JP2014174406A - Radiation-sensitive resin composition, cured film, light-emitting display element and method for producing light-emitting layer - Google Patents

Radiation-sensitive resin composition, cured film, light-emitting display element and method for producing light-emitting layer Download PDF

Info

Publication number
JP2014174406A
JP2014174406A JP2013048340A JP2013048340A JP2014174406A JP 2014174406 A JP2014174406 A JP 2014174406A JP 2013048340 A JP2013048340 A JP 2013048340A JP 2013048340 A JP2013048340 A JP 2013048340A JP 2014174406 A JP2014174406 A JP 2014174406A
Authority
JP
Japan
Prior art keywords
group
compound
radiation
resin composition
sensitive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013048340A
Other languages
Japanese (ja)
Other versions
JP6065665B2 (en
Inventor
Hideyuki Kamii
英行 神井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2013048340A priority Critical patent/JP6065665B2/en
Publication of JP2014174406A publication Critical patent/JP2014174406A/en
Application granted granted Critical
Publication of JP6065665B2 publication Critical patent/JP6065665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a radiation-sensitive resin composition capable of easily forming a highly reliable cure film which contains a quantum dot composed of a safety material and has patternability and excellent fluorescent characteristics, and to provide a cured film, a light-emitting display element and a method for producing a light-emitting layer.SOLUTION: A radiation-sensitive resin composition is obtained by incorporating [A] an alkali-soluble resin, [B] a photo-acid generating body and [C] a semiconductor quantum dot. A cure film is formed on a substrate 12 using the radiation-sensitive resin composition. A wavelength conversion substrate 11 is formed by using the cured film as a light-emitting layer 13 and a light-emitting display element 100 is constituted in combination with a light source substrate 18 provided with a light source 17.

Description

本発明は、感放射線性樹脂組成物、硬化膜、発光表示素子および発光層の形成方法に関する。   The present invention relates to a radiation-sensitive resin composition, a cured film, a light-emitting display element, and a method for forming a light-emitting layer.

電子を閉じ込めるために形成された極小さな粒(ドット)が、量子ドットと称され、近年注目を集めている。1粒の量子ドットの大きさは、直径数ナノメートルから数10ナノメートルであり、約1万個の原子で構成されている。   Extremely small particles (dots) formed to confine electrons are called quantum dots and have recently attracted attention. The size of one quantum dot is several nanometers to several tens of nanometers in diameter, and is composed of about 10,000 atoms.

量子ドットは、太陽電池パネルの半導体の薄膜の中に分散させると、エネルギー変換効率を大幅に向上させることができることから太陽電池への適用が検討されている(例えば、特許文献1を参照のこと。)。また、量子ドットのサイズを変える(バンドギャップを変える)ことで、発光する蛍光の色(発光波長)を変えること(波長変換)ができるため、バイオ研究における蛍光プローブ(非特許文献1を参照のこと。)や、波長変換材料としての表示素子への適用(特許文献2および特許文献3を参照のこと。)が検討されている。   When quantum dots are dispersed in a semiconductor thin film of a solar cell panel, energy conversion efficiency can be greatly improved, so application to solar cells has been studied (for example, see Patent Document 1). .) In addition, by changing the size of the quantum dots (changing the band gap), it is possible to change the color (emission wavelength) of the emitted fluorescence (wavelength conversion), so fluorescent probes in bio research (see Non-Patent Document 1) And application to a display element as a wavelength conversion material (see Patent Document 2 and Patent Document 3).

特開2006−216560号公報JP 2006-216560 A 特開2008−112154号公報JP 2008-112154 A 特開2009−251129号公報JP 2009-251129 A

神隆、「半導体量子ドット、その合成法と生命科学への応用」、生産と技術、第63巻、第2号、2011年、p58〜p65Shintaka, “Semiconductor quantum dots, their synthesis and application to life science,” Production and Technology, Vol. 63, No. 2, 2011, p58-p65

非特許文献1や特許文献1の実施例に示されるように、代表的な量子ドットは、II−V族の半導体のCdSe(セレン化カドミウム)、CdTe(テルル化カドミウム)およびPbS等からなる半導体量子ドットである。   As shown in Examples of Non-Patent Document 1 and Patent Document 1, typical quantum dots are semiconductors made of II-V semiconductors such as CdSe (cadmium selenide), CdTe (cadmium telluride), and PbS. It is a quantum dot.

しかし、例えば、主成分である鉛(Pb)は、毒性への懸念が良く知られた材料である。また、カドミウム(Cd)とその化合物は、低濃度でも極めて強い毒性を示し、腎臓機能障害や発がん性が懸念される材料である。したがって、より安全な材料からなる半導体量子ドットの形成が求められている。   However, for example, lead (Pb), which is the main component, is a material that is well known for its concern for toxicity. Further, cadmium (Cd) and its compounds are extremely toxic even at low concentrations, and are materials for which renal dysfunction and carcinogenicity are a concern. Therefore, there is a demand for the formation of semiconductor quantum dots made of a safer material.

また、半導体量子ドットを太陽電池パネルや表示素子のディスプレイ等に適用しようとする場合、その蛍光発光を利用するため、粒子形態の半導体量子ドットからなる膜や層の形成が求められる場合がある。すなわち、蛍光発光を示す、波長変換膜(波長変換フィルム)または発光層の形成が求められることがある。   In addition, when semiconductor quantum dots are to be applied to a solar cell panel, a display of a display element, or the like, formation of a film or a layer composed of semiconductor quantum dots in a particle form may be required in order to utilize the fluorescence emission. That is, the formation of a wavelength conversion film (wavelength conversion film) or a light emitting layer that exhibits fluorescence may be required.

粒子形態の半導体量子ドットを用いた発光層の形成方法としては、例えば、特許文献1の実施例や特許文献2に示されるように、適当な基板上に直接に、半導体量子ドットからなる層を形成する方法が知られている。しかしながら、このような形成方法では、得られる発光層の安定性が乏しい。特に、半導体量子ドットからなる層と基板との結着性に懸念がある。   As a method for forming a light emitting layer using semiconductor quantum dots in the form of particles, for example, as shown in the examples of Patent Document 1 and Patent Document 2, a layer made of semiconductor quantum dots is directly formed on an appropriate substrate. Methods of forming are known. However, in such a formation method, the stability of the obtained light emitting layer is poor. In particular, there is concern about the binding property between the layer made of semiconductor quantum dots and the substrate.

そこで、粒子形態の半導体量子ドットを樹脂材料中に混合または埋め込んで、層または膜を構成する方法が提案されている。しかしながら、半導体量子ドットを用い、その蛍光特性を保ちながら、樹脂とともに層や膜の形成を行う方法は十分な検討がなされていない。   Therefore, a method of forming a layer or a film by mixing or embedding semiconductor quantum dots in a particle form in a resin material has been proposed. However, a method for forming a layer or a film together with a resin using a semiconductor quantum dot while maintaining its fluorescence characteristics has not been sufficiently studied.

そのため、半導体量子ドットを樹脂材料とともに用い、半導体量子ドットの蛍光発光特性を低下させることなく、半導体量子ドットの層を形成し、高信頼性の発光層を形成する技術が求められている。特に、半導体量子ドットとともに用いられ、半導体量子ドットと樹脂とからなる発光層の形成に好適となる樹脂材料が求められている。   Therefore, there is a need for a technique for using a semiconductor quantum dot together with a resin material to form a semiconductor quantum dot layer without reducing the fluorescence emission characteristics of the semiconductor quantum dot and to form a highly reliable light emitting layer. In particular, there is a demand for a resin material that is used together with semiconductor quantum dots and that is suitable for forming a light emitting layer made of semiconductor quantum dots and a resin.

その場合、樹脂材料は、特に、安全な材料からなる半導体量子ドットとともに用いられ、発光層の形成に好適となるものであることが望ましい。   In that case, it is desirable that the resin material be used together with a semiconductor quantum dot made of a safe material and be suitable for forming a light emitting layer.

加えて、半導体量子ドットと樹脂材料からなる発光層は、簡便な形成が可能で、高い生産性を有していることが好ましい。したがって、その半導体量子ドットと樹脂材料からなる発光層の形成には、例えば、塗布等の簡便な形成方法を利用できることが好ましい。そして、その発光層は、例えば、半導体量子ドットと樹脂成分とを含む液状の樹脂組成物から、塗布等の方法を利用して形成できることが好ましい。
そのため、半導体量子ドットと樹脂成分とを含んで調製され、塗布等の方法の利用により、発光層を形成できる樹脂組成物が求められている。
In addition, the light-emitting layer made of the semiconductor quantum dots and the resin material can be easily formed, and preferably has high productivity. Therefore, it is preferable that a simple forming method such as coating can be used for forming the light emitting layer made of the semiconductor quantum dots and the resin material. And it is preferable that the light emitting layer can be formed using methods, such as application | coating, from the liquid resin composition containing a semiconductor quantum dot and a resin component, for example.
Therefore, there is a demand for a resin composition that contains a semiconductor quantum dot and a resin component, and that can form a light emitting layer by using a method such as coating.

そしてさらに、その樹脂組成物は、優れたパターニング性を有することが好ましい。すなわち、発光層を形成する樹脂組成物は、例えば、発光表示素子の構成に好適に用いることができるように、パターニングされた発光層の形成が可能であることが好ましい。その場合、パターニングされた発光層の形成は、例えば、フォトリソグラフィ法等の利用が可能であり、簡便に実現できることが好ましい。
そのため、フォトリソグラフィ法等の公知のパターニング方法を利用して、パターニングされた発光層を簡便に形成することができる感放射線性の樹脂組成物が求められている。
Furthermore, it is preferable that the resin composition has an excellent patterning property. That is, the resin composition for forming the light emitting layer is preferably capable of forming a patterned light emitting layer so that it can be suitably used for the structure of a light emitting display element, for example. In that case, the formation of the patterned light-emitting layer can be performed easily, for example, by using a photolithography method or the like.
Therefore, there is a demand for a radiation-sensitive resin composition that can easily form a patterned light-emitting layer using a known patterning method such as a photolithography method.

本発明は、以上のような問題に鑑みてなされたものである。すなわち、本発明の目的は、安全な材料からなる半導体量子ドットを含み、パターニング性を有して、蛍光特性に優れた高信頼性の硬化膜を簡便に形成できる感放射線性樹脂組成物を提供することである。   The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a radiation-sensitive resin composition that includes a semiconductor quantum dot made of a safe material, has a patterning property, and can easily form a highly reliable cured film having excellent fluorescence characteristics. It is to be.

また、本発明の目的は、安全な材料からなる半導体量子ドットを含んでパターニング性を備えた感放射線性樹脂組成物を用いて形成され、蛍光特性に優れ、高い信頼性を有する硬化膜を提供することである。   Another object of the present invention is to provide a cured film that is formed using a radiation-sensitive resin composition having a patterning property including a semiconductor quantum dot made of a safe material, having excellent fluorescence characteristics and high reliability. It is to be.

また、本発明の目的は、安全な材料からなる半導体量子ドットを含んでパターニング性を備えた感放射線性樹脂組成物を用いて形成された発光層を有する発光表示素子を提供することである。   Moreover, the objective of this invention is providing the light emitting display element which has a light emitting layer formed using the radiation sensitive resin composition provided with patterning property including the semiconductor quantum dot which consists of a safe material.

さらに、本発明の目的は、安全な材料からなる半導体量子ドットを含んでパターニング性を有する感放射線性樹脂組成物を用いた、発光表示素子の発光層の形成方法を提供することである。   Furthermore, the objective of this invention is providing the formation method of the light emitting layer of a light emitting display element using the radiation sensitive resin composition which has the patternability including the semiconductor quantum dot which consists of a safe material.

本発明の他の目的および利点は、以下の記載から明らかとなるであろう。   Other objects and advantages of the present invention will become apparent from the following description.

本発明の第1の態様は、
[A]アルカリ可溶性樹脂、
[B]光酸発生体、および
[C]半導体量子ドット
を含有することを特徴とする感放射線性樹脂組成物に関する。
The first aspect of the present invention is:
[A] alkali-soluble resin,
[B] A photoacid generator, and [C] a radiation sensitive resin composition comprising a semiconductor quantum dot.

本発明の第1の態様において、[C]半導体量子ドットが、2族元素、12族元素、13族元素、14族元素、15族元素および16族元素よりなる群から選ばれる少なくとも2種の元素を含む化合物からなることが好ましい。   In the first aspect of the present invention, the [C] semiconductor quantum dot is at least two kinds selected from the group consisting of a group 2 element, a group 12 element, a group 13 element, a group 14 element, a group 15 element and a group 16 element. It is preferable to consist of a compound containing an element.

本発明の第1の態様において、[C]半導体量子ドットが、Inを構成成分として含む化合物からなることが好ましい。   1st aspect of this invention WHEREIN: It is preferable that a [C] semiconductor quantum dot consists of a compound which contains In as a structural component.

本発明の第1の態様において、[C]半導体量子ドットが、InP/ZnS化合物、CuInS/ZnS化合物、AgInS化合物、(ZnS/AgInS)固溶体/ZnS化合物、ZnドープAgInS化合物およびSi化合物よりなる群から選ばれる少なくとも1種であることが好ましい。 In the first aspect of the present invention, the [C] semiconductor quantum dot comprises an InP / ZnS compound, a CuInS 2 / ZnS compound, an AgInS 2 compound, a (ZnS / AgInS 2 ) solid solution / ZnS compound, a Zn-doped AgInS 2 compound, and a Si It is preferably at least one selected from the group consisting of compounds.

本発明の第1の態様において、[A]アルカリ可溶性樹脂が、カルボキシル基を有するアクリル樹脂、ポリイミド樹脂、ポリシロキサンおよびノボラック樹脂よりなる群から選ばれる少なくとも1種であることが好ましい。   In the first aspect of the present invention, the [A] alkali-soluble resin is preferably at least one selected from the group consisting of an acrylic resin having a carboxyl group, a polyimide resin, a polysiloxane, and a novolac resin.

本発明の第1の態様において、[B]光酸発生体が、キノンジアジド化合物からなることが好ましい。   1st aspect of this invention WHEREIN: It is preferable that a [B] photo-acid generator consists of a quinonediazide compound.

本発明の第1の態様において、[A]アルカリ可溶性樹脂100質量部に対する[C]半導体量子ドットの含有量が0.1質量部〜100質量部であることが好ましい。   1st aspect of this invention WHEREIN: It is preferable that content of [C] semiconductor quantum dot with respect to 100 mass parts of [A] alkali-soluble resin is 0.1 mass part-100 mass parts.

本発明の第2の態様は、本発明の第1の態様の感放射線性樹脂組成物を用いて形成されたことを特徴とする硬化膜に関する。   The second aspect of the present invention relates to a cured film characterized by being formed using the radiation-sensitive resin composition of the first aspect of the present invention.

本発明の第3の態様は、本発明の第1の態様の感放射線性樹脂組成物を用いて形成された発光層を有することを特徴とする発光表示素子に関する。   According to a third aspect of the present invention, there is provided a light emitting display device comprising a light emitting layer formed using the radiation sensitive resin composition of the first aspect of the present invention.

本発明の第4の態様は、本発明の第3の態様の発光表示素子の発光層の形成方法であって、
(1)本発明の第1の態様の感放射線性樹脂組成物の塗膜を基板上に形成する工程、
(2)工程(1)で形成した塗膜の少なくとも一部に放射線を照射する工程、
(3)工程(2)で放射線を照射された塗膜を現像する工程、および
(4)工程(3)で現像された塗膜を加熱する工程
を有する発光層の形成方法に関する。
A fourth aspect of the present invention is a method for forming a light emitting layer of a light emitting display element according to the third aspect of the present invention,
(1) The process of forming the coating film of the radiation sensitive resin composition of the 1st aspect of this invention on a board | substrate,
(2) A step of irradiating at least a part of the coating film formed in step (1),
(3) It is related with the formation method of the light emitting layer which has the process of developing the coating film irradiated with the radiation in process (2), and (4) The process of heating the coating film developed at process (3).

本発明の第1の態様によれば、安全な材料からなる半導体量子ドットを含み、パターニング性を有して、蛍光特性に優れた高信頼性の硬化膜を簡便に形成できる感放射線性樹脂組成物が提供される。   According to the first aspect of the present invention, the radiation-sensitive resin composition includes a semiconductor quantum dot made of a safe material, has a patterning property, and can easily form a highly reliable cured film having excellent fluorescence characteristics. Things are provided.

また、本発明の第2の態様によれば、安全な材料からなる半導体量子ドットを含んでパターニング性を備えた感放射線性樹脂組成物を用いて形成され、蛍光特性に優れ、高い信頼性を有する硬化膜が提供される。   In addition, according to the second aspect of the present invention, it is formed using a radiation-sensitive resin composition having a patterning property including a semiconductor quantum dot made of a safe material, having excellent fluorescence characteristics and high reliability. A cured film is provided.

また、本発明の第3の態様によれば、安全な材料からなる半導体量子ドットを含んでパターニング性を備えた感放射線性樹脂組成物を用いて形成された発光層を有する発光表示素子が提供される。   In addition, according to the third aspect of the present invention, there is provided a light emitting display element having a light emitting layer formed using a radiation sensitive resin composition having a patterning property including a semiconductor quantum dot made of a safe material. Is done.

また、本発明の第4の態様によれば、安全な材料からなる半導体量子ドットを含んでパターニング性を有する感放射線性樹脂組成物を用いた、発光表示素子の発光層の形成方法が提供される。   In addition, according to the fourth aspect of the present invention, there is provided a method for forming a light emitting layer of a light emitting display element using a radiation sensitive resin composition having patternability including semiconductor quantum dots made of a safe material. The

本発明の第2実施形態の硬化膜の形成における塗膜形成工程を説明する基板の断面図である。It is sectional drawing of the board | substrate explaining the coating-film formation process in formation of the cured film of 2nd Embodiment of this invention. 本発明の第2実施形態の硬化膜の形成における放射線照射工程を模式的に説明する断面図である。It is sectional drawing which illustrates typically the radiation irradiation process in formation of the cured film of 2nd Embodiment of this invention. 本発明の第2実施形態の硬化膜の形成における現像工程を説明する基板の断面図である。It is sectional drawing of the board | substrate explaining the image development process in formation of the cured film of 2nd Embodiment of this invention. 本発明の第2実施形態の硬化膜の形成における加熱工程を説明する硬化膜および基板の断面図である。It is sectional drawing of the cured film and board | substrate explaining the heating process in formation of the cured film of 2nd Embodiment of this invention. 本発明の第3実施形態の発光表示素子を模式的に示す断面図である。It is sectional drawing which shows typically the light emitting display element of 3rd Embodiment of this invention.

本発明の感放射線性樹脂組成物は、[A]アルカリ可溶性樹脂、[B]光酸発生体、および[C]半導体量子ドットを含有してなる感放射線性の樹脂組成物である。本発明の感放射線性樹脂組成物は、その感放射線性に基づき、例えば、フォトリソグラフィ法等を利用したパターニングが可能である。
尚、本発明において、露光に際して照射される「放射線」には、可視光線、紫外線、遠紫外線、X線および荷電粒子線等が含まれる。
The radiation sensitive resin composition of the present invention is a radiation sensitive resin composition comprising [A] an alkali-soluble resin, [B] a photoacid generator, and [C] a semiconductor quantum dot. The radiation-sensitive resin composition of the present invention can be patterned using, for example, a photolithography method based on the radiation sensitivity.
In the present invention, “radiation” irradiated upon exposure includes visible light, ultraviolet light, far ultraviolet light, X-rays, charged particle beams, and the like.

また、フォトリソグラフィ法には、加工や処理を受ける基板の表面に、レジスト組成物を塗布してレジスト膜を形成する工程、光や電子線を照射して所定のレジストパターンを露光することによりレジストパターン潜像を形成する露光工程、必要に応じ加熱処理する工程、次いでこれを現像して所望の微細パターンを形成する現像工程、および、この微細パターンをマスクとして基板に対してエッチング等の加工を行う工程等が含まれる。   Also, in the photolithography method, a resist composition is formed by applying a resist composition to the surface of a substrate to be processed or processed, and a resist pattern is exposed by irradiating light or an electron beam to expose a predetermined resist pattern. An exposure step for forming a pattern latent image, a heat treatment step if necessary, a development step for developing the pattern to form a desired fine pattern, and a process such as etching on the substrate using the fine pattern as a mask. The process to perform etc. are included.

そして、本発明の感放射線性樹脂組成物は、必要な場合にパターニングがなされ、その後、加熱されて、本発明の硬化膜を形成する。本発明の硬化膜は、樹脂中に[C]半導体量子ドットが含まれて構成される。   The radiation-sensitive resin composition of the present invention is patterned when necessary, and then heated to form the cured film of the present invention. The cured film of the present invention is constituted by including [C] semiconductor quantum dots in a resin.

そして、本発明の硬化膜は、 [C]半導体量子ドットに基づく蛍光発光(波長変換)機能を有する。そのため、励起光と異なる波長の蛍光を発光する波長変換膜や発光層としての利用が可能である。
特に、本発明の硬化膜は、発光表示素子の発光層としての利用に好適であり、後述する本発明の発光表示素子の構成に用いることができる。
The cured film of the present invention has a fluorescence emission (wavelength conversion) function based on [C] semiconductor quantum dots. Therefore, it can be used as a wavelength conversion film or a light emitting layer that emits fluorescence having a wavelength different from that of excitation light.
In particular, the cured film of the present invention is suitable for use as a light emitting layer of a light emitting display element, and can be used for the configuration of the light emitting display element of the present invention described later.

以下、本発明の感放射線性樹脂組成物、硬化膜、発光表示素子の発光層の形成方法、および、発光表示素子について説明する。   Hereinafter, the radiation sensitive resin composition, the cured film, the method for forming the light emitting layer of the light emitting display element, and the light emitting display element of the present invention will be described.

実施の形態1.
<感放射線性樹脂組成物>
本発明の第1実施形態の感放射線性樹脂組成物は、上述したように、[A]アルカリ可溶性樹脂、[B]光酸発生体、および[C]半導体量子ドットを必須の成分として含有する。
Embodiment 1 FIG.
<Radiation sensitive resin composition>
As described above, the radiation-sensitive resin composition of the first embodiment of the present invention contains [A] an alkali-soluble resin, [B] a photoacid generator, and [C] semiconductor quantum dots as essential components. .

このような組成を有することにより、本実施形態の感放射線性樹脂組成物は、パターニング性を備えることができ、また、優れた蛍光発光(波長変換)機能(以下、単に、蛍光性または蛍光特性等とも言う。)を備えた本発明の実施形態の硬化膜を形成することができる。   By having such a composition, the radiation-sensitive resin composition of the present embodiment can have patterning properties, and has an excellent fluorescence emission (wavelength conversion) function (hereinafter simply referred to as fluorescence or fluorescence characteristics). Etc.)) can be formed.

そして、本実施形態の感放射線性樹脂組成物は、形成される膜の硬化を促進する硬化促進剤を含有することができ、さらに、本発明の効果を損なわない限り、その他の任意成分を含有することができる。
以下で、本発明の第1実施形態の感放射線性樹脂組成物の含有成分について説明する。
And the radiation sensitive resin composition of this embodiment can contain the hardening accelerator which accelerates | stimulates hardening of the film | membrane formed, and also contains other arbitrary components, unless the effect of this invention is impaired. can do.
Below, the component of the radiation sensitive resin composition of 1st Embodiment of this invention is demonstrated.

〔[A]アルカリ可溶性樹脂〕
本実施形態の感放射線性樹脂組成物に含有される[A]アルカリ可溶性樹脂は、アルカリ性の溶剤に可溶な樹脂であり、アルカリ現像性を有する樹脂である。[A]アルカリ可溶性樹脂は、例えば、カルボキシル基を有するアクリル樹脂、ポリイミド樹脂、ポリシロキサン、およびノボラック樹脂から選ばれる1種であることが好ましい。以下で、[A]アルカリ可溶性樹脂として好ましい、カルボキシル基を有するアクリル樹脂、ポリイミド樹脂、ポリシロキサン、およびノボラック樹脂のそれぞれについてより詳細に説明する。
[[A] alkali-soluble resin]
The [A] alkali-soluble resin contained in the radiation-sensitive resin composition of the present embodiment is a resin that is soluble in an alkaline solvent and has alkali developability. [A] The alkali-soluble resin is preferably one selected from, for example, an acrylic resin having a carboxyl group, a polyimide resin, a polysiloxane, and a novolac resin. Hereinafter, each of [A] an acrylic resin having a carboxyl group, a polyimide resin, a polysiloxane, and a novolac resin, which is preferable as the alkali-soluble resin, will be described in more detail.

[カルボキシル基を有するアクリル樹脂]
[A]アルカリ可溶性樹脂として好ましい、カルボキシル基を有するアクリル樹脂は、カルボキシル基を有する構成単位と重合性基を有する構成単位とを含むものであることが好ましい。その場合、カルボキシル基を有する構成単位と重合性基を有する構成単位とを含み、アルカリ現像性(アルカリ可溶性)を有していれば、特に限定されない。
[Acrylic resin having carboxyl group]
[A] The acrylic resin having a carboxyl group, which is preferable as the alkali-soluble resin, preferably contains a structural unit having a carboxyl group and a structural unit having a polymerizable group. In that case, it is not particularly limited as long as it includes a structural unit having a carboxyl group and a structural unit having a polymerizable group and has alkali developability (alkali solubility).

