JP2014175164A - Wound type battery - Google Patents

Wound type battery Download PDF

Info

Publication number
JP2014175164A
JP2014175164A JP2013046875A JP2013046875A JP2014175164A JP 2014175164 A JP2014175164 A JP 2014175164A JP 2013046875 A JP2013046875 A JP 2013046875A JP 2013046875 A JP2013046875 A JP 2013046875A JP 2014175164 A JP2014175164 A JP 2014175164A
Authority
JP
Japan
Prior art keywords
positive electrode
outermost peripheral
electrode
current collector
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013046875A
Other languages
Japanese (ja)
Inventor
Kunihiko Minetani
邦彦 峯谷
Tsutomu Nishioka
努 西岡
Hidekazu Hiratsuka
秀和 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013046875A priority Critical patent/JP2014175164A/en
Publication of JP2014175164A publication Critical patent/JP2014175164A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a wound type battery which has excellent initial capacity and in which plastic deformation of an electrode body due to charging is suppressed.SOLUTION: A laminate battery 10 is a wound type battery which includes an electrode body 14 formed by winding a positive electrode 20 having a positive electrode active material layer 22 formed on a positive electrode current collector 21 and a negative electrode 30 therearound via a separator 40. The outermost peripheral part 14z of the electrode body 14 is constituted of at least the positive electrode 20, and the elongation percentage of a positive electrode outermost peripheral part 20z which is a portion consisting the outermost peripheral part 14z out of the positive electrode 20 is higher than that of the other portion of the positive electrode 20.

Description

本発明は、巻回型電池に関する。   The present invention relates to a wound battery.

リチウムイオン電池等の二次電池の一形態として、正極及び負極がセパレータを介して巻回された電極体を備える巻回型電池が知られている。かかる電極体を構成する正極は、例えば、アルミニウムを主成分とする金属から構成された集電体(以下、「アルミ集電体」という)と、その表面上に形成された正極活物質層とを有する。   As one form of a secondary battery such as a lithium ion battery, a wound battery including an electrode body in which a positive electrode and a negative electrode are wound via a separator is known. The positive electrode constituting such an electrode body includes, for example, a current collector made of a metal mainly composed of aluminum (hereinafter referred to as “aluminum current collector”), and a positive electrode active material layer formed on the surface thereof. Have

ところで、上記電極体は、充電により幾分膨張するが、一般的なアルミ集電体は伸び率が小さく柔軟性が低いため、極板膨張による体積変化を吸収できない。このため、電極体が塑性変形する場合があり、これにより、例えば反応ムラが生じ、ガス発生等が起こり易くなる。そこで、正極を所定温度で加熱してアルミ集電体をアニールすることにより、集電体の柔軟性を高める方法が提案されている(例えば、特許文献1参照)。   By the way, although the said electrode body expand | swells somewhat by charge, since a general aluminum electrical power collector has low elongation rate and its flexibility is low, it cannot absorb the volume change by electrode plate expansion. For this reason, the electrode body may be plastically deformed, which causes, for example, uneven reaction and gas generation or the like easily occurs. Therefore, a method has been proposed in which the flexibility of the current collector is increased by annealing the aluminum current collector by heating the positive electrode at a predetermined temperature (see, for example, Patent Document 1).

特開2011−60656号公報JP 2011-60656 A

しかし、正極全体をアニールすると、初期容量の低下を招く。これは、活物質層中の結着剤(バインダ樹脂)が溶融して活物質表面を覆うことが原因であると考えられる。また、アルミ集電体の機械的強度が低下するため、充放電サイクルを繰り返すと集電体が破断する場合がある。   However, annealing the entire positive electrode causes a decrease in initial capacity. This is considered due to the fact that the binder (binder resin) in the active material layer melts and covers the active material surface. Moreover, since the mechanical strength of the aluminum current collector is reduced, the current collector may be broken when the charge / discharge cycle is repeated.

なお、特許文献1には、正極の曲率が大きい部分を選択的にアニールする方法が開示されているが、当該方法によっても電極体の塑性変形を十分に抑制することはできない。   Although Patent Document 1 discloses a method of selectively annealing a portion where the curvature of the positive electrode is large, the plastic deformation of the electrode body cannot be sufficiently suppressed even by this method.

本発明に係る巻回型電池は、正極集電体上に正極活物質層が形成された正極と負極とがセパレータを介して巻回された電極体を備える巻回型電池において、電極体の最外周部は、少なくとも正極から構成され、正極のうち最外周部を構成する部分である正極最外周部の伸び率が、正極の他の部分の伸び率よりも高いことを特徴とする。   A wound battery according to the present invention is a wound battery including an electrode body in which a positive electrode and a negative electrode each having a positive electrode active material layer formed on a positive electrode current collector are wound through a separator. The outermost peripheral portion is composed of at least a positive electrode, and the positive electrode outermost peripheral portion, which is the portion constituting the outermost peripheral portion of the positive electrode, has a higher elongation rate than other portions of the positive electrode.

本発明によれば、良好な初期容量を有し、且つ充電による電極体の塑性変形が抑制された巻回型電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the winding type battery which has a favorable initial capacity and the plastic deformation of the electrode body by charge can be suppressed can be provided.

本発明の実施形態の一例である巻回型電池を示す図である。It is a figure which shows the winding type battery which is an example of embodiment of this invention. 本発明の実施形態の一例である電極体の断面図である。It is sectional drawing of the electrode body which is an example of embodiment of this invention. 図2のA部拡大図である。It is the A section enlarged view of FIG. 本発明の実施形態の一例である電極体の最外周部及びその近傍の断面図である。It is sectional drawing of the outermost periphery part of the electrode body which is an example of embodiment of this invention, and its vicinity. 比較例3の試験セルにおけるサイクル特性を示す図である。It is a figure which shows the cycling characteristics in the test cell of the comparative example 3.

以下、図面を参照しながら、本発明の実施形態の一例について詳細に説明する。
実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.
The drawings referred to in the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings may be different from the actual products. Specific dimensional ratios and the like should be determined in consideration of the following description.

本明細書において「略**」とは、「略同一」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。   In the present specification, “substantially **” is intended to include “substantially the same” as an example and includes what is recognized as substantially the same as the same.

以下で説明するラミネート電池10は、本発明の実施形態の一例である。本発明は、ラミネート電池10に限定されず、例えば扁平形状の角型電池、或いは円筒型電池等、種々の電池形態に適用できる。特に、本発明の構成は、正極が負極よりも巻回構造の外側に位置するように巻回された電極体を備える電池に好適である。   A laminated battery 10 described below is an example of an embodiment of the present invention. The present invention is not limited to the laminate battery 10 and can be applied to various battery forms such as a flat prismatic battery or a cylindrical battery. In particular, the configuration of the present invention is suitable for a battery including an electrode body that is wound so that the positive electrode is positioned outside the wound structure with respect to the negative electrode.

図1〜図4を用いて、ラミネート電池10の構成について詳説する。
図1は、ラミネート電池10の外観を示す図である。図2は、ラミネート電池10を構成する電極体14の断面図である。図3は図2のA部拡大図、図4は電極体14の最外周部14z及びその近傍を示す断面図である。
The configuration of the laminated battery 10 will be described in detail with reference to FIGS.
FIG. 1 is a view showing the appearance of a laminated battery 10. FIG. 2 is a cross-sectional view of the electrode body 14 constituting the laminated battery 10. 3 is an enlarged view of a portion A in FIG. 2, and FIG. 4 is a cross-sectional view showing the outermost peripheral portion 14z of the electrode body 14 and the vicinity thereof.

