to increase the control response of the feedback control during a period in which the inverter current is larger than the converter current, and to control the feedback control during a period in which the inverter current is equal to or less than the converter current. It is characterized by having a control unit that lowers the response.

また、請求項2に記載のコンバータの制御装置は、請求項1において、前記制御部は、前記コンバータの直流電圧指令値と直流検出電圧の偏差に基づいて電流指令値の比例項を演算する比例項演算部と、前記コンバータの直流電圧指令値と直流検出電圧の偏差に基づいて電流指令値の積分項を演算する積分項演算部と、第1のゲイン定数と該第1のゲイン定数よりも小さい第2のゲイン定数とを作成し、前記ゲイン定数によって前記積分項演算部の積分ゲインを変更する積分ゲイン変更部とを備えていることを特徴としている。   According to a second aspect of the present invention, there is provided the converter control device according to the first aspect, wherein the control unit calculates a proportional term of a current command value based on a deviation between the DC voltage command value of the converter and a DC detection voltage. A term calculation unit, an integration term calculation unit that calculates an integral term of the current command value based on a deviation between the DC voltage command value of the converter and the DC detection voltage, a first gain constant, and the first gain constant And an integral gain changing unit that creates a small second gain constant and changes an integral gain of the integral term computing unit according to the gain constant.

上記構成によれば、電力回生時に、回生電流の立ち上がりが急峻であり、インバータの回生電流がコンバータの電流よりも大である期間は、コンバータ制御の制御応答が高くなるため、回生電力を速やかに交流電源側に回生することができるので、この期間における直流電圧の上昇を抑制することができる。   According to the above configuration, during power regeneration, during the period when the regenerative current rises steeply and the regenerative current of the inverter is larger than the converter current, the control response of the converter control becomes high. Since regeneration can be performed on the AC power supply side, an increase in DC voltage during this period can be suppressed.

また、インバータの電流がコンバータの電流以下となった場合、コンバータ制御の制御応答が低くなるため、コンバータから交流電源側へ流れる電流が過大になることが避けられる。   Further, when the inverter current becomes equal to or lower than the converter current, the control response of the converter control is lowered, so that the current flowing from the converter to the AC power supply side can be prevented from being excessive.

また、請求項3に記載のコンバータの制御装置は、請求項2において、前記積分ゲイン変更部は、前記コンバータの直流電圧指令値と直流検出電圧の偏差の符号に応じて前記ゲイン定数を作成することを特徴としている。   According to a third aspect of the present invention, in the converter control device according to the second aspect, the integral gain changing unit creates the gain constant according to a sign of a deviation between the DC voltage command value of the converter and a DC detection voltage. It is characterized by that.

上記構成によれば、コンバータの直流電圧指令値と直流検出電圧の偏差の符号によって、回生状態を確実に認識し、制御応答の高低を切り換えることができる。   According to the above configuration, the regenerative state can be reliably recognized and the level of the control response can be switched by the sign of the deviation between the DC voltage command value of the converter and the DC detection voltage.

(1)請求項1〜3に記載の発明によれば、電力回生時に、直流電圧と直流電流の上昇を抑制し、過電圧、過電流による故障発生を防止することができる。
(2)請求項3に記載の発明によれば、回生状態を確実に認識し、制御応答の高低を切り換えることができる。
(1) According to the first to third aspects of the present invention, it is possible to suppress an increase in DC voltage and DC current during power regeneration, and to prevent occurrence of failure due to overvoltage and overcurrent.
(2) According to the invention described in claim 3, it is possible to reliably recognize the regenerative state and switch the level of the control response.

本発明が適用される電力変換装置の一例を示す回路図。The circuit diagram which shows an example of the power converter device to which this invention is applied. 本発明の実施形態例における直流電圧制御系を表す制御ブロック図。The control block diagram showing the DC voltage control system in the embodiment of the present invention. 従来の制御方法による回生電力とコンバータの電圧、電流の関係を示す特性図。The characteristic view which shows the relationship between the regenerative electric power by the conventional control method, the voltage of a converter, and an electric current. 本発明の実施形態例における直流電圧制御系の要部構成図。The principal part block diagram of the DC voltage control system in the example of embodiment of this invention. 本発明の実施形態例の制御方法による回生電力とコンバータの電圧、電流の関係を示す特性図。The characteristic view which shows the relationship between the regenerative electric power by the control method of the example of embodiment of this invention, the voltage of a converter, and an electric current.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。図2は本発明を図1に示す電力変換装置に適用した実施形態における、コンバータによる直流電圧制御系の制御ブロック図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. FIG. 2 is a control block diagram of a DC voltage control system using a converter in an embodiment in which the present invention is applied to the power converter shown in FIG.