重合性基を有する構成単位とは、エポキシ基を有する構成単位および(メタ)アクリロイルオキシ基を有する構成単位からなる群より選ばれる少なくとも1種の構成単位であることが好ましい。カルボキシル基を有するアクリル樹脂が、上記特定の構成単位を含むことで、優れた表面硬化性および深部硬化性を有する膜を形成して、本発明の実施形態の硬化膜を形成することができる。   The structural unit having a polymerizable group is preferably at least one structural unit selected from the group consisting of a structural unit having an epoxy group and a structural unit having a (meth) acryloyloxy group. When the acrylic resin having a carboxyl group contains the specific structural unit, a film having excellent surface curability and deep part curability can be formed, and the cured film of the embodiment of the present invention can be formed.

(メタ)アクリロイルオキシ基を有する構成単位は、例えば、共重合体中のエポキシ基に(メタ)アクリル酸を反応させる方法、共重合体中のカルボキシル基にエポキシ基を有する(メタ)アクリル酸エステルを反応させる方法、共重合体中の水酸基にイソシアネート基を有する(メタ)アクリル酸エステルを反応させる方法、共重合体中の酸無水物部位に(メタ)アクリル酸ヒドロキシエステルを反応させる方法等により形成することができる。これらのうち特に、共重合体中のカルボキシル基にエポキシ基を有する(メタ)アクリル酸エステルを反応させる方法が好ましい。   The structural unit having a (meth) acryloyloxy group is, for example, a method of reacting an epoxy group in a copolymer with (meth) acrylic acid, a (meth) acrylic acid ester having an epoxy group in a carboxyl group in the copolymer By a method of reacting (meth) acrylic acid ester having an isocyanate group with a hydroxyl group in a copolymer, a method of reacting (meth) acrylic acid hydroxy ester at an acid anhydride site in the copolymer, etc. Can be formed. Among these, a method of reacting a carboxyl group in the copolymer with a (meth) acrylic ester having an epoxy group is preferable.

カルボキシル基を有する構成単位と重合性基としてエポキシ基を有する構成単位を含むアクリル樹脂は、(A1)不飽和カルボン酸および不飽和カルボン酸無水物からなる群より選択される少なくとも1種(以下、「(A1)化合物」とも称する。)と、(A2)エポキシ基含有不飽和化合物(以下、「(A2)化合物」とも称する。)とを共重合して合成することができる。この場合、カルボキシル基を有するアクリル樹脂は、不飽和カルボン酸および不飽和カルボン酸無水物からなる群より選ばれる少なくとも1種から形成される構成単位並びにエポキシ基含有不飽和化合物から形成される構成単位を含む共重合体となる。   The acrylic resin containing a structural unit having a carboxyl group and a structural unit having an epoxy group as a polymerizable group is at least one selected from the group consisting of (A1) an unsaturated carboxylic acid and an unsaturated carboxylic acid anhydride (hereinafter referred to as “a”). It can be synthesized by copolymerizing “(A1) compound”) and (A2) an epoxy group-containing unsaturated compound (hereinafter also referred to as “(A2) compound”). In this case, the acrylic resin having a carboxyl group is a structural unit formed from at least one selected from the group consisting of an unsaturated carboxylic acid and an unsaturated carboxylic anhydride, and a structural unit formed from an epoxy group-containing unsaturated compound. It becomes a copolymer containing.

カルボキシル基を有するアクリル樹脂は、例えば、溶媒中で重合開始剤の存在下、カルボキシル基含有構成単位を与える(A1)化合物と、エポキシ基含有構成単位を与える(A2)化合物とを共重合することによって製造できる。また、(A3)水酸基含有構成単位を与える水酸基含有不飽和化合物(以下、「(A3)化合物」とも称する。)をさらに加えて、共重合体とすることもできる。さらに、カルボキシル基を有するアクリル樹脂の製造においては、上述の(A1)化合物、(A2)化合物および(A3)化合物と共に、(A4)化合物(上述の(A1)化合物、(A2)化合物および(A3)化合物に由来する構成単位以外の構成単位を与える不飽和化合物)をさらに加えて、共重合体とすることもできる。次に、(A1)〜(A3)の各化合物を詳述する。   The acrylic resin having a carboxyl group is, for example, copolymerizing a compound (A1) that gives a carboxyl group-containing structural unit and a compound (A2) that gives an epoxy group-containing structural unit in the presence of a polymerization initiator in a solvent. Can be manufactured. Further, (A3) a hydroxyl group-containing unsaturated compound that gives a hydroxyl group-containing structural unit (hereinafter also referred to as “(A3) compound”) may be further added to form a copolymer. Further, in the production of an acrylic resin having a carboxyl group, the (A4) compound (the (A1) compound, the (A2) compound and the (A3) described above) together with the above (A1) compound, (A2) compound and (A3) compound. Further, an unsaturated compound that gives structural units other than the structural unit derived from the compound) can be added to make a copolymer. Next, each compound of (A1) to (A3) will be described in detail.

((A1)化合物)
(A1)化合物としては、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸の無水物、多価カルボン酸のモノ〔(メタ)アクリロイルオキシアルキル〕エステル等が挙げられる。
((A1) Compound)
Examples of the compound (A1) include unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, anhydrides of unsaturated dicarboxylic acids, and mono [(meth) acryloyloxyalkyl] esters of polyvalent carboxylic acids.

不飽和モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸等が挙げられる。   Examples of the unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.

不飽和ジカルボン酸としては、例えば、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等が挙げられる。   Examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid and the like.

不飽和ジカルボン酸の無水物としては、例えば、上記ジカルボン酸として例示した化合物の無水物等が挙げられる。   As an anhydride of unsaturated dicarboxylic acid, the anhydride of the compound illustrated as said dicarboxylic acid etc. are mentioned, for example.

これらの(A1)化合物のうち、アクリル酸、メタクリル酸、無水マレイン酸が好ましく、アクリル酸、メタクリル酸、無水マレイン酸が共重合反応性、アルカリ水溶液に対する溶解性および入手の容易性からより好ましい。
これらの(A1)化合物は、単独で使用してもよいし、2種以上を混合して使用してもよい。
Among these (A1) compounds, acrylic acid, methacrylic acid, and maleic anhydride are preferable, and acrylic acid, methacrylic acid, and maleic anhydride are more preferable from the viewpoint of copolymerization reactivity, solubility in an alkaline aqueous solution, and availability.
These (A1) compounds may be used alone or in combination of two or more.

(A1)化合物の使用割合は、(A1)化合物並びに(A2)化合物(必要に応じて任意の(A3)化合物および(A4)化合物)の合計に基づいて、5質量%〜30質量%が好ましく、10質量%〜25質量%がより好ましい。(A1)化合物の使用割合を5質量%〜30質量%とすることによって、カルボキシル基を有するアクリル樹脂のアルカリ水溶液に対する溶解性を最適化するとともに、放射線性感度に優れる膜を形成することができる。   The use ratio of the compound (A1) is preferably 5% by mass to 30% by mass based on the sum of the compound (A1) and the compound (A2) (optional (A3) compound and (A4) compound as necessary). 10 mass%-25 mass% are more preferable. (A1) By making the usage rate of a compound 5 mass%-30 mass%, while being able to optimize the solubility with respect to the alkaline aqueous solution of the acrylic resin which has a carboxyl group, the film | membrane excellent in a radiation sensitivity can be formed. .

((A2)化合物)
(A2)化合物は、ラジカル重合性を有するエポキシ基含有不飽和化合物である。エポキシ基としては、オキシラニル基(1,2−エポキシ構造)またはオキセタニル基(1,3−エポキシ構造)等が挙げられる。
((A2) Compound)
The compound (A2) is an epoxy group-containing unsaturated compound having radical polymerizability. Examples of the epoxy group include an oxiranyl group (1,2-epoxy structure) or an oxetanyl group (1,3-epoxy structure).

オキシラニル基を有する不飽和化合物としては、例えば、アクリル酸グリシジル、メタクリル酸グリシジル、メタクリル酸2−メチルグリシジル、アクリル酸3,4−エポキシブチル、メタクリル酸3,4−エポキシブチル、アクリル酸6,7−エポキシヘプチル、メタクリル酸6,7−エポキシヘプチル、α−エチルアクリル酸−6,7−エポキシヘプチル、o−ビニルベンジルグリシジルエーテル、m−ビニルベンジルグリシジルエーテル、p−ビニルベンジルグリシジルエーテル、メタクリル酸3,4−エポキシシクロへキシルメチル等が挙げられる。これらのうち、メタクリル酸グリシジル、メタクリル酸2−メチルグリシジル、メタクリル酸−6,7−エポキシヘプチル、o−ビニルベンジルグリシジルエーテル、m−ビニルベンジルグリシジルエーテル、p−ビニルベンジルグリシジルエーテル、メタクリル酸3,4−エポキシシクロヘキシル、アクリル酸3,4−エポキシシクロヘキシル等が、共重合反応性および絶縁膜等の耐溶媒性等の向上の観点から好ましい。   Examples of the unsaturated compound having an oxiranyl group include glycidyl acrylate, glycidyl methacrylate, 2-methylglycidyl methacrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, and 6,7 acrylic acid. Epoxy heptyl, methacrylic acid 6,7-epoxy heptyl, α-ethylacrylic acid-6,7-epoxy heptyl, o-vinyl benzyl glycidyl ether, m-vinyl benzyl glycidyl ether, p-vinyl benzyl glycidyl ether, methacrylic acid 3 , 4-epoxycyclohexylmethyl and the like. Among these, glycidyl methacrylate, 2-methylglycidyl methacrylate, -6,7-epoxyheptyl methacrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, 3, methacrylate 4-Epoxycyclohexyl, 3,4-epoxycyclohexyl acrylate, and the like are preferable from the viewpoint of improving the copolymerization reactivity and the solvent resistance of the insulating film and the like.

オキセタニル基を有する不飽和化合物としては、例えば、
3−(アクリロイルオキシメチル)オキセタン、3−(アクリロイルオキシメチル)−2−メチルオキセタン、3−(アクリロイルオキシメチル)−3−エチルオキセタン、3−(アクリロイルオキシメチル)−2−フェニルオキセタン、3−(2−アクリロイルオキシエチル)オキセタン、3−(2−アクリロイルオキシエチル)−2−エチルオキセタン、3−(2−アクリロイルオキシエチル)−3−エチルオキセタン、3−(2−アクリロイルオキシエチル)−2−フェニルオキセタン等のアクリル酸エステル;
3−(メタクリロイルオキシメチル)オキセタン、3−(メタクリロイルオキシメチル)−2−メチルオキセタン、3−(メタクリロイルオキシメチル)−3−エチルオキセタン、3−(メタクリロイルオキシメチル)−2−フェニルオキセタン、3−(2−メタクリロイルオキシエチル)オキセタン、3−(2−メタクリロイルオキシエチル)−2−エチルオキセタン、3−(2−メタクリロイルオキシエチル)−3−エチルオキセタン、3−(2−メタクリロイルオキシエチル)−2−フェニルオキセタン、3−(2−メタクリロイルオキシエチル)−2,2−ジフルオロオキセタン等のメタクリル酸エステル等が挙げられる。
As an unsaturated compound having an oxetanyl group, for example,
3- (acryloyloxymethyl) oxetane, 3- (acryloyloxymethyl) -2-methyloxetane, 3- (acryloyloxymethyl) -3-ethyloxetane, 3- (acryloyloxymethyl) -2-phenyloxetane, 3- (2-acryloyloxyethyl) oxetane, 3- (2-acryloyloxyethyl) -2-ethyloxetane, 3- (2-acryloyloxyethyl) -3-ethyloxetane, 3- (2-acryloyloxyethyl) -2 -Acrylic esters such as phenyloxetane;
3- (methacryloyloxymethyl) oxetane, 3- (methacryloyloxymethyl) -2-methyloxetane, 3- (methacryloyloxymethyl) -3-ethyloxetane, 3- (methacryloyloxymethyl) -2-phenyloxetane, 3- (2-methacryloyloxyethyl) oxetane, 3- (2-methacryloyloxyethyl) -2-ethyloxetane, 3- (2-methacryloyloxyethyl) -3-ethyloxetane, 3- (2-methacryloyloxyethyl) -2 -Methacrylic acid esters such as phenyloxetane and 3- (2-methacryloyloxyethyl) -2,2-difluorooxetane.

これらの(A2)化合物のうち、メタクリル酸グリシジル、メタクリル酸3,4−エポキシシクロヘキシル、3−(メタクリロイルオキシメチル)−3−エチルオキセタンが好ましい。これらの(A2)化合物は、単独で使用してもよいし、2種以上を混合して使用してもよい。   Of these (A2) compounds, glycidyl methacrylate, 3,4-epoxycyclohexyl methacrylate, and 3- (methacryloyloxymethyl) -3-ethyloxetane are preferable. These (A2) compounds may be used alone or in combination of two or more.

(A2)化合物の使用割合は、(A1)化合物並びに(A2)化合物(必要に応じて任意の(A3)化合物および(A4)化合物)の合計に基づいて、5質量%〜60質量%が好ましく、10質量%〜50質量%がより好ましい。(A2)化合物の使用割合を5質量%〜60質量%とすることによって、優れた硬化性等を有する本実施形態の硬化膜を形成することができる。   The proportion of the compound (A2) used is preferably 5% by mass to 60% by mass based on the sum of the compound (A1) and the compound (A2) (optional (A3) compound and (A4) compound as necessary). 10 mass%-50 mass% are more preferable. (A2) By making the usage-amount of a compound into 5 mass%-60 mass%, the cured film of this embodiment which has the outstanding sclerosis | hardenability etc. can be formed.

((A3)化合物)
(A3)化合物としては、水酸基を有する(メタ)アクリル酸エステル、フェノール性水酸基を有する(メタ)アクリル酸エステル、ヒドロキシスチレンが挙げられる。
水酸基を有するアクリル酸エステルとしては、アクリル酸2−ヒドロキシエチル、アクリル酸3−ヒドロキシプロピル、アクリル酸4−ヒドロキシブチル、アクリル酸5−ヒドロキシペンチル、アクリル酸6−ヒドロキシヘキシル等が挙げられる。
((A3) Compound)
Examples of the compound (A3) include (meth) acrylic acid ester having a hydroxyl group, (meth) acrylic acid ester having a phenolic hydroxyl group, and hydroxystyrene.
Examples of the acrylic acid ester having a hydroxyl group include 2-hydroxyethyl acrylate, 3-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 5-hydroxypentyl acrylate, and 6-hydroxyhexyl acrylate.

水酸基を有するメタクリル酸エステルとしては、メタクリル酸2−ヒドロキシエチル、メタクリル酸3−ヒドロキシプロピル、メタクリル酸4−ヒドロキシブチル、メタクリル酸5−ヒドロキシペンチル、メタクリル酸6−ヒドロキシヘキシル等が挙げられる。   Examples of the methacrylic acid ester having a hydroxyl group include 2-hydroxyethyl methacrylate, 3-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 5-hydroxypentyl methacrylate, and 6-hydroxyhexyl methacrylate.

フェノール性水酸基を有するアクリル酸エステルとしては、アクリル酸2−ヒドロキシフェニル、アクリル酸4−ヒドロキシフェニル等が挙げられる。フェノール性水酸基を有するメタクリル酸エステルとしては、メタクリル酸2−ヒドロキシフェニル、メタクリル酸4−ヒドロキシフェニル等が挙げられる。   Examples of the acrylate ester having a phenolic hydroxyl group include 2-hydroxyphenyl acrylate and 4-hydroxyphenyl acrylate. Examples of the methacrylic acid ester having a phenolic hydroxyl group include 2-hydroxyphenyl methacrylate and 4-hydroxyphenyl methacrylate.

ヒドロキシスチレンとしては、o−ヒドロキシスチレン、p−ヒドロキシスチレン、α−メチル−p−ヒドロキシスチレンが好ましい。これらの(A3)化合物は、単独で使用してもよいし2種以上を混合して使用してもよい。   As hydroxystyrene, o-hydroxystyrene, p-hydroxystyrene, and α-methyl-p-hydroxystyrene are preferable. These (A3) compounds may be used alone or in admixture of two or more.

(A3)化合物の使用割合は、(A1)化合物、(A2)化合物並びに(A3)化合物(必要に応じて任意の(A4)化合物)の合計に基づいて、1質量%〜30質量%が好ましく、5質量%〜25質量%がより好ましい。   The proportion of the compound (A3) used is preferably 1% by mass to 30% by mass based on the sum of the compound (A1), the compound (A2) and the compound (A3) (optional (A4) compound if necessary). 5 mass%-25 mass% are more preferable.

((A4)化合物)
(A4)化合物は、上記の(A1)化合物、(A2)化合物および(A3)化合物以外の不飽和化合物であれば、特に制限されるものではない。(A4)化合物としては、例えば、メタクリル酸鎖状アルキルエステル、メタクリル酸環状アルキルエステル、アクリル酸鎖状アルキルエステル、アクリル酸環状アルキルエステル、メタクリル酸アリールエステル、アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、マレイミド化合物、不飽和芳香族化合物、共役ジエン、テトラヒドロフラン骨格等をもつ不飽和化合物およびその他の不飽和化合物等が挙げられる。
((A4) Compound)
(A4) A compound will not be restrict | limited especially if it is unsaturated compounds other than said (A1) compound, (A2) compound, and (A3) compound. Examples of (A4) compounds include methacrylic acid chain alkyl esters, methacrylic acid cyclic alkyl esters, acrylic acid chain alkyl esters, acrylic acid cyclic alkyl esters, methacrylic acid aryl esters, acrylic acid aryl esters, and unsaturated dicarboxylic acid diesters. , Maleimide compounds, unsaturated aromatic compounds, conjugated dienes, unsaturated compounds having a tetrahydrofuran skeleton, and other unsaturated compounds.

メタクリル酸鎖状アルキルエステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸sec−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸イソデシル、メタクリル酸n−ラウリル、メタクリル酸トリデシル、メタクリル酸n−ステアリル等が挙げられる。
メタクリル酸環状アルキルエステルとしては、例えば、メタクリル酸シクロヘキシル、メタクリル酸2−メチルシクロヘキシル、メタクリル酸トリシクロ[5.2.1.02,6]デカン−8−イル、メタクリル酸トリシクロ[5.2.1.02,6]デカン−8−イルオキシエチル、メタクリル酸イソボロニル等が挙げられる。
Examples of the chain alkyl ester of methacrylic acid include, for example, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, n methacrylate. -Lauryl, tridecyl methacrylate, n-stearyl methacrylate and the like.
Examples of the cyclic alkyl ester of methacrylic acid include cyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, tricyclo [5.2.1.0 2,6 ] decane-8-yl methacrylate, and tricyclomethacrylate [5.2. 1.0 2,6 ] decan-8-yloxyethyl, isobornyl methacrylate and the like.

アクリル酸鎖状アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸sec−ブチル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、アクリル酸イソデシル、アクリル酸n−ラウリル、アクリル酸トリデシル、アクリル酸n−ステアリル等が挙げられる。   Examples of the acrylic acid chain alkyl ester include methyl acrylate, ethyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, isodecyl acrylate, and n-acrylate. -Lauryl, tridecyl acrylate, n-stearyl acrylate and the like.

アクリル酸環状アルキルエステルとしては、例えば、アクリル酸シクロヘキシル、アクリル酸−2−メチルシクロヘキシル、アクリル酸トリシクロ[5.2.1.02,6]デカン−8−イル、アクリル酸トリシクロ[5.2.1.02,6]デカン−8−イルオキシエチル、アクリル酸イソボロニル等が挙げられる。 Examples of the acrylic acid cyclic alkyl ester include cyclohexyl acrylate, 2-methylcyclohexyl acrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl acrylate, and tricyclo [5.2 acrylate]. 1.0 2,6 ] decan-8-yloxyethyl, isobornyl acrylate, and the like.

メタクリル酸アリールエステルとしては、例えば、メタクリル酸フェニル、メタクリル酸ベンジル等が挙げられる。   Examples of the methacrylic acid aryl ester include phenyl methacrylate and benzyl methacrylate.

アクリル酸アリールエステルとしては、例えば、アクリル酸フェニル、アクリル酸ベンジル等が挙げられる。   Examples of the acrylic acid aryl ester include phenyl acrylate and benzyl acrylate.

不飽和ジカルボン酸ジエステルとしては、例えば、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチル等が挙げられる。   Examples of the unsaturated dicarboxylic acid diester include diethyl maleate, diethyl fumarate, diethyl itaconate and the like.

マレイミド化合物としては、例えば、N−フェニルマレイミド、N−シクロヘキシルマレイミド、N−ベンジルマレイミド、N−(4−ヒドロキシフェニル)マレイミド、N−(4−ヒドロキシベンジル)マレイミド、N−スクシンイミジル−3−マレイミドベンゾエート、N−スクシンイミジル−4−マレイミドブチレート、N−スクシンイミジル−6−マレイミドカプロエート、N−スクシンイミジル−3−マレイミドプロピオネート、N−(9−アクリジニル)マレイミド等が挙げられる。   Examples of maleimide compounds include N-phenylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, N- (4-hydroxyphenyl) maleimide, N- (4-hydroxybenzyl) maleimide, N-succinimidyl-3-maleimidobenzoate N-succinimidyl-4-maleimidobutyrate, N-succinimidyl-6-maleimidocaproate, N-succinimidyl-3-maleimidopropionate, N- (9-acridinyl) maleimide and the like.

不飽和芳香族化合物としては、例えば、スチレン、α−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルトルエン、p−メトキシスチレン等が挙げられる。
共役ジエンとしては、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン等が挙げられる。
Examples of the unsaturated aromatic compound include styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, and p-methoxystyrene.
Examples of the conjugated diene include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and the like.

テトラヒドロフラン骨格を含有する不飽和化合物としては、例えば、メタクリル酸テトラヒドロフルフリル、2−メタクリロイルオキシ−プロピオン酸テトラヒドロフルフリルエステル、3−(メタ)アクリロイルオキシテトラヒドロフラン−2−オン等が挙げられる。   Examples of the unsaturated compound containing a tetrahydrofuran skeleton include tetrahydrofurfuryl methacrylate, 2-methacryloyloxy-propionic acid tetrahydrofurfuryl ester, 3- (meth) acryloyloxytetrahydrofuran-2-one, and the like.

その他の不飽和化合物としては、例えば、アクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、メタクリルアミド、酢酸ビニル等が挙げられる。   Examples of other unsaturated compounds include acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene chloride, acrylamide, methacrylamide, and vinyl acetate.

これらの(A4)化合物のうち、メタクリル酸鎖状アルキルエステル、メタクリル酸環状アルキルエステル、メタクリル酸アリールエステル、マレイミド化合物、テトラヒドロフラン骨格、不飽和芳香族化合物、アクリル酸環状アルキルエステルが好ましい。これらのうち、特に、スチレン、メタクリル酸メチル、メタクリル酸t−ブチル、メタクリル酸n−ラウリル、メタクリル酸ベンジル、メタクリル酸トリシクロ[5.2.1.02,6]デカン−8−イル、p−メトキシスチレン、アクリル酸2−メチルシクロヘキシル、N−フェニルマレイミド、N−シクロヘキシルマレイミド、メタクリル酸テトラヒドロフルフリルが、共重合反応性およびアルカリ水溶液に対する溶解性の点から好ましい。 Among these (A4) compounds, methacrylic acid chain alkyl ester, methacrylic acid cyclic alkyl ester, methacrylic acid aryl ester, maleimide compound, tetrahydrofuran skeleton, unsaturated aromatic compound, and acrylic acid cyclic alkyl ester are preferable. Of these, styrene, methyl methacrylate, t-butyl methacrylate, n-lauryl methacrylate, benzyl methacrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, p -Methoxystyrene, 2-methylcyclohexyl acrylate, N-phenylmaleimide, N-cyclohexylmaleimide, and tetrahydrofurfuryl methacrylate are preferred from the viewpoints of copolymerization reactivity and solubility in an aqueous alkali solution.

これらの(A4)化合物は、単独で使用してもよいし、2種以上を混合して使用してもよい。   These (A4) compounds may be used alone or in combination of two or more.

(A4)化合物の使用割合としては、(A1)化合物、(A2)化合物並びに(A4)化合物(および任意の(A3)化合物)の合計に基づいて、10質量%〜80質量%が好ましい。   The proportion of the compound (A4) used is preferably 10% by mass to 80% by mass based on the total of the compound (A1), the compound (A2) and the compound (A4) (and any (A3) compound).

[ポリイミド樹脂]
本実施形態の感放射線性樹脂組成物に用いられる[A」アルカリ可溶性樹脂として好ましいポリイミド樹脂は、重合体の構成単位中にカルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる少なくとも1種を有するポリイミド樹脂である。構成単位中にこれらのアルカリ可溶性の基を有することでアルカリ現像性(アルカリ可溶性)を備え、アルカリ現像時に露光部のスカム発現を抑えることができる。
[Polyimide resin]
The polyimide resin preferable as the [A] alkali-soluble resin used in the radiation-sensitive resin composition of the present embodiment is selected from the group consisting of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group, and a thiol group in the structural unit of the polymer. It is a polyimide resin having at least one kind. Having these alkali-soluble groups in the structural unit provides alkali developability (alkali-solubility), and can suppress the occurrence of scum in the exposed area during alkali development.