図1に示すように、ラミネート電池10は、2枚のラミネートフィルム11a,11bから構成された外装体11を備える。後述の発電要素(電極体14及び電解質)は、ラミネートフィルム11a,11bの間に形成された収容部12の内部空間に収容されている。外装体11にはラミネートフィルム11a,11b同士を接合して封止部13が形成され、これにより発電要素が収容された内部空間が密閉されている。   As shown in FIG. 1, the laminate battery 10 includes an exterior body 11 composed of two laminate films 11a and 11b. The power generation elements (electrode body 14 and electrolyte) described later are accommodated in the internal space of the accommodating portion 12 formed between the laminate films 11a and 11b. A sealing portion 13 is formed on the exterior body 11 by bonding the laminate films 11a and 11b to each other, thereby sealing an internal space in which the power generation element is accommodated.

ラミネート電池10の形状、即ち外装体11の形状は特に限定されず、例えば、図1に示すように平面視略矩形形状とすることができる。ここで、「平面視」とは、ラミネートフィルム11a,11bの主面(面積が最も大きな面)に対して垂直な方向から見た状態を意味する。封止部13は、外装体11の端縁に沿って略同じ幅で枠状に形成することができる。封止部13に囲まれた平面視略矩形状の部分が収容部12である。収容部12は、ラミネートフィルム11a,11bの少なくとも一方に発電要素を収容可能な窪みを形成して設けることが好適である。本実施形態では、当該窪みがラミネートフィルム11aのみに形成されている。   The shape of the laminated battery 10, that is, the shape of the exterior body 11 is not particularly limited, and can be, for example, a substantially rectangular shape in plan view as shown in FIG. Here, “plan view” means a state viewed from a direction perpendicular to the main surfaces (surfaces having the largest areas) of the laminate films 11a and 11b. The sealing portion 13 can be formed in a frame shape with substantially the same width along the edge of the exterior body 11. A portion having a substantially rectangular shape in plan view surrounded by the sealing portion 13 is the accommodating portion 12. The accommodating portion 12 is preferably provided by forming a recess capable of accommodating the power generation element in at least one of the laminate films 11a and 11b. In the present embodiment, the depression is formed only in the laminate film 11a.

ラミネート電池10では、電極体14の正極20に接続された正極リード15、及び負極30に接続された負極リード16が、収容部12の内部空間から引き出されている。各リードは、外装体11の同じ端辺から互いに略平行となるように引き出されることが好適である。各リードは、例えばニッケルや銅を主成分とする金属から構成される。   In the laminated battery 10, the positive electrode lead 15 connected to the positive electrode 20 of the electrode body 14 and the negative electrode lead 16 connected to the negative electrode 30 are drawn out from the internal space of the housing portion 12. The leads are preferably drawn out from the same end side of the outer package 11 so as to be substantially parallel to each other. Each lead is made of a metal whose main component is, for example, nickel or copper.

ラミネート電池10は、発電要素として、電極体14と、図示しない電解質とを備える。発電要素は、上記のように、封止部13で密閉された収容部12に収容されている。電解質には、非水溶媒と、非水溶媒に溶解したリチウム塩等の電解質塩とを含む非水電解質が用いられる。非水電解質は、液状に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。   The laminate battery 10 includes an electrode body 14 and an electrolyte (not shown) as power generation elements. As described above, the power generation element is accommodated in the accommodating portion 12 sealed with the sealing portion 13. As the electrolyte, a nonaqueous electrolyte containing a nonaqueous solvent and an electrolyte salt such as a lithium salt dissolved in the nonaqueous solvent is used. The non-aqueous electrolyte is not limited to a liquid, and may be a solid electrolyte using a gel polymer.

図2〜図4に示すように、電極体14は、正極20と負極30がセパレータ40を介して巻回された巻回構造を有する。以下、電極体14において、巻回構造の中心軸方向及びこれに平行な方向を「軸方向」という。電極体14は、円筒を軸方向に直交する一の方向に押し潰した扁平形状を有する。電極体14は、充電に伴う塑性変形抑制等の観点から、内側から順にセパレータ40、負極30、セパレータ40、及び正極20を積層して形成されることが好適である。即ち、正極20が負極30よりも巻回構造の外側に位置するように電極体14を形成する。   As shown in FIGS. 2 to 4, the electrode body 14 has a winding structure in which the positive electrode 20 and the negative electrode 30 are wound via a separator 40. Hereinafter, in the electrode body 14, the central axis direction of the winding structure and the direction parallel thereto are referred to as “axial direction”. The electrode body 14 has a flat shape in which a cylinder is crushed in one direction orthogonal to the axial direction. The electrode body 14 is preferably formed by laminating the separator 40, the negative electrode 30, the separator 40, and the positive electrode 20 in order from the inside, from the viewpoint of suppressing plastic deformation accompanying charging. That is, the electrode body 14 is formed so that the positive electrode 20 is positioned outside the wound structure with respect to the negative electrode 30.

電極体14は、巻回構造の最外周部14zの少なくとも一部が、正極20のみ、又は正極20とセパレータ40から構成されていることが好ましい。本実施形態では、最外周部14zの一部が正極20のみで構成されている。ここで、「最外周部14z」とは、電極体14の巻回構造において最も外側に位置する部分、即ち巻回構造の巻き終わり部である一端P1から1周分の長さの範囲を意味する(図4参照)。最外周部14zの詳細については後述する。 In the electrode body 14, it is preferable that at least a part of the outermost peripheral portion 14 z of the wound structure is composed of only the positive electrode 20 or the positive electrode 20 and the separator 40. In the present embodiment, a part of the outermost peripheral portion 14z is composed of only the positive electrode 20. Here, the "outermost peripheral portion 14z 'portion located most outside in the winding structure of the electrode body 14, i.e. from one end P 1 is a winding end portion of the winding structure of one turn length range Meaning (see FIG. 4). Details of the outermost peripheral portion 14z will be described later.

正極20は、正極集電体21と、当該集電体上に形成された正極活物質層22とを有する。具体的には、長尺状のシート形状を有する正極集電体21の両面に正極活物質層22が形成されている。詳しくは後述するが、正極20は、最外周部14zにおいて正極活物質層22を有さないことが好適である。   The positive electrode 20 includes a positive electrode current collector 21 and a positive electrode active material layer 22 formed on the current collector. Specifically, the positive electrode active material layers 22 are formed on both surfaces of the positive electrode current collector 21 having a long sheet shape. Although described later in detail, it is preferable that the positive electrode 20 does not have the positive electrode active material layer 22 in the outermost peripheral portion 14z.

