JP2014175466A - Organic semiconductor material and organic semiconductor device - Google Patents

Organic semiconductor material and organic semiconductor device Download PDF

Info

Publication number
JP2014175466A
JP2014175466A JP2013046846A JP2013046846A JP2014175466A JP 2014175466 A JP2014175466 A JP 2014175466A JP 2013046846 A JP2013046846 A JP 2013046846A JP 2013046846 A JP2013046846 A JP 2013046846A JP 2014175466 A JP2014175466 A JP 2014175466A
Authority
JP
Japan
Prior art keywords
formula
organic semiconductor
semiconductor material
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013046846A
Other languages
Japanese (ja)
Inventor
Itaru Ozaka
格 尾坂
Kazuo Takimiya
和男 瀧宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2013046846A priority Critical patent/JP2014175466A/en
Publication of JP2014175466A publication Critical patent/JP2014175466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic semiconductor material and an organic semiconductor device, in which steric hindrance can be reduced.SOLUTION: An organic semiconductor material includes polymer compound having a skeleton represented as a formula 1A or a formula 1B. In the formula 1A and the formula 1B, Z independently represents oxygen, sulfur or selenium, and R independently represents hydrogen or an alkyl group.

Description

本発明は、有機半導体材料及び有機半導体デバイスに関する。   The present invention relates to an organic semiconductor material and an organic semiconductor device.

近年、有機半導体を活性層として用いた電界効果トランジスタ等の開発が盛んに行われている。有機半導体ポリマーのキャリア移動度を向上させるためには、ポリマー鎖間の分子間力を強化し、強固なπ−スタッキング構造を形成させることが重要である。   In recent years, field effect transistors and the like using organic semiconductors as active layers have been actively developed. In order to improve the carrier mobility of the organic semiconductor polymer, it is important to strengthen the intermolecular force between the polymer chains and form a strong π-stacking structure.

色素系分子は、強い分子間力を有するため、色素系分子骨格をポリマーの主鎖骨格に導入することで強いπ−スタッキング構造の形成と高いキャリア移動度の達成が期待されており、例えば、6員環が5つ縮合したキナクリドン類を骨格とする化合物が知られている(特許文献1)。また、色素ではないものの、6員環が5つ縮合し、アミド架橋を有する化合物が知られている(特許文献2、非特許文献1)。このような分子骨格の特徴として、アミノ基とケトン基を有すること、あるいはこれらの複合基であるアミド基を有することで分子内に分極が生じ、分子間における双極子−双極子相互作用により分子間力が強まり、強固なπ−スタッキング構造を形成することが考えられる。   Since the dye-based molecule has a strong intermolecular force, the formation of a strong π-stacking structure and high carrier mobility are expected by introducing the dye-based molecular skeleton into the main chain skeleton of the polymer. A compound having a skeleton of quinacridones in which five 6-membered rings are condensed is known (Patent Document 1). Moreover, although it is not a pigment | dye, the compound in which five 6-membered rings are condensed and has amide bridge | crosslinking is known (patent document 2, nonpatent literature 1). As a characteristic of such a molecular skeleton, polarization occurs within the molecule by having an amino group and a ketone group, or by having an amide group that is a complex of these, and molecules are generated by dipole-dipole interaction between molecules. It is conceivable that the interstitial force increases and a strong π-stacking structure is formed.

特開2012−184310号公報JP 2012-184310 A 米国特許出願公開第2007/0050927号明細書US Patent Application Publication No. 2007/0050927

Jaydeep J. S. Lamba and James M. Tour; Imine-Bridged Planar Poly(p-phenylene) Derivatives for Maximization of Extended π-Conjugation. The Common Intermediate Approach; J. Am. Chem. Soc. 1994, 116, 11723-11736Jaydeep J. S. Lamba and James M. Tour; Imine-Bridged Planar Poly (p-phenylene) Derivatives for Maximization of Extended π-Conjugation.The Common Intermediate Approach; J. Am. Chem. Soc. 1994, 116, 11723-11736

特許文献1及び2並びに非特許文献1では、いずれも6員環が5つ縮合した骨格を有している。6員環の場合、高分子主鎖に組み込むことで、立体障害により主鎖の共平面性を向上させることに難がある。このため、高配向な分子配列を形成させ難いという問題がある。   Patent Documents 1 and 2 and Non-Patent Document 1 all have a skeleton in which five 6-membered rings are condensed. In the case of a 6-membered ring, it is difficult to improve the coplanarity of the main chain due to steric hindrance by incorporating it into the polymer main chain. For this reason, there is a problem that it is difficult to form a highly oriented molecular arrangement.

本発明は上記事項に鑑みてなされたものであり、立体障害が緩和され得る有機半導体材料及び有機半導体デバイスを提供することを目的とする。   This invention is made | formed in view of the said matter, and it aims at providing the organic-semiconductor material and organic-semiconductor device which can relieve a steric hindrance.