本実施形態では、図1のコンバータ13の直流電圧(DCコンデンサ14の電圧)VDCを検出し、該直流電圧VDCが直流電圧指令値VDC*にほぼ等しくなるように、本発明の制御部としてのPIコントローラ20によってフィードバック制御を行うものである。 In the present embodiment, the DC voltage (voltage of the DC capacitor 14) V DC of the converter 13 of FIG. 1 is detected, and the control of the present invention is performed so that the DC voltage V DC is substantially equal to the DC voltage command value V DC *. The feedback control is performed by the PI controller 20 as a unit.

PIコントローラ20は、前記VDCとVDC*の偏差に基づいて電流指令値の比例項および積分項を演算し、コンバータの電流指令値Ic*を求める。 The PI controller 20 calculates a proportional term and an integral term of the current command value based on the deviation between the V DC and V DC * to obtain a converter current command value I c *.

コンバータ電流ICとインバータ電流IINVの偏差がコンデンサ電流IDCとなり、このIDCによってDCコンデンサ14(CDC)に直流電圧VDCが生じることを表している。 A deviation between the converter current I C and the inverter current I INV becomes a capacitor current I DC , and this I DC indicates that a DC voltage V DC is generated in the DC capacitor 14 (C DC ).

DCコンデンサ14から負荷16側に流れる電流IINVとコンバータ13からDCコンデンサ14に流れる電流ICの差により直流電圧VDCは式(1)となる。 DC DC voltage V DC by the difference current I C flowing through the DC capacitor 14 from the current I INV and converter 13 that flows from the capacitor 14 to the load 16 side becomes Equation (1).

Figure 2014176186
Figure 2014176186

ただし、回生開始時をt=0とする。   However, t = 0 is set at the start of regeneration.

ここで、コンバータ13によりVDCを図2に示すように制御する。図2ではPIコントローラ20により、コンバータ電流ICの指令値IC*を演算し、直流電圧VDCが指令値VDC*となるようにICを流す。ここでコンバータの電流ICは指令値IC*と等しいとする。 Here, the converter 13 controls VDC as shown in FIG. The Figure 2, the PI controller 20 calculates the converter current I C of the command value I C *, the DC voltage V DC is flow I C so that the command value V DC *. Here, it is assumed that the converter current I C is equal to the command value I C *.

前記VDC*を一定として、IINVに対するVDC*−VDCのラプラス変換は、 With the above V DC * constant, the Laplace transform of V DC * −V DC with respect to I INV is

Figure 2014176186
Figure 2014176186

コンバータの電流ICとインバータ電流IINVの関係は、 The relationship between the converter current I C and the inverter current I INV is

Figure 2014176186
Figure 2014176186

となる。   It becomes.

インバータ電流IINVとコンバータ電流ICの関係から、以下の過程を経て直流電圧VDCが設定した値VDC*となる。 From the relationship between the inverter current I INV and the converter current I C , the DC voltage V DC becomes a set value V DC * through the following process.

図3にその様子を示す。ただし、図3においては、電流の向きは図1の矢印とは逆にしている。   This is shown in FIG. However, in FIG. 3, the direction of the current is opposite to the arrow in FIG.

(1)IINV>ICの期間 直流電圧VDCが上昇
(2)IINV=ICで直流電圧VDCが最大
(3)IINV<ICの期間 直流電圧VDCが減少
ここで、期間(1)においてIINVとICの差が小であれば、VDCの最大値が小となり、過電圧を避けることができる。従って、コンバータ13を高応答にすることで、過電圧を避けることができる。
(1) DC voltage V DC increases during I INV > I C (2) DC voltage V DC is maximum when I INV = I C (3) DC voltage V DC decreases during I INV <I C where If the difference between I INV and I C is small in the period (1), the maximum value of V DC becomes small and overvoltage can be avoided. Therefore, overvoltage can be avoided by making the converter 13 have a high response.