また、ポリイミド樹脂は、構成単位中にフッ素原子を有すると、アルカリ水溶液で現像する際に、膜の界面に撥水性が付与され、界面のしみこみ等が抑えられるため好ましい。ポリイミド樹脂中のフッ素原子含有量は、界面のしみこみ防止効果を充分得るために10質量%以上が好ましく、また、アルカリ水溶液に対する溶解性の点から20質量%以下が好ましい。   In addition, it is preferable that the polyimide resin has a fluorine atom in the structural unit, since water repellency is imparted to the interface of the film and development of the interface is suppressed when developing with an alkaline aqueous solution. The fluorine atom content in the polyimide resin is preferably 10% by mass or more in order to sufficiently obtain the effect of preventing the penetration of the interface, and is preferably 20% by mass or less from the viewpoint of solubility in an alkaline aqueous solution.

本実施形態の感放射線性樹脂組成物に用いられる[A]アルカリ可溶性樹脂として好ましいポリイミド樹脂は、例えば、酸成分とアミン成分とを縮合して得られるポリイミド樹脂である。酸成分としてはテトラカルボン酸二無水物を選択することが好ましく、アミン成分には、ジアミンを選択することが好ましい。
[A]アルカリ可溶性樹脂として好ましいポリイミド樹脂の構造は、特に限定されるものではないが、下記式(I−1)で表される構造単位を有することが好ましい。
A polyimide resin preferable as the [A] alkali-soluble resin used in the radiation-sensitive resin composition of the present embodiment is, for example, a polyimide resin obtained by condensing an acid component and an amine component. Tetracarboxylic dianhydride is preferably selected as the acid component, and diamine is preferably selected as the amine component.
[A] The structure of a polyimide resin preferable as an alkali-soluble resin is not particularly limited, but preferably has a structural unit represented by the following formula (I-1).

Figure 2014174406
Figure 2014174406

上記式(I−1)中、Rは4価〜14価の有機基、Rは2価〜12価の有機基を表す。
およびRは、カルボキシル基、フェノール性水酸基、スルホン酸基またはチオール基を示し、それぞれ同じでも異なっていてもよい。aおよびbは0〜10の整数を表す。
In the above formula (I-1), R 1 represents a tetravalent to 14-valent organic group, and R 2 represents a divalent to 12-valent organic group.
R 3 and R 4 represent a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group, or a thiol group, and may be the same or different. a and b represent the integer of 0-10.

上記式(I−1)中、Rは、ポリイミド樹脂の形成に用いられたテトラカルボン酸二無水物の残基を表しており、4価〜14価の有機基である。中でも芳香族環または環状脂肪族基を含有する炭素原子数5〜40の有機基が好ましい。 In the formula (I-1), R 1 represents the residue of a tetracarboxylic dianhydride used in the formation of a polyimide resin, a tetravalent to 14-valent organic group. Among these, an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cyclic aliphatic group is preferable.

ポリイミド樹脂の形成に用いられるテトラカルボン酸二無水物としては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン二無水物、9,9−ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}フルオレン二無水物または下記に示した構造の酸二無水物などが好ましい。これらを2種以上用いてもよい。   Examples of tetracarboxylic dianhydrides used for forming polyimide resins include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride. 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenonetetra Carboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis ( 3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2 , 3-Di Ruboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 2,2-bis (3,4-di Carboxyphenyl) hexafluoropropane dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride, Preference is given to 9-bis {4- (3,4-dicarboxyphenoxy) phenyl} fluorene dianhydride or an acid dianhydride having the structure shown below. Two or more of these may be used.

Figure 2014174406
Figure 2014174406

は酸素原子、C(CF、C(CHまたはSOを示す。RおよびRは水素原子、水酸基またはチオール基を示す。 R 5 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 . R 6 and R 7 represent a hydrogen atom, a hydroxyl group or a thiol group.

上記式(I−1)において、Rは、ポリイミド樹脂の形成に用いられたジアミンの残基を表しており、2価〜12価の有機基である。中でも芳香族環または環状脂肪族基を含有する炭素原子数5〜40の有機基が好ましい。 In the above formula (I-1), R 2 represents the residue of the diamine used for forming the polyimide resin, and is a divalent to 12-valent organic group. Among these, an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cyclic aliphatic group is preferable.

ポリイミド樹脂の形成に用いられるジアミンの具体的な例としては、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルヒド、3,4’−ジアミノジフェニルスルヒド、4,4’−ジアミノジフェニルスルヒド、m−フェニレンジアミン、p−フェニレンジアミン、1,4−ビス(4−アミノフェノキシ)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレンまたは下記に示した構造のジアミン等が好ましい。これらを2種以上用いてもよい。   Specific examples of the diamine used for forming the polyimide resin include 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenylmethane, 3, 4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfide 3,4′-diaminodiphenylsulfide, 4,4′-diaminodiphenylsulfide, m-phenylenediamine, p-phenylenediamine, 1,4-bis (4-aminophenoxy) benzene, 9,9-bis ( 4-aminophenyl) fluorene or shown below Diamine of the structure is preferable. Two or more of these may be used.

Figure 2014174406
Figure 2014174406

は酸素原子、C(CF、C(CHまたはSOを示す。R〜Rは水素原子、水酸基またはチオール基を示す。 R 5 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 . R 6 to R 9 represent a hydrogen atom, a hydroxyl group or a thiol group.

また、本実施形態の感放射線性樹脂組成物の塗膜を基板上に形成し、その後に形成される硬化膜と基板との接着性を向上させるために、耐熱性を低下させない範囲で、RまたはRにシロキサン構造を有する脂肪族の基を共重合してもよい。具体的には、アミン成分であるジアミンとして、ビス(3−アミノプロピル)テトラメチルジシロキサン、ビス(p−アミノフェニル)オクタメチルペンタシロキサン等を1モル%〜10モル%共重合したもの等が挙げられる。 In addition, in order to improve the adhesion between the cured film formed thereafter and the substrate by forming a coating film of the radiation-sensitive resin composition of the present embodiment on the substrate, R is within a range where the heat resistance is not lowered. it may be copolymerized aliphatic groups with a siloxane structure 1 or R 2. Specifically, as the diamine which is an amine component, bis (3-aminopropyl) tetramethyldisiloxane, bis (p-aminophenyl) octamethylpentasiloxane or the like copolymerized by 1 mol% to 10 mol%, etc. Can be mentioned.

上記式(I−1)において、RおよびRはカルボキシル基、フェノール性水酸基、スルホン酸基またはチオール基を示す。aおよびbは0〜10の整数を示す。得られる感放射線性樹脂組成物の安定性からは、aおよびbは0が好ましいが、アルカリ水溶液に対する溶解性の観点から、aおよびbは1以上が好ましい。 In the above formula (I-1), R 3 and R 4 represent a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group or a thiol group. a and b show the integer of 0-10. Although a and b are preferably 0 from the stability of the resulting radiation-sensitive resin composition, a and b are preferably 1 or more from the viewpoint of solubility in an aqueous alkali solution.

このRおよびRのアルカリ可溶性基の量を調整することで、アルカリ水溶液に対する溶解速度が変化するので、この調整により適度な溶解速度を有した感放射線性樹脂組成物を得ることができる。 By adjusting the amount of the alkali-soluble group of R 3 and R 4, the dissolution rate with respect to the aqueous alkali solution is changed, so that a radiation-sensitive resin composition having an appropriate dissolution rate can be obtained by this adjustment.

上記RおよびRがいずれもフェノール性水酸基である場合、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液に対する溶解速度をより適切な範囲とするためには、(a)ポリイミド樹脂がフェノール性水酸基量を(a)1kg中2モル〜4モル含有することが好ましい。フェノール性水酸基量をこの範囲とすることで、より高感度および高コントラストの感放射線性樹脂組成物が得られる。 In the case where both R 3 and R 4 are phenolic hydroxyl groups, in order to make the dissolution rate in a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution more suitable, It is preferable to contain 2 mol to 4 mol of phenolic hydroxyl group in 1 kg of (a). By setting the amount of phenolic hydroxyl group within this range, a radiation-sensitive resin composition with higher sensitivity and contrast can be obtained.

また、上記式(I−1)で表される構成単位を有するポリイミドは、主鎖末端にアルカリ可溶性基を有することが好ましい。このようなポリイミドは高いアルカリ可溶性を有する。アルカリ可溶性基の具体例としては、カルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基等が挙げられる。主鎖末端へのアルカリ可溶性基の導入は、末端封止剤にアルカリ可溶性基を持たせることにより行うことができる。末端封止剤は、モノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物等を用いることができる。   Moreover, it is preferable that the polyimide which has a structural unit represented by the said formula (I-1) has an alkali-soluble group in the principal chain terminal. Such polyimide has high alkali solubility. Specific examples of the alkali-soluble group include a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group, and a thiol group. Introduction of an alkali-soluble group at the end of the main chain can be carried out by imparting an alkali-soluble group to the end capping agent. As the terminal capping agent, monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound, monoactive ester compound and the like can be used.

末端封止剤として用いられるモノアミンとしては、5−アミノ−8−ヒドロキシキノリン、1−ヒドロキシ−7−アミノナフタレン、1−ヒドロキシ−6−アミノナフタレン、1−ヒドロキシ−5−アミノナフタレン、1−ヒドロキシ−4−アミノナフタレン、2−ヒドロキシ−7−アミノナフタレン、2−ヒドロキシ−6−アミノナフタレン、2−ヒドロキシ−5−アミノナフタレン、1−カルボキシ−7−アミノナフタレン、1−カルボキシ−6−アミノナフタレン、1−カルボキシ−5−アミノナフタレン、2−カルボキシ−7−アミノナフタレン、2−カルボキシ−6−アミノナフタレン、2−カルボキシ−5−アミノナフタレン、2−アミノ安息香酸、3−アミノ安息香酸、4−アミノ安息香酸、4−アミノサリチル酸、5−アミノサリチル酸、6−アミノサリチル酸、2−アミノベンゼンスルホン酸、3−アミノベンゼンスルホン酸、4−アミノベンゼンスルホン酸、3−アミノ−4,6−ジヒドロキシピリミジン、2−アミノフェノール、3−アミノフェノール、4−アミノフェノール、2−アミノチオフェノール、3−アミノチオフェノール、4−アミノチオフェノール等が好ましい。これらを2種以上用いてもよい。   Monoamines used as end capping agents include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy. -4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4 -Aminobenzoic acid, 4-aminosalicylic acid, 5-amino Salicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4-aminobenzenesulfonic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4 -Aminophenol, 2-aminothiophenol, 3-aminothiophenol, 4-aminothiophenol and the like are preferable. Two or more of these may be used.

末端封止剤として用いられる酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物としては、無水フタル酸、無水マレイン酸、ナジック酸無水物、シクロヘキサンジカルボン酸無水物、3−ヒドロキシフタル酸無水物等の酸無水物、3−カルボキシフェノール、4−カルボキシフェノール、3−カルボキシチオフェノール、4−カルボキシチオフェノール、1−ヒドロキシ−7−カルボキシナフタレン、1−ヒドロキシ−6−カルボキシナフタレン、1−ヒドロキシ−5−カルボキシナフタレン、1−メルカプト−7−カルボキシナフタレン、1−メルカプト−6−カルボキシナフタレン、1−メルカプト−5−カルボキシナフタレン、3−カルボキシベンゼンスルホン酸、4−カルボキシベンゼンスルホン酸等のモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5−ジカルボキシナフタレン、1,6−ジカルボキシナフタレン、1,7−ジカルボキシナフタレン、2,6−ジカルボキシナフタレン等のジカルボン酸類の一方のカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN−ヒドロキシベンゾトリアゾールやN−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドとの反応により得られる活性エステル化合物等が好ましい。これらを2種以上用いてもよい。   Examples of acid anhydrides, monocarboxylic acids, monoacid chloride compounds, and monoactive ester compounds used as end-capping agents include phthalic anhydride, maleic anhydride, nadic acid anhydride, cyclohexanedicarboxylic acid anhydride, 3-hydroxyphthalic acid Acid anhydrides such as acid anhydrides, 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1 -Hydroxy-5-carboxynaphthalene, 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid, 4-carboxybenzenesulfonic acid, etc. Mo Carboxylic acids and monoacid chloride compounds in which these carboxyl groups are acid chloride, terephthalic acid, phthalic acid, maleic acid, cyclohexanedicarboxylic acid, 1,5-dicarboxynaphthalene, 1,6-dicarboxynaphthalene, 1,7- A monoacid chloride compound in which only one carboxyl group of dicarboxylic acids such as dicarboxynaphthalene and 2,6-dicarboxynaphthalene is acid chloride, monoacid chloride compound and N-hydroxybenzotriazole or N-hydroxy-5-norbornene- Active ester compounds obtained by reaction with 2,3-dicarboximide are preferred. Two or more of these may be used.

末端封止剤に用いられるモノアミンの導入割合は、全アミン成分に対して、好ましくは0.1モル%以上、特に好ましくは5モル%以上であり、好ましくは60モル%以下、特に好ましくは50モル%以下である。末端封止剤として用いられる酸無水物、モノカルボン酸、モノ酸クロリド化合物またはモノ活性エステル化合物の導入割合は、ジアミン成分に対して、好ましくは0.1モル%以上、特に好ましくは5モル%以上であり、好ましくは100モル%以下、特に好ましくは90モル%以下である。複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。   The introduction ratio of the monoamine used for the terminal blocking agent is preferably 0.1 mol% or more, particularly preferably 5 mol% or more, preferably 60 mol% or less, particularly preferably 50, based on the total amine component. It is less than mol%. The introduction ratio of the acid anhydride, monocarboxylic acid, monoacid chloride compound or monoactive ester compound used as the end-capping agent is preferably 0.1 mol% or more, particularly preferably 5 mol%, relative to the diamine component. Or more, preferably 100 mol% or less, particularly preferably 90 mol% or less. A plurality of different end groups may be introduced by reacting a plurality of end-capping agents.

上記式(I−1)で表される構成単位を有するポリイミド樹脂において、構成単位の繰り返し数は3以上が好ましく、5以上がより好ましく、また200以下が好ましく、100以下がより好ましい。この範囲であれば本実施形態の感光性樹脂組成物を厚膜で使用することが可能になる。   In the polyimide resin having the structural unit represented by the formula (I-1), the number of repeating structural units is preferably 3 or more, more preferably 5 or more, and preferably 200 or less, more preferably 100 or less. If it is this range, it will become possible to use the photosensitive resin composition of this embodiment by a thick film.

本実施形態において、[A]アルカリ可溶性樹脂として好ましいポリイミド樹脂は、上記式(I−1)で表される構成単位のみからなるものであってもよいし、他の構成単位との共重合体あるいは混合体であってもよい。その際、上記式(I−1)で表される構成単位をポリイミド樹脂全体の10質量%以上含有することが好ましい。10質量%以上であれば、熱硬化時の収縮を抑えることができ、厚膜の硬化膜の作製に好適である。共重合あるいは混合に用いられる構成単位の種類および量は、最終加熱処理によって得られるポリイミド樹脂の耐熱性を損なわない範囲で選択することが好ましい。例えば、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール等が挙げられる。これらの構成単位はポリイミド樹脂中70質量%以下が好ましい。   In the present embodiment, [A] the polyimide resin preferable as the alkali-soluble resin may be composed only of the structural unit represented by the above formula (I-1), or a copolymer with another structural unit. Or a mixture may be sufficient. In that case, it is preferable to contain the structural unit represented by the said formula (I-1) 10 mass% or more of the whole polyimide resin. If it is 10 mass% or more, the shrinkage | contraction at the time of thermosetting can be suppressed, and it is suitable for preparation of a thick cured film. The type and amount of the structural unit used for copolymerization or mixing is preferably selected within a range that does not impair the heat resistance of the polyimide resin obtained by the final heat treatment. Examples include benzoxazole, benzimidazole, and benzothiazole. These structural units are preferably 70% by mass or less in the polyimide resin.

本実施形態において、好ましいポリイミド樹脂は、例えば、公知の方法を用いてポリイミド前駆体を得、これを公知のイミド化反応法を用いてイミド化させる方法を利用して合成することができる。ポリイミド前駆体の公知の合成法としては、ジアミンの一部を末端封止剤であるモノアミンに置き換えて、または、酸二無水物の一部を末端封止剤であるモノカルボン酸、酸無水物、モノ酸クロリド化合物、モノ活性エステル化合物に置き換えて、アミン成分と酸成分を反応させることで得られる。例えば、低温中でテトラカルボン酸二無水物とジアミン(一部をモノアミンに置換)を反応させる方法、低温中でテトラカルボン酸二無水物(一部を酸無水物、モノ酸クロリド化合物またはモノ活性エステル化合物に置換)とジアミンを反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後ジアミン(一部をモノアミンに置換)と縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸を酸クロリド化し、ジアミン(一部をモノアミンに置換)と反応させる方法等がある。   In the present embodiment, for example, a preferable polyimide resin can be synthesized by using a method in which a polyimide precursor is obtained using a known method and is imidized using a known imidization reaction method. As a known synthesis method of the polyimide precursor, a part of the diamine is replaced with a monoamine which is a terminal blocking agent, or a part of the acid dianhydride is a monocarboxylic acid or an acid anhydride which is a terminal blocking agent. It can be obtained by reacting an amine component and an acid component in place of a monoacid chloride compound or a monoactive ester compound. For example, a method of reacting tetracarboxylic dianhydride and diamine (partially substituted with monoamine) at low temperature, tetracarboxylic dianhydride (partially acid anhydride, monoacid chloride compound or monoactivity at low temperature) A method in which an ester compound is substituted) and a diamine, a diester is obtained from a tetracarboxylic dianhydride and an alcohol, and then a reaction is performed in the presence of a diamine (partially substituted with a monoamine) and a condensing agent, tetracarboxylic acid There is a method in which a diester is obtained with a dianhydride and an alcohol, and then the remaining dicarboxylic acid is acid chlorideed and reacted with a diamine (partially substituted with a monoamine).

また、本実施形態のポリイミド樹脂のイミド化率は、例えば、以下の方法で容易に求めることができる。まず、ポリマーの赤外吸収スペクトルを測定し、ポリイミドに起因するイミド構造の吸収ピーク(1780cm−1付近、1377cm−1付近)の存在を確認する。次に、そのポリマーを350℃で1時間熱処理し、赤外吸収スペクトルを測定し、1377cm−1付近のピーク強度を比較することによって、熱処理前ポリマー中のイミド基の含量を算出し、イミド化率を求める。 Moreover, the imidation ratio of the polyimide resin of this embodiment can be easily calculated | required with the following method, for example. First, measuring the infrared absorption spectrum of the polymer, absorption peaks of an imide structure caused by a polyimide (1780 cm around -1, 1377 cm around -1) to confirm the presence of. Next, the polymer was heat-treated at 350 ° C. for 1 hour, the infrared absorption spectrum was measured, and the peak intensity around 1377 cm −1 was compared to calculate the content of imide groups in the polymer before heat treatment. Find the rate.

本実施形態においてポリイミド樹脂のイミド化率は、耐薬品性、高収縮残膜率の点から80%以上であることが好ましい。   In the present embodiment, the imidation ratio of the polyimide resin is preferably 80% or more from the viewpoint of chemical resistance and a high shrinkage residual film ratio.

また、本実施形態において好ましいポリイミド樹脂に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入されたポリイミド樹脂を、酸性溶液に溶解し、ポリイミド樹脂の構成単位であるアミン成分と酸無水物成分に分解し、これをガスクロマトグラフィ(GC)や、NMR測定することにより、ポリイミド樹脂の形成に用いられた末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入されたポリマー成分を直接、熱分解ガスクロクロマトグラフ(PGC)や赤外スペクトルおよび13C−NMRスペクトルで測定することによっても、容易に検出可能である。   Moreover, the terminal blocker introduce | transduced into the preferable polyimide resin in this embodiment can be easily detected with the following method. For example, a polyimide resin introduced with a terminal blocking agent is dissolved in an acidic solution and decomposed into an amine component and an acid anhydride component, which are constituent units of the polyimide resin, and this is measured by gas chromatography (GC) or NMR. Thus, the end-capping agent used for forming the polyimide resin can be easily detected. Apart from this, the polymer component into which the end-capping agent has been introduced can also be easily detected by directly measuring it with a pyrolysis gas chromatograph (PGC), an infrared spectrum and a 13C-NMR spectrum.

[ポリシロキサン]
本実施形態の感放射線性樹脂組成物において用いられる樹脂として好ましいポリシロキサンは、ラジカル反応性官能基を有するポリシロキサンである。ポリシロキサンがラジカル反応性官能基を有するポリシロキサンである場合、シロキサン結合を有する化合物のポリマーの主鎖または側鎖にラジカル反応性官能基を有するものであれば特に限定されるものではない。その場合、ポリシロキサンは、ラジカル重合により硬化させることができ、硬化収縮を最小限に抑えることが可能である。ラジカル反応性官能基としては、例えば、ビニル基、α−メチルビニル基、アクリロイル基、メタクリロイル基、スチリル基等の不飽和有機基が挙げられる。これらのうち、硬化反応が円滑に進むことから、アクリロイル基またはメタクリロイル基を有するものが好ましい。
[Polysiloxane]
A preferred polysiloxane as a resin used in the radiation sensitive resin composition of the present embodiment is a polysiloxane having a radical reactive functional group. When the polysiloxane is a polysiloxane having a radical reactive functional group, the polysiloxane is not particularly limited as long as it has a radical reactive functional group in the main chain or side chain of a polymer having a siloxane bond. In that case, the polysiloxane can be cured by radical polymerization, and cure shrinkage can be minimized. Examples of the radical reactive functional group include unsaturated organic groups such as vinyl group, α-methylvinyl group, acryloyl group, methacryloyl group, and styryl group. Among these, those having an acryloyl group or a methacryloyl group are preferable because the curing reaction proceeds smoothly.

本実施形態において好ましいポリシロキサンは、加水分解性シラン化合物の加水分解縮合物であることが好ましい。ポリシロキサンを構成する加水分解性シラン化合物は、(s1)下記式(S−1)で示される加水分解性シラン化合物(以下、「(s1)化合物」とも言う。)と、(s2)下記式(S−2)で示される加水分解性シラン化合物(以下、「(s2)化合物」とも言う。)とを含む加水分解性シラン化合物であることが好ましい。   In the present embodiment, the preferred polysiloxane is preferably a hydrolysis condensate of a hydrolyzable silane compound. The hydrolyzable silane compound constituting the polysiloxane includes (s1) a hydrolyzable silane compound represented by the following formula (S-1) (hereinafter also referred to as “(s1) compound”), and (s2) the following formula. A hydrolyzable silane compound including the hydrolyzable silane compound (hereinafter also referred to as “(s2) compound”) represented by (S-2) is preferable.

Figure 2014174406
Figure 2014174406

Figure 2014174406
Figure 2014174406

上記式(S−1)中、R11は炭素数1〜6のアルキル基である。R12はラジカル反応性官能基を含む有機基である。pは1〜3の整数である。但し、R11およびR12が複数となる場合、複数のR11およびR12はそれぞれ独立している。 In the above formula (S-1), R 11 is an alkyl group having 1 to 6 carbon atoms. R 12 is an organic group containing a radical reactive functional group. p is an integer of 1 to 3. However, if R 11 and R 12 is plural, R 11 and R 12 are each, independently.

上記式(S−2)中、R13は炭素数1〜6のアルキル基である。R14は水素原子、炭素数1〜20のアルキル基、炭素数1〜20のフッ化アルキル基、フェニル基、トリル基、ナフチル基、エポキシ基、アミノ基またはイソシアネート基である。nは0〜20の整数である。qは0〜3の整数である。但し、R13およびR14が複数となる場合、複数のR13およびR14はそれぞれ独立している。 In the above formula (S-2), R 13 is an alkyl group having 1 to 6 carbon atoms. R 14 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a fluorinated alkyl group having 1 to 20 carbon atoms, a phenyl group, a tolyl group, a naphthyl group, an epoxy group, an amino group, or an isocyanate group. n is an integer of 0-20. q is an integer of 0-3. However, if R 13 and R 14 is plural, R 13 and R 14 are each, independently.

本発明において、「加水分解性シラン化合物」とは、通常、無触媒、過剰の水の共存下、室温(約25℃)〜約100℃の温度範囲内で加熱することにより、加水分解してシラノール基を生成することができる基またはシロキサン縮合物を形成することができる基を有する化合物を指す。上記式(S−1)および上記式(S−2)で表される加水分解性シラン化合物の加水分解反応においては、生成するポリシロキサン中に、一部の加水分解性基が未加水分解の状態で残っていてもよい。ここで、「加水分解性基」とは、上述した加水分解してシラノール基を生成することができる基またはシロキサン縮合物を形成することができる基のことをいう。また、本実施形態の感放射線性樹脂組成物中において、一部の加水分解性シラン化合物は、その分子中の一部または全部の加水分解性基が未加水分解の状態で、かつ他の加水分解性シラン化合物と縮合せずに単量体の状態で残っていてもよい。尚、「加水分解縮合物」は加水分解されたシラン化合物の一部のシラノール基同士が縮合した加水分解縮合物を意味する。以下、(s1)化合物および(s2)化合物について詳述する。   In the present invention, the “hydrolyzable silane compound” is usually hydrolyzed by heating in the temperature range of room temperature (about 25 ° C.) to about 100 ° C. in the presence of a catalyst and excess water. It refers to a compound having a group capable of forming a silanol group or a group capable of forming a siloxane condensate. In the hydrolysis reaction of the hydrolyzable silane compound represented by the above formula (S-1) and (S-2), some hydrolyzable groups are not hydrolyzed in the polysiloxane to be formed. It may remain in the state. Here, the “hydrolyzable group” means a group capable of forming a silanol group by hydrolysis as described above or a group capable of forming a siloxane condensate. In addition, in the radiation-sensitive resin composition of the present embodiment, some hydrolyzable silane compounds have some or all of the hydrolyzable groups in the molecule unhydrolyzed and other hydrolysable groups. It may remain in a monomer state without condensing with the decomposable silane compound. The “hydrolysis condensate” means a hydrolysis condensate obtained by condensing some silanol groups of a hydrolyzed silane compound. Hereinafter, the (s1) compound and the (s2) compound will be described in detail.