正極集電体21には、導電性を有する薄膜シート、特に正極20の電位範囲で安定な金属箔や合金箔、金属表層を有するフィルム等を用いることができる。正極集電体21を構成する金属は、アルミニウムを主成分とする金属、例えばアルミニウム又はアルミニウム合金であることが好ましい。アルミニウム合金としては、アルミニウムと鉄を含む合金が例示できる。当該合金中のアルミニウム以外の元素の含有量は、5重量%以下が好ましい。正極集電体21の厚みは、集電性や機械的強度等の観点から、5μm〜40μm程度が好ましく、10μm〜20μm程度がより好ましい。   As the positive electrode current collector 21, a conductive thin film sheet, particularly a metal foil or alloy foil that is stable in the potential range of the positive electrode 20, a film having a metal surface layer, or the like can be used. The metal constituting the positive electrode current collector 21 is preferably a metal containing aluminum as a main component, for example, aluminum or an aluminum alloy. Examples of the aluminum alloy include alloys containing aluminum and iron. The content of elements other than aluminum in the alloy is preferably 5% by weight or less. The thickness of the positive electrode current collector 21 is preferably about 5 μm to 40 μm, and more preferably about 10 μm to 20 μm, from the viewpoints of current collection and mechanical strength.

正極活物質層22は、正極活物質の他に、導電材及び結着剤を含むことが好ましい。正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム含有遷移金属酸化物が例示できる。リチウム含有遷移金属酸化物は、例えばLixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiMPO4、Li2MPO4F(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種)である。ここで、0<x≦1.2(活物質作製直後の値であり、充放電により増減する)、0<y≦0.9、2.0≦z≦2.3である。 The positive electrode active material layer 22 preferably contains a conductive material and a binder in addition to the positive electrode active material. Examples of the positive electrode active material include lithium-containing transition metal oxides containing transition metal elements such as Co, Mn, and Ni. Examples of the lithium-containing transition metal oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1 -y O 2 , Li x Co y M 1 -y O z , and Li x Ni 1. -y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, At least one of Ni, Cu, Zn, Al, Cr, Pb, Sb, and B). Here, 0 <x ≦ 1.2 (value immediately after the production of the active material, which increases or decreases due to charge / discharge), 0 <y ≦ 0.9, and 2.0 ≦ z ≦ 2.3.

上記導電剤は、正極活物質層の電気伝導性を高めるために用いられる。導電剤には、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が挙げられる。これらを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。上記結着剤は、正極活物質及び導電剤間の良好な接触状態を維持し、かつ正極集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着剤には、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、又はこれらの変性体等が用いられる。結着剤は、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等の増粘剤と併用されてもよい。   The conductive agent is used to increase the electrical conductivity of the positive electrode active material layer. Examples of the conductive agent include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more. The binder is used for maintaining a good contact state between the positive electrode active material and the conductive agent and enhancing the binding property of the positive electrode active material and the like to the surface of the positive electrode current collector. As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or a modified product thereof is used. The binder may be used in combination with a thickener such as carboxymethyl cellulose (CMC) or polyethylene oxide (PEO).

負極30は、負極集電体31と、当該集電体上に形成された負極活物質層32とを有する。具体的には、長尺状のシート形状を有する負極集電体31の両面に負極活物質層32が形成されている。詳しくは後述するが、負極30は、最外周部14zにおいて負極活物質層32を有さないことが好適である。   The negative electrode 30 includes a negative electrode current collector 31 and a negative electrode active material layer 32 formed on the current collector. Specifically, negative electrode active material layers 32 are formed on both surfaces of a negative electrode current collector 31 having a long sheet shape. As will be described in detail later, it is preferable that the negative electrode 30 does not have the negative electrode active material layer 32 in the outermost peripheral portion 14z.

負極集電体31には、導電性を有する薄膜シート、特に負極30の電位範囲で安定な金属箔や合金箔、金属表層を有するフィルム等を用いることができる。負極集電体31を構成する金属は、銅を主成分とする金属が好ましい。負極集電体31の厚みは、正極集電体21と同様に、5μm〜40μm程度が好ましく、10μm〜20μm程度がより好ましい。   As the negative electrode current collector 31, a conductive thin film sheet, particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode 30, a film having a metal surface layer, or the like can be used. The metal constituting the negative electrode current collector 31 is preferably a metal mainly composed of copper. The thickness of the negative electrode current collector 31 is preferably about 5 μm to 40 μm, more preferably about 10 μm to 20 μm, like the positive electrode current collector 21.

負極活物質層32は、例えば、リチウムイオンを吸蔵・脱離可能な負極活物質の他に結着剤を含むことが好ましいい。負極活物質としては、天然黒鉛、人造黒鉛、リチウム、珪素、炭素、錫、ゲルマニウム、アルミニウム、鉛、インジウム、ガリウム、チタン酸リチウム及びこれらの合金並びに混合物が例示できる。結着剤としては、正極の場合と同様にPTFE等を用いることもできるが、スチレン−ブタジエン共重合体(SBR)又はこの変性体等を用いることが好ましい。結着剤は、CMC等の増粘剤と併用されてもよい。   For example, the negative electrode active material layer 32 preferably contains a binder in addition to the negative electrode active material capable of inserting and extracting lithium ions. Examples of the negative electrode active material include natural graphite, artificial graphite, lithium, silicon, carbon, tin, germanium, aluminum, lead, indium, gallium, lithium titanate, and alloys and mixtures thereof. As the binder, PTFE or the like can be used as in the case of the positive electrode, but styrene-butadiene copolymer (SBR) or a modified body thereof is preferably used. The binder may be used in combination with a thickener such as CMC.

セパレータ40には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布、等が挙げられる。セパレータ40の材質としては、セルロース又はポリエチレン、ポリプロピレン等のオレフィン系樹脂が好適である。   As the separator 40, a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric. As a material of the separator 40, an olefin resin such as cellulose, polyethylene, or polypropylene is preferable.

以下、電極体14の最外周部14z及びその近傍の構成について、さらに詳説する。   Hereinafter, the outermost peripheral portion 14z of the electrode body 14 and the configuration in the vicinity thereof will be described in more detail.

最外周部14zとは、上記のように、電極体14の巻回構造の巻き終わり部である一端P1から1周分の長さの範囲である。以下、一端P1から1周して一端P1と重なる部分を、最外周部14zの他端P2という。図4に示す例では、最外周部14zの他端P2側の一部が負極30、2枚のセパレータ40、及び正極20から構成されており、その他の部分が正極20のみで構成されている。最外周部14zは、少なくとも半分が負極30を含まず、正極20のみ又は正極20とセパレータ40とで構成されることが好ましい。最外周部14zの全域が、正極20のみで構成されていてもよい。なお、最外周部14zの一端P1は、例えば絶縁テープにより他端P2の近傍に貼着される。 The outermost peripheral portion 14z, as described above, in the range from one end P 1 is a winding end portion of the winding structure of the electrode body 14 length of one round. Hereinafter, the portion overlapping the end P 1 and 1 lap from one end P 1, that the other end P 2 of the outermost peripheral portion 14z. In the example shown in FIG. 4, a part on the other end P 2 side of the outermost peripheral part 14 z is composed of the negative electrode 30, the two separators 40, and the positive electrode 20, and the other part is composed of only the positive electrode 20. Yes. It is preferable that at least half of the outermost peripheral portion 14 z does not include the negative electrode 30, and only the positive electrode 20 or the positive electrode 20 and the separator 40 are configured. The entire region of the outermost peripheral portion 14z may be composed of only the positive electrode 20. Note that one end P 1 of the outermost peripheral portion 14z is attached in the vicinity of the other end P 2 by, for example, an insulating tape.