一方、コンバータ13から電源側に流れる電流は期間(3)で最大となるので、過電圧を避けるためにコンバータ13を高応答に調整すると前記式(3)は、期間(3)において、オーバーシュート気味になる。これにより、コンバータ電流ICが過大となって半導体スイッチング素子の破損に至る可能性が増大する。 On the other hand, since the current flowing from the converter 13 to the power supply side becomes the maximum in the period (3), when the converter 13 is adjusted to have a high response in order to avoid an overvoltage, the expression (3) seems to overshoot in the period (3). become. This increases the possibility that the converter current I C will be excessive and the semiconductor switching element will be damaged.

そこで本実施形態例では、負荷からの回生電流の立ち上がり期間(前記期間(1))に直流電圧が過電圧になることを防ぐため、直流電圧制御系の応答を上げ、また、コンバータ電流が過大になることを避けるために、IINVとICが等しくなった時点(前記期間(2))でPIコントローラ20のゲインを切り換え、応答を遅くする。 Therefore, in this embodiment, in order to prevent the DC voltage from becoming overvoltage during the rising period of the regenerative current from the load (the period (1)), the response of the DC voltage control system is increased, and the converter current is excessive. In order to avoid this, the gain of the PI controller 20 is switched when I INV and I C become equal (the period (2)), and the response is delayed.

図4は、本実施形態の図2の直流電圧制御系におけるPIコントローラ20の詳細を示しており、図2と同一部分は同一符号をもって示している。図4において、21は電流指令値の積分項を演算する積分項演算部であり、22は電流指令値の比例項を演算する比例項演算部である。   FIG. 4 shows details of the PI controller 20 in the DC voltage control system of FIG. 2 of the present embodiment, and the same parts as those in FIG. In FIG. 4, reference numeral 21 denotes an integral term calculation unit that calculates the integral term of the current command value, and reference numeral 22 denotes a proportional term calculation unit that calculates the proportional term of the current command value.

23は、直流電圧指令値VDC*と直流電圧VDCの差eを微分する微分器であり、24は前記電圧の差eから回生又は駆動状態における符号を判定する符号判定器である。 23 is a differentiator that differentiates the difference e between the DC voltage command value V DC * and the DC voltage V DC , and 24 is a sign determination unit that determines the sign in the regenerative or driving state from the voltage difference e.

25は、微分器23の出力と符号判定器24の出力Pを乗算する乗算器であり、26は、乗算器25の出力aが0以上のときは1のゲイン定数(第1のゲイン定数)を、0未満のときは0〜1の値のゲイン定数G(第2のゲイン定数)を各々作成するゲイン定数作成部である。   Reference numeral 25 denotes a multiplier that multiplies the output of the differentiator 23 and the output P of the sign determination unit 24. Reference numeral 26 denotes a gain constant of 1 (first gain constant) when the output a of the multiplier 25 is 0 or more. Is a gain constant creating unit that creates a gain constant G (second gain constant) having a value of 0 to 1 when it is less than 0.

このゲイン定数作成部26の出力hは乗算器27において前記VDC*とVDCの偏差eと掛け合わせ、乗算器27の出力xを前記積分項演算部21の入力としている。 The output h of the gain constant creation unit 26 is multiplied by the V DC * and the deviation e of V DC in the multiplier 27, and the output x of the multiplier 27 is used as the input of the integral term calculation unit 21.

積分項演算部21と比例項演算部22の出力は加算器28にて加算されて、コンバータ13の電流指令値IC*を出力している。 The outputs of the integral term computing unit 21 and the proportional term computing unit 22 are added by an adder 28 to output a current command value I C * for the converter 13.

尚、前記微分器23、符号判定器24、乗算器25,27およびゲイン定数作成部26によって積分ゲイン変更部を構成している。   The differentiator 23, the sign determination unit 24, the multipliers 25 and 27, and the gain constant creation unit 26 constitute an integral gain changing unit.

前記期間(2)でインバータ電流IINVとコンバータ電流ICが等しくなると、VDC*とVDCの偏差eの微分は0となる。この時点でPIコントローラ20のパラメータを変更し、制御応答を遅くする。図4では、状態を偏差eの符号から判断し、e<0のとき偏差の微分が0以上に、e>0のときには偏差の微分が0以下になるときに、PIコントローラ20の積分ゲインが小さくなるように、積分項の入力に、ゲイン定数作成部26で作成したゲイン定数G(0以上、1以下)を乗じる。 When the inverter current I INV and the converter current I C is equal in the period (2), the differential of the deviation e of the V DC * and V DC is zero. At this time, the parameter of the PI controller 20 is changed to slow down the control response. In FIG. 4, the state is determined from the sign of the deviation e. When e <0, the derivative of the deviation is 0 or more, and when e> 0, the integral gain of the PI controller 20 is 0 or less. The input of the integral term is multiplied by the gain constant G (0 or more and 1 or less) created by the gain constant creating unit 26 so as to decrease.