本発明の第一の観点に係る有機半導体材料は、
式1A又は式1Bで表される骨格を有する高分子化合物を含有する、
ことを特徴とする。
(式1A及び式1B中、Zはそれぞれ独立に酸素、硫黄又はセレンを表し、Rはそれぞれ独立に水素又はアルキル基を表す。)
The organic semiconductor material according to the first aspect of the present invention is:
Containing a polymer compound having a skeleton represented by Formula 1A or Formula 1B;
It is characterized by that.
(In Formula 1A and Formula 1B, Z independently represents oxygen, sulfur or selenium, and R independently represents hydrogen or an alkyl group.)

本発明の第二の観点に係る有機半導体材料は、
式2A又は式2Bで表される高分子化合物を含有する、
ことを特徴とする。
(式2A及び式2B中、Zはそれぞれ独立に酸素、硫黄又はセレンを表し、Rはそれぞれ独立に水素又はアルキル基を表し、Yは式3で表される構造を表し、mは0以上の整数を表し、nは正の実数を表す。)
(式3中、Wは、炭素又は窒素を表し、炭素の場合は置換基として水素、ハロゲン、アルキル基、アルコキシ基、アルコキシカルボニル基又はアルキルカルボニル基のいずれかを有し、Arは2価の複素環基を表し、l及びrはそれぞれ独立に0以上の整数を表す。)
The organic semiconductor material according to the second aspect of the present invention is
Containing a polymer compound represented by Formula 2A or Formula 2B,
It is characterized by that.
(In Formula 2A and Formula 2B, Z represents oxygen, sulfur, or selenium each independently, R represents hydrogen or an alkyl group each independently, Y represents the structure represented by Formula 3, and m is 0 or more. Represents an integer, and n represents a positive real number.)
(Wherein, W represents carbon or nitrogen. In the case of carbon, W has any of hydrogen, halogen, alkyl group, alkoxy group, alkoxycarbonyl group or alkylcarbonyl group as a substituent, and Ar is a divalent group. Represents a heterocyclic group, and l and r each independently represents an integer of 0 or more.)

本発明の第三の観点に係る有機半導体デバイスは、
本発明の第一又は第二の観点に係る有機半導体材料を含有する、
ことを特徴とする。
The organic semiconductor device according to the third aspect of the present invention is
Containing the organic semiconductor material according to the first or second aspect of the present invention,
It is characterized by that.

本発明に係る有機半導体材料では、3つの6員環が縮合し、その両端に5員環が縮合した骨格を有する高分子化合物を含有している。5員環では6員環に比べて立体障害が緩和されるので、分子内における平面性が高くなる。このため、高配向な分子配列を形成し、高分子主鎖間のホッピングによる電子移動が生じやすく、良好な電荷移動度を示し得る。   The organic semiconductor material according to the present invention contains a polymer compound having a skeleton in which three 6-membered rings are condensed and condensed at both ends thereof. Since the steric hindrance is relaxed in the 5-membered ring as compared with the 6-membered ring, the planarity in the molecule is increased. For this reason, a highly oriented molecular arrangement is formed, electron transfer due to hopping between polymer main chains is likely to occur, and good charge mobility can be exhibited.

高分子化合物P1を用いて作製したトランジスタ素子の伝達特性を示すグラフである。It is a graph which shows the transfer characteristic of the transistor element produced using the high molecular compound P1. 高分子化合物P1を用いて作製したトランジスタ素子の出力特性を示すグラフである。It is a graph which shows the output characteristic of the transistor element produced using the high molecular compound P1.

本実施の形態に係る有機半導体材料は、式1A又は式1Bで表される骨格を有する高分子化合物を含有する。
The organic semiconductor material according to the present embodiment contains a polymer compound having a skeleton represented by Formula 1A or Formula 1B.

式1A及び式1B中、Zは酸素、硫黄又はセレンを表し、Zは同一であっても異なっていてもよいが、同一であることが好ましい。   In formula 1A and formula 1B, Z represents oxygen, sulfur or selenium, and Z may be the same or different, but is preferably the same.

また、式1A及び式1B中、Rは水素、アルキル基を表す。Rは同一であっても異なっていてもよい。アルキル基である場合、炭素数が6〜30であることが好ましく、8〜24であることがより好ましい。アルキル基は、直鎖状アルキル基、分岐状アルキル基のいずれでもよいが、分岐状アルキル基であることが好ましい。分岐状アルキル基である場合、有機半導体材料の有機溶媒への溶解性が向上するので、より好適に溶液法を利用して有機半導体層を製造し得る。   Moreover, R represents hydrogen and an alkyl group in Formula 1A and Formula 1B. R may be the same or different. In the case of an alkyl group, the number of carbon atoms is preferably 6-30, and more preferably 8-24. The alkyl group may be either a linear alkyl group or a branched alkyl group, but is preferably a branched alkyl group. In the case of a branched alkyl group, the solubility of the organic semiconductor material in an organic solvent is improved, so that the organic semiconductor layer can be more preferably produced using a solution method.