正極20のうち最外周部14zを構成する部分である正極最外周部20zは、正極活物質層22を有さず、正極集電体21のみで構成されることが好適である。図4に示す例では、正極最外周部20zを超えて一端P1から略1.5周分の長さ範囲に亘り、正極活物質層22が設けられていない。以下、正極最外周部20z及びそれと連続する領域において、正極20が正極集電体21のみで構成される部分を露出部21zという。露出部21zが設けられる範囲は、電極体14の塑性変形の抑制及び電池容量確保等の観点から、一端P1を起点として、0.5周分(即ち、正極最外周部20zの略半分)〜2周分が好ましく、1周分(即ち、正極最外周部20zの略全域)〜1.5周分がより好ましい。 The positive electrode outermost peripheral part 20z, which is a part constituting the outermost peripheral part 14z of the positive electrode 20, preferably does not have the positive electrode active material layer 22 and is constituted only by the positive electrode current collector 21. In the example shown in FIG. 4, the positive electrode active material layer 22 is not provided over a length range of approximately 1.5 turns from the one end P 1 beyond the positive electrode outermost peripheral portion 20 z. Hereinafter, in the positive electrode outermost peripheral part 20z and a region continuous therewith, a part in which the positive electrode 20 is composed only of the positive electrode current collector 21 is referred to as an exposed part 21z. Range exposed portion 21z is provided, from the viewpoint of suppression and battery capacity ensure plastic deformation of the electrode assembly 14, starting from one end P 1, 0.5 laps (i.e., about half of Seikyokusai outer peripheral portion 20z) ~ 2 rounds are preferable, and 1 round (that is, substantially the entire region of the positive electrode outermost peripheral portion 20z) to 1.5 rounds is more preferable.

負極30のうち最外周部14zを構成する部分である負極最外周部30zについても、負極活物質層32を有さず、負極集電体31のみで構成される部分(露出部33z)を有することが好適である。なお、露出部31zは露出部21zに対応して設けられることが好ましい。但し、リチウムの析出抑制等の観点から、負極活物質層32の面積は正極活物質層22の面積よりやや大きくすることが一般的である。   The negative electrode outermost peripheral part 30z which is a part constituting the outermost peripheral part 14z of the negative electrode 30 also has a part (exposed part 33z) which does not have the negative electrode active material layer 32 and is constituted only by the negative electrode current collector 31. Is preferred. The exposed portion 31z is preferably provided corresponding to the exposed portion 21z. However, from the viewpoint of suppressing lithium precipitation, the area of the negative electrode active material layer 32 is generally slightly larger than the area of the positive electrode active material layer 22.

正極20は、正極最外周部20zが他の部分よりも高い柔軟性を有することを特徴とする。具体的には、正極最外周部20zの伸び率が、正極20の他の部分の伸び率よりも高い。これにより、充電による電極体14の塑性変形が抑制される。当該作用効果が得られる理由は、明らかではないが、正極最外周部20zの伸び率を高くすることで、緩やかに巻回して形成した構造と同様に極板膨張をある程度吸収することが可能になったものと想定される。正極等を緩やかに巻回すると塑性変形は抑制され易くなるが、容量密度が低下する。これに対して、電極体14では、強く巻き締めた場合であっても塑性変形を抑制することが可能である。   The positive electrode 20 is characterized in that the positive electrode outermost peripheral portion 20z has higher flexibility than other portions. Specifically, the elongation rate of the positive electrode outermost periphery 20z is higher than the elongation rate of the other part of the positive electrode 20. Thereby, the plastic deformation of the electrode body 14 by charge is suppressed. The reason why the effect is obtained is not clear, but by increasing the elongation rate of the positive electrode outermost peripheral portion 20z, it is possible to absorb the electrode plate expansion to some extent as in the structure formed by gently winding. It is assumed that When the positive electrode or the like is gently wound, plastic deformation is easily suppressed, but the capacity density is lowered. In contrast, the electrode body 14 can suppress plastic deformation even when the electrode body 14 is strongly tightened.

ここで、「伸び率」とは、引張試験により測定される破断伸び率(%)を意味し、次式により求めることができる。
破断伸び率(%)=100×(L−L0)/L0
L;破断時の試験サンプルの長さ(破断時の標点距離)
0;試験前の試験サンプルの長さ(原標点距離)
破断伸び率を求めるための引張試験は、JIS Z2241(対応国際規格 ISO 6892)に基づいて行うことができる。
Here, “elongation” means the elongation at break (%) measured by a tensile test, and can be determined by the following equation.
Elongation at break (%) = 100 × (L−L 0 ) / L 0
L: Length of the test sample at the time of breakage (Gage distance at break)
L 0 : Length of test sample before test (original mark distance)
The tensile test for obtaining the elongation at break can be performed based on JIS Z2241 (corresponding international standard ISO 6892).

本実施形態では、正極最外周部20zに正極集電体21のみで構成された露出部21zを有するから、露出部21zの伸び率が正極集電体21の他の部分の伸び率よりも高いと言える。なお、正極最外周部20zが正極活物質層22を有していたとしても、正極活物質層22は正極集電体21の伸び率に殆ど影響せず、正極最外周部20zの伸び率は露出部21zの伸び率と略同等である。   In the present embodiment, since the positive electrode outermost peripheral portion 20z has the exposed portion 21z composed of only the positive electrode current collector 21, the elongation ratio of the exposed portion 21z is higher than the elongation ratio of other portions of the positive electrode current collector 21. It can be said. Even if the positive electrode outermost peripheral portion 20z has the positive electrode active material layer 22, the positive electrode active material layer 22 hardly affects the elongation rate of the positive electrode current collector 21, and the positive electrode outermost periphery portion 20z has an elongation rate of It is substantially equivalent to the elongation rate of the exposed part 21z.

つまり、正極20は、正極最外周部20zにおいて選択的に伸び率を高くした構造を有する。これにより、詳しくは後述の実施例で示すように、良好な初期容量及びサイクル特性を維持しながら、充電による電極体14の塑性変形を抑制することができる。なお、正極最外周部20z以外の部分、例えば内周側部分の伸び率を選択的に高くしても、電極体14の塑性変形を抑制することはできない。選択的に伸び率を高くする範囲は、電極体14の塑性変形の抑制等の観点から、一端P1を起点として、0.5周分〜2周分が好ましく、1周分〜1.5周分がより好ましい。即ち、正極最外周部20zの一部、例えば一端P1から正極最外周部20zの略半分だけ選択的に伸び率を高めてもよいが、より好ましくは正極最外周部20zの全域(露出部21zの全域)で伸び率を高める。 That is, the positive electrode 20 has a structure in which the elongation rate is selectively increased in the positive electrode outermost peripheral portion 20z. Thereby, as will be described in detail in Examples described later, plastic deformation of the electrode body 14 due to charging can be suppressed while maintaining good initial capacity and cycle characteristics. In addition, even if the elongation rate of the part other than the positive electrode outermost peripheral part 20z, for example, the inner peripheral side part is selectively increased, the plastic deformation of the electrode body 14 cannot be suppressed. The range in which the elongation rate is selectively increased is preferably from 0.5 to 2 laps from one end P 1 from the viewpoint of suppressing plastic deformation of the electrode body 14, and preferably from 1 to 1.5 laps. A circumference is more preferable. That is, a part of Seikyokusai outer peripheral portion 20z, for example, it may be increased selectively elongation only approximately half of the end P 1 positive outermost portion 20z, and more preferably Seikyokusai outer periphery whole of 20z (exposed portion Elongation rate is increased in the entire area of 21z.