((s1)化合物)
上記式(S−1)中、R11は炭素数1〜6のアルキル基である。R12はラジカル反応性官能基を含む有機基である。pは1〜3の整数である。但し、R11およびR12が複数となる場合、複数のR11およびR12はそれぞれ独立している。
上述のR11である炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、ブチル基等が挙げられる。これらのうち、加水分解の容易性の観点から、メチル基、エチル基が好ましい。上記のpとしては、加水分解縮合反応の進行の観点から1または2が好ましく、1がより好ましい。
((S1) compound)
In the above formula (S-1), R 11 is an alkyl group having 1 to 6 carbon atoms. R 12 is an organic group containing a radical reactive functional group. p is an integer of 1 to 3. However, if R 11 and R 12 is plural, R 11 and R 12 are each, independently.
Examples of the alkyl group having 1 to 6 carbon atoms that is R 11 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and a butyl group. Among these, a methyl group and an ethyl group are preferable from the viewpoint of easy hydrolysis. As said p, 1 or 2 is preferable from a viewpoint of progress of a hydrolysis condensation reaction, and 1 is more preferable.

ラジカル反応性官能基を有する有機基としては、上述のラジカル反応性官能基により1個以上の水素原子が置換された直鎖状、分岐状または環状の炭素数1〜12のアルキル基、炭素数6〜12のアリール基、炭素数7〜12のアラルキル基等が挙げられる。同一分子内に複数のR12が存在するとき、これらはそれぞれ独立している。また、R12が示す有機基はヘテロ原子を有していてもよい。そのような有機基としては、例えば、エーテル基、エステル基、スルフィド基等が挙げられる。 Examples of the organic group having a radical reactive functional group include a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with the above radical reactive functional group, A 6-12 aryl group, a C7-12 aralkyl group, etc. are mentioned. When a plurality of R 12 are present in the same molecule, these are independent of each other. Further, the organic group represented by R 12 may have a hetero atom. Examples of such an organic group include an ether group, an ester group, and a sulfide group.

p=1の場合における(s1)化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、o−スチリルトリメトキシシラン、o−スチリルトリエトキシシラン、m−スチリルトリメトキシシラン、m−スチリルトリエトキシシラン、p−スチリルトリメトキシシラン、p−スチリルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、メタクリロキシトリメトキシシラン、メタクリロキシトリエトキシシラン、メタクリロキシトリプロポキシシラン、アクリロキシトリメトキシシラン、アクリロキシトリエトキシシラン、アクリロキシトリプロポキシシラン、2−メタクリロキシエチルトリメトキシシラン、2−メタクリロキシエチルトリエトキシシラン、2−メタクリロキシエチルトリプロポキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリプロポキシシラン、2−アクリロキシエチルトリメトキシシラン、2−アクリロキシエチルトリエトキシシラン、2−アクリロキシエチルトリプロポキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリプロポキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリプロポキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリフルオロブチルトリメトキシシラン、3−(トリメトキシシリル)プロピル無水コハク酸等のトリアルコキシシラン化合物が挙げられる。   Examples of the compound (s1) in the case of p = 1 include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, o-styryltrimethoxysilane, o-styryltriethoxysilane, and m-styryltrimethoxysilane. M-styryltriethoxysilane, p-styryltrimethoxysilane, p-styryltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, methacryloxytrimethoxysilane, methacryloxytriethoxysilane, methacryloxytripropoxysilane, Acryloxytrimethoxysilane, acryloxytriethoxysilane, acryloxytripropoxysilane, 2-methacryloxyethyltrimethoxysilane, 2-methacryloxyethyltriethoxysilane, -Methacryloxyethyl tripropoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltripropoxysilane, 2-acryloxyethyltrimethoxysilane, 2-acryloxyethyltri Ethoxysilane, 2-acryloxyethyltripropoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-acryloxypropyltripropoxysilane, 3-methacryloxypropyltrimethoxysilane, 3- Methacryloxypropyltriethoxysilane, 3-methacryloxypropyltripropoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane Trifluoro-butyl trimethoxy silane, 3-trialkoxysilane compounds such as (trimethoxysilyl) propyl succinic anhydride and the like.

p=2の場合における(s1)化合物としては、例えば、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルフェニルジメトキシシラン、ビニルフェニルジエトキシシラン、アリルメチルジメトキシシラン、アリルメチルジエトキシシラン、フェニルトリフルオロプロピルジメトキシシラン等のジアルコキシシラン化合物が挙げられる。   Examples of the compound (s1) in the case of p = 2 include vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, vinylphenyldimethoxysilane, vinylphenyldiethoxysilane, allylmethyldimethoxysilane, allylmethyldiethoxysilane, phenyltri And dialkoxysilane compounds such as fluoropropyldimethoxysilane.

p=3の場合における(s1)化合物としては、例えば、アリルジメチルメトキシシラン、アリルジメチルエトキシシラン、ジビニルメチルメトキシシラン、ジビニルメチルエトキシシラン、3−メタクリロキシプロピルジメチルメトキシシラン、3−アクリロキシプロピルジメチルメトキシシラン、3−メタクリロキシプロピルジフェニルメトキシシラン、3−アクリロキシプロピルジフェニルメトキシシラン、3,3’−ジメタクリロキシプロピルジメトキシシラン、3,3’−ジアクリロキシプロピルジメトキシシラン、3,3’,3’’−トリメタクリロキシプロピルメトキシシラン、3,3’,3’’−トリアクリロキシプロピルメトキシシラン、ジメチルトリフルオロプロピルメトキシシラン等のモノアルコキシシラン化合物が挙げられる。   Examples of the compound (s1) in the case of p = 3 include allyldimethylmethoxysilane, allyldimethylethoxysilane, divinylmethylmethoxysilane, divinylmethylethoxysilane, 3-methacryloxypropyldimethylmethoxysilane, and 3-acryloxypropyldimethyl. Methoxysilane, 3-methacryloxypropyldiphenylmethoxysilane, 3-acryloxypropyldiphenylmethoxysilane, 3,3′-dimethacryloxypropyldimethoxysilane, 3,3′-diaacryloxypropyldimethoxysilane, 3,3 ′, Monoalkoxysilane compounds such as 3 ″ -trimethacryloxypropylmethoxysilane, 3,3 ′, 3 ″ -triacryloxypropylmethoxysilane, dimethyltrifluoropropylmethoxysilane, etc. It is below.

これらの(s1)化合物のうち、耐擦傷性等を高いレベルで達成できるとともに、縮合反応性が高くなることから、ビニルトリメトキシシラン、p−スチリルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−(トリメトキシシリル)プロピル無水コハク酸が好ましい。   Among these (s1) compounds, scratch resistance and the like can be achieved at a high level, and condensation reactivity is increased. Therefore, vinyltrimethoxysilane, p-styryltriethoxysilane, 3-methacryloxypropyltrimethoxysilane. 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltriethoxysilane, and 3- (trimethoxysilyl) propyl succinic anhydride are preferable.

((s2)化合物)
上記式(S−2)中、R13は炭素数1〜6のアルキル基である。R14は水素原子、炭素数1〜20のアルキル基、炭素数1〜20のフッ化アルキル基、フェニル基、トリル基、ナフチル基、エポキシ基、アミノ基またはイソシアネート基である。nは0〜20の整数である。qは0〜3の整数である。但し、R13およびR14がそれぞれ複数となる場合、複数のR13およびR14はそれぞれ独立している。
((S2) compound)
In the above formula (S-2), R 13 is an alkyl group having 1 to 6 carbon atoms. R 14 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a fluorinated alkyl group having 1 to 20 carbon atoms, a phenyl group, a tolyl group, a naphthyl group, an epoxy group, an amino group, or an isocyanate group. n is an integer of 0-20. q is an integer of 0-3. However, if R 13 and R 14 is each one, the plurality of R 13 and R 14 are each, independently.

上述のR13である炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、ブチル基等が挙げられる。これらのうち、加水分解の容易性の観点から、メチル基、エチル基が好ましい。上記のqとしては、加水分解縮合反応の進行の観点から1または2が好ましく、1がより好ましい。 Examples of the alkyl group having 1 to 6 carbon atoms as R 13 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and a butyl group. Among these, a methyl group and an ethyl group are preferable from the viewpoint of easy hydrolysis. As said q, 1 or 2 is preferable from a viewpoint of progress of a hydrolysis condensation reaction, and 1 is more preferable.

上述のR14が上記炭素数1〜20のアルキル基である場合、そのアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、3−メチルブチル基、2−メチルブチル基、1−メチルブチル基、2,2−ジメチルプロピル基、n−ヘキシル基、4−メチルペンチル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、3,3−ジメチルブチル基、2,3−ジメチルブチル基、1,3−ジメチルブチル基、2,2−ジメチルブチル基、1,2−ジメチルブチル基、1,1−ジメチルブチル基、n−ヘプチル基、5−メチルヘキシル基、4−メチルヘキシル基、3−メチルヘキシル基、2−メチルヘキシル基、1−メチルヘキシル基、4,4−ジメチルペンチル基、3,4−ジメチルペンチル基、2,4−ジメチルペンチル基、1,4−ジメチルペンチル基、3,3−ジメチルペンチル基、2,3−ジメチルペンチル基、1,3−ジメチルペンチル基、2,2−ジメチルペンチル基、1,2−ジメチルペンチル基、1,1−ジメチルペンチル基、2,3,3−トリメチルブチル基、1,3,3−トリメチルブチル基、1,2,3−トリメチルブチル基、n−オクチル基、6−メチルヘプチル基、5−メチルヘプチル基、4−メチルヘプチル基、3−メチルヘプチル基、2−メチルヘプチル基、1−メチルヘプチル基、2−エチルヘキシル基、n−ノナニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ヘプタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基等が挙げられる。好ましくは炭素数1〜10のアルキル基であり、より好ましくは炭素数1〜3のアルキル基である。 When R 14 described above is an alkyl group having 1 to 20 carbon atoms, examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and a sec-butyl group. Group, tert-butyl group, n-pentyl group, 3-methylbutyl group, 2-methylbutyl group, 1-methylbutyl group, 2,2-dimethylpropyl group, n-hexyl group, 4-methylpentyl group, 3-methylpentyl Group, 2-methylpentyl group, 1-methylpentyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 1,2- Dimethylbutyl, 1,1-dimethylbutyl, n-heptyl, 5-methylhexyl, 4-methylhexyl, 3-methylhexyl, 2-methylhexyl, 1-methyl Tylhexyl group, 4,4-dimethylpentyl group, 3,4-dimethylpentyl group, 2,4-dimethylpentyl group, 1,4-dimethylpentyl group, 3,3-dimethylpentyl group, 2,3-dimethylpentyl group 1,3-dimethylpentyl group, 2,2-dimethylpentyl group, 1,2-dimethylpentyl group, 1,1-dimethylpentyl group, 2,3,3-trimethylbutyl group, 1,3,3-trimethyl Butyl group, 1,2,3-trimethylbutyl group, n-octyl group, 6-methylheptyl group, 5-methylheptyl group, 4-methylheptyl group, 3-methylheptyl group, 2-methylheptyl group, 1- Methylheptyl group, 2-ethylhexyl group, n-nonanyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n Heptadecyl, n- hexadecyl group, n- heptadecyl group, n- octadecyl, n- nonadecyl group and the like. Preferably it is a C1-C10 alkyl group, More preferably, it is a C1-C3 alkyl group.

q=0の場合における(s2)化合物としては、例えば、4個の加水分解性基で置換されたシラン化合物として、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン等が挙げられる。   As the compound (s2) in the case of q = 0, for example, as a silane compound substituted with four hydrolyzable groups, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetra-n-propoxysilane, tetra -I-propoxysilane etc. are mentioned.

q=1の場合における(s2)化合物としては、1個の非加水分解性基と3個の加水分解性基とで置換されたシラン化合物として、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−i−プロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−i−プロポキシシラン、エチルトリブトキシシラン、ブチルトリメトキシシラン、フェニルトリメトキシシラン、トリルトリメトキシシラン、ナフチルトリメトキシシラン、フェニルトリエトキシシラン、ナフチルトリエトキシシラン、アミノトリメトキシシラン、アミノトリエトキシシラン、2−(3,4―エポキシシクロヘキシル)エチルトリメトキシ、γ−グリシドキシプロピルトリメトキシシラン、3−イソシアノプロピルトリメトキシシラン、3−イソシアノプロピルトリエトキシシランo−トリルトリメトキシシラン、m−トリルトリメトキシシランp−トリルトリメトキシシラン等が挙げられる。   As the compound (s2) in the case of q = 1, as a silane compound substituted with one non-hydrolyzable group and three hydrolyzable groups, for example, methyltrimethoxysilane, methyltriethoxysilane, Methyltri-i-propoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri-i-propoxysilane, ethyltributoxysilane, butyltrimethoxysilane, phenyltrimethoxysilane, tolyltrimethoxysilane, naphthyl Trimethoxysilane, phenyltriethoxysilane, naphthyltriethoxysilane, aminotrimethoxysilane, aminotriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy, γ-glycidoxypropyltrimethoxysilane 3 isocyanoacetate trimethoxysilane, 3-isocyanoacetate triethoxysilane o- tolyl trimethoxysilane, m- tolyl trimethoxysilane p- tolyl trimethoxysilane, and the like.

q=2の場合における(s2)化合物としては、2個の非加水分解性基と2個の加水分解性基とで置換されたシラン化合物として、例えば、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ジトリルジメトキシシラン、ジブチルジメトキシシラン等が挙げられる。   As the compound (s2) in the case of q = 2, examples of the silane compound substituted with two non-hydrolyzable groups and two hydrolyzable groups include dimethyldimethoxysilane, diphenyldimethoxysilane, and ditolyl. Examples include dimethoxysilane and dibutyldimethoxysilane.

q=3の場合における(s2)化合物としては、3個の非加水分解性基と1個の加水分解性基とで置換されたシラン化合物として、例えば、トリメチルメトキシシラン、トリフェニルメトキシシラン、トリトリルメトキシシラン、トリブチルメトキシシラン等が挙げられる。   As the compound (s2) in the case of q = 3, examples of the silane compound substituted with three non-hydrolyzable groups and one hydrolyzable group include trimethylmethoxysilane, triphenylmethoxysilane, Examples include tolylmethoxysilane and tributylmethoxysilane.

これらの(s2)化合物のうち、4個の加水分解性基で置換されたシラン化合物、1個の非加水分解性基と3個の加水分解性基とで置換されたシラン化合物が好ましく、1個の非加水分解性基と3個の加水分解性基とで置換されたシラン化合物がより好ましい。特に好ましい加水分解性シラン化合物としては、例えば、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−i−プロポキシシラン、メチルトリブトキシシラン、フェニルトリメトキシシラン、トリルトリメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリブトキシシラン、ブチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ナフチルトリメトキシシラン、γ−アミノプロピルトリメトキシシランおよびγ−イソシアネートプロピルトリメトキシシランが挙げられる。このような加水分解性シラン化合物は、単独でまたは2種以上を組み合わせて使用してもよい。   Of these (s2) compounds, a silane compound substituted with four hydrolyzable groups, a silane compound substituted with one non-hydrolyzable group and three hydrolyzable groups is preferred. More preferred are silane compounds substituted with one non-hydrolyzable group and three hydrolyzable groups. Particularly preferred hydrolyzable silane compounds include, for example, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltri-i-propoxysilane, methyltributoxysilane, phenyltrimethoxysilane, tolyltrimethoxysilane, ethyltrisilane. Methoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltributoxysilane, butyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, naphthyltrimethoxysilane, γ-aminopropyltrimethoxysilane and γ-isocyanate And propyltrimethoxysilane. Such hydrolyzable silane compounds may be used alone or in combination of two or more.

上記(s1)化合物および(s2)化合物の混合比については、(s1)化合物が5モル%を超えることが望ましい。(s1)化合物が5モル%以下の場合、硬化膜として保護膜を形成する際の露光感度が低く、さらに得られる保護膜の耐擦傷性等を低下させる傾向にある。   Regarding the mixing ratio of the (s1) compound and the (s2) compound, it is desirable that the (s1) compound exceeds 5 mol%. When the compound (s1) is 5 mol% or less, the exposure sensitivity when forming a protective film as a cured film is low, and the scratch resistance and the like of the resulting protective film tend to be reduced.

((s1)化合物および(s2)化合物の加水分解縮合)
上記(s1)化合物および(s2)化合物を加水分解縮合させる条件としては、(s1)化合物および(s2)化合物の少なくとも一部を加水分解して、加水分解性基をシラノール基に変換し、縮合反応を起こさせるものである限り特に限定されるものではないが、一例として以下のように実施することができる。
(Hydrolytic condensation of (s1) compound and (s2) compound)
The conditions for hydrolyzing and condensing the compound (s1) and the compound (s2) include hydrolyzing at least a part of the compound (s1) and the compound (s2) to convert a hydrolyzable group into a silanol group and condensing the compound. Although it will not specifically limit as long as it raise | generates reaction, As an example, it can implement as follows.

加水分解縮合反応に供される水としては、逆浸透膜処理、イオン交換処理、蒸留等の方法により精製された水を使用することが好ましい。このような精製水を用いることによって、副反応を抑制し、加水分解の反応性を向上させることができる。水の使用量としては上記(s1)化合物および(s2)化合物の加水分解性基の合計量1モルに対して、好ましくは0.1モル〜3モル、より好ましくは0.3モル〜2モル、特に好ましくは0.5モル〜1.5モルである。このような量の水を用いることによって、加水分解縮合の反応速度を最適化することができる。   As water used for the hydrolysis condensation reaction, it is preferable to use water purified by a method such as reverse osmosis membrane treatment, ion exchange treatment or distillation. By using such purified water, side reactions can be suppressed and the reactivity of hydrolysis can be improved. The amount of water used is preferably 0.1 mol to 3 mol, more preferably 0.3 mol to 2 mol, with respect to 1 mol of the total amount of hydrolyzable groups of the (s1) compound and (s2) compound. Particularly preferred is 0.5 to 1.5 mol. By using such an amount of water, the reaction rate of the hydrolysis condensation can be optimized.

加水分解縮合に供される溶媒としては、例えば、アルコール類、エーテル類、グリコールエーテル、エチレングリコールアルキルエーテルアセテート、ジエチレングリコールアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルプロピオネート、芳香族炭化水素類、ケトン類、他のエステル類等が挙げられる。これらの溶媒は、単独でまたは2種以上を併用して使用することができる。   Examples of the solvent used for hydrolysis condensation include alcohols, ethers, glycol ethers, ethylene glycol alkyl ether acetates, diethylene glycol alkyl ethers, propylene glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ethers. Examples include propionates, aromatic hydrocarbons, ketones, and other esters. These solvents can be used alone or in combination of two or more.

これらの溶媒のうち、エチレングリコールアルキルエーテルアセテート、ジエチレングリコールアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテルアセテート、メトキシ酢酸ブチルが好ましく、特に、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、メトキシ酢酸ブチルが好ましい。   Of these solvents, ethylene glycol alkyl ether acetate, diethylene glycol alkyl ether, propylene glycol monoalkyl ether, propylene glycol monoalkyl ether acetate, and butyl methoxyacetate are preferred. Particularly, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether acetate. , Propylene glycol monomethyl ether and butyl methoxyacetate are preferred.

加水分解縮合反応は、好ましくは酸触媒(例えば、塩酸、硫酸、硝酸、蟻酸、シュウ酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、リン酸、酸性イオン交換樹脂、各種ルイス酸等)、塩基触媒(例えば、アンモニア、1級アミン類、2級アミン類、3級アミン類、ピリジン等の含窒素化合物;塩基性イオン交換樹脂;水酸化ナトリウム等の水酸化物;炭酸カリウム等の炭酸塩;酢酸ナトリウム等のカルボン酸塩;各種ルイス塩基等)またはアルコキシド(例えば、ジルコニウムアルコキシド、チタニウムアルコキシド、アルミニウムアルコキシド等)等の触媒の存在下で行われる。例えば、アルミニウムアルコキシドとしては、トリ−i−プロポキシアルミニウムを用いることができる。触媒の使用量としては、加水分解縮合反応の促進の観点から、加水分解性シラン化合物のモノマー1モルに対して、好ましくは0.2モル以下であり、より好ましくは0.00001モル〜0.1モルである。   The hydrolysis condensation reaction is preferably an acid catalyst (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, phosphoric acid, acidic ion exchange resin, various Lewis acids, etc.), base Catalysts (for example, ammonia, primary amines, secondary amines, tertiary amines, nitrogen-containing compounds such as pyridine; basic ion exchange resins; hydroxides such as sodium hydroxide; carbonates such as potassium carbonate; Carboxylic acid salts such as sodium acetate; various Lewis bases) or alkoxides (for example, zirconium alkoxide, titanium alkoxide, aluminum alkoxide, etc.) are used in the presence of a catalyst. For example, tri-i-propoxyaluminum can be used as the aluminum alkoxide. The amount of the catalyst to be used is preferably 0.2 mol or less, more preferably 0.00001 mol to 0.001 mol per mol of the hydrolyzable silane compound monomer from the viewpoint of promoting the hydrolysis condensation reaction. 1 mole.

上述の加水分解縮合物のGPC(ゲルパーミエーションクロマトグラフィ)によるポリスチレン換算重量平均分子量(以下、「Mw」と称する。)としては、500〜10000が好ましく、1000〜5000がより好ましい。Mwを500以上とすることで、本実施形態の感放射線性樹脂組成物の成膜性を改善できる。一方、Mwを10000以下とすることによって、感放射線性樹脂組成物の現像性の低下を防止できる。   The polystyrene-reduced weight average molecular weight (hereinafter referred to as “Mw”) by GPC (gel permeation chromatography) of the above-mentioned hydrolysis-condensation product is preferably 500 to 10,000, more preferably 1000 to 5000. By making Mw 500 or more, the film formability of the radiation sensitive resin composition of the present embodiment can be improved. On the other hand, by setting Mw to 10,000 or less, it is possible to prevent the developability of the radiation-sensitive resin composition from decreasing.

上述の加水分解縮合物のGPCによるポリスチレン換算数平均分子量(以下、「Mn」と称する。)としては300〜5000が好ましく、500〜3000がより好ましい。ポリシロキサンのMnを上記範囲とすることによって、本実施形態の感放射線性樹脂組成物の塗膜の硬化時の硬化反応性を向上できる。   The number average molecular weight in terms of polystyrene (hereinafter referred to as “Mn”) by GPC of the above-mentioned hydrolysis-condensation product is preferably 300 to 5000, and more preferably 500 to 3000. By making Mn of polysiloxane into the said range, the cure reactivity at the time of hardening of the coating film of the radiation sensitive resin composition of this embodiment can be improved.

上記加水分解縮合物の分子量分布「Mw/Mn」としては、3.0以下が好ましく、2.6以下がより好ましい。(s1)化合物および(s2)化合物の加水分解縮合物のMw/Mnを3.0以下とすることにより、形成される膜の現像性を高めることができる。ポリシロキサンを含む本実施形態の感放射線性樹脂組成物は、現像する際に現像残りの発生が少なく容易に所望のパターン形状を形成できる。   The molecular weight distribution “Mw / Mn” of the hydrolysis-condensation product is preferably 3.0 or less, and more preferably 2.6 or less. By setting Mw / Mn of the hydrolysis condensate of the (s1) compound and the (s2) compound to 3.0 or less, the developability of the formed film can be enhanced. The radiation-sensitive resin composition of the present embodiment containing polysiloxane can easily form a desired pattern shape with little occurrence of development residue during development.

[ノボラック樹脂]
本実施形態の感放射線性樹脂組成物に用いられる樹脂として好ましいノボラック樹脂は、フェノール類をホルマリン等のアルデヒド類で公知の方法で重縮合することにより得ることができる。
[Novolac resin]
A novolak resin preferable as a resin used in the radiation-sensitive resin composition of the present embodiment can be obtained by polycondensing phenols with aldehydes such as formalin by a known method.