また、本実施の形態に係る有機半導体材料は、式2A又は式2Bで表される高分子化合物を含有していることが好ましい。
Moreover, it is preferable that the organic semiconductor material which concerns on this Embodiment contains the high molecular compound represented by Formula 2A or Formula 2B.

式2A及び式2B中、Z及びRは、上述の式1A及び式1Bと同義である。また、mは0以上の整数を表し、nは正の実数を表す。   In Formula 2A and Formula 2B, Z and R have the same meanings as Formula 1A and Formula 1B described above. M represents an integer of 0 or more, and n represents a positive real number.

また、式2A及び式2B中、Yは式3で表される構造である。
In Formulas 2A and 2B, Y is a structure represented by Formula 3.

式3中、Wは、それぞれ独立に炭素又は窒素を表し、同一でも異なっていてもよい。Wが炭素の場合、置換基として水素、ハロゲン、アルキル基、アルコキシ基、アルコキシカルボニル基又はアルキルカルボニル基のいずれかを有する。また、l及びrはそれぞれ独立に0以上の整数を表す。   In Formula 3, W represents carbon or nitrogen each independently, and may be the same or different. When W is carbon, it has any of hydrogen, halogen, alkyl group, alkoxy group, alkoxycarbonyl group or alkylcarbonyl group as a substituent. L and r each independently represents an integer of 0 or more.

また、式3中、Arは2価の複素環基を表し、Arとして、例えば、式4〜式27で表される構造が挙げられる。式4〜式27中、Rは水素又はアルキル基を表す。アルキル基である場合、直鎖状でも分岐状でもよく、炭素数は6〜30であることが好ましく、8〜24であることがより好ましい。
In Formula 3, Ar represents a divalent heterocyclic group, and examples of Ar include structures represented by Formulas 4 to 27. In formula 4 to formula 27, R represents hydrogen or an alkyl group. When it is an alkyl group, it may be linear or branched, and preferably has 6 to 30 carbon atoms, more preferably 8 to 24 carbon atoms.

上記の高分子化合物では、3つの6員環が縮合し、その両端に5員環が縮合した骨格を有している。この骨格はアミド架橋構造を有していることから、分子内の分極による双極子−双極子相互作用によって強い分子間力を有する。ポリマー鎖間の分子間力が強いことから、π−スタッキング構造の形成と高いキャリア移動度が期待できる。   The above polymer compound has a skeleton in which three 6-membered rings are condensed and 5-membered rings are condensed at both ends. Since this skeleton has an amide bridge structure, it has a strong intermolecular force due to dipole-dipole interaction due to intramolecular polarization. Since the intermolecular force between the polymer chains is strong, formation of a π-stacking structure and high carrier mobility can be expected.

また、骨格の両端に5員環を備えており、5員環では6員環に比べて立体障害が緩和されるので、高分子主鎖内における共平面性が高くなる。このため、高配向な分子配列を形成し、高分子主鎖間のホッピングによる電子移動が生じやすく、良好な電荷移動度を示すことが期待される。   In addition, a 5-membered ring is provided at both ends of the skeleton, and the steric hindrance is relaxed in the 5-membered ring as compared with the 6-membered ring, so that the coplanarity in the polymer main chain is increased. For this reason, it is expected that a highly oriented molecular arrangement is formed, electron transfer is easily caused by hopping between polymer main chains, and good charge mobility is exhibited.

また、有機半導体材料は、式1A、式1B、式2A又は式2Bで表される骨格を有する高分子化合物の特性を阻害しない限り、他の物質を含んでいてもよい。また、既知の手法により不純物をドープして電界移動度を調整したものであってもよい。   Further, the organic semiconductor material may contain other substances as long as the properties of the polymer compound having a skeleton represented by Formula 1A, Formula 1B, Formula 2A, or Formula 2B are not impaired. Alternatively, the electric field mobility may be adjusted by doping impurities using a known method.

上述した高分子化合物は、例えば、以下のようにして合成することができる。まず、下記反応式に示すように、1,4−ジハロゲノベンゼン等、式28で表される化合物とボロン酸エステルとを反応させてボロン化し、式29で表される化合物を合成する。
The above-described polymer compound can be synthesized, for example, as follows. First, as shown in the following reaction formula, a compound represented by formula 28 such as 1,4-dihalogenobenzene and a boronic ester are reacted to form boron, and a compound represented by formula 29 is synthesized.

また、下記反応式に示すように、式30で表される化合物とハロゲン化物とを反応させて式31で表される化合物を合成する。更に、式31で表される化合物と第一級アミンとを反応させて、アミド結合を有する式32で表される化合物を合成する。
Further, as shown in the following reaction formula, the compound represented by the formula 30 is reacted with the halide to synthesize the compound represented by the formula 31. Furthermore, the compound represented by Formula 31 is reacted with a primary amine to synthesize the compound represented by Formula 32 having an amide bond.