正極最外周部20zの伸び率を選択的に高くする方法としては、正極最外周部20zのみを局部加熱してアニールする方法が好適である。正極最外周部20zの伸び率は、加熱温度や加熱時間を調整することで適宜変更できる。正極最外周部20zの伸び率は、高いほど良く、他の部分に対して、好ましくは1.4倍以上、より好ましくは1.7倍以上、特に好ましくは2.0倍以上である。例えば、正極最外周部20zの伸び率が2.2%以上又は3.0%以上、他の部分の伸び率が1.5%以下であることが好適である。   As a method for selectively increasing the elongation percentage of the positive electrode outermost peripheral portion 20z, a method of annealing by locally heating only the positive electrode outermost peripheral portion 20z is suitable. The elongation percentage of the positive electrode outermost peripheral portion 20z can be changed as appropriate by adjusting the heating temperature and the heating time. The elongation ratio of the positive electrode outermost peripheral portion 20z is better as it is higher, and is preferably 1.4 times or more, more preferably 1.7 times or more, particularly preferably 2.0 times or more with respect to other portions. For example, it is preferable that the elongation ratio of the positive electrode outermost peripheral portion 20z is 2.2% or more or 3.0% or more, and the elongation ratio of other portions is 1.5% or less.

以下、上記構成を備えるラミネート電池10の製造工程、特に電極体14の製造工程について詳説する。   Hereinafter, the manufacturing process of the laminated battery 10 having the above configuration, particularly the manufacturing process of the electrode body 14 will be described in detail.

電極体14の製造工程(以下、「本工程」という」)では、まず正極20、負極30、及びセパレータ40が準備される。正極20等は、いずれも長尺状のシート形状を有し、従来公知の方法で製造することができる(当該方法の詳しい説明は省略)。電極体14は、正極20、負極30、及び2枚のセパレータ40を互いに積層し、後述のように巻回して形成される。   In the manufacturing process of the electrode body 14 (hereinafter referred to as “this process”), first, the positive electrode 20, the negative electrode 30, and the separator 40 are prepared. Each of the positive electrode 20 and the like has a long sheet shape, and can be manufactured by a conventionally known method (detailed description of the method is omitted). The electrode body 14 is formed by laminating the positive electrode 20, the negative electrode 30, and the two separators 40, and winding them as described later.

本工程では、電極体14の巻回構造を形成する前に、正極最外周部20zとなる部分を局部加熱する。これにより、正極最外周部20zが選択的にアニールされ、他の部分に比べて伸び率が高くなる。当該加熱処理は、例えば電極体14の巻回構造を形成する過程で行われる。或いは、正極20の製造過程、例えば正極集電体21上に正極活物質層22を塗工した後に行われる。正極活物質層22は正極最外周部20zとなる部分に塗工されず、当該部分に露出部21zを設けておくことが好適である。   In this process, before forming the winding structure of the electrode body 14, the part which becomes the positive electrode outermost peripheral part 20z is locally heated. Thereby, the positive electrode outermost peripheral part 20z is selectively annealed, and the elongation rate is higher than that of other parts. The heat treatment is performed in the process of forming a wound structure of the electrode body 14, for example. Alternatively, it is performed after the positive electrode active material layer 22 is applied on the positive electrode current collector 21, for example, on the positive electrode current collector 21. It is preferable that the positive electrode active material layer 22 is not applied to a portion that becomes the positive electrode outermost peripheral portion 20z, and an exposed portion 21z is provided in the portion.

具体例としては、正極20、負極30、及びセパレータ40を積層して巻回する過程において、各構成部材が積層される前に、正極最外周部20zとなる部分をヒートバーで挟んで局部加熱する方法が挙げられる。加熱温度は、正極集電体21がアルミニウムを主成分とする金属から構成される場合、150℃〜300℃が好ましく、170℃〜250℃がより好ましく、180℃〜200℃が特に好ましい。加熱時間は、加熱温度によっても異なり、例えば0.5秒〜10秒程度が好ましい。加熱方法は、ヒートバー等を用いる接触加熱に限定されず、レーザー等を用いた非接触加熱であってもよい。   As a specific example, in the process of laminating and winding the positive electrode 20, the negative electrode 30, and the separator 40, the respective parts that become the positive electrode outermost peripheral portion 20 z are locally heated by sandwiching them with a heat bar before each component member is laminated. A method is mentioned. When the positive electrode current collector 21 is made of a metal whose main component is aluminum, the heating temperature is preferably 150 ° C to 300 ° C, more preferably 170 ° C to 250 ° C, and particularly preferably 180 ° C to 200 ° C. The heating time varies depending on the heating temperature, and is preferably about 0.5 to 10 seconds, for example. The heating method is not limited to contact heating using a heat bar or the like, and may be non-contact heating using a laser or the like.

電極体14は、第1のセパレータ40、負極30、第2のセパレータ40、及び正極20の順で積層し、第1のセパレータ40が内側となるように巻回して製造される。電極体14は、扁平形状を呈するように巻回されてもよく、又は円筒型に巻回した後、軸方向に直交する一の方向に押し潰して扁平形状を形成してもよい。続いて、正極集電体21に正極リード15を、負極集電体31に負極リード16をスポット溶接等によりそれぞれ固定する。本実施形態では、最外周部14zよりもやや内側に位置する露出部21z,31zにそれぞれ各リードを固定する。   The electrode body 14 is manufactured by laminating the first separator 40, the negative electrode 30, the second separator 40, and the positive electrode 20 in this order, and winding the first separator 40 so as to be inside. The electrode body 14 may be wound so as to have a flat shape, or may be wound in one direction orthogonal to the axial direction after being wound into a cylindrical shape to form a flat shape. Subsequently, the positive electrode lead 15 is fixed to the positive electrode current collector 21 and the negative electrode lead 16 is fixed to the negative electrode current collector 31 by spot welding or the like. In this embodiment, each lead is fixed to the exposed portions 21z and 31z located slightly inside the outermost peripheral portion 14z.

最後に、各リードが溶接された電極体14を電解質と共にラミネートフィルム11aの収容部12に収容する。そして、ラミネートフィルム11bをラミネートフィルム11aに重ねて封止部13を形成することで、収容部12の内部空間が密閉され、各リードが収容部12から引き出されたラミネート電池10が製造される。   Finally, the electrode body 14 to which each lead is welded is accommodated in the accommodating portion 12 of the laminate film 11a together with the electrolyte. Then, the laminated film 11b is stacked on the laminate film 11a to form the sealing portion 13, whereby the internal space of the housing portion 12 is sealed, and the laminated battery 10 in which each lead is drawn out from the housing portion 12 is manufactured.