本実施形態において好ましいノボラック樹脂を得るフェノール類としては、例えば、フェノール、p−クレゾール、m−クレゾール、o−クレゾール、2,3−ジメチルフェノール、2,4−ジメチルフェノール、2,5−ジメチルフェノール、2,6−ジメチルフェノール、3,4−ジメチルフェノール、3,5−ジメチルフェノール、2,3,4−トリメチルフェノール、2,3,5−トリメチルフェノール、3,4,5−トリメチルフェノール、2,4,5−トリメチルフェノール、メチレンビスフェノール、メチレンビスp−クレゾール、レゾルシン、カテコール、2−メチルレゾルシン、4−メチルレゾルシン、o−クロロフェノール、m−クロロフェノール、p−クロロフェノール、2,3−ジクロロフェノール、m−メトキシフェノール、p−メトキシフェノール、p−ブトキシフェノール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール、2,3−ジエチルフェノール、2,5−ジエチルフェノール、p−イソプロピルフェノール、α−ナフトール、β−ナフトール等が挙げられる。これらを2種以上用いてもよい。   Examples of phenols for obtaining a preferred novolak resin in the present embodiment include phenol, p-cresol, m-cresol, o-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, and 2,5-dimethylphenol. 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,3,4-trimethylphenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, , 4,5-trimethylphenol, methylene bisphenol, methylene bis p-cresol, resorcin, catechol, 2-methyl resorcin, 4-methyl resorcin, o-chlorophenol, m-chlorophenol, p-chlorophenol, 2,3-dichloro Phenol, m-methoxy Enol, p-methoxyphenol, p-butoxyphenol, o-ethylphenol, m-ethylphenol, p-ethylphenol, 2,3-diethylphenol, 2,5-diethylphenol, p-isopropylphenol, α-naphthol, β-naphthol and the like can be mentioned. Two or more of these may be used.

また、本実施形態において、好ましいノボラック樹脂を得るアルデヒド類としては、ホルマリンの他、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロアセトアルデヒド等が挙げられる。これらを2種以上用いてもよい。   In the present embodiment, examples of aldehydes for obtaining a preferred novolak resin include paraformaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, chloroacetaldehyde and the like in addition to formalin. Two or more of these may be used.

本実施形態の感放射線性樹脂組成物において用いられる樹脂として好ましいノボラック樹脂の、重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィ)によるポリスチレン換算で2000〜50000が好ましく、より好ましくは3000〜40000である。   The weight average molecular weight of the novolak resin preferable as the resin used in the radiation-sensitive resin composition of the present embodiment is preferably 2000 to 50000 in terms of polystyrene by GPC (gel permeation chromatography), more preferably 3000 to 40000. .

〔[B]光酸発生体〕
本発明の実施形態の感放射線性樹脂組成物の必須の成分である[B]光酸発生体は、放射線の照射によって酸を発生する化合物である。ここで、放射線としては、上述したように、例えば、可視光線、紫外線、遠紫外線、電子線(荷電粒子線)、X線等を使用することができる。本実施形態の感放射線性組成物が[B]光酸発生体を含むことで、本実施形態の感放射線性樹脂組成物はポジ型の感放射線特性を発揮することができる。
[[B] Photoacid generator]
[B] The photoacid generator, which is an essential component of the radiation-sensitive resin composition of the embodiment of the present invention, is a compound that generates an acid upon irradiation with radiation. Here, as described above, as the radiation, for example, visible light, ultraviolet light, far ultraviolet light, electron beam (charged particle beam), X-ray or the like can be used. When the radiation sensitive composition of this embodiment contains a [B] photo-acid generator, the radiation sensitive resin composition of this embodiment can exhibit a positive radiation sensitive characteristic.

[B]光酸発生体は、放射線の照射によって酸(例えば、カルボン酸、スルホン酸等)を発生させる化合物である限り、特に限定されない。[B]光酸発生体の本実施形態の感放射線樹脂組成物における含有形態としては、後述するような化合物である光酸発生剤(以下、「[B]光酸発生剤」ともいう)の形態でも、[A]重合体または他の重合体の一部として組み込まれた光酸発生基の形態でも、これらの両方の形態でもよい。   [B] The photoacid generator is not particularly limited as long as it is a compound that generates an acid (for example, carboxylic acid, sulfonic acid, etc.) by irradiation with radiation. [B] The content of the photoacid generator in the radiation-sensitive resin composition of the present embodiment is a photoacid generator (hereinafter also referred to as “[B] photoacid generator”) which is a compound as described later. It may be in the form of [A] a photoacid generator group incorporated as part of a polymer or other polymer, or both forms.

[B]光酸発生剤としては、オキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物、キノンジアジド化合物等が挙げられる。   [B] Examples of the photoacid generator include oxime sulfonate compounds, onium salts, sulfonimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, carboxylic acid ester compounds, and quinone diazide compounds.

(オキシムスルホネート化合物)
上述のオキシムスルホネート化合物としては、下記式(1)で表されるオキシムスルホネート基を含有する化合物が好ましい。
(Oxime sulfonate compound)
As said oxime sulfonate compound, the compound containing the oxime sulfonate group represented by following formula (1) is preferable.

Figure 2014174406
Figure 2014174406

上記式(1)中、R21は、アルキル基、シクロアルキル基またはアリール基であり、これらの基の水素原子の一部または全部が置換基で置換されていてもよい。 In the above formula (1), R 21 is an alkyl group, a cycloalkyl group or an aryl group, and part or all of the hydrogen atoms of these groups may be substituted with a substituent.

上記式(1)において、R21のアルキル基としては、炭素数1〜10の直鎖状または分岐状アルキル基が好ましい。R21のアルキル基は、炭素数1〜10のアルコキシ基または脂環式基(7,7−ジメチル−2−オキソノルボルニル基等の有橋式脂環式基を含む、好ましくはビシクロアルキル基等)で置換されていてもよい。R21のアリール基としては、炭素数6〜11のアリール基が好ましく、フェニル基またはナフチル基がさらに好ましい。R21のアリール基は、炭素数1〜5のアルキル基、アルコキシ基またはハロゲン原子で置換されてもよい。 In the above formula (1), the alkyl group represented by R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms. The alkyl group of R 21 includes an alkoxy group having 1 to 10 carbon atoms or an alicyclic group (including a bridged alicyclic group such as a 7,7-dimethyl-2-oxonorbornyl group, preferably a bicycloalkyl group). Group) and the like. The aryl group for R 21 is preferably an aryl group having 6 to 11 carbon atoms, and more preferably a phenyl group or a naphthyl group. The aryl group of R 21 may be substituted with an alkyl group having 1 to 5 carbon atoms, an alkoxy group, or a halogen atom.

上記式(1)で表されるオキシムスルホネート基を含有する上記化合物は、下記式(2)で表されるオキシムスルホネート化合物であることがさらに好ましい。   The compound containing an oxime sulfonate group represented by the above formula (1) is more preferably an oxime sulfonate compound represented by the following formula (2).

Figure 2014174406
Figure 2014174406

上記式(2)において、R21は、上記式(1)におけるR21の説明と同義である。Xは、アルキル基、アルコキシ基またはハロゲン原子である。mは0〜3の整数である。mが2または3であるとき、複数のXは同一でも異なっていてもよい。Xとしてのアルキル基は、炭素数1〜4の直鎖状または分岐状アルキル基が好ましい。 In said formula (2), R < 21 > is synonymous with description of R < 21 > in said formula (1). X is an alkyl group, an alkoxy group, or a halogen atom. m is an integer of 0-3. When m is 2 or 3, the plurality of X may be the same or different. The alkyl group as X is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.

上記式(2)において、Xとしてのアルコキシ基としては、炭素数1〜4の直鎖状または分岐状アルコキシ基が好ましい。Xとしてのハロゲン原子は、塩素原子またはフッ素原子が好ましい。mは0または1が好ましい。特に、上記式(2)において、mが1、Xがメチル基であり、Xの置換位置がオルトである化合物が好ましい。   In the above formula (2), the alkoxy group as X is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms. The halogen atom as X is preferably a chlorine atom or a fluorine atom. m is preferably 0 or 1. In particular, in the above formula (2), a compound in which m is 1, X is a methyl group, and the substitution position of X is ortho is preferable.

上記式(2)で表されるオキシムスルホネート化合物の具体例としては、例えば、下記式(3−i)〜(3−v)でそれぞれ表される化合物(3−i)、化合物(3−ii)、化合物(3−iii)、化合物(3−iv)および化合物(3−v)等が挙げられる。   Specific examples of the oxime sulfonate compound represented by the formula (2) include, for example, the compounds (3-i) and (3-ii) represented by the following formulas (3-i) to (3-v), respectively. ), Compound (3-iii), compound (3-iv), compound (3-v) and the like.

Figure 2014174406
Figure 2014174406

これらは単独または2種類以上を組み合わせて使用することができ、[B]成分としての他の光酸発生剤と組み合わせて使用することもできる。上記化合物(3−i)[(5−プロピルスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル]、化合物(3−ii)[(5H−オクチルスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル]、化合物(3−iii)[(カンファースルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル]、化合物(3−iv)[(5−p−トルエンスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル]及び化合物(3−v)[(5−オクチルスルフォニルオキシイミノ)−(4−メトキシフェニル)アセトニトリル]は、市販品として入手出来る。   These can be used alone or in combination of two or more, and can also be used in combination with other photoacid generators as the component [B]. Compound (3-i) [(5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile], compound (3-ii) [(5H-octylsulfonyloxyimino-5H -Thiophen-2-ylidene)-(2-methylphenyl) acetonitrile], compound (3-iii) [(camphorsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile], compound ( 3-iv) [(5-p-toluenesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile] and compound (3-v) [(5-octylsulfonyloxyimino)-( 4-methoxyphenyl) acetonitrile] is available as a commercial product Coming.

(オニウム塩)
上述のオニウム塩としては、ジフェニルヨードニウム塩、トリフェニルスルホニウム塩、スルホニウム塩、ベンゾチアゾニウム塩、テトラヒドロチオフェニウム塩等が挙げられる。
(Onium salt)
Examples of the onium salt include diphenyliodonium salt, triphenylsulfonium salt, sulfonium salt, benzothiazonium salt, and tetrahydrothiophenium salt.

ジフェニルヨードニウム塩としては、例えば、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロホスホネート、ジフェニルヨードニウムヘキサフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホナート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム−p−トルエンスルホナート、ジフェニルヨードニウムブチルトリス(2,6−ジフルオロフェニル)ボレート、4−メトキシフェニルフェニルヨードニウムテトラフルオロボレート、ビス(4−t−ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(4−t−ブチルフェニル)ヨードニウムヘキサフルオロアルセネート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホナート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロアセテート、ビス(4−t−ブチルフェニル)ヨードニウム−p−トルエンスルホナート、ビス(4−t−ブチルフェニル)ヨードニウムカンファースルホン酸等が挙げられる。   Examples of the diphenyliodonium salt include diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluorophosphonate, diphenyliodonium hexafluoroarsenate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium trifluoroacetate, diphenyliodonium-p-toluenesulfonate, diphenyl Iodonium butyltris (2,6-difluorophenyl) borate, 4-methoxyphenylphenyliodonium tetrafluoroborate, bis (4-t-butylphenyl) iodonium tetrafluoroborate, bis (4-t-butylphenyl) iodonium hexafluoroarce Bis (4-tert-butylphenyl) iodonium trifluoro Tansulfonate, bis (4-t-butylphenyl) iodonium trifluoroacetate, bis (4-t-butylphenyl) iodonium-p-toluenesulfonate, bis (4-t-butylphenyl) iodonium camphorsulfonic acid, etc. Can be mentioned.

トリフェニルスルホニウム塩としては、例えば、トリフェニルスルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムカンファースルホン酸、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム−p−トルエンスルホナート、トリフェニルスルホニウムブチルトリス(2、6−ジフルオロフェニル)ボレート等が挙げられる。   Examples of the triphenylsulfonium salt include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium camphorsulfonic acid, triphenylsulfonium tetrafluoroborate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfonate, and triphenyl. Examples include sulfonium butyl tris (2,6-difluorophenyl) borate.

スルホニウム塩としては、例えばアルキルスルホニウム塩、ベンジルスルホニウム塩、ジベンジルスルホニウム塩、置換ベンジルスルホニウム塩等が挙げられる。   Examples of the sulfonium salt include alkylsulfonium salts, benzylsulfonium salts, dibenzylsulfonium salts, substituted benzylsulfonium salts and the like.

アルキルスルホニウム塩としては、例えば、4−アセトキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4−アセトキシフェニルジメチルスルホニウムヘキサフルオロアルセネート、ジメチル−4−(ベンジルオキシカルボニルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアルセネート、ジメチル−3−クロロ−4−アセトキシフェニルスルホニウムヘキサフルオロアンチモネート等が挙げられる。   Examples of the alkylsulfonium salt include 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate, dimethyl-4- (benzyloxycarbonyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4 Examples include-(benzoyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4- (benzoyloxy) phenylsulfonium hexafluoroarsenate, and dimethyl-3-chloro-4-acetoxyphenylsulfonium hexafluoroantimonate.

ベンジルスルホニウム塩としては、例えばベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、4−アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−メトキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−2−メチル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアルセネート、4−メトキシベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート等が挙げられる。   Examples of the benzylsulfonium salt include benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, benzyl-4-methoxyphenyl. Methylsulfonium hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, 4-methoxybenzyl-4-hydroxyphenyl Examples include methylsulfonium hexafluorophosphate.

ジベンジルスルホニウム塩としては、例えば、ジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート、4−アセトキシフェニルジベンジルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−メトキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル−3−クロロ−4−ヒドロキシフェニルスルホニウムヘキサフルオロアルセネート、ジベンジル−3−メチル−4−ヒドロキシ−5−t−ブチルフェニルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−メトキシベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート等が挙げられる。   Examples of the dibenzylsulfonium salt include dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluorophosphate, 4-acetoxyphenyl dibenzylsulfonium hexafluoroantimonate, dibenzyl-4-methoxyphenyl. Sulfonium hexafluoroantimonate, dibenzyl-3-chloro-4-hydroxyphenylsulfonium hexafluoroarsenate, dibenzyl-3-methyl-4-hydroxy-5-t-butylphenylsulfonium hexafluoroantimonate, benzyl-4-methoxybenzyl Examples include -4-hydroxyphenylsulfonium hexafluorophosphate.

置換ベンジルスルホニウム塩としては、例えば、p−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p−ニトロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、p−ニトロベンジル−3−メチル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、3,5−ジクロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、o−クロロベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート等が挙げられる。   Examples of the substituted benzylsulfonium salt include p-chlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, p-nitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, and p-chlorobenzyl-4-hydroxyphenyl. Methylsulfonium hexafluorophosphate, p-nitrobenzyl-3-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 3,5-dichlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, o-chlorobenzyl-3 -Chloro-4-hydroxyphenylmethylsulfonium hexafluoroantimonate and the like.

ベンゾチアゾニウム塩としては、例えば、3−ベンジルベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジルベンゾチアゾニウムヘキサフルオロホスフェート、3−ベンジルベンゾチアゾニウムテトラフルオロボレート、3−(p−メトキシベンジル)ベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジル−2−メチルチオベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジル−5−クロロベンゾチアゾニウムヘキサフルオロアンチモネート等が挙げられる。   Examples of the benzothiazonium salt include 3-benzylbenzothiazonium hexafluoroantimonate, 3-benzylbenzothiazonium hexafluorophosphate, 3-benzylbenzothiazonium tetrafluoroborate, 3- (p-methoxy). Benzyl) benzothiazonium hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazonium hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazonium hexafluoroantimonate, and the like.

テトラヒドロチオフェニウム塩の例としては、例えば、4,7−ジ−n−ブトキシーナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム−1,1,2,2−テトラフルオロ−2−(ノルボルナン−2−イル)エタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム−2−(5−t−ブトキシカルボニルオキシビシクロ[2.2.1]ヘプタン−2−イル)−1,1,2,2−テトラフルオロエタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム−2−(6−t−ブトキシカルボニルオキシビシクロ[2.2.1]ヘプタン−2−イル)−1,1,2,2−テトラフルオロエタンスルホネート等が挙げられる。   Examples of tetrahydrothiophenium salts include, for example, 4,7-di-n-butoxy-naphthyltetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoro L-methanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nonafluoro-n-butanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium-1, 1,2,2-tetrafluoro-2- (norbornan-2-yl) ethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium-2- (5-t-butoxycarbonyloxy) Bicyclo [2.2.1] heptan-2-yl) -1,1 2,2-tetrafluoroethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium-2- (6-t-butoxycarbonyloxybicyclo [2.2.1] heptane-2- Yl) -1,1,2,2-tetrafluoroethanesulfonate.

(スルホンイミド化合物)
上述のスルホンイミド化合物としては、例えばN−(トリフルオロメチルスルホニルオキシ)スクシンイミド、N−(カンファスルホニルオキシ)スクシンイミド、N−(4−メチルフェニルスルホニルオキシ)スクシンイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)スクシンイミド、N−(4−フルオロフェニルスルホニルオキシ)スクシンイミド、N−(トリフルオロメチルスルホニルオキシ)フタルイミド、N−(カンファスルホニルオキシ)フタルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)フタルイミド、N−(2−フルオロフェニルスルホニルオキシ)フタルイミド、N−(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N−(カンファスルホニルオキシ)ジフェニルマレイミド、4−メチルフェニルスルホニルオキシ)ジフェニルマレイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ジフェニルマレイミド、N−(4−フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N−(4−フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N−(フェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(ノナフルオロブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(カンファスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(トリフルオロメチルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(4−メチルフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(4−フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(4−フルオロフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシルイミド、N−(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシルイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシルイミド、N−(4−フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシルイミド、N−(トリフルオロメチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(カンファスルホニルオキシ)ナフチルジカルボキシルイミド、N−(4−メチルフェニルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(フェニルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(4−フルオロフェニルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ペンタフルオロエチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ヘプタフルオロプロピルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ノナフルオロブチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(エチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(プロピルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ブチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ペンチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ヘキシルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ヘプチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(オクチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ノニルスルホニルオキシ)ナフチルジカルボキシルイミド等が挙げられる。
(Sulfonimide compound)
Examples of the sulfonimide compound include N- (trifluoromethylsulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, N- (4-methylphenylsulfonyloxy) succinimide, and N- (2-trifluoromethylphenyl). Sulfonyloxy) succinimide, N- (4-fluorophenylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (camphorsulfonyloxy) phthalimide, N- (2-trifluoromethylphenylsulfonyloxy) phthalimide N- (2-fluorophenylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (camphorsulfonyloxy) diphe Rumaleimide, 4-methylphenylsulfonyloxy) diphenylmaleimide, N- (2-trifluoromethylphenylsulfonyloxy) diphenylmaleimide, N- (4-fluorophenylsulfonyloxy) diphenylmaleimide, N- (4-fluorophenylsulfonyloxy) Diphenylmaleimide, N- (phenylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylimide, N- (4-methylphenylsulfonyloxy) bicyclo [2.2.1] Hept-5-ene-2,3-dicarboxylimide, N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylimide, N- (nonafluorobutane Sulfonyloxy) bicyclo [2.2 1] Hept-5-ene-2,3-dicarboxylimide, N- (camphorsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylimide, N- (camphorsulfonyl) Oxy) -7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboxylimide, N- (trifluoromethylsulfonyloxy) -7-oxabicyclo [2.2.1] hept -5-ene-2,3-dicarboxylimide, N- (4-methylphenylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylimide, N- (4- Methylphenylsulfonyloxy) -7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboxylimide, N- (2-trifluoromethylphenyls) Sulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylimide, N- (2-trifluoromethylphenylsulfonyloxy) -7-oxabicyclo [2.2.1] hept- 5-ene-2,3-dicarboxylimide, N- (4-fluorophenylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylimide, N- (4-fluoro Phenylsulfonyloxy) -7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) bicyclo [2.2.1] heptane-5 , 6-oxy-2,3-dicarboxylimide, N- (camphorsulfonyloxy) bicyclo [2.2.1] heptane-5,6-oxy-2, -Dicarboxylimide, N- (4-methylphenylsulfonyloxy) bicyclo [2.2.1] heptane-5,6-oxy-2,3-dicarboxylimide, N- (2-trifluoromethylphenylsulfonyloxy) ) Bicyclo [2.2.1] heptane-5,6-oxy-2,3-dicarboxylimide, N- (4-fluorophenylsulfonyloxy) bicyclo [2.2.1] heptane-5,6-oxy -2,3-dicarboxylimide, N- (trifluoromethylsulfonyloxy) naphthyl dicarboxylimide, N- (camphorsulfonyloxy) naphthyl dicarboxylimide, N- (4-methylphenylsulfonyloxy) naphthyl dicarboxylimide, N- (Phenylsulfonyloxy) naphthyl dicarboxylimide N- (2-trifluoromethylphenylsulfonyloxy) naphthyl dicarboxylimide, N- (4-fluorophenylsulfonyloxy) naphthyl dicarboxylimide, N- (pentafluoroethylsulfonyloxy) naphthyl dicarboxylimide, N- (hepta Fluoropropylsulfonyloxy) naphthyl dicarboxylimide, N- (nonafluorobutylsulfonyloxy) naphthyl dicarboxylimide, N- (ethylsulfonyloxy) naphthyl dicarboxylimide, N- (propylsulfonyloxy) naphthyl dicarboxylimide, N- (Butylsulfonyloxy) naphthyl dicarboxylimide, N- (pentylsulfonyloxy) naphthyl dicarboxylimide, N- (hexylsulfonyloxy) naphthyl di Examples thereof include carboxylimide, N- (heptylsulfonyloxy) naphthyl dicarboxyimide, N- (octylsulfonyloxy) naphthyl dicarboxyimide, N- (nonylsulfonyloxy) naphthyl dicarboxyimide, and the like.

(ハロゲン含有化合物)
ハロゲン含有化合物としては、例えば、ハロアルキル基含有炭化水素化合物、ハロアルキル基含有ヘテロ環状化合物等が挙げられる。
(Halogen-containing compounds)
Examples of the halogen-containing compound include haloalkyl group-containing hydrocarbon compounds and haloalkyl group-containing heterocyclic compounds.

(ジアゾメタン化合物)
ジアゾメタン化合物としては、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロへキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(p−トリスルホニル)ジアゾメタン、ビス(2,4−キシリルスルホニル)ジアゾメタン、ビス(p−クロロフェニススルホニル)ジアゾメタン、メチルスルホニル−p−トルエンスルホニルジアゾメタン、シクロヘキシルスルホニル(1,1−ジメチルエチルスルホニル)ジアゾメタン、ビス(1,1−ジメチルエチルスルホニル)ジアゾメタン、フェニルスルホニル(ベンゾイル)ジアゾメタン等が挙げられる。
(Diazomethane compound)
Examples of the diazomethane compound include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, bis (p-trisulfonyl) diazomethane, and bis (2,4-xylylsulfonyl). ) Diazomethane, bis (p-chlorophenissulfonyl) diazomethane, methylsulfonyl-p-toluenesulfonyldiazomethane, cyclohexylsulfonyl (1,1-dimethylethylsulfonyl) diazomethane, bis (1,1-dimethylethylsulfonyl) diazomethane, phenylsulfonyl ( And benzoyl) diazomethane.

(スルホン化合物)
スルホン化合物としては、例えば、β−ケトスルホン化合物、β−スルホニルスルホン化合物、ジアリールジスルホン化合物等が挙げられる。
(Sulfone compound)
Examples of the sulfone compound include β-ketosulfone compounds, β-sulfonylsulfone compounds, diaryl disulfone compounds, and the like.

(スルホン酸エステル化合物)
スルホン酸エステル化合物としては、例えば、アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等が挙げられる。
(Sulfonate compound)
Examples of the sulfonate compound include alkyl sulfonate, haloalkyl sulfonate, aryl sulfonate, and imino sulfonate.

(カルボン酸エステル化合物)
カルボン酸エステル化合物としては、例えば、カルボン酸o−ニトロベンジルエステルが挙げられる。
(Carboxylic acid ester compound)
Examples of the carboxylic acid ester compound include carboxylic acid o-nitrobenzyl ester.

以上までで説明した[B]光酸発生剤の、オキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物およびカルボン酸エステル化合物の中では、放射線感度、溶解性の観点から、オキシムスルホネート化合物が好ましく、上記式(1)で表されるオキシムスルホネート基を含有する化合物がより好ましく、上記式(2)で表されるオキシムスルホネート化合物がさらに好ましく、なかでも市販品として入手可能な[(5−プロピルスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル]、[(5H−オクチルスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル]、[(カンファースルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル]、[(5−p−トルエンスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル]、[(5−オクチルスルフォニルオキシイミノ)−(4−メトキシフェニル)アセトニトリル]が特に好ましい。
また、オニウム塩についても好ましい[B]光酸発生剤とされ、テトラヒドロチオフェニウム塩およびベンジルスルホニウム塩がより好ましく、4,7−ジ−n−ブトキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネートおよびベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェートが特に好ましい。
Among the oxime sulfonate compounds, onium salts, sulfonimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds and carboxylic acid ester compounds of the [B] photoacid generator described above, the radiation sensitivity From the viewpoint of solubility, an oxime sulfonate compound is preferable, a compound containing an oxime sulfonate group represented by the above formula (1) is more preferable, and an oxime sulfonate compound represented by the above formula (2) is more preferable. However, commercially available [(5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile], [(5H-octylsulfonyloxyimino-5H-thiophen-2-ylidene) )-(2-Methyl Phenyl) acetonitrile], [(camphorsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile], [(5-p-toluenesulfonyloxyimino-5H-thiophen-2-ylidene)- (2-Methylphenyl) acetonitrile] and [(5-octylsulfonyloxyimino)-(4-methoxyphenyl) acetonitrile] are particularly preferred.
Also, onium salts are preferred [B] photoacid generators, more preferably tetrahydrothiophenium salts and benzylsulfonium salts, and 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate. And benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate is particularly preferred.