続いて、下記反応式に示すように、式29で表される化合物と式32で表される化合物とを反応させて、ベンゼン環にカルコゲノフェン環を結合させ、式33で表される化合物を合成する。更に、環化剤を用いて式33で表される化合物を環化させることで、式34で表される化合物を合成することができる。更に、式34で表される化合物とトリアルキルスズ基やホウ酸エステル基等の有機金属を有する置換基を有する式35で表される化合物とを反応させて重合し、式2Aで表される高分子化合物を合成することができる。
Subsequently, as shown in the following reaction formula, the compound represented by formula 29 and the compound represented by formula 32 are reacted to bond the chalcogenophene ring to the benzene ring, thereby synthesizing the compound represented by formula 33. To do. Furthermore, the compound represented by Formula 34 can be synthesized by cyclizing the compound represented by Formula 33 using a cyclizing agent. Furthermore, the compound represented by Formula 34 is polymerized by reacting with the compound represented by Formula 35 having a substituent having an organic metal such as a trialkyltin group or a borate group, and represented by Formula 2A. A polymer compound can be synthesized.

なお、式28〜式35において、X〜Xはハロゲンを表し、XはX及びXよりも原子番号が大きい。Xはトリアルキルスズやホウ酸エステルなどの有機金属を有する反応性置換基を表す。また、Bはボロン酸、Rは水素又はアルキル基を表す。また、Zは上述した式1A及び式1Bと同義であり、Ar、W、nは上述した式3と同義である。また、上記の各反応は適宜、適切な溶媒、触媒、反応促進剤等を用いて行えばよい。 In Formulas 28 to 35, X 1 to X 3 represent halogen, and X 3 has a larger atomic number than X 1 and X 2 . X 4 represents a reactive substituent having an organic metal such as trialkyltin or borate ester. B represents a boronic acid, and R represents hydrogen or an alkyl group. Z is synonymous with Formula 1A and Formula 1B described above, and Ar, W, and n are synonymous with Formula 3 described above. In addition, each of the above reactions may be appropriately performed using an appropriate solvent, catalyst, reaction accelerator, and the like.

なお、式34中、Xを既知の手法によりトリアルキルスズやホウ酸エステルなどの有機金属を有する反応性基に置換し、Xとしてハロゲン基を有する式35で表される化合物と重合することでも、式2Aで表される高分子化合物を合成することができる。 In Formula 34, X 2 is substituted with a reactive group having an organic metal such as trialkyltin or borate ester by a known method, and polymerized with a compound represented by Formula 35 having a halogen group as X 4. In this way, the polymer compound represented by the formula 2A can be synthesized.

有機半導体デバイスは、上述した有機半導体材料が用いられて製造されるデバイスである。この有機半導体デバイスとして、例えば、有機半導体層を有する電界効果トランジスタ素子や発光デバイス、光電変換素子等、種々のデバイスが挙げられる。   An organic semiconductor device is a device manufactured using the organic semiconductor material described above. Examples of the organic semiconductor device include various devices such as a field effect transistor element, a light emitting device, and a photoelectric conversion element having an organic semiconductor layer.

有機半導体デバイスにおける有機半導体層の製造方法としては、特に限定されるものではなく、従来公知の種々の製造方法を用いることができる。その中で、上記有機半導体材料を支持体に配置して有機半導体層を製造する方法として、溶液法を好適に用いることができる。溶液法とは、上記有機半導体材料を種々の有機溶媒に溶解させ、塗布法、スピンコート法、インクジェット法等により支持体に有機薄膜を形成し、半導体デバイスを作成する方法である。上記有機半導体材料は上述のように有機溶媒に対して可溶であるため、溶接法を好適に適応する。   The method for producing the organic semiconductor layer in the organic semiconductor device is not particularly limited, and various conventionally known production methods can be used. Among them, a solution method can be suitably used as a method for producing the organic semiconductor layer by disposing the organic semiconductor material on a support. The solution method is a method for preparing a semiconductor device by dissolving the organic semiconductor material in various organic solvents and forming an organic thin film on a support by a coating method, a spin coating method, an ink jet method or the like. Since the organic semiconductor material is soluble in an organic solvent as described above, the welding method is suitably applied.

このように、溶液法にて半導体層を形成できることから、シリコンや低分子の有機半導体材料を用いる場合における蒸着プロセスを必要とせず、低コストで有機半導体デバイスを製造することができる。また、有機半導体材料を用いることから、シリコンを用いた半導体デバイスに比べ、柔軟性に優れるとともに軽量である。これにより、軽量ディスプレイやスマートタグ等への応用にも有効である。   As described above, since the semiconductor layer can be formed by a solution method, an organic semiconductor device can be manufactured at a low cost without requiring a vapor deposition process in the case of using silicon or a low molecular organic semiconductor material. In addition, since an organic semiconductor material is used, it is superior in flexibility and lightweight compared to a semiconductor device using silicon. This is also effective for application to lightweight displays, smart tags, and the like.