以下、実施例により本発明をさらに詳説するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

<実施例1>
[正極の作製]
正極活物質としてLiCoO2を100重量部、導電材としてアセチレンブラックを2重量部、結着剤としてPVdFを3重量部、及び適量のN−メチル−2−ピロリドンを混合してスラリー状の正極合剤を作製した。続いて、この正極合剤を正極集電体の両面に塗工した。正極集電体には、厚み15μmのアルミニウム合金箔(合金番号8021;Al 98.5wt%、Fe 1.5wt%)を用いた。正極最外周部となる部分には、正極合剤を塗工せず、正極集電体のみから構成される露出部(以下、「正極露出部」という)を設けた。塗工した正極合剤を110℃で5分間乾燥させた後、3回圧延して正極活物質層(正極合剤層)を形成した。各正極活物質層の厚みは、約60μmであった。
<Example 1>
[Production of positive electrode]
100 parts by weight of LiCoO 2 as a positive electrode active material, 2 parts by weight of acetylene black as a conductive material, 3 parts by weight of PVdF as a binder, and an appropriate amount of N-methyl-2-pyrrolidone are mixed to form a slurry-like positive electrode composition. An agent was prepared. Subsequently, this positive electrode mixture was applied to both surfaces of the positive electrode current collector. As the positive electrode current collector, an aluminum alloy foil (Alloy No. 8021; Al 98.5 wt%, Fe 1.5 wt%) having a thickness of 15 μm was used. An exposed portion (hereinafter referred to as a “positive electrode exposed portion”) composed only of the positive electrode current collector was provided on the portion that became the outermost peripheral portion of the positive electrode without applying the positive electrode mixture. The coated positive electrode mixture was dried at 110 ° C. for 5 minutes and then rolled three times to form a positive electrode active material layer (positive electrode mixture layer). The thickness of each positive electrode active material layer was about 60 μm.

次に、正極露出部の伸び率が2.2%となるように、190℃に加熱したヒートバーを用いて正極露出部のみを1秒間加熱した。伸び率は、上記のように、JIS Z2241(対応国際規格 ISO 6892)に基づく引張試験により測定し、加熱条件と伸び率との関係は予め実験により求めた。正極露出部以外の他の部分の伸び率は1.5%である(露出部の伸び率/他の部分の伸び率=1.47)。   Next, only the positive electrode exposed part was heated for 1 second using a heat bar heated to 190 ° C. so that the elongation ratio of the positive electrode exposed part was 2.2%. As described above, the elongation was measured by a tensile test based on JIS Z2241 (corresponding international standard ISO 6892), and the relationship between the heating condition and the elongation was obtained in advance by experiments. The elongation rate of the other parts other than the positive electrode exposed part is 1.5% (elongation rate of exposed part / elongation rate of other parts = 1.47).

次に、アルミニウム製の正極リードをスポット溶接により正極最外周部よりもやや内側に位置する正極露出部に固定した。内部短絡を防止するために、正極リードを覆うようにポリプロピレン製の絶縁テープを正極集電体に貼着した。こうして、幅35mm、長さ460mm、厚さ0.14mmの正極を作製した。   Next, the positive electrode lead made of aluminum was fixed to the positive electrode exposed part located slightly inside the outermost peripheral part of the positive electrode by spot welding. In order to prevent an internal short circuit, an insulating tape made of polypropylene was attached to the positive electrode current collector so as to cover the positive electrode lead. Thus, a positive electrode having a width of 35 mm, a length of 460 mm, and a thickness of 0.14 mm was produced.

[負極の作製]
負極活物質として鱗片状黒鉛を100重量部、結着剤としてスチレンーブタジエン共重合体の水分散体を1重量部(固形分換算)、増粘剤としてCMCを1重量%、及び適量の水を混合してスラリー状の負極合剤を作製した。続いて、この負極合剤を負極集電体の両面に塗工した。負極集電体には、厚み10μmの銅箔を用いた。負極最外周部となる部分には、負極合剤を塗工せず、負極集電体のみから構成される露出部(以下、「負極露出部」という)を設けた。塗工した負極合剤を110℃で30分間乾燥させた後、圧延して負極活物質層(負極合剤層)を形成した。各負極活物質層の厚みは、約60μmであった。
[Production of negative electrode]
100 parts by weight of scaly graphite as a negative electrode active material, 1 part by weight (in terms of solid content) of an aqueous dispersion of a styrene-butadiene copolymer as a binder, 1% by weight of CMC as a thickener, and an appropriate amount of water Were mixed to prepare a slurry-like negative electrode mixture. Subsequently, this negative electrode mixture was applied to both surfaces of the negative electrode current collector. A copper foil having a thickness of 10 μm was used for the negative electrode current collector. An exposed portion (hereinafter referred to as “negative electrode exposed portion”) composed only of the negative electrode current collector was provided on the portion that became the outermost peripheral portion of the negative electrode without applying the negative electrode mixture. The coated negative electrode mixture was dried at 110 ° C. for 30 minutes and then rolled to form a negative electrode active material layer (negative electrode mixture layer). The thickness of each negative electrode active material layer was about 60 μm.

次に、ニッケル製の負極リードをスポット溶接により負極最外周部よりもやや内側に位置する負極露出部に固定した。内部短絡を防止するために、負極リードを覆うようにポリプロピレン製の絶縁粘着体を負極集電体に貼着した。こうして、幅36mm、長さ450mm、厚さ0.14mmの負極を作製した。   Next, the negative electrode lead made of nickel was fixed to the negative electrode exposed part located slightly inside the outermost peripheral part of the negative electrode by spot welding. In order to prevent an internal short circuit, an insulating adhesive made of polypropylene was attached to the negative electrode current collector so as to cover the negative electrode lead. In this way, a negative electrode having a width of 36 mm, a length of 450 mm, and a thickness of 0.14 mm was produced.

[電極体の作製]
電極体の構成材料として、上記正極、上記負極、及び2枚のセパレータを用いた。セパレータには、厚み16μmのポリエチレン微多孔膜を用いた。各構成材料を、第1のセパレータ、負極、第2のセパレータ、及び正極の順に積層し、第1のセパレータが内側となるように巻回して円筒型の電極体を作製した。続いて、プレス加工により円筒型の巻回構造を軸方向に直交する一の方向に押し潰して偏平形状を有する電極体を作製した。
[Production of electrode body]
As a constituent material of the electrode body, the positive electrode, the negative electrode, and two separators were used. As the separator, a polyethylene microporous film having a thickness of 16 μm was used. Each constituent material was laminated in the order of the first separator, the negative electrode, the second separator, and the positive electrode, and was wound so that the first separator was on the inside to produce a cylindrical electrode body. Subsequently, the cylindrical winding structure was crushed in one direction orthogonal to the axial direction by pressing to produce an electrode body having a flat shape.

[角型リチウムイオン二次電池(試験セルA1)の作製]
電池ケース(外装体)には、アルミニウム箔(厚み100μm)の両面にポリプロピレンフィルム(厚み10μm)が積層されたラミネートフィルムからなる包材を用いた。電極体を当該電池ケースに収容した後、85℃で2時間真空乾燥した。その後、カールフィッシャー式水分計で電極体に含まれている水分量を測定し、100ppm以下であることを確認した。
[Preparation of square lithium ion secondary battery (test cell A1)]
For the battery case (exterior body), a packaging material made of a laminate film in which a polypropylene film (thickness 10 μm) was laminated on both surfaces of an aluminum foil (thickness 100 μm) was used. After housing the electrode body in the battery case, it was vacuum dried at 85 ° C. for 2 hours. Thereafter, the amount of water contained in the electrode body was measured with a Karl Fischer moisture meter and confirmed to be 100 ppm or less.