[B]光酸発生剤がオキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物およびカルボン酸エステル化合物のうちのいずれかである場合、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。[B]光酸発生剤がオキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物およびカルボン酸エステル化合物のうちのいずれかである場合、本実施形態の感放射線性樹脂組成物における[B]光酸発生剤としての含有量としては、[A]アルカリ可溶性樹脂100質量部に対して、好ましくは0.1質量部〜10質量部、より好ましくは1質量部〜5質量部である。上述の[B]光酸発生剤の含有量が上述の範囲にあると、本実施形態の感放射線性樹脂組成物の放射線感度を最適化することができ、良好なパターニング性を示して、本実施形態の硬化膜の形成に好適なものとなる。   [B] When the photoacid generator is any one of an oxime sulfonate compound, an onium salt, a sulfonimide compound, a halogen-containing compound, a diazomethane compound, a sulfone compound, a sulfonic acid ester compound, and a carboxylic acid ester compound, You may use individually, and may mix and use 2 or more types. [B] When the photoacid generator is one of an oxime sulfonate compound, an onium salt, a sulfonimide compound, a halogen-containing compound, a diazomethane compound, a sulfone compound, a sulfonic acid ester compound, and a carboxylic acid ester compound, this embodiment The content of [B] photoacid generator in the radiation sensitive resin composition is preferably 0.1 parts by mass to 10 parts by mass, more preferably 100 parts by mass of [A] alkali-soluble resin. 1 part by mass to 5 parts by mass. When the content of the above-mentioned [B] photoacid generator is in the above-mentioned range, the radiation sensitivity of the radiation-sensitive resin composition of the present embodiment can be optimized, exhibiting good patternability, This is suitable for forming the cured film of the embodiment.

(キノンジアジド化合物)
本実施形態の感放射線性樹脂組成物の[B]光酸発生剤としては、上述したオキシムスルホネート化合物等の他に、キノンジアジド化合物を挙げることができる。このキノンジアジド化合物は、本実施形態の感放射線性樹脂組成物の[B]光酸発生剤として、特に好ましく用いることができる。
(Quinonediazide compound)
Examples of the [B] photoacid generator of the radiation-sensitive resin composition of the present embodiment include quinonediazide compounds in addition to the oxime sulfonate compounds described above. This quinonediazide compound can be particularly preferably used as the [B] photoacid generator of the radiation-sensitive resin composition of the present embodiment.

キノンジアジド化合物は、放射線の照射によってカルボン酸を発生するキノンジアジド化合物である。キノンジアジド化合物としては、フェノール性化合物またはアルコール性化合物(以下、「母核」と称する。)と、1,2−ナフトキノンジアジドスルホン酸ハライドとの縮合物を用いることができる。   A quinonediazide compound is a quinonediazide compound that generates a carboxylic acid upon irradiation with radiation. As the quinonediazide compound, a condensate of a phenolic compound or an alcoholic compound (hereinafter referred to as “mother nucleus”) and 1,2-naphthoquinonediazidesulfonic acid halide can be used.

上述の母核としては、例えば、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、ペンタヒドロキシベンゾフェノン、ヘキサヒドロキシベンゾフェノン、(ポリヒドロキシフェニル)アルカン、その他の母核等が挙げられる。   Examples of the mother nucleus include trihydroxybenzophenone, tetrahydroxybenzophenone, pentahydroxybenzophenone, hexahydroxybenzophenone, (polyhydroxyphenyl) alkane, and other mother nuclei.

トリヒドロキシベンゾフェノンとしては、例えば、2,3,4−トリヒドロキシベンゾフェノン、2,4,6−トリヒドロキシベンゾフェノン等が挙げられる。   Examples of trihydroxybenzophenone include 2,3,4-trihydroxybenzophenone and 2,4,6-trihydroxybenzophenone.

テトラヒドロキシベンゾフェノンとしては、例えば、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,3,4,3’−テトラヒドロキシベンゾフェノン、2,3,4,4’−テトラヒドロキシベンゾフェノン、2,3,4,2’−テトラヒドロキシ−4’−メチルベンゾフェノン、2,3,4,4’−テトラヒドロキシ−3’−メトキシベンゾフェノン等が挙げられる。   Examples of tetrahydroxybenzophenone include 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,3,4,3′-tetrahydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2, Examples include 3,4,2′-tetrahydroxy-4′-methylbenzophenone and 2,3,4,4′-tetrahydroxy-3′-methoxybenzophenone.

ペンタヒドロキシベンゾフェノンとしては、例えば、2,3,4,2’,6’−ペンタヒドロキシベンゾフェノン等が挙げられる。   Examples of pentahydroxybenzophenone include 2,3,4,2 ', 6'-pentahydroxybenzophenone.

ヘキサヒドロキシベンゾフェノンとしては、例えば、2,4,6,3’,4’,5’−ヘキサヒドロキシベンゾフェノン、3,4,5,3’,4’,5’−ヘキサヒドロキシベンゾフェノン等が挙げられる。   Examples of hexahydroxybenzophenone include 2,4,6,3 ', 4', 5'-hexahydroxybenzophenone, 3,4,5,3 ', 4', 5'-hexahydroxybenzophenone, and the like.

(ポリヒドロキシフェニル)アルカンとしては、例えば、ビス(2,4−ジヒドロキシフェニル)メタン、ビス(p−ヒドロキシフェニル)メタン、トリス(p−ヒドロキシフェニル)メタン、1,1,1−トリス(p−ヒドロキシフェニル)エタン、ビス(2,3,4−トリヒドロキシフェニル)メタン、2,2−ビス(2,3,4−トリヒドロキシフェニル)プロパン、1,1,3−トリス(2,5−ジメチル−4−ヒドロキシフェニル)−3−フェニルプロパン、4,4’−〔1−{4−(1−[4−ヒドロキシフェニル]−1−メチルエチル)フェニル}エチリデン〕ビスフェノール、ビス(2,5−ジメチル−4−ヒドロキシフェニル)−2−ヒドロキシフェニルメタン、3,3,3’,3’−テトラメチル−1,1’−スピロビインデン−5,6,7,5’,6’,7’−ヘキサノール、2,2,4−トリメチル−7,2’,4’−トリヒドロキシフラバン等が挙げられる。   Examples of the (polyhydroxyphenyl) alkane include bis (2,4-dihydroxyphenyl) methane, bis (p-hydroxyphenyl) methane, tris (p-hydroxyphenyl) methane, 1,1,1-tris (p- Hydroxyphenyl) ethane, bis (2,3,4-trihydroxyphenyl) methane, 2,2-bis (2,3,4-trihydroxyphenyl) propane, 1,1,3-tris (2,5-dimethyl) -4-hydroxyphenyl) -3-phenylpropane, 4,4 '-[1- {4- (1- [4-hydroxyphenyl] -1-methylethyl) phenyl} ethylidene] bisphenol, bis (2,5- Dimethyl-4-hydroxyphenyl) -2-hydroxyphenylmethane, 3,3,3 ′, 3′-tetramethyl-1,1′-spirobi Nden -5,6,7,5 ', 6', 7'-hexanol, 2,2,4-trimethyl -7,2 ', 4'-trihydroxy flavan like.

その他の母核としては、例えば、2−メチル−2−(2,4−ジヒドロキシフェニル)−4−(4−ヒドロキシフェニル)−7−ヒドロキシクロマン、1−〔1−{3−(1−[4−ヒドロキシフェニル]−1−メチルエチル)−4,6−ジヒドロキシフェニル}−1−メチルエチル〕−3−〔1−{3−(1−[4−ヒドロキシフェニル]−1−メチルエチル)−4,6−ジヒドロキシフェニル}−1−メチルエチル〕ベンゼン、4,6−ビス{1−(4−ヒドロキシフェニル)−1−メチルエチル}−1,3−ジヒドロキシベンゼン等が挙げられる。   Examples of other mother nuclei include 2-methyl-2- (2,4-dihydroxyphenyl) -4- (4-hydroxyphenyl) -7-hydroxychroman, 1- [1- {3- (1- [ 4-hydroxyphenyl] -1-methylethyl) -4,6-dihydroxyphenyl} -1-methylethyl] -3- [1- {3- (1- [4-hydroxyphenyl] -1-methylethyl)- 4,6-dihydroxyphenyl} -1-methylethyl] benzene, 4,6-bis {1- (4-hydroxyphenyl) -1-methylethyl} -1,3-dihydroxybenzene, and the like.

これらの母核のうち、2,3,4,4’−テトラヒドロキシベンゾフェノン、1,1,1−トリス(p−ヒドロキシフェニル)エタン、4,4’−〔1−{4−(1−[4−ヒドロキシフェニル]−1−メチルエチル)フェニル}エチリデン〕ビスフェノールが好ましく用いられる。   Among these mother nuclei, 2,3,4,4′-tetrahydroxybenzophenone, 1,1,1-tris (p-hydroxyphenyl) ethane, 4,4 ′-[1- {4- (1- [ 4-hydroxyphenyl] -1-methylethyl) phenyl} ethylidene] bisphenol is preferably used.

1,2−ナフトキノンジアジドスルホン酸ハライドとしては、1,2−ナフトキノンジアジドスルホン酸クロリドが好ましい。1,2−ナフトキノンジアジドスルホン酸クロリドとしては、例えば、1,2−ナフトキノンジアジド−4−スルホン酸クロリド、1,2−ナフトキノンジアジド−5−スルホン酸クロリド等が挙げられる。これらのうち、1,2−ナフトキノンジアジド−5−スルホン酸クロリドがより好ましい。   As the 1,2-naphthoquinone diazide sulfonic acid halide, 1,2-naphthoquinone diazide sulfonic acid chloride is preferable. Examples of 1,2-naphthoquinonediazide sulfonic acid chloride include 1,2-naphthoquinonediazide-4-sulfonic acid chloride, 1,2-naphthoquinonediazide-5-sulfonic acid chloride, and the like. Of these, 1,2-naphthoquinonediazide-5-sulfonic acid chloride is more preferred.

フェノール性化合物またはアルコール性化合物(母核)と、1,2−ナフトキノンジアジドスルホン酸ハライドとの縮合反応においては、フェノール性化合物またはアルコール性化合物中のOH基数に対して、好ましくは30モル%〜85モル%、より好ましくは50モル%〜70モル%に相当する1,2−ナフトキノンジアジドスルホン酸ハライドを用いることができる。縮合反応は、公知の方法によって実施することができる。   In the condensation reaction of the phenolic compound or alcoholic compound (mother nucleus) and 1,2-naphthoquinonediazide sulfonic acid halide, preferably 30 mol% to the number of OH groups in the phenolic compound or alcoholic compound. 1,2-naphthoquinonediazide sulfonic acid halide corresponding to 85 mol%, more preferably 50 mol% to 70 mol% can be used. The condensation reaction can be carried out by a known method.

また、キノンジアジド化合物としては、上記に例示した母核のエステル結合をアミド結合に変更した1,2−ナフトキノンジアジドスルホン酸アミド類、例えば、2,3,4−トリアミノベンゾフェノン−1,2−ナフトキノンジアジド−4−スルホン酸アミド等も好適に使用される。   Examples of the quinonediazide compound include 1,2-naphthoquinonediazidesulfonic acid amides in which the ester bond of the mother nucleus exemplified above is changed to an amide bond, such as 2,3,4-triaminobenzophenone-1,2-naphtho. Quinonediazide-4-sulfonic acid amide and the like are also preferably used.

これらのキノンジアジド化合物は、単独でまたは2種類以上を組み合わせて用いることができる。
また、上述したオキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物およびカルボン酸エステル化合物等とともに組み合わせて用いることもできる。
These quinonediazide compounds can be used alone or in combination of two or more.
Moreover, it can also be used in combination with the oxime sulfonate compound, onium salt, sulfonimide compound, halogen-containing compound, diazomethane compound, sulfone compound, sulfonic acid ester compound and carboxylic acid ester compound described above.

本実施形態の感放射線性樹脂組成物におけるキノンジアジド化合物の含有量としては、[A]アルカリ可溶性樹脂100質量部に対して、好ましくは、5質量部〜100質量部、より好ましくは10質量部〜50質量部である。キノンジアジド化合物の含有量を上述の範囲とすることで、現像液となるアルカリ水溶液に対する放射線の照射部分と未照射部分との溶解度の差を大きくして、パターニング性能を向上させることができる。また、この感放射性樹脂組成物を用いて得られる硬化膜の耐溶媒性を良好なものとすることもできる。   As content of the quinonediazide compound in the radiation sensitive resin composition of this embodiment, Preferably it is 5 mass parts-100 mass parts with respect to 100 mass parts of [A] alkali-soluble resin, More preferably, 10 mass parts- 50 parts by mass. By setting the content of the quinonediazide compound in the above range, the difference in solubility between the irradiated portion and the unirradiated portion with respect to the alkaline aqueous solution serving as the developer can be increased, and the patterning performance can be improved. Moreover, the solvent resistance of the cured film obtained using this radiation sensitive resin composition can also be made favorable.

〔[C]半導体量子ドット〕
本発明の実施形態の感放射線性樹脂組成物の必須の成分である[C]半導体量子ドットは、CdやPbを構成成分とせず、例えば、In(インジウム)やSi(珪素)等を構成成分として構成された、安全な材料からなる半導体量子ドットである。
[[C] Semiconductor quantum dots]
The [C] semiconductor quantum dot, which is an essential component of the radiation-sensitive resin composition of the embodiment of the present invention, does not contain Cd or Pb as a constituent component, for example, In (indium), Si (silicon), or the like. This is a semiconductor quantum dot made of a safe material.

[C]半導体量子ドットは、2族元素、11族元素、12族元素、13族元素、14族元素、15族元素および16族元素で示される元素の群から選ばれる少なくとも2種以上の元素を含む化合物からなる、半導体量子ドットであることが好ましい。   [C] The semiconductor quantum dot is at least two elements selected from the group of elements represented by Group 2 element, Group 11 element, Group 12 element, Group 13 element, Group 14 element, Group 15 element and Group 16 element It is preferable that it is a semiconductor quantum dot which consists of a compound containing this.

そして、より具体的には、人に対する安全性について懸念の大きい、例えば、PbおよびCd等の元素が除外され、Be(ベリリウム)、Mg(マグネシウム),Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、Cu(銅)、Ag(銀)、金(Au)、亜鉛(Zn)、B(ホウ素)、Al(アルミニウム)、Ga(ガリウム)、In(インジウム)、Tl(タリウム)、C(炭素)、Si(珪素)、Ge(ゲルマニウム)、Sn(錫)、N(窒素)、P(リン)、As(ヒ素)、Sb(アンチモン)、Bi(ビスマス)、O(酸素)、S(硫黄)、Se(セレン)、Te(テルル)およびPo(ポロニウム)群から選ばれる少なくとも2種以上の元素を含む化合物からなる、半導体量子ドットであることが好ましい。   More specifically, elements such as Pb and Cd, which are of great concern for human safety, are excluded, and Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (Barium), Cu (copper), Ag (silver), gold (Au), zinc (Zn), B (boron), Al (aluminum), Ga (gallium), In (indium), Tl (thallium), C (Carbon), Si (silicon), Ge (germanium), Sn (tin), N (nitrogen), P (phosphorus), As (arsenic), Sb (antimony), Bi (bismuth), O (oxygen), S (Sulfur), Se (selenium), Te (tellurium), and a semiconductor quantum dot which consists of a compound containing at least 2 or more types of elements chosen from Po (polonium) group are preferable.

このとき、[C]半導体量子ドットが500nm〜600nmの波長領域に蛍光極大を有する化合物(A)および/または600nm〜700nmの波長領域に蛍光極大を有する化合物(B)からなることが好ましい。   At this time, it is preferable that the [C] semiconductor quantum dot consists of a compound (A) having a fluorescence maximum in a wavelength region of 500 nm to 600 nm and / or a compound (B) having a fluorescence maximum in a wavelength region of 600 nm to 700 nm.

[C]半導体量子ドットは、このような蛍光発光特性を有する化合物(A)および/または化合物(B)からなることで、500nm〜600nmの波長領域、および/または、600nm〜700nmの波長領域に蛍光極大を有することができる。その結果、[C]半導体量子ドットを含有する本実施形態の感放射線性樹脂組成物は、可視域の光を用いて画像の表示を行う発光表示素子の発光層の構成に好適な硬化膜を形成することができる。   [C] The semiconductor quantum dot is composed of the compound (A) and / or the compound (B) having such fluorescence emission characteristics, so that the wavelength range of 500 nm to 600 nm and / or the wavelength range of 600 nm to 700 nm is obtained. It can have a fluorescence maximum. As a result, the radiation sensitive resin composition of this embodiment containing [C] semiconductor quantum dots is a cured film suitable for the structure of the light emitting layer of a light emitting display element that displays an image using light in the visible range. Can be formed.

そしてさらに、本実施形態の感放射線性樹脂組成物に含有される[C]半導体量子ドットが、Inを構成成分として含む化合物からなる半導体量子ドットであることがより好ましい。またほかに、[C]半導体量子ドットとしては、Si化合物を挙げることができる。   Furthermore, it is more preferable that the [C] semiconductor quantum dot contained in the radiation sensitive resin composition of the present embodiment is a semiconductor quantum dot made of a compound containing In as a constituent component. In addition, the [C] semiconductor quantum dots may include Si compounds.

[C]半導体量子ドットとして好ましいSi化合物については、Siが挙げられる。   [C] Examples of the Si compound preferable as the semiconductor quantum dot include Si.

[C]半導体量子ドットの成分構成を上述のようにすることで、本実施形態の感放射線性樹脂組成物は、安全で、優れた蛍光特性を有する硬化膜を形成することができ、さらには、安全で、優れた蛍光特性を有する発光表示素子の発光層を形成することができる。   [C] By making the component constitution of the semiconductor quantum dots as described above, the radiation-sensitive resin composition of the present embodiment can form a cured film having a safe and excellent fluorescence property, and further, A light emitting layer of a light emitting display element that is safe and has excellent fluorescence characteristics can be formed.

また、本実施形態の感放射線性樹脂組成物に含有される[C]半導体量子ドットは、1種の化合物からなる均質構造型、および、2種以上の化合物からなるコアシェル構造型から選ばれる少なくとも一方の構造型の半導体量子ドットであることが好ましい。   In addition, the [C] semiconductor quantum dots contained in the radiation-sensitive resin composition of the present embodiment are at least selected from a homogeneous structure type composed of one compound and a core-shell structure type composed of two or more compounds. One structure type semiconductor quantum dot is preferable.

コアシェル構造型の[C]半導体量子ドットは、1つの種類の化合物でコア構造を形成し、別の化合物でコア構造の周囲を被覆して構成される。例えば、バンドギャップのより大きい半導体でコアの半導体を被覆することにより、光励起によって生成された励起子(電子−正孔対)はコア内に閉じ込められる。その結果、量子ドット表面での無輻射遷移の確率が減少し、発光の量子収率および[C]半導体量子ドットの蛍光特性の安定性が向上する。   The core-shell structure type [C] semiconductor quantum dot is formed by forming a core structure with one kind of compound and coating the periphery of the core structure with another compound. For example, by covering the core semiconductor with a semiconductor having a larger band gap, excitons (electron-hole pairs) generated by photoexcitation are confined in the core. As a result, the probability of non-radiative transition on the surface of the quantum dot is reduced, and the quantum yield of light emission and the stability of the fluorescence characteristics of the [C] semiconductor quantum dot are improved.

本実施形態の感放射線性樹脂組成物に含有される[C]半導体量子ドットは、成分構成と構造を考慮した場合、コアシェル構造型半導体量子ドットであるInP/ZnS、CuInS/ZnSおよび(ZnS/AgInS)固溶体/ZnS、並びに、均質構造型半導体量子ドットであるAgInSおよびZnドープAgInSよりなる群から選ばれる少なくとも1種であることが好ましい。 [C] semiconductor quantum dots contained in the radiation-sensitive resin composition of the present embodiment are InP / ZnS, CuInS 2 / ZnS, and (ZnS), which are core-shell structure type semiconductor quantum dots, in consideration of the component structure and structure. / AgInS 2 ) Solid solution / ZnS, and at least one selected from the group consisting of AgInS 2 and Zn-doped AgInS 2 which are homogeneous structure type semiconductor quantum dots are preferable.

以上より、本実施形態の感放射線性樹脂組成物に含有される[C]半導体量子ドットは、InP/ZnS化合物、CuInS/ZnS化合物、AgInS化合物、(ZnS/AgInS)固溶体/ZnS化合物、ZnドープAgInS化合物およびSi化合物の群から選ばれる少なくとも1つであることが好ましい。 From the above, [C] a semiconductor quantum dots contained in the radiation-sensitive resin composition of the present embodiment, InP / ZnS compounds, CuInS 2 / ZnS compounds, AgInS 2 compound, (ZnS / AgInS 2) solid solution / ZnS compound It is preferable that at least one selected from the group consisting of Zn-doped AgInS 2 compound and Si compound.

以上で例示した[C]半導体量子ドットにより、それを含有する本実施形態の感放射線性樹脂組成物は、安全で、より優れた蛍光特性を有する硬化膜を形成し、さらには、より優れた蛍光特性の発光表示素子の発光層を形成することができる。   With the [C] semiconductor quantum dots exemplified above, the radiation-sensitive resin composition of the present embodiment containing the same forms a cured film having a safe and superior fluorescence property, and more excellent. A light-emitting layer of a light-emitting display element having fluorescent characteristics can be formed.

また、本実施形態の感放射線性樹脂組成物に含有される[C]半導体量子ドットは、平均粒径が0.5nm〜20nmであることが好ましく、1.0nm〜10nmであることがより好ましい。平均粒径が0.5nm未満である場合には、[C]半導体量子ドットを調製することが難しく、調製ができたとしても、[C]半導体量子ドットの蛍光特性が不安定になる場合がある。[C]半導体量子ドットの平均粒径が20nmを超える場合には、半導体量子ドットの大きさによる量子閉じ込め効果が得られない場合があって、所望とする蛍光特性が得られず、望ましくない。   In addition, the [C] semiconductor quantum dots contained in the radiation-sensitive resin composition of the present embodiment preferably have an average particle size of 0.5 nm to 20 nm, and more preferably 1.0 nm to 10 nm. . When the average particle size is less than 0.5 nm, it is difficult to prepare the [C] semiconductor quantum dot, and even if it can be prepared, the fluorescence characteristics of the [C] semiconductor quantum dot may become unstable. is there. [C] If the average particle diameter of the semiconductor quantum dots exceeds 20 nm, the quantum confinement effect due to the size of the semiconductor quantum dots may not be obtained, and the desired fluorescence characteristics cannot be obtained, which is not desirable.

また、半導体量子ドットの形状は特に限定されず、例えば、球状、棒状、円盤状、その他の形状であっても良い。量子ドットの粒径、形状、分散状態等の情報については、透過型電子顕微鏡(TEM)により得ることができる。   The shape of the semiconductor quantum dots is not particularly limited, and may be, for example, a spherical shape, a rod shape, a disk shape, or other shapes. Information such as the particle size, shape, and dispersion state of the quantum dots can be obtained by a transmission electron microscope (TEM).

本発明の実施形態の感放射線性樹脂組成物に含有される[C]半導体量子ドットを得る方法としては、配位性有機溶媒中で有機金属化合物を熱分解する公知の方法を利用することができる。また、コアシェル構造型の半導体量子ドットは、反応により均質なコア構造を形成した後、反応系内に、コア表面にシェルを形成するための前駆体を添加し、シェル形成の後、反応を停止し、溶媒から分離することで得ることができる。尚、市販されているものを利用することも可能である。   As a method of obtaining the [C] semiconductor quantum dot contained in the radiation sensitive resin composition of embodiment of this invention, utilizing the well-known method of thermally decomposing an organometallic compound in a coordination organic solvent. it can. For core-shell structure type semiconductor quantum dots, after forming a homogeneous core structure by reaction, a precursor for forming a shell on the core surface is added to the reaction system, and the reaction is stopped after the shell formation. And can be obtained by separating from the solvent. A commercially available product can also be used.