図5は図4の制御回路を適用した場合の回生時のコンバータ電圧、電流の様子を示している。期間(1)は図3の場合と同様の電圧、電流であるが、期間(2)の時点ではPIコントローラ20のパラメータを変更し、制御応答が遅くなった結果、期間(3)において、コンバータ電流ICの最大値は抑えられている。ただし、制御応答が遅くなった結果、直流電圧が指令値に収束する時間は長くなる。 FIG. 5 shows the converter voltage and current during regeneration when the control circuit of FIG. 4 is applied. The period (1) has the same voltage and current as in FIG. 3, but the parameter of the PI controller 20 is changed at the time of period (2), and as a result of the slow control response, the converter in period (3) The maximum value of the current I C is suppressed. However, as a result of the slow control response, the time for the DC voltage to converge to the command value becomes longer.

上記のように本実施形態例によれば、直流電圧制御系の応答を振動的になるまで上げることにより、負荷からの回生電流の立ち上がり期間に、回生電力を速やかに電源側に出力できるので、直流電圧の上昇を抑制できる。また、回生電力とコンバータの電源への出力電力が等しくなった時点で制御器(PIコントローラ20)の応答を遅くしているため、直流電圧制御系の応答を振動的になるまで上げても、コンバータ電流の最大値を抑えることができる。   As described above, according to the present embodiment, by increasing the response of the DC voltage control system until it becomes oscillating, the regenerative power can be quickly output to the power supply side during the rising period of the regenerative current from the load. An increase in DC voltage can be suppressed. In addition, since the response of the controller (PI controller 20) is delayed when the regenerative power and the output power to the converter power supply become equal, even if the response of the DC voltage control system is increased to vibration, The maximum value of the converter current can be suppressed.

11…交流電源
12…フィルタ回路
13…コンバータ
14…DCコンデンサ
15…インバータ
16…負荷
20…PIコントローラ
21…積分項演算部
22…比例項演算部
23…微分器
24…符号判定器
25,27…乗算器
26…ゲイン定数作成部
28…加算器
DESCRIPTION OF SYMBOLS 11 ... AC power supply 12 ... Filter circuit 13 ... Converter 14 ... DC capacitor 15 ... Inverter 16 ... Load 20 ... PI controller 21 ... Integral term operation part 22 ... Proportional term operation part 23 ... Differentiator 24 ... Sign determination device 25, 27 ... Multiplier 26 ... Gain constant creation unit 28 ... Adder

Claims (3)

交流側が交流電源に接続されたコンバータと、該コンバータの正、負出力端間に接続された平滑コンデンサと、直流側が前記平滑コンデンサに接続され、交流側が負荷に接続されたインバータとを備えた装置において、
前記コンバータの直流出力電圧を検出し、該直流検出電圧が直流電圧指令値にほぼ等しくなるようにフィードバック制御するコンバータの制御装置であって、
前記インバータの電流がコンバータの電流よりも大である期間は前記フィードバック制御の制御応答を高くし、前記インバータの電流がコンバータの電流以下である期間は前記フィードバック制御の制御応答を低くする制御部を備えたことを特徴とするコンバータの制御装置。
An apparatus comprising a converter having an AC side connected to an AC power source, a smoothing capacitor connected between positive and negative output terminals of the converter, and an inverter having a DC side connected to the smoothing capacitor and an AC side connected to a load In
A converter control device that detects a DC output voltage of the converter and performs feedback control so that the DC detection voltage is substantially equal to a DC voltage command value,
A control unit that increases the control response of the feedback control during a period when the inverter current is larger than the converter current, and lowers the control response of the feedback control during a period when the inverter current is equal to or less than the converter current. A converter control device comprising the converter.
前記制御部は、
前記コンバータの直流電圧指令値と直流検出電圧の偏差に基づいて電流指令値の比例項を演算する比例項演算部と、
前記コンバータの直流電圧指令値と直流検出電圧の偏差に基づいて電流指令値の積分項を演算する積分項演算部と、
第1のゲイン定数と該第1のゲイン定数よりも小さい第2のゲイン定数とを作成し、前記ゲイン定数によって前記積分項演算部の積分ゲインを変更する積分ゲイン変更部とを備えていることを特徴とする請求項1に記載のコンバータの制御装置。
The controller is
A proportional term calculation unit that calculates a proportional term of the current command value based on a deviation between the DC voltage command value of the converter and the DC detection voltage;
An integral term computing unit that computes an integral term of the current command value based on the deviation between the DC voltage command value of the converter and the DC detection voltage;
An integral gain changing unit that creates a first gain constant and a second gain constant that is smaller than the first gain constant, and changes the integral gain of the integral term computing unit according to the gain constant; The converter control device according to claim 1.
前記積分ゲイン変更部は、前記コンバータの直流電圧指令値と直流検出電圧の偏差の符号に応じて前記ゲイン定数を作成することを特徴とする請求項2に記載のコンバータの制御装置。   3. The converter control device according to claim 2, wherein the integral gain changing unit creates the gain constant according to a sign of a deviation between a DC voltage command value of the converter and a DC detection voltage.
JP2013046347A 2013-03-08 2013-03-08 Converter control device Active JP6127592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046347A JP6127592B2 (en) 2013-03-08 2013-03-08 Converter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046347A JP6127592B2 (en) 2013-03-08 2013-03-08 Converter control device