非水電解質には、非水溶媒としてエチレンカーボネートとエチルメチルカーボネートを1:2の体積比で含む混合溶媒を用い、電解質としてLiPF6を用いた。電解質の濃度は、1.0mol/Lとした。この非水電解液を電池ケースに注入した後、開口部をヒートシールすることにより、800mAhの電池容量(設計値)を有する角型リチウムイオン二次電池である試験セルA1を作製した。   For the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 2 was used as the non-aqueous solvent, and LiPF 6 was used as the electrolyte. The concentration of the electrolyte was 1.0 mol / L. After injecting this non-aqueous electrolyte into the battery case, the opening was heat sealed to prepare a test cell A1 which is a prismatic lithium ion secondary battery having a battery capacity (design value) of 800 mAh.

[電極体形状の評価]
充電の前後で試験セルA1の厚みを測定して塑性変形の程度を評価した。充電後における厚みの増加が大きいほど、塑性変形量が大きいことを意味する。
試験セルA1の厚みは、シックネスゲージを用いて電池中央部分で測定した。充電前における厚みは、4.8mmであった(他の実施例、比較例も同様)。
充電条件は、下記の通りである。
20℃の環境下において、電池電圧が4.2Vに達するまで定電流800mA(1.0CmA)で充電し、さらに電流が40mA(0.05CmA)に減衰するまで定電圧で充電した。充電時間は約2時間であった。
[Evaluation of electrode body shape]
The thickness of the test cell A1 was measured before and after charging to evaluate the degree of plastic deformation. The greater the increase in thickness after charging, the greater the amount of plastic deformation.
The thickness of the test cell A1 was measured at the center of the battery using a thickness gauge. The thickness before charging was 4.8 mm (the same applies to other examples and comparative examples).
The charging conditions are as follows.
Under an environment of 20 ° C., the battery was charged at a constant current of 800 mA (1.0 CmA) until the battery voltage reached 4.2 V, and further charged at a constant voltage until the current was attenuated to 40 mA (0.05 CmA). The charging time was about 2 hours.

[初期容量の評価]
上記充電条件で充電した電池を、電池電圧が2.5Vに達するまで定電流160mA(0.2CmA)で放電したときの容量を初期容量とした。
[Evaluation of initial capacity]
The capacity when the battery charged under the above charging conditions was discharged at a constant current of 160 mA (0.2 CmA) until the battery voltage reached 2.5 V was defined as the initial capacity.

[サイクル特性の評価]
上記充放電を繰り返し行い(300サイクル)、各サイクルの放電容量を1サイクル目の放電容量で除した値に100を掛けて、容量維持率(放電容量比率)を算出した。
[Evaluation of cycle characteristics]
The charge / discharge was repeated (300 cycles), and the capacity retention rate (discharge capacity ratio) was calculated by multiplying the value obtained by dividing the discharge capacity of each cycle by the discharge capacity of the first cycle by 100.

<実施例2>
正極露出部の伸び率が3.0%となるように190℃に加熱したヒートバーを用いて正極露出部のみを5秒間加熱した以外は、実施例1と同様にして試験セルA2を作製した。
<Example 2>
Test cell A2 was produced in the same manner as in Example 1 except that only the positive electrode exposed portion was heated for 5 seconds using a heat bar heated to 190 ° C. so that the elongation ratio of the positive electrode exposed portion was 3.0%.

<比較例1>
正極集電体として、アルミニウム合金箔(合金番号3003;Al 98wt%、Fe 0.6wt%、Mn 1.4%、伸び率0.3%)を用いた以外は、実施例1と同様に して試験セルX1を作製した。
<Comparative Example 1>
As in Example 1, except that an aluminum alloy foil (Alloy No. 3003; Al 98 wt%, Fe 0.6 wt%, Mn 1.4%, elongation 0.3%) was used as the positive electrode current collector. A test cell X1 was prepared.

<比較例2>
正極合剤を塗工する前に正極集電体の全体を、伸び率が2.2%となるように加熱(190℃×1秒)した以外は、実施例1と同様にして試験セルX2を作製した。
<Comparative example 2>
Test cell X2 in the same manner as in Example 1, except that the entire positive electrode current collector was heated (190 ° C. × 1 second) so that the elongation was 2.2% before coating the positive electrode mixture. Was made.

<比較例3>
正極合剤を塗工し圧延した後、正極全体を、伸び率が2.2%となるように加熱(190℃×1秒)した以外は、実施例1と同様にして試験セルX3を作製した。
<Comparative Example 3>
After coating and rolling the positive electrode mixture, the test cell X3 was prepared in the same manner as in Example 1 except that the entire positive electrode was heated (190 ° C. × 1 second) so that the elongation was 2.2%. did.

表1に上記評価結果等を示す。表1において、「伸び率」は、アニールした部分の伸び率を意味する。「電池厚み」は、充電後の厚みである。「塑性変形」は、当該厚みに基づいて評価した結果であり、厚みが小さいほど変形量が小さいことを意味する。「サイクル特性」は、300サイクルまでに容量維持率の急減が確認できなかったものを○、容量維持率が急減したものを×とした。   Table 1 shows the evaluation results and the like. In Table 1, “elongation” means the elongation of the annealed portion. “Battery thickness” is the thickness after charging. “Plastic deformation” is a result of evaluation based on the thickness, and means that the smaller the thickness, the smaller the deformation amount. “Cyclic characteristics” was evaluated as “◯” when the sudden decrease in capacity retention rate could not be confirmed by 300 cycles, and “×” when the capacity retention rate decreased rapidly.

Figure 2014175164
Figure 2014175164

表1に示すように、実施例の試験セルA1,A2は、充電後における塑性変形量が小さく、且つ初期容量、サイクル特性共に良好であった。特に、最外周部の伸び率が高くなるほど、塑性変形の抑制効果は顕著になる。一方、最外周部の伸び率が低い場合(試験セルX1,X2)は、充電による塑性変形が大きい。また、正極集電体の全体をアニールした場合(試験セルX3)は、図5(サイクル数と容量維持率との関係を示す図)に示すように、200サイクルを超えたあたりで容量維持率の急減が確認された。これは、巻回構造の内周側部分で正極集電体が破断したことが原因である。また、正極全体をアニールした場合(試験セルX4)は、300サイクル未満で容量維持率の急減が見られると共に、初期容量も2%程度低下した。初期容量の低下は、結着剤が溶融して活物質表面を覆うことが原因であると考えられる。   As shown in Table 1, the test cells A1 and A2 of the examples had a small amount of plastic deformation after charging, and had good initial capacity and cycle characteristics. In particular, the higher the elongation percentage of the outermost peripheral portion, the more remarkable the effect of suppressing plastic deformation. On the other hand, when the elongation percentage of the outermost peripheral portion is low (test cells X1, X2), plastic deformation due to charging is large. When the entire positive electrode current collector is annealed (test cell X3), as shown in FIG. 5 (a diagram showing the relationship between the number of cycles and the capacity retention ratio), the capacity retention ratio exceeds 200 cycles. A sharp decline was confirmed. This is because the positive electrode current collector is broken at the inner peripheral side portion of the winding structure. In addition, when the entire positive electrode was annealed (test cell X4), the capacity retention rate decreased rapidly in less than 300 cycles, and the initial capacity decreased by about 2%. The decrease in the initial capacity is considered to be caused by the binder melting and covering the active material surface.