本実施形態の感放射線性樹脂組成物における[C]半導体量子ドットの含有量としては、[A]アルカリ可溶性樹脂100質量部に対して、好ましくは、0.1質量部〜100質量部、より好ましくは0.2質量部〜50質量部である。[C]半導体量子ドットの含有量を上述の範囲とすることで、優れた蛍光特性を有する硬化膜を形成し、その結果、優れた蛍光特性の発光表示素子の発光層を形成することができる。[C]半導体量子ドットの含有量が、[A]アルカリ可溶性樹脂100質量部に対して、0.1質量部より少ないと、形成される硬化膜において所望とする蛍光特性を得ることができず、発光表示素子の発光層を形成することができない。また、[A]アルカリ可溶性樹脂100質量部に対して、100質量部より多いと、形成される硬化膜の安定性が損なわれ、安定な発光表示素子の発光層を形成することができない。   As content of the [C] semiconductor quantum dot in the radiation sensitive resin composition of this embodiment, Preferably it is 0.1 mass part-100 mass parts with respect to 100 mass parts of [A] alkali-soluble resin. Preferably they are 0.2 mass part-50 mass parts. [C] By setting the content of the semiconductor quantum dots in the above range, a cured film having excellent fluorescence characteristics can be formed, and as a result, a light emitting layer of a light emitting display element having excellent fluorescence characteristics can be formed. . [C] If the content of the semiconductor quantum dots is less than 0.1 parts by mass with respect to 100 parts by mass of the [A] alkali-soluble resin, the desired fluorescent properties cannot be obtained in the formed cured film. The light emitting layer of the light emitting display element cannot be formed. Moreover, when it exceeds 100 mass parts with respect to 100 mass parts of [A] alkali-soluble resin, stability of the cured film formed will be impaired and the light emitting layer of a stable light emitting display element cannot be formed.

〔その他の成分〕
本実施形態の感放射線性樹脂組成物は、[A]アルカリ可溶性樹脂、[B]光酸発生体、および[C]半導体量子ドットを必須の成分として含有するとともに、硬化促進剤や熱酸発生剤やその他の任意成分を含有することができる。
[Other ingredients]
The radiation-sensitive resin composition of the present embodiment contains [A] alkali-soluble resin, [B] photoacid generator, and [C] semiconductor quantum dots as essential components, as well as a curing accelerator and thermal acid generator. An agent and other optional components can be contained.

硬化促進剤は、本実施形態の感放射線性樹脂組成物により形成される膜の硬化を促進する機能を果たす化合物である。   The curing accelerator is a compound that functions to promote curing of a film formed by the radiation-sensitive resin composition of the present embodiment.

熱酸発生剤は、熱をかけることによって樹脂を硬化させる際の触媒として作用する酸性活性物質を放出することができる化合物である。   The thermal acid generator is a compound capable of releasing an acidic active substance that acts as a catalyst when the resin is cured by applying heat.

本実施形態の感放射線性樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、界面活性剤、保存安定剤、接着助剤、耐熱性向上剤等のその他の任意成分を含有できる。これらの各任意成分は、単独で使用してもよいし、2種以上を混合して使用してもよい。   The radiation-sensitive resin composition of the present embodiment includes other optional components such as a surfactant, a storage stabilizer, an adhesion aid, and a heat resistance improver as necessary, as long as the effects of the present invention are not impaired. Can be contained. Each of these optional components may be used alone or in combination of two or more.

〔感放射線性樹脂組成物の調製方法〕
本実施形態の感放射線性樹脂組成物は、[A]アルカリ可溶性樹脂、[B]光酸発生体および[C]半導体量子ドットを均一に混合することによって調製される。また、硬化促進剤、熱酸発生剤およびその他の任意成分を必要に応じて選択し、それらを含有させる場合、[A]アルカリ可溶性樹脂、[B]光酸発生体および[C]半導体量子ドット並びにそれら任意の成分とを均一に混合することによって調製される。そして、本実施形態の感放射線性樹脂組成物は、好ましくは適当な溶媒に溶解されて溶液状で用いられる。溶媒は、単独で、または、2種以上を混合して使用できる。
[Method for preparing radiation-sensitive resin composition]
The radiation sensitive resin composition of this embodiment is prepared by uniformly mixing [A] alkali-soluble resin, [B] photoacid generator and [C] semiconductor quantum dots. Further, when a curing accelerator, a thermal acid generator and other optional components are selected as necessary, and they are contained, [A] an alkali-soluble resin, [B] a photoacid generator, and [C] a semiconductor quantum dot As well as those optional ingredients. And the radiation sensitive resin composition of this embodiment is preferably dissolved in an appropriate solvent and used in the form of a solution. A solvent can be used individually or in mixture of 2 or more types.

本実施形態の感放射線性樹脂組成物の調製に用いられる溶媒としては、必須成分および任意成分を均一に溶解し、各成分と反応しないものが用いられる。このような溶媒としては、例えば、アルコール、グリコールエーテル、エチレングリコールアルキルエーテルアセテート、ジエチレングリコールモノアルキルエーテル、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルプロピオネート、ケトン、エステル等が挙げられる。   As a solvent used for the preparation of the radiation sensitive resin composition of the present embodiment, a solvent that uniformly dissolves essential components and optional components and does not react with each component is used. Examples of such solvents include alcohol, glycol ether, ethylene glycol alkyl ether acetate, diethylene glycol monoalkyl ether, diethylene glycol dialkyl ether, dipropylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol alkyl ether acetate, propylene glycol mono Examples include alkyl ether propionates, ketones, esters and the like.

溶媒の含有量は特に限定されないが、得られる感放射線性樹脂組成物の塗布性、安定性等の観点から、感放射線性樹脂組成物の溶媒を除いた各成分の合計濃度が、2質量%〜50質量%となる量が好ましく、5質量%〜40質量%となる量がより好ましい。感放射線性樹脂組成物の溶液を調製する場合、実際には、上述の濃度範囲において、所望の膜厚の値等に応じた固形分濃度(組成物溶液中に占める溶媒以外の成分)が設定される。   The content of the solvent is not particularly limited, but the total concentration of each component excluding the solvent of the radiation-sensitive resin composition is 2% by mass from the viewpoints of applicability and stability of the resulting radiation-sensitive resin composition. The amount of ˜50 mass% is preferred, and the amount of 5˜40 mass% is more preferred. When preparing a solution of a radiation-sensitive resin composition, the solid content concentration (components other than the solvent occupying in the composition solution) is actually set in the above-mentioned concentration range according to the desired film thickness value, etc. Is done.

このようにして調製された溶液状の本実施形態の感放射線性樹脂組成物は、孔径0.5μm程度のミリポアフィルタ等を用いて濾過した後に、本実施形態の硬化膜の形成に使用することが好ましい。   The solution-like radiation-sensitive resin composition of the present embodiment prepared in this way is used for forming the cured film of the present embodiment after being filtered using a Millipore filter having a pore diameter of about 0.5 μm. Is preferred.

実施の形態2.
<硬化膜>
本発明の第2実施形態の硬化膜は、適当な基板上に、上述した本発明の実施形態の感放射線性樹脂組成物を塗布し、必要な場合にパターニングをした後、加熱硬化して形成される。以下で、本実施形態の硬化膜およびその形成方法について説明する。
Embodiment 2. FIG.
<Curing film>
The cured film of the second embodiment of the present invention is formed by applying the radiation sensitive resin composition of the above-described embodiment of the present invention on a suitable substrate, patterning if necessary, and then heat curing. Is done. Below, the cured film of this embodiment and its formation method are demonstrated.

本実施形態の硬化膜の形成方法では、基板上に硬化膜が形成されるように、少なくとも下記の工程(1)〜工程(4)を下記の順で含むことが好ましい。   In the method for forming a cured film of this embodiment, it is preferable that at least the following steps (1) to (4) are included in the following order so that the cured film is formed on the substrate.

(1)本発明の第1実施形態の感放射線性樹脂組成物の塗膜を基板上に形成する塗膜形成工程。
(2)工程(1)で形成した塗膜の少なくとも一部に放射線を照射する放射線照射工程。
(3)工程(2)で放射線を照射された塗膜を現像する現像工程。
(4)工程(3)で現像された塗膜を加熱する加熱工程。
(1) The coating-film formation process which forms the coating film of the radiation sensitive resin composition of 1st Embodiment of this invention on a board | substrate.
(2) A radiation irradiation step of irradiating at least part of the coating film formed in step (1) with radiation.
(3) A development step of developing the coating film irradiated with radiation in step (2).
(4) A heating step of heating the coating film developed in step (3).

そして、図1〜図4は、本発明の第2実施形態の硬化膜の形成方法を説明する図である。   1 to 4 are diagrams illustrating a method for forming a cured film according to the second embodiment of the present invention.

図1は、本発明の第2実施形態の硬化膜の形成における塗膜形成工程を説明する基板の断面図である。   FIG. 1 is a cross-sectional view of a substrate for explaining a coating film forming step in forming a cured film according to a second embodiment of the present invention.

図2は、本発明の第2実施形態の硬化膜の形成における放射線照射工程を模式的に説明する断面図である。   FIG. 2 is a cross-sectional view schematically illustrating a radiation irradiation step in forming a cured film according to the second embodiment of the present invention.

図3は、本発明の第2実施形態の硬化膜の形成における現像工程を説明する基板の断面図である。   FIG. 3 is a cross-sectional view of a substrate for explaining a development process in forming a cured film according to the second embodiment of the present invention.

図4は、本発明の第2実施形態の硬化膜の形成における加熱工程を説明する硬化膜および基板の断面図である。   FIG. 4 is a cross-sectional view of a cured film and a substrate for explaining a heating step in forming a cured film according to the second embodiment of the present invention.

以下、上述の(1)工程(塗膜形成工程)〜(4)工程(加熱工程)についてそれぞれ説明する。   Hereinafter, each of the above-described steps (1) (coating film forming step) to (4) step (heating step) will be described.

[(1)工程]
本実施形態の硬化膜の形成方法の(1)工程(塗膜形成工程)では、図1に示すように、本実施形態の感放射線性樹脂組成物の塗膜1を基板2上に形成する。
塗膜1を形成する基板2には、ガラス、石英、または、透明樹脂(例えば、透明ポリイミド、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリエステルフィルム、環状オレフィン系樹脂フィルム等)等からなる基板を用いることができる。また、これらの基板には、所望により、シランカップリング剤等による薬品処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着等の前処理を施しておくこともできる。
[(1) Process]
In the process (1) (coating film forming process) of the method for forming a cured film of the present embodiment, as shown in FIG. 1, the coating film 1 of the radiation sensitive resin composition of the present embodiment is formed on the substrate 2. .
For the substrate 2 on which the coating film 1 is formed, a substrate made of glass, quartz, or a transparent resin (for example, transparent polyimide, polyethylene naphthalate, polyethylene terephthalate, polyester film, cyclic olefin resin film, or the like) is used. it can. In addition, these substrates may be subjected to pretreatment such as chemical treatment with a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, vacuum deposition or the like, if desired.

基板2において、一方の面に、本実施形態の感放射線性樹脂組成物が塗布された後、プレベークを行い、感放射線性樹脂組成物が溶媒を含む場合にその溶媒が蒸発し、塗膜1の形成が行われる。   In the substrate 2, after the radiation sensitive resin composition of the present embodiment is applied to one surface, prebaking is performed, and when the radiation sensitive resin composition contains a solvent, the solvent evaporates, and the coating film 1. Is formed.

本工程における感放射線性樹脂組成物の塗布方法としては、例えば、スプレー法、ロールコート法、回転塗布法(スピンコート法またはスピンナ法と称されることもある。)、スリット塗布法(スリットダイ塗布法)、バー塗布法、インクジェット塗布法等の適宜の方法が採用できる。これらのうち、均一な厚みの膜を形成できる点から、スピンコート法またはスリット塗布法が好ましい。   Examples of the coating method of the radiation-sensitive resin composition in this step include a spray method, a roll coating method, a spin coating method (sometimes called a spin coating method or a spinner method), a slit coating method (slit die). Appropriate methods such as a coating method), a bar coating method, and an inkjet coating method can be employed. Of these, the spin coating method or the slit coating method is preferable because a film having a uniform thickness can be formed.

上述のプレベークの条件は、感放射線性樹脂組成物を構成する各成分の種類、配合割合等によって異なるが、70℃〜120℃の温度で行うのが好ましく、時間は、ホットプレートやオーブン等の加熱装置によって異なるが、おおよそ1分間〜15分間程度である。   The prebaking conditions described above vary depending on the types and blending ratios of the components constituting the radiation-sensitive resin composition, but are preferably performed at a temperature of 70 ° C. to 120 ° C., and the time is such as a hot plate or an oven. Although it differs depending on the heating device, it is about 1 to 15 minutes.

[(2)工程]
次いで、本実施形態の硬化膜の形成方法の(2)工程(放射線照射工程)では、図2に示すように、(1)工程で基板2上に形成された塗膜1の少なくとも一部に放射線4を照射する。このとき、塗膜1の一部にのみ、放射線4aを照射するには、例えば、所望の形状の形成に対応するパターンのフォトマスク3を介して行う。このフォトマスク3を用いることにより、照射された放射線4の一部がフォトマスクを透過し、その一部の放射線4aが、塗膜1に照射される。
[(2) Process]
Next, in step (2) (radiation irradiation step) of the method for forming a cured film of the present embodiment, as shown in FIG. 2, at least part of the coating film 1 formed on the substrate 2 in step (1) is formed. Radiation 4 is irradiated. At this time, in order to irradiate only a part of the coating film 1 with the radiation 4a, for example, it is performed through the photomask 3 having a pattern corresponding to formation of a desired shape. By using this photomask 3, a part of the irradiated radiation 4 passes through the photomask, and a part of the radiation 4 a is irradiated onto the coating film 1.

照射に使用される放射線4としては、可視光線、紫外線、遠紫外線等が挙げられる。このうち波長が200nm〜550nmの範囲にある放射線が好ましく、365nmの紫外線を含む放射線がより好ましい。   Examples of the radiation 4 used for irradiation include visible light, ultraviolet light, and far ultraviolet light. Of these, radiation having a wavelength in the range of 200 nm to 550 nm is preferable, and radiation including ultraviolet light of 365 nm is more preferable.

放射線4の照射量(露光量)は、放射線4の波長365nmにおける強度を照度計(OAI model 356、Optical Associates Inc.製)により測定した値として、10J/m〜10000J/mとすることができ、100J/m〜5000J/mが好ましく、200J/m〜3000J/mがより好ましい。 The dose of radiation 4 (exposure amount), the intensity at the wavelength 365nm radiation 4 as a value measured by a luminometer (OAI model 356, Optical Associates Ltd. Inc.), be 10J / m 2 ~10000J / m 2 can be preferably 100J / m 2 ~5000J / m 2 , 200J / m 2 ~3000J / m 2 is more preferable.

[[3]工程]
次に、本実施形態の硬化膜の形成方法の(3)工程(現像工程)では、図3に示すように、放射線照射後の図2の塗膜1を現像して不要な部分を除去し、所定の形状にパターニングされた塗膜1aを得る。
[[3] Process]
Next, in step (3) (development step) of the method for forming a cured film of the present embodiment, as shown in FIG. 3, the coating film 1 of FIG. 2 after irradiation is developed to remove unnecessary portions. The coating film 1a patterned into a predetermined shape is obtained.

現像に使用される現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等の無機アルカリや、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の4級アンモニウム塩や、コリン、1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ−[4.3.0]−5−ノネン等のアルカリ性化合物の水溶液が使用できる。上述のアルカリ性化合物の水溶液には、メタノール、エタノール等の水溶性有機溶媒を適当量添加して使用することもできる。さらに、界面活性剤をそれのみで、または、上述の水溶性有機溶媒の添加とともに、適当量添加して使用することもできる。   Examples of the developer used for development include inorganic alkalis such as sodium hydroxide, potassium hydroxide and sodium carbonate, quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide, choline, An aqueous solution of an alkaline compound such as 8-diazabicyclo- [5.4.0] -7-undecene and 1,5-diazabicyclo- [4.3.0] -5-nonene can be used. An appropriate amount of a water-soluble organic solvent such as methanol or ethanol can be added to the aqueous solution of the alkaline compound described above. Furthermore, the surfactant can be used alone or in combination with the addition of the above-mentioned water-soluble organic solvent.

現像方法は、液盛り法、ディッピング法、シャワー法、スプレー法等のいずれでもよく、現像時間は、常温で5秒間〜300秒間とすることができ、好ましくは常温で10秒間〜180秒間程度である。現像処理に続いて、例えば、流水洗浄を30秒間〜90秒間行った後、圧縮空気や圧縮窒素で風乾することによって、所望のパターンが得られる。   The developing method may be any of a liquid filling method, a dipping method, a shower method, a spraying method, etc., and the developing time can be 5 seconds to 300 seconds at room temperature, preferably 10 seconds to 180 seconds at room temperature. is there. Subsequent to the development processing, for example, washing with running water is performed for 30 seconds to 90 seconds, and then a desired pattern is obtained by air drying with compressed air or compressed nitrogen.

[[4]工程]
次に、本実施形態の硬化膜の形成方法の(4)工程(加熱工程)では、図3に示したパターニングされた塗膜1aを、ホットプレート、オーブン等の適当な加熱装置により硬化(ポストベークとも言う。)する。これにより、図4に示すように、基板2上に形成された、本実施形態の硬化膜5が得られる。硬化膜5は、上述したように、所望の形状となるようにパターニングされている。
[[4] Process]
Next, in step (4) (heating step) of the method for forming a cured film of this embodiment, the patterned coating film 1a shown in FIG. 3 is cured (post-posted) by an appropriate heating device such as a hot plate or oven. Also called bake.) Thereby, as shown in FIG. 4, the cured film 5 of this embodiment formed on the board | substrate 2 is obtained. As described above, the cured film 5 is patterned so as to have a desired shape.

本実施形態の硬化膜5の形成には、上述した第1実施形態の感放射線性樹脂組成物を用いており、本工程の加熱温度は100℃〜250℃とすることが好ましい。また、第1実施形態の感放射線性樹脂組成物に添加された硬化促進剤の効果等により、加熱温度を200℃以下とし、硬化膜5を形成することも可能である。硬化時間は、例えば、ホットプレート上では5分間〜30分間とすることが好ましく、オーブン中では30分間〜180分間とすることが好ましい。   For the formation of the cured film 5 of the present embodiment, the radiation-sensitive resin composition of the first embodiment described above is used, and the heating temperature in this step is preferably 100 ° C to 250 ° C. In addition, due to the effect of the curing accelerator added to the radiation-sensitive resin composition of the first embodiment, the cured film 5 can be formed at a heating temperature of 200 ° C. or lower. For example, the curing time is preferably 5 to 30 minutes on a hot plate, and preferably 30 to 180 minutes in an oven.

以上の工程(1)〜工程(4)を含む硬化膜の形成方法によって形成された本実施形態の硬化膜は、樹脂中に[C]半導体量子ドットを含んで構成され、[C]半導体量子ドットに基づく蛍光発光(波長変換)機能を有する。そのため、励起光と異なる波長の蛍光を発光する波長変換膜や発光層としての利用が可能である。
特に、本実施形態の硬化膜は、発光表示素子の発光層としての利用に好適であり、発光表示素子の構成に用いることができる。
The cured film of this embodiment formed by the cured film forming method including the above steps (1) to (4) is configured to include [C] semiconductor quantum dots in the resin, and [C] semiconductor quantum. Fluorescence emission (wavelength conversion) function based on dots. Therefore, it can be used as a wavelength conversion film or a light emitting layer that emits fluorescence having a wavelength different from that of excitation light.
In particular, the cured film of the present embodiment is suitable for use as a light emitting layer of a light emitting display element, and can be used for the structure of the light emitting display element.

そのため、硬化膜は光の利用効率を高めることができるように、その樹脂は、厚さ0.1mmでの全光線透過率(JIS K7105)が、好ましくは75%〜95%であり、より好ましくは78%〜95%であり、さらに好ましくは80%〜95%である。全光線透過率がこのような範囲であれば、得られる硬化膜は優れた光利用効率の波長変換膜や発光層を構成することができる。   Therefore, the resin has a total light transmittance (JIS K7105) at a thickness of 0.1 mm, preferably 75% to 95%, more preferably, so that the cured film can enhance the light utilization efficiency. Is 78% to 95%, more preferably 80% to 95%. When the total light transmittance is within such a range, the obtained cured film can constitute a wavelength conversion film or a light emitting layer with excellent light utilization efficiency.

実施の形態3.
<発光表示素子およびその発光層>
本発明の第3実施形態である発光表示素子は、上述した本発明の第2実施形態の硬化膜を発光層として用いる波長変換基板を用いて構成される。
Embodiment 3 FIG.
<Light-emitting display element and light-emitting layer thereof>
The light emitting display element which is 3rd Embodiment of this invention is comprised using the wavelength conversion board | substrate which uses the cured film of 2nd Embodiment of this invention mentioned above as a light emitting layer.

図5は、本発明の実施形態の発光表示素子を模式的に示す断面図である。   FIG. 5 is a cross-sectional view schematically showing a light-emitting display element according to an embodiment of the present invention.

本発明の第1実施形態の発光表示素子100は、基板12上に発光層13(13a、13b、13c)とブラックマトリクス14とを設けて構成された波長変換基板11と、波長変換基板11上に接着剤層15を介して貼り合わされた光源基板18とを有する。   The light emitting display device 100 according to the first embodiment of the present invention includes a wavelength conversion substrate 11 configured by providing a light emitting layer 13 (13a, 13b, 13c) and a black matrix 14 on a substrate 12, and a wavelength conversion substrate 11. And a light source substrate 18 bonded through an adhesive layer 15.

基板12は、ガラス、石英、または、透明樹脂(例えば、透明ポリイミド、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリエステルフィルム、環状オレフィン系樹脂フィルム等)等からなる。   The substrate 12 is made of glass, quartz, or a transparent resin (for example, transparent polyimide, polyethylene naphthalate, polyethylene terephthalate, polyester film, cyclic olefin resin film, etc.).

波長変換基板11の発光層13は、上述した本発明の第2実施形態の硬化膜を利用したものである。すなわち、発光層13は、上述した本発明の第1実施形態の感放射線性樹脂組成物を用い、パターニングして形成される。   The light emitting layer 13 of the wavelength conversion substrate 11 utilizes the above-described cured film of the second embodiment of the present invention. That is, the light emitting layer 13 is formed by patterning using the radiation sensitive resin composition of the first embodiment of the present invention described above.

発光層の形成方法については、それらが本発明の第2実施形態の硬化膜を用いてなるものであることから、上述した本発明の第2実施形態の硬化膜の形成方法と同様となる。
すなわち、基板12上に本発明の第2実施形態の硬化膜が形成され、それらが発光層13となって発光表示素子100の波長変換基板11を構成する。したがって、発光層13の形成方法は、上述したのと同様の下記工程(1)〜工程(4)をこの順で含むことが好ましい。
About the formation method of a light emitting layer, since they are formed using the cured film of 2nd Embodiment of this invention, it becomes the same as the formation method of 2nd Embodiment of this invention mentioned above.
That is, the cured film of the second embodiment of the present invention is formed on the substrate 12, and these serve as the light emitting layer 13 to constitute the wavelength conversion substrate 11 of the light emitting display element 100. Therefore, the method for forming the light emitting layer 13 preferably includes the following steps (1) to (4) similar to those described above in this order.

(1)本発明の第1実施形態の感放射線性樹脂組成物の塗膜を基板上に形成する塗膜形成工程。
(2)工程(1)で形成した塗膜の少なくとも一部に放射線を照射する放射線照射工程。
(3)工程(2)で放射線を照射された塗膜を現像する現像工程。
(4)工程(3)で現像された塗膜を加熱する加熱工程。
(1) The coating-film formation process which forms the coating film of the radiation sensitive resin composition of 1st Embodiment of this invention on a board | substrate.
(2) A radiation irradiation step of irradiating at least part of the coating film formed in step (1) with radiation.
(3) A development step of developing the coating film irradiated with radiation in step (2).
(4) A heating step of heating the coating film developed in step (3).

そして、発光層13を形成するための(1)工程〜(4)工程のそれぞれは、本発明の第2実施形態の硬化膜の形成において、図1〜図4を用いて説明したとおりである。したがって、その詳細は省略するが、図4において示される所望の形状となるようにパターニングされた硬化膜5が、図5の波長変換基板11の発光層13となる。   And each of (1) process-(4) process for forming the light emitting layer 13 is as having demonstrated using FIGS. 1-4 in formation of the cured film of 2nd Embodiment of this invention. . Therefore, although the details are omitted, the cured film 5 patterned so as to have a desired shape shown in FIG. 4 becomes the light emitting layer 13 of the wavelength conversion substrate 11 of FIG.

波長変換基板11は、発光層13のそれぞれが、含有する半導体量子ドットを用い、光源基板18の励起光源17からの励起光を波長変換し、所望とする波長の蛍光を発光する。   In the wavelength conversion substrate 11, each of the light emitting layers 13 uses semiconductor quantum dots contained therein, converts the wavelength of excitation light from the excitation light source 17 of the light source substrate 18, and emits fluorescence having a desired wavelength.

そして、波長変換基板11では、発光層13aと発光層13bと発光層13cとが、それぞれ、異なる半導体量子ドットを含んで構成され、異なる蛍光を発光することができる。   And in the wavelength conversion board | substrate 11, the light emitting layer 13a, the light emitting layer 13b, and the light emitting layer 13c are respectively comprised including a different semiconductor quantum dot, and can light-emit different fluorescence.