高分子化合物を合成し、高分子化合物を用いてトランジスタ素子を作製し、その特性を検証した。   A polymer compound was synthesized, a transistor element was fabricated using the polymer compound, and the characteristics were verified.

(化合物1の合成)
(Synthesis of Compound 1)

ビス(1,5−シクロオクタジエン)ジ−μ−メトキシジイリジウム(I)(33.1mg,0.05mmol)、4,4−ジターシャリブチル−2,2‘−ビピリジル(13.4mg,0.05mmol)を150mLのシクロヘキサンに溶解させた後、この溶液にビスピナコールジボラン(11.8g,46.6mmol)と1,4−ジブロモベンゼン(5.0g,21.2mmol)を加えて、12時間還流した。
溶液を室温まで放冷した後、クロロホルムと水を加えて、抽出した。
有機層を飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。
溶媒を減圧除去し、得られた固体をメタノールで洗浄することで、6.9gの化合物1を得た(収率67%)。
Bis (1,5-cyclooctadiene) di-μ-methoxydiiridium (I) (33.1 mg, 0.05 mmol), 4,4-ditertiarybutyl-2,2′-bipyridyl (13.4 mg, 0 .05 mmol) was dissolved in 150 mL of cyclohexane, and then bispinacol diborane (11.8 g, 46.6 mmol) and 1,4-dibromobenzene (5.0 g, 21.2 mmol) were added to this solution for 12 hours. Refluxed.
The solution was allowed to cool to room temperature, and extracted by adding chloroform and water.
The organic layer was washed with saturated brine and dried over magnesium sulfate.
The solvent was removed under reduced pressure, and the resulting solid was washed with methanol to obtain 6.9 g of Compound 1 (yield 67%).

得られた化合物1の測定結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.73 (s, 2H), 1.37(s, 24H)
The measurement results of the obtained compound 1 are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.73 (s, 2H), 1.37 (s, 24H)

(化合物2の合成)
(Synthesis of Compound 2)

5−ブロモチオフェン−3−カルボン酸(1.0g,4.83mmol)、ヨウ素(0.98g,3.86mmol)、および過ヨウ素酸(0.33g,1.45mmol)を酢酸(30mL)と水(15mL)の混合液に加えて、9時間80℃で撹拌した。
室温まで放冷した後、チオ硫酸ナトリウムを加えて攪拌した。
固体をろ取した後、水で洗浄することで、1.38gの化合物2を白色固体として得た(収率86%)。
5-Bromothiophene-3-carboxylic acid (1.0 g, 4.83 mmol), iodine (0.98 g, 3.86 mmol), and periodic acid (0.33 g, 1.45 mmol) in acetic acid (30 mL) and water (15 mL) and the mixture was stirred at 80 ° C. for 9 hours.
After allowing to cool to room temperature, sodium thiosulfate was added and stirred.
The solid was collected by filtration and washed with water to give 1.38 g of Compound 2 as a white solid (yield 86%).

得られた化合物2の測定結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.36 (s, 1H)
The measurement results of the obtained compound 2 are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.36 (s, 1H)

(化合物3の合成)
(Synthesis of Compound 3)

化合物2(3.5g,10.5mmol)を塩化チオニル(30mL)中で3時間還流した後、塩化チオニルを減圧除去した。
これにジクロロメタンを20mL加え、2−デシルテトラデシルアミン(4.45g,12.6mmol)のピリジン溶液(30mL)に、氷浴にてゆっくり滴下した。
混合液を氷浴にて3時間撹拌し、室温にてさらに3時間攪拌した。
100mLの希塩酸を加えて、ジクロロメタンで抽出した。
有機層を飽和食塩水で洗浄した後、硫酸マグネシウムにて乾燥した。
溶媒を減圧除去し、得られた粗生成物を、シリカゲルを用いたカラムクロマトグラフィー(移動相:クロロホルム)にて精製し、4.75gの化合物3を白色固体として得た(収率68%)。
Compound 2 (3.5 g, 10.5 mmol) was refluxed in thionyl chloride (30 mL) for 3 hours, and then thionyl chloride was removed under reduced pressure.
To this was added 20 mL of dichloromethane, and slowly added dropwise to a pyridine solution (30 mL) of 2-decyltetradecylamine (4.45 g, 12.6 mmol) in an ice bath.
The mixture was stirred in an ice bath for 3 hours and further stirred at room temperature for 3 hours.
100 mL of diluted hydrochloric acid was added and extracted with dichloromethane.
The organic layer was washed with saturated brine and dried over magnesium sulfate.
The solvent was removed under reduced pressure, and the resulting crude product was purified by column chromatography using silica gel (mobile phase: chloroform) to obtain 4.75 g of compound 3 as a white solid (yield 68%). .