以上のように、正極最外周部のみを選択的に加熱して伸び率を高めることにより、良好な初期容量及びサイクル特性を維持することができ、且つ充電による電極体の塑性変形を抑制することが可能となる。   As described above, it is possible to maintain good initial capacity and cycle characteristics by selectively heating only the outermost peripheral portion of the positive electrode to increase the elongation rate, and to suppress plastic deformation of the electrode body due to charging. Is possible.

10 ラミネート電池、11 外装体、11a,11b ラミネートフィルム、12 収容部、13 封止部、14 電極体、14z 最外周部、15 正極リード、16 負極リード、20 正極、20z 正極最外周部、21 正極集電体、22 正極活物質層、30 負極、30z 負極最外周部、31 負極集電体、32 負極活物質層、40 セパレータ、P1 最外周部の一端、P2 最外周部の他端 DESCRIPTION OF SYMBOLS 10 Laminated battery, 11 Exterior body, 11a, 11b Laminated film, 12 Housing | casing part, 13 Sealing part, 14 Electrode body, 14z Outermost periphery part, 15 Positive electrode lead, 16 Negative electrode lead, 20 Positive electrode, 20z Positive electrode outermost periphery part, 21 cathode current collector, 22 electrode active material layer, 30 negative electrode, 30z Fukyokusai outer peripheral portion, 31 the anode current collector, 32 electrode active material layer, 40 separators, one end of the P 1 outermost periphery, the other P 2 outermost periphery end

Claims (7)

正極集電体上に正極活物質層が形成された正極と負極とがセパレータを介して巻回された電極体を備える巻回型電池において、
前記電極体の最外周部は、少なくとも前記正極から構成され、
前記正極のうち前記最外周部を構成する部分である正極最外周部の伸び率が、前記正極の他の部分の伸び率よりも高い巻回型電池。
In a wound battery comprising an electrode body in which a positive electrode having a positive electrode active material layer formed on a positive electrode current collector and a negative electrode are wound through a separator,
The outermost peripheral part of the electrode body is composed of at least the positive electrode,
A wound battery in which the positive electrode outermost peripheral portion, which is the portion constituting the outermost peripheral portion of the positive electrode, has a higher elongation rate than other portions of the positive electrode.
請求項1に記載の巻回型電池において、
前記正極最外周部は、前記正極活物質層を有さず、前記正極集電体のみで構成されている巻回型電池。
The wound battery according to claim 1,
The positive electrode outermost periphery part does not have the said positive electrode active material layer, The winding type battery comprised only with the said positive electrode electrical power collector.
請求項1又は2に記載の巻回型電池において、
前記最外周部の伸び率が2.2%以上、前記他の部分の伸び率が1.5%以下である巻回型電池。
The wound battery according to claim 1 or 2,
The wound battery in which the elongation rate of the outermost peripheral portion is 2.2% or more and the elongation rate of the other portion is 1.5% or less.
請求項1又は2に記載の巻回型電池において、
前記正極最外周部の伸び率は、前記他の部分の伸び率の1.4倍以上である巻回型電池。
The wound battery according to claim 1 or 2,
The winding type battery in which an elongation rate of the outermost peripheral portion of the positive electrode is 1.4 times or more that of the other portion.
請求項1〜4のいずれか1項に記載の巻回型電池において、
前記正極最外周部の少なくとも一部は、前記正極のみ又は前記正極と前記セパレータとで構成されている巻回型電池。
The wound battery according to any one of claims 1 to 4,
At least a part of the outermost peripheral part of the positive electrode is a wound type battery including only the positive electrode or the positive electrode and the separator.
請求項1〜5のいずれか1項に記載の巻回型電池において、
前記正極集電体は、アルミニウムを主成分とする金属から構成される巻回型電池。
The wound battery according to any one of claims 1 to 5,
The positive electrode current collector is a wound battery made of a metal mainly composed of aluminum.
請求項1〜6のいずれか1項に記載の巻回型電池において、
前記電極体は、扁平形状を有する巻回型電池。
The wound battery according to any one of claims 1 to 6,
The electrode body is a wound battery having a flat shape.
JP2013046875A 2013-03-08 2013-03-08 Wound type battery Pending JP2014175164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046875A JP2014175164A (en) 2013-03-08 2013-03-08 Wound type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046875A JP2014175164A (en) 2013-03-08 2013-03-08 Wound type battery

Publications (1)

Publication Number Publication Date
JP2014175164A true JP2014175164A (en) 2014-09-22

Family

ID=51696193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046875A Pending JP2014175164A (en) 2013-03-08 2013-03-08 Wound type battery

Country Status (1)

Country Link
JP (1) JP2014175164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112055A (en) * 2015-12-18 2017-06-22 日立マクセル株式会社 Sealed battery
KR20220061702A (en) * 2020-11-06 2022-05-13 주식회사 아리셀 Lithium primary battery with asymmetric winding electrode structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112055A (en) * 2015-12-18 2017-06-22 日立マクセル株式会社 Sealed battery
KR20220061702A (en) * 2020-11-06 2022-05-13 주식회사 아리셀 Lithium primary battery with asymmetric winding electrode structure
KR102478615B1 (en) * 2020-11-06 2022-12-16 주식회사 아리셀 Lithium primary battery with asymmetric winding electrode structure

Similar Documents

Publication Publication Date Title
WO2015115494A1 (en) Secondary battery and secondary battery production method
EP2772964A1 (en) Secondary battery having novel structure
EP3220467A1 (en) Pouch type secondary battery comprising safety member
EP3024084B1 (en) Method for manufacturing rectangular battery cell using metal plates
JP2016035901A (en) Nonaqueous electrolyte battery, method of manufacturing nonaqueous electrolyte battery, and battery pack
JP7027632B2 (en) Pouch-type secondary battery containing electrode leads with asymmetric notches formed
US11264649B2 (en) Cylindrical nonaqueous electrolyte secondary battery
KR20090027314A (en) Secondary battery of improved stability by both sides adhesive tape
KR20110083894A (en) Secondary battery having structure for preventing internal short-circuit
JP2012174434A (en) Method for manufacturing battery
KR101925982B1 (en) Pouch type secondary battery and method of making the same
JP2013251048A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing the same
WO2012114904A1 (en) Nonaqueous-electrolyte secondary battery
KR20080107047A (en) Electrode assembly with excellent weldability between electrode lead and electrode tabs and secondary battery comprising the same
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP7212629B2 (en) lithium ion secondary battery
WO2023276756A1 (en) Lithium secondary battery
JP2014175164A (en) Wound type battery
WO2012114905A1 (en) Nonaqueous-electrolyte secondary battery
JP2014220140A (en) Nonaqueous secondary battery
KR20080009354A (en) Cylindrical secondary battery having high safety by radiant heat
CN111164814B (en) Cylindrical secondary battery
KR101307772B1 (en) Method for Manufacturing Secondary Battery and Secondary Battery Manufactured thereby
WO2018110080A1 (en) Flexible cell
JP7430665B2 (en) Secondary battery current collector and its manufacturing method, and secondary battery