例えば、波長変換基板11は、発光層13aが励起光を赤色の光に変換し、発光層13bが励起光を緑色の光に変換し、発光層13cが励起光を青色の光に変換するように構成することができる。
その場合、発光層13a、13b、13cは、それぞれが所望とする蛍光特性を有するように、含有する半導体量子ドットの選択がなされる。そのため、波長変換基板11の発光層13a、13b、13cの形成においては、異なる発光特性の半導体量子ドットを含む、例えば、3種の第1実施形態の感放射線性樹脂組成物が準備される。
For example, in the wavelength conversion substrate 11, the light emitting layer 13a converts excitation light into red light, the light emitting layer 13b converts excitation light into green light, and the light emitting layer 13c converts excitation light into blue light. Can be configured.
In that case, the semiconductor quantum dots to be contained are selected so that each of the light emitting layers 13a, 13b, and 13c has a desired fluorescence characteristic. Therefore, in the formation of the light emitting layers 13a, 13b, and 13c of the wavelength conversion substrate 11, for example, three types of radiation sensitive resin compositions of the first embodiment including semiconductor quantum dots having different light emission characteristics are prepared.

そして、その3種の第1実施形態の感放射線性樹脂組成物をそれぞれ用いて、上述した工程(1)〜工程(4)を含む発光層13の形成方法を繰り返して、発光層13a、発光層13bおよび発光層13cを順次形成する。そして、基板12上に発光層13を形成して、波長変換基板11を得る。   And the formation method of the light emitting layer 13 containing the process (1)-process (4) mentioned above using each of the three types of radiation sensitive resin compositions of 1st Embodiment is repeated, and the light emitting layer 13a, light emission A layer 13b and a light emitting layer 13c are sequentially formed. Then, the light emitting layer 13 is formed on the substrate 12 to obtain the wavelength conversion substrate 11.

波長変換基板11の発光層13の厚さは、100nm〜100μm程度が好ましく、1μm〜100μmがより好ましい。その厚さが100nm未満であると、励起光を十分吸収することができず、光変換効率が低下するために発光表示素子の輝度が十分に確保できないといった問題が生じる。さらに、励起光の吸収を高め、発光表示素子の輝度を十分に確保するためには、膜厚として、1μm以上とすることが好ましい。   The thickness of the light emitting layer 13 of the wavelength conversion substrate 11 is preferably about 100 nm to 100 μm, and more preferably 1 μm to 100 μm. If the thickness is less than 100 nm, the excitation light cannot be sufficiently absorbed, and the light conversion efficiency is lowered, so that the luminance of the light emitting display element cannot be sufficiently secured. Furthermore, in order to enhance absorption of excitation light and sufficiently secure the luminance of the light emitting display element, the film thickness is preferably 1 μm or more.

基板12上の各発光層13の間には、ブラックマトリクス14が配置されている。ブラックマトリクス14は、公知の遮光性の材料を用い、公知の方法に従ってパターニングして形成することができる。尚、ブラックマトリクス14は、波長変換基板11において、必須の構成要素ではなく、波長変換基板11は、ブラックマトリクス14を設けない構成とすることも可能である。   A black matrix 14 is disposed between the light emitting layers 13 on the substrate 12. The black matrix 14 can be formed by using a known light-shielding material and patterning it according to a known method. Note that the black matrix 14 is not an essential component in the wavelength conversion substrate 11, and the wavelength conversion substrate 11 may be configured without the black matrix 14.

接着剤層15は、後述する波長の紫外光または青色光を透過する公知の接着剤を用いて形成される。尚、接着剤層15は、図5に示すように、基板12上に発光層13a、13b、13cの全面を被覆するように設ける必要はなく、波長変換基板11の周囲のみに設けることも可能である。   The adhesive layer 15 is formed using a known adhesive that transmits ultraviolet light or blue light having a wavelength described later. As shown in FIG. 5, the adhesive layer 15 does not have to be provided on the substrate 12 so as to cover the entire surface of the light emitting layers 13a, 13b, 13c, and can be provided only around the wavelength conversion substrate 11. It is.

光源基板18は、基板16と、基板16の波長変換基板11の側に配置された光源17とを備えている。光源17からはそれぞれ、励起光として紫外光または青色光が出射される。   The light source substrate 18 includes a substrate 16 and a light source 17 disposed on the wavelength conversion substrate 11 side of the substrate 16. Each of the light sources 17 emits ultraviolet light or blue light as excitation light.

光源17としては、公知の構造の紫外発光有機EL素子および青色発光有機EL素子等の使用が可能であり、特に限定されるものではなく、公知の材料、公知の製造方法で作製することが可能である。ここで、紫外光としては、主発光ピークが360nm〜435nmの発光が好ましく、青色光としては、主発光ピークが435nm〜480nmの発光が好ましい。光源17は、それぞれの出射光が対向する発光層13を照射するように、指向性を有していることが望ましい。   As the light source 17, an ultraviolet light-emitting organic EL element and a blue light-emitting organic EL element having a known structure can be used. The light source 17 is not particularly limited, and can be manufactured using a known material or a known manufacturing method. It is. Here, as the ultraviolet light, light emission having a main emission peak of 360 nm to 435 nm is preferable, and as the blue light, light emission having a main emission peak of 435 nm to 480 nm is preferable. The light source 17 desirably has directivity so that each emitted light irradiates the light emitting layer 13 facing each other.

本実施形態の発光表示素子100は、光源17aからの励起光を、対向する波長変換基板11の発光層13aの半導体量子ドットにより波長変換する。同様に、光源17bからの励起光を、対向する波長変換基板11の発光層13bの半導体量子ドットにより波長変換し、また、光源17cからの励起光を、対向する波長変換基板11の発光層13cの半導体量子ドットにより波長変換する。このようにして、光源17からの励起光が、それぞれ所望とする波長の可視光に変換されて表示に用いられている。   The light emitting display element 100 of this embodiment converts the wavelength of the excitation light from the light source 17a by the semiconductor quantum dots of the light emitting layer 13a of the wavelength conversion substrate 11 that faces the light emitting display element 100. Similarly, the wavelength of excitation light from the light source 17b is converted by the semiconductor quantum dots of the light emitting layer 13b of the opposing wavelength conversion substrate 11, and the light emission layer 13c of the wavelength conversion substrate 11 of the opposing wavelength conversion substrate 11 is converted. Wavelength conversion is performed by using semiconductor quantum dots. In this way, the excitation light from the light source 17 is converted into visible light having a desired wavelength and used for display.

尚、波長変換基板11においては、後述するように、発光層13cにおいて励起光を青色光に変換する。このとき、波長変換基板11は、発光層13cに代えて、樹脂中に光酸散乱粒子を分散して構成された光散乱層を用いることも可能である。こうすることで、励起光が青色光である場合、その励起光を波長変換することなく、そのままの波長特性で使用することができる。   In the wavelength conversion substrate 11, the excitation light is converted into blue light in the light emitting layer 13c, as will be described later. At this time, instead of the light emitting layer 13c, the wavelength conversion substrate 11 may use a light scattering layer configured by dispersing photoacid scattering particles in a resin. By doing so, when the excitation light is blue light, the excitation light can be used as it is without converting the wavelength.

発光表示素子100の波長変換基板11は、上述したように、それぞれ半導体量子ドットと樹脂とからなる発光層13aと発光層13bと発光層13cとが、基板12の上にパターニングされて設けられたものである。発光層13a、13b、13cは、半導体量子ドットを含む、第1実施形態の感放射線性樹脂組成物からそれぞれ形成される。   As described above, the wavelength conversion substrate 11 of the light-emitting display element 100 is provided with the light-emitting layer 13a, the light-emitting layer 13b, and the light-emitting layer 13c made of semiconductor quantum dots and resin, respectively, patterned on the substrate 12. Is. The light emitting layers 13a, 13b, and 13c are each formed from the radiation sensitive resin composition of the first embodiment including semiconductor quantum dots.

発光表示素子100においては、発光層13aの設けられた部分が、赤色表示を行うサブ画素を構成する。すなわち、波長変換基板11の発光層13aは、光源基板18の対向する光源17aからの励起光を赤色に変換する。また、発光層13bの設けられた部分が、緑色表示を行うサブ画素を構成する。すなわち、発光層13bは、光源基板18の対向する光源17bからの励起光を緑色に変換する。また、発光層13cの設けられた部分が、青色表示を行うサブ画素を構成する。すなわち、発光層13cは、光源基板18の対向する光源17cからの励起光を青色に変換する。   In the light emitting display element 100, the portion where the light emitting layer 13a is provided constitutes a sub-pixel that performs red display. That is, the light emitting layer 13 a of the wavelength conversion substrate 11 converts the excitation light from the light source 17 a facing the light source substrate 18 into red. Further, the portion where the light emitting layer 13b is provided constitutes a sub-pixel that performs green display. That is, the light emitting layer 13b converts the excitation light from the light source 17b facing the light source substrate 18 to green. Further, the portion where the light emitting layer 13c is provided constitutes a sub-pixel that performs blue display. That is, the light emitting layer 13c converts the excitation light from the light source 17c facing the light source substrate 18 into blue.

そして、発光表示素子100は、発光層13aを備えたサブ画素、発光層13bを備えたサブ画素および発光層13cを備えたサブ画素の3種により、画像を構成する最小単位となる1つの画素を構成する。   The light-emitting display element 100 includes one pixel that is a minimum unit constituting an image by three types of a sub-pixel including the light-emitting layer 13a, a sub-pixel including the light-emitting layer 13b, and a sub-pixel including the light-emitting layer 13c. Configure.

以上の構成を有する本実施形態の発光表示素子100は、発光層13aを備えたサブ画素、発光層13bを備えたサブ画素および発光層13cを備えたサブ画素毎に、赤色、緑色または青色の光の発光が制御される。そして、3種のサブ画素からなる1つの画素毎に、赤色、緑色および青色の光の発光が制御され、フルカラーの表示が行われる。   The light-emitting display element 100 of the present embodiment having the above configuration has red, green, or blue color for each of the sub-pixel including the light-emitting layer 13a, the sub-pixel including the light-emitting layer 13b, and the sub-pixel including the light-emitting layer 13c. Light emission is controlled. Then, the emission of red, green, and blue light is controlled for each pixel composed of three types of sub-pixels, and a full color display is performed.

尚、本発明の実施形態の発光表示素子においては、発光層13と基板12との間に、カラーフィルタを設けることが可能である。すなわち、発光層13aと基板12との間に赤色のカラーフィルタを設け、発光層13bと基板12との間に緑色のカラーフィルタを設け、発光層13cと基板12との間に赤色のカラーフィルタを設けることができる。   In the light emitting display element according to the embodiment of the present invention, a color filter can be provided between the light emitting layer 13 and the substrate 12. That is, a red color filter is provided between the light emitting layer 13a and the substrate 12, a green color filter is provided between the light emitting layer 13b and the substrate 12, and a red color filter is provided between the light emitting layer 13c and the substrate 12. Can be provided.

本発明の第3実施形態の発光表示素子は、カラーフィルタを設けることにより、表示の色の純度を高めることができる。ここで、カラーフィルタとしては、液晶表示素子用等として公知のものを公知の方法で形成して用いることができる。   The light emitting display element according to the third embodiment of the present invention can improve the color purity of display by providing a color filter. Here, as a color filter, what is known for liquid crystal display elements etc. can be formed and used by a well-known method.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。尚、使用した樹脂の分子量の測定方法は以下のとおりである。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples at all. In addition, the measuring method of the molecular weight of used resin is as follows.

<分子量>
樹脂の分子量は、各樹脂の溶剤への溶解性等を考慮し、下記の(a)または(b)の方法にて測定を行った。
(a)ウオターズ(WATERS)社製のゲルパーミエ−ションクロマトグラフィー(GPC)装置(150C型、カラム:東ソー社製Hタイプカラム、展開溶剤:o−ジクロロベンゼン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
(b)東ソー社製GPC装置(HLC−8220型、カラム:TSKgelα‐M、展開溶剤:THF)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
<Molecular weight>
The molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent.
(A) Weight average molecular weight in terms of standard polystyrene using a gel permeation chromatography (GPC) apparatus (150C type, column: H type column manufactured by Tosoh Corporation, developing solvent: o-dichlorobenzene) manufactured by WATERS (Mw) and number average molecular weight (Mn) were measured.
(B) Standard polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using a GPC apparatus (HLC-8220 type, column: TSKgel α-M, developing solvent: THF) manufactured by Tosoh Corporation.

<半導体量子ドット>
本実施例で用いた半導体量子ドットを次に示す。
半導体量子ドットA:InP/ZnSコアシェル型量子ドット
半導体量子ドットB:InCuS/ZnSコアシェル型量子ドット
半導体量子ドットC:Si量子ドット
<Semiconductor quantum dots>
The semiconductor quantum dots used in this example are shown below.
Semiconductor quantum dot A: InP / ZnS core-shell quantum dot semiconductor quantum dot B: InCuS 2 / ZnS core-shell quantum dot semiconductor quantum dot C: Si quantum dot

そして、下記実施例で用いた半導体量子ドットA:InP/ZnSコアシェル型量子ドット、半導体量子ドットB:InCuS/ZnSコアシェル型量子ドット、半導体量子ドットC:Si量子ドットは、一般的に知られている方法で合成することができる。 The semiconductor quantum dots A: InP / ZnS core-shell quantum dots, semiconductor quantum dots B: InCuS 2 / ZnS core-shell quantum dots, and semiconductor quantum dots C: Si quantum dots used in the following examples are generally known. It can be synthesized by the method.

例えば、半導体量子ドットA:InP/ZnSコアシェル型量子ドットに関しては技術文献「Journal of American Chemical Society. 2007, 129, 15432−15433」に、半導体量子ドットB:InCuS/ZnSコアシェル型量子ドットに関しては技術文献「Journal of American Chemical Society. 2009, 131, 5691−5697」および技術文献「Chemistry of Materials. 2009, 21, 2422−2429」に、半導体量子ドットC:Si化合物量子ドットに関しては技術文献「Journal of American Chemical Society. 2010, 132, 248−253」記載されている方法を参照して合成することができる。 For example, regarding the semiconductor quantum dot A: InP / ZnS core-shell type quantum dot, the technical literature “Journal of American Chemical Society. 2007, 129, 15432-15433” and the semiconductor quantum dot B: InCuS 2 / ZnS core-shell type quantum dot In the technical document “Journal of American Chemical Society. 2009, 131, 5691-5697” and the technical document “Chemistry of Materials. 2009, 21, 2422-2429”, as for the technical quantum dot C: Si compound quantum dot of American Chemical Society. 2010, 132, 248-253 ”. Can be synthesized with reference to the method.

合成例1
[樹脂(α−I)の合成]
冷却管および撹拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8質量部およびジエチレングリコールメチルエチルエーテル220質量部を仕込んだ。引き続き、メタクリル酸13質量部、メタクリル酸グリシジル40質量部、α−メチル−p−ヒドロキシスチレン10質量部、スチレン10質量部、テトラヒドロフルフリルメタクリレート12質量部、N−シクロヘキシルマレイミド15質量部およびn−ラウリルメタクリレート10質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を70℃に上昇させ、この温度を5時間保持して重合することにより、共重合体として樹脂(α−I)を含有する溶液を得た。共重合体である樹脂(α−I)のMwは、8000であった。
Synthesis example 1
[Synthesis of Resin (α-I)]
A flask equipped with a condenser and a stirrer was charged with 8 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by mass of diethylene glycol methyl ethyl ether. Subsequently, 13 parts by weight of methacrylic acid, 40 parts by weight of glycidyl methacrylate, 10 parts by weight of α-methyl-p-hydroxystyrene, 10 parts by weight of styrene, 12 parts by weight of tetrahydrofurfuryl methacrylate, 15 parts by weight of N-cyclohexylmaleimide and n- After charging 10 parts by mass of lauryl methacrylate and substituting with nitrogen, the temperature of the solution was raised to 70 ° C. while gently stirring, and polymerization was carried out while maintaining this temperature for 5 hours, whereby a resin (α- A solution containing I) was obtained. The Mw of the resin (α-I) as a copolymer was 8000.

合成例2
[樹脂(α−II)の合成]
乾燥窒素気流下、ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子社)29.30g(0.08モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)、末端封止剤として、3−アミノフェノール(東京化成工業社)3.27g(0.03モル)をN−メチル−2−ピロリドン(以下、NMPと言う。)80gに溶解させた。ここにビス(3,4−ジカルボキシフェニル)エーテル二無水物(マナック社)31.2g(0.1モル)をNMP20gとともに加えて、20℃で1時間反応させ、次いで50℃で4時間反応させた。その後、キシレンを15g添加し、水をキシレンとともに共沸しながら、150℃で5時間撹拌した。撹拌終了後、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で20時間乾燥し、下記式で表される構造の重合体として樹脂(α−II)を得た。
Synthesis example 2
[Synthesis of Resin (α-II)]
Under a dry nitrogen stream, 29.30 g (0.08 mol) of bis (3-amino-4-hydroxyphenyl) hexafluoropropane (Central Glass), 1,3-bis (3-aminopropyl) tetramethyldisiloxane 1 .24 g (0.005 mol), 3.27 g (0.03 mol) of 3-aminophenol (Tokyo Chemical Industry Co., Ltd.) as an end-capping agent is N-methyl-2-pyrrolidone (hereinafter referred to as NMP). Dissolved in 80 g. Bis (3,4-dicarboxyphenyl) ether dianhydride (Manac) 31.2 g (0.1 mol) was added together with 20 g of NMP and reacted at 20 ° C. for 1 hour, and then reacted at 50 ° C. for 4 hours. I let you. Thereafter, 15 g of xylene was added, and the mixture was stirred at 150 ° C. for 5 hours while azeotropically distilling water with xylene. After stirring, the solution was poured into 3 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and then dried for 20 hours in a vacuum dryer at 80 ° C. to obtain a resin (α-II) as a polymer having a structure represented by the following formula.

Figure 2014174406
Figure 2014174406

合成例3
[樹脂(α−III)の合成]
撹拌機付の容器内に、プロピレングリコールモノメチルエーテル20質量部を仕込み、続いて、メチルトリメトキシシラン70質量部、およびトリルトリメトキシシラン30質量部を仕込み、溶液温度が60℃になるまで加熱した。溶液温度が60℃に到達後、リン酸0.15質量部、イオン交換水19質量部を仕込み、75℃になるまで加熱し、4時間保持した。さらに、溶液温度を40℃にし、この温度を保ちながらエバポレーションすることで、イオン交換水および加水分解縮合で発生したメタノールを除去した。以上により、加水分解縮合物であるシロキサンポリマーとして樹脂(α−III)を得た。シロキサンポリマーである樹脂(α−III)のMwは、5000であった。
Synthesis example 3
[Synthesis of Resin (α-III)]
In a vessel equipped with a stirrer, 20 parts by mass of propylene glycol monomethyl ether was charged, followed by 70 parts by mass of methyltrimethoxysilane and 30 parts by mass of tolyltrimethoxysilane, and heated until the solution temperature reached 60 ° C. . After the solution temperature reached 60 ° C., 0.15 parts by mass of phosphoric acid and 19 parts by mass of ion-exchanged water were charged, heated to 75 ° C. and held for 4 hours. Furthermore, the solution temperature was set to 40 ° C., and evaporation was performed while maintaining this temperature, thereby removing ion-exchanged water and methanol generated by hydrolysis and condensation. Thus, a resin (α-III) was obtained as a siloxane polymer which is a hydrolysis-condensation product. The Mw of the resin (α-III) which is a siloxane polymer was 5000.

実施例1
[感放射線性樹脂組成物(β−I)の調製]
合成例1の樹脂(α−I)を含有する溶液を、共重合体100質量部(固形分)に相当する量、およびキノンジアジド化合物として[(カンファースルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル]5質量部を混合し、半導体量子ドットAを10質量部混合して、感放射線性樹脂組成物(β−I)を調製した。
Example 1
[Preparation of radiation-sensitive resin composition (β-I)]
A solution containing the resin (α-I) of Synthesis Example 1 was added in an amount corresponding to 100 parts by mass (solid content) of the copolymer and a quinonediazide compound [(camphorsulfonyloxyimino-5H-thiophen-2-ylidene) -(2-Methylphenyl) acetonitrile] was mixed with 5 parts by mass, and 10 parts by mass of semiconductor quantum dots A were mixed to prepare a radiation sensitive resin composition (β-I).

実施例2
[感放射線性樹脂組成物(β−II)の調製]
合成例2の樹脂(α−II)8gに、ノボラック樹脂(商品名、XPS−4958G、m−クレゾール/p−クレゾール比=55/45(重量比)、群栄化学工業社)2gを加えた。さらに、熱によって架橋反応をする熱架橋性化合物として、下記式(β1)で示される化合物2.4gおよび下記式(β2)で示される化合物0.6gを加え、キノンジアジド化合物(β3)2gを加えた。次いで、半導体量子ドットBを10質量部混合し、これらに溶剤としてγ−ブチロラクトンを加えて、感放射線性樹脂組成物(β−II)を調製した。
Example 2
[Preparation of radiation-sensitive resin composition (β-II)]
2 g of novolak resin (trade name, XPS-4958G, m-cresol / p-cresol ratio = 55/45 (weight ratio), Gunei Chemical Industry Co., Ltd.) was added to 8 g of the resin (α-II) of Synthesis Example 2. . Further, 2.4 g of a compound represented by the following formula (β1) and 0.6 g of a compound represented by the following formula (β2) are added as a thermally crosslinkable compound that undergoes a crosslinking reaction by heat, and 2 g of a quinonediazide compound (β3) is added. It was. Next, 10 parts by mass of semiconductor quantum dots B were mixed, and γ-butyrolactone was added thereto as a solvent to prepare a radiation sensitive resin composition (β-II).

Figure 2014174406
Figure 2014174406

実施例3
[感放射線性樹脂組成物(β−III)の調製]
合成例3で得られた、シロキサンポリマーである樹脂(α−III)を含む溶液(シロキサンポリマー100質量部(固形分)に相当する量)に、キノンジアジド化合物として4,4’−〔1−{4−(1−[4−ヒドロキシフェニル]−1−メチルエチル)フェニル}エチリデン〕ビスフェノール(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(3.0モル)との縮合物を12質量部、半導体量子ドットCを10質量部混合し、溶剤としてプロピレングリコールモノメチルエーテルを添加し、感放射線性樹脂組成物(β−III)を調製した。
Example 3
[Preparation of radiation-sensitive resin composition (β-III)]
4,4 ′-[1- {as a quinonediazide compound was added to the solution containing siloxane polymer resin (α-III) obtained in Synthesis Example 3 (amount corresponding to 100 parts by mass (solid content) of siloxane polymer). Condensation of 4- (1- [4-hydroxyphenyl] -1-methylethyl) phenyl} ethylidene] bisphenol (1.0 mol) with 1,2-naphthoquinonediazide-5-sulfonic acid chloride (3.0 mol) 12 parts by mass of the product and 10 parts by mass of the semiconductor quantum dot C were added, and propylene glycol monomethyl ether was added as a solvent to prepare a radiation sensitive resin composition (β-III).

実施例4
[感放射線性樹脂組成物(β−I)を用いた硬化膜の形成]
無アルカリガラス基板上に、実施例1で調製した感放射線性樹脂組成物(β−I)をスピン塗布法により塗布した後、90℃のホットプレート上で2分間プレベークすることにより塗膜を形成した。
次に、所定のパターンを備えたフォトマスクを介し、得られた塗膜に高圧水銀ランプを用いて露光量700J/mとして放射線照射を行いた。次いで、0.4質量%のテトラメチルアンモニウムヒドロキシド水溶液にて、25℃で60秒間現像を行った。
次に、オーブン中で230℃の硬化温度および30分間の硬化時間でポストベークすることにより、所定の形状にパターニングされた硬化膜を形成した。
Example 4
[Formation of cured film using radiation-sensitive resin composition (β-I)]
After coating the radiation-sensitive resin composition (β-I) prepared in Example 1 on an alkali-free glass substrate by spin coating, a coating film is formed by pre-baking on a 90 ° C. hot plate for 2 minutes. did.
Next, radiation was applied to the obtained coating film through a photomask having a predetermined pattern at an exposure amount of 700 J / m 2 using a high pressure mercury lamp. Next, development was performed at 25 ° C. for 60 seconds with a 0.4 mass% tetramethylammonium hydroxide aqueous solution.
Next, a cured film patterned into a predetermined shape was formed by post-baking in an oven at a curing temperature of 230 ° C. and a curing time of 30 minutes.

実施例5
[感放射線性樹脂組成物(β−II)を用いた硬化膜の形成]
無アルカリガラス基板上に、実施例2で調製した感放射線性樹脂組成物(β−II)をスピンナにより塗布した後、90℃のホットプレート上で2分間プレベークすることにより塗膜を形成した。
次に、所定のパターンを備えたフォトマスクを介し、得られた塗膜に高圧水銀ランプを用いて露光量1000J/mとして放射線照射を行い、0.4質量%のテトラメチルアンモニウムヒドロキシド水溶液にて、25℃で150秒間現像を行った。
次に、オーブン中で230℃の硬化温度および30分間の硬化時間でポストベークすることにより、所定の形状にパターニングされた硬化膜を形成した。
Example 5
[Formation of cured film using radiation-sensitive resin composition (β-II)]
After applying the radiation sensitive resin composition (β-II) prepared in Example 2 on a non-alkali glass substrate with a spinner, a coating film was formed by prebaking on a hot plate at 90 ° C. for 2 minutes.
Next, the obtained coating film was irradiated with radiation at an exposure amount of 1000 J / m 2 through a photomask having a predetermined pattern using a high-pressure mercury lamp, and a 0.4 mass% tetramethylammonium hydroxide aqueous solution Then, development was carried out at 25 ° C. for 150 seconds.
Next, a cured film patterned into a predetermined shape was formed by post