得られた化合物3の測定結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.16 (s, 1H), 5.4 (s, 2H), 6.04 (s, 1H), 3.38 (m, 2H), 1.61 (m, 1H) 1.50-1.00 (m, 40H), 0.90-0.86 (m, 6H).
The measurement results of the obtained compound 3 are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.16 (s, 1H), 5.4 (s, 2H), 6.04 (s, 1H), 3.38 (m, 2H), 1.61 (m, 1H) 1.50-1.00 ( m, 40H), 0.90-0.86 (m, 6H).

(化合物4の合成)
化合物1(0.51g,1.03mmol)、化合物3(1.53g,2.27mmol)を16mLのトルエンと5mLの2M炭酸カリウム水溶液の混合液に入れ、Aliquat336を1滴加えた。
さらに、テトラキス(トリフェニルホスフィン)パラジウム(0)(60mg,0.05mmol)を加えて、15時間還流した。
室温まで放冷した後、水を加えて、ジクロロメタンで抽出した。
有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。
溶媒を減圧除去し、得られた粗生成物を、シリカゲルを用いたカラムクロマトグラフィー(移動相:ヘキサン/クロロホルム=1)にて精製し、163mgの化合物4を白色固体として得た(収率12%)。
(Synthesis of Compound 4)
Compound 1 (0.51 g, 1.03 mmol) and compound 3 (1.53 g, 2.27 mmol) were placed in a mixture of 16 mL of toluene and 5 mL of 2M aqueous potassium carbonate, and 1 drop of Aliquat 336 was added.
Further, tetrakis (triphenylphosphine) palladium (0) (60 mg, 0.05 mmol) was added and refluxed for 15 hours.
After allowing to cool to room temperature, water was added and the mixture was extracted with dichloromethane.
The organic layer was washed with saturated brine and dried over magnesium sulfate.
The solvent was removed under reduced pressure, and the resulting crude product was purified by column chromatography using silica gel (mobile phase: hexane / chloroform = 1) to obtain 163 mg of compound 4 as a white solid (yield 12). %).

得られた化合物4の測定結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.73 (s, 2H), 7.37 (s, 2H,), 5.4 (s, 2H), 3.24 (m, 4H), 1.41 (m, 2H), 1.30-1.00 (m, 80H), 0.90-0.86 (m, 12H).
The measurement results of the obtained compound 4 are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.73 (s, 2H), 7.37 (s, 2H,), 5.4 (s, 2H), 3.24 (m, 4H), 1.41 (m, 2H), 1.30- 1.00 (m, 80H), 0.90-0.86 (m, 12H).

(化合物5の合成)
(Synthesis of Compound 5)

化合物4(100mg,0.076mmol)、ヨウ化銅(I)(8mg,0.038mmol)、および炭酸カリウム(21mg,0.15mmol)をジメチルホルムアミド(10mL)に加えて、120度にて12時間攪拌した。
室温まで放冷した後、水を加えて、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。
溶媒を減圧除去し、得られた粗生成物を、シリカゲルを用いたカラムクロマトグラフィー(移動相:ヘキサン/クロロホルム=1)にて精製し、さらに酢酸エチルを用いて再結晶を行うことで、62mgの化合物5を黄色固体として得た(収率82%)。
Compound 4 (100 mg, 0.076 mmol), copper (I) iodide (8 mg, 0.038 mmol), and potassium carbonate (21 mg, 0.15 mmol) were added to dimethylformamide (10 mL), and 120 ° C. for 12 hours. Stir.
After allowing to cool to room temperature, water was added and the mixture was extracted with chloroform. The organic layer was washed with saturated brine and dried over magnesium sulfate.
The solvent was removed under reduced pressure, and the resulting crude product was purified by column chromatography using silica gel (mobile phase: hexane / chloroform = 1), and recrystallized using ethyl acetate to obtain 62 mg. Of 5 as a yellow solid (82% yield).

得られた化合物5の測定結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.73 (s, 2H), 7.59 (s, 2H,), 4.36 (m, 2H), 1.98 (m, 4H), 2.00 (m, 2H) 1.50-1.20 (m, 80H), 0.90-0.86 (m, 12H).
The measurement results of the obtained compound 5 are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.73 (s, 2H), 7.59 (s, 2H,), 4.36 (m, 2H), 1.98 (m, 4H), 2.00 (m, 2H) 1.50-1.20 (m, 80H), 0.90-0.86 (m, 12H).

(高分子化合物P1の合成)
(Synthesis of polymer compound P1)

化合物5(124mg,0.05mmol)、5,5‘−ビス(トリメチルスズ)−2,2’−ビチオフェン(25mg,0.05mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.9mg,2μmol)、およびトリ(オルトトリルホスフィン)(1.2mg,8μmol)を2mLのクロロベンゼンに加え、マイクロウェーブ反応装置を用いて攪拌した(200℃,10分)。
室温まで放冷した後、反応液を塩酸5mLを含むメタノール200mLに加えて、6時間攪拌した。沈殿物をろ取し、ソックスレー抽出器を用いて、メタノール、ヘキサン、クロロホルムにて洗浄した。
さらに、同様にしてクロロベンゼンにて抽出し、メタノール中に再沈殿することで、34mgの高分子化合物P1を赤色固体として得た(収率59%)。
GPC(Gel Permeation Chromatography)にて算出した数平均分子量は280000、重量平均分子量は98100であり、分散度は3.5であった。
Compound 5 (124 mg, 0.05 mmol), 5,5′-bis (trimethyltin) -2,2′-bithiophene (25 mg, 0.05 mmol), tris (dibenzylideneacetone) dipalladium (0) (0.9 mg , 2 μmol), and tri (ortho-tolylphosphine) (1.2 mg, 8 μmol) were added to 2 mL of chlorobenzene and stirred using a microwave reactor (200 ° C., 10 minutes).
After allowing to cool to room temperature, the reaction solution was added to 200 mL of methanol containing 5 mL of hydrochloric acid and stirred for 6 hours. The precipitate was collected by filtration and washed with methanol, hexane, and chloroform using a Soxhlet extractor.
Further, extraction with chlorobenzene and reprecipitation in methanol were performed in the same manner to obtain 34 mg of the polymer compound P1 as a red solid (yield 59%).
The number average molecular weight calculated by GPC (Gel Permeation Chromatography) was 280000, the weight average molecular weight was 98100, and the degree of dispersion was 3.5.

(高分子化合物P1を用いたトランジスタ素子の評価)
ゲート電極となる、200nmのシリコン酸化膜を有する高濃度にドーピングされたn型シリコン基板を十分洗浄した後、パーフルオロデシルトリクロロシランを用いて、基板のシリコン酸化膜表面をシラン処理した。
高分子化合物P1をオルトジクロロベンゼンに溶解して2g/Lの溶液を調製し、表面処理した基板上にスピンコート法にて約50nmの膜厚の高分子化合物P1薄膜を作製した。
この薄膜を窒素雰囲気下にて、150℃で30分加熱した。
次に、金を真空蒸着して、高分子薄膜上にチャネル長50μm、チャネル幅1.5mmのソース電極、ドレイン電極を作製した。
(Evaluation of transistor element using polymer compound P1)
The n-type silicon substrate doped with a high concentration having a 200 nm silicon oxide film to be a gate electrode was sufficiently washed, and then the silicon oxide film surface of the substrate was subjected to silane treatment using perfluorodecyltrichlorosilane.
The polymer compound P1 was dissolved in orthodichlorobenzene to prepare a 2 g / L solution, and a polymer compound P1 thin film having a thickness of about 50 nm was produced on the surface-treated substrate by spin coating.
This thin film was heated at 150 ° C. for 30 minutes in a nitrogen atmosphere.
Next, gold was vacuum-deposited to produce a source electrode and a drain electrode having a channel length of 50 μm and a channel width of 1.5 mm on the polymer thin film.

作製したトランジスタ素子に、ゲート電圧Vを20〜−60V、ソース・ドレイン間電圧VSDを0〜−60Vに変化させてトランジスタ特性を測定した。図1に伝達特性、図2に出力特性を示す。これらの特性から、トランジスタ素子のホール移動度は0.03cm/Vs、電流のオン・オフ比は約10と算出された。 The transistor characteristics were measured by changing the gate voltage V G to 20 to −60 V and the source-drain voltage V SD to 0 to −60 V to the manufactured transistor element. FIG. 1 shows transfer characteristics, and FIG. 2 shows output characteristics. From these characteristics, the hole mobility of the transistor element was calculated to be 0.03 cm 2 / Vs, and the current on / off ratio was calculated to be about 10 6 .

本発明に係る有機半導体材料は、高配向な分子配列を形成し、高分子主鎖間のホッピングによる電子移動が生じやすく、良好な電荷移動度を示し得るので、電界効果トランジスタ等の有機半導体デバイスへの利用が期待される。   Since the organic semiconductor material according to the present invention forms a highly oriented molecular arrangement, easily causes electron transfer due to hopping between polymer main chains, and can exhibit good charge mobility, an organic semiconductor device such as a field effect transistor Expected to be used in

Claims (3)

式1A又は式1Bで表される骨格を有する高分子化合物を含有する、
ことを特徴とする有機半導体材料。
(式1A及び式1B中、Zはそれぞれ独立に酸素、硫黄又はセレンを表し、Rはそれぞれ独立に水素又はアルキル基を表す。)
Containing a polymer compound having a skeleton represented by Formula 1A or Formula 1B;
An organic semiconductor material characterized by the above.
(In Formula 1A and Formula 1B, Z independently represents oxygen, sulfur or selenium, and R independently represents hydrogen or an alkyl group.)
式2A又は式2Bで表される高分子化合物を含有する、
ことを特徴とする有機半導体材料。
(式2A及び式2B中、Zはそれぞれ独立に酸素、硫黄又はセレンを表し、Rはそれぞれ独立に水素又はアルキル基を表し、Yは式3で表される構造を表し、mは0以上の整数を表し、nは正の実数を表す。)
(式3中、Wは、炭素又は窒素を表し、炭素の場合は置換基として水素、ハロゲン、アルキル基、アルコキシ基、アルコキシカルボニル基又はアルキルカルボニル基のいずれかを有し、Arは2価の複素環基を表し、l及びrはそれぞれ独立に0以上の整数を表す。)
Containing a polymer compound represented by Formula 2A or Formula 2B,
An organic semiconductor material characterized by the above.
(In Formula 2A and Formula 2B, Z represents oxygen, sulfur, or selenium each independently, R represents hydrogen or an alkyl group each independently, Y represents the structure represented by Formula 3, and m is 0 or more. Represents an integer, and n represents a positive real number.)
(Wherein, W represents carbon or nitrogen. In the case of carbon, W has any of hydrogen, halogen, alkyl group, alkoxy group, alkoxycarbonyl group or alkylcarbonyl group as a substituent, and Ar is a divalent group. Represents a heterocyclic group, and l and r each independently represents an integer of 0 or more.)
請求項1又は請求項2に記載の有機半導体材料を含有する、
ことを特徴とする有機半導体デバイス。
Containing the organic semiconductor material according to claim 1 or 2,
An organic semiconductor device characterized by that.
JP2013046846A 2013-03-08 2013-03-08 Organic semiconductor material and organic semiconductor device Pending JP2014175466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046846A JP2014175466A (en) 2013-03-08 2013-03-08 Organic semiconductor material and organic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046846A JP2014175466A (en) 2013-03-08 2013-03-08 Organic semiconductor material and organic semiconductor device

Publications (1)

Publication Number Publication Date
JP2014175466A true JP2014175466A (en) 2014-09-22

Family

ID=51696409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046846A Pending JP2014175466A (en) 2013-03-08 2013-03-08 Organic semiconductor material and organic semiconductor device

Country Status (1)

Country Link
JP (1) JP2014175466A (en)

Similar Documents

Publication Publication Date Title
JP6332644B2 (en) Compound, polymer compound, organic semiconductor material, organic semiconductor device, compound synthesis method, polymer compound synthesis method
Zhang et al. π-Conjugated oligomers based on aminobenzodifuranone and diketopyrrolopyrrole
Zhai et al. New non-traditional organogelator of β-diketone-boron difluoride complexes with terminal tetraphenylethene: Self-assembling and fluorescent sensory properties towards amines
CN110386930B (en) Aggregation-induced emission compound, preparation method and application thereof
Xiao et al. Substituent effects in twisted dibenzotetracene derivatives: blue emitting materials for organic light-emitting diodes
KR20140031946A (en) Organic semiconductor material
Bejan et al. Structure-directed functional properties of phenothiazine brominated dyes: morphology and photophysical and electrochemical properties
Nazim et al. Effective DAD type chromophore of fumaronitrile-core and terminal alkylated bithiophene for solution-processed small molecule organic solar cells
JP5416282B2 (en) Naphthalenetetracarboxylic acid diimide derivatives fused with sulfur-containing heterocycles and their production methods and applications
Huang et al. Synthesis and characterization of highly stable and efficient star-molecules
JP5515069B2 (en) Perylenetetracarboxylic acid bisimide derivative, n-type semiconductor, method for producing n-type semiconductor, and electronic device
Chen et al. Sila-annulated terrylene diimides for balanced ambipolar transporting
Zhang et al. Bipolar fluorene-cored derivatives containing carbazole-benzothiazole hybrids as non-doped emitters for deep-blue electroluminescence
Park et al. A new class of organic semiconductors for solution processed OTFTs: Synthesis and characterization of pyrrolo–perylene derivatives with different end groups
JP5590491B2 (en) Polymer compound, polymer organic semiconductor material and organic semiconductor device
KR101739259B1 (en) New pyrrole monomer and manufacturing method thereof, polymer or compound from new pyrrole monomer and manufacturing method thereof
Wang et al. A novel heteroterfluorene for efficient blue and white OLEDs
Ren et al. Synthesis and properties of novel spirobifluorene-cored dendrimers
CN112442169B (en) Asymmetric isoindigo receptor and polymer, and preparation method and application thereof
JP2014175466A (en) Organic semiconductor material and organic semiconductor device
He et al. A simple strategy for obtaining aggregation-induced delayed fluorescence material achieving nearly 20% external quantum efficiency for non-doped solution-processed OLEDs
Yu et al. Basket-shaped quinacridone cyclophanes: Synthesis, solid-state structures, and properties
Ganesan et al. Impact of Electron-Donating Groups on Attaining Dual-Emitting Imidazole-Based Donor–Acceptor Materials
Qiu et al. Influence of π–π Hyperconjugation Effect on Thermal, Morphological, and Photoelectronic Properties of Non-Conjugated Pyrene Derivatives
Hu et al. Synthesis and photophysical properties of tetrafluorophenyl-modified carbazole oligomers