Publications (2)

Publication Number Publication Date
JP2014176186A true JP2014176186A (en) 2014-09-22
JP6127592B2 JP6127592B2 (en) 2017-05-17

Family

ID=51696944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046347A Active JP6127592B2 (en) 2013-03-08 2013-03-08 Converter control device

Country Status (1)

Country Link
JP (1) JP6127592B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200028707A (en) * 2018-09-07 2020-03-17 현대엘리베이터주식회사 Power regenerating apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230762A (en) * 1990-02-02 1991-10-14 Shinko Electric Co Ltd Voltage type inverter
JPH0515161A (en) * 1991-07-04 1993-01-22 Meidensha Corp Power converter
JPH06105563A (en) * 1992-09-21 1994-04-15 Hitachi Ltd Motor driver and air conditioner using the same
JPH10257773A (en) * 1997-03-13 1998-09-25 Brother Ind Ltd Electric power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230762A (en) * 1990-02-02 1991-10-14 Shinko Electric Co Ltd Voltage type inverter
JPH0515161A (en) * 1991-07-04 1993-01-22 Meidensha Corp Power converter
JPH06105563A (en) * 1992-09-21 1994-04-15 Hitachi Ltd Motor driver and air conditioner using the same
JPH10257773A (en) * 1997-03-13 1998-09-25 Brother Ind Ltd Electric power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200028707A (en) * 2018-09-07 2020-03-17 현대엘리베이터주식회사 Power regenerating apparatus
KR102195653B1 (en) * 2018-09-07 2020-12-28 현대엘리베이터주식회사 Power regenerating apparatus

Also Published As

Publication number Publication date
JP6127592B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP6186496B2 (en) Inverter test equipment
JP6017100B1 (en) Motor control device
JP4715373B2 (en) Inverter device
EP3437184B1 (en) System and method for consistent speed regulation in a variable frequency drive
JP5923365B2 (en) Electric motor output control device
WO2018012146A1 (en) Power conversion device and control method for power conversion device
JP2016063559A (en) Motor controller
JP4893219B2 (en) Power converter
JP2018007546A (en) Control method and system for charging electric vehicle
JP5476788B2 (en) Inverter device
JP6127592B2 (en) Converter control device
JP2010273490A (en) Dc power supply
JP6321593B2 (en) Motor drive device with function to suppress temporal change of regenerative current
TWI523403B (en) Motor control device and motor control method
JP4842179B2 (en) Power conversion apparatus and control method thereof
JPWO2014141527A1 (en) Motor control device
JP6177623B2 (en) Synchronous motor controller
JP7193248B2 (en) power converter
JP6854193B2 (en) Power control unit
JP2005304248A (en) Inverter controller for driving motor and electrical apparatus
JP2007151228A (en) Inverter power unit
JP6056130B2 (en) Resonant power converter
JP5408079B2 (en) CONVERTER CONTROL METHOD AND CONVERTER CONTROL DEVICE
JP2014135878A (en) Controller of three-phase converter and electric power conversion system using the same
JP6508782B2 (en) Power converter and DC voltage controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R150 Certificate of patent or registration of utility model

Ref document number: 6127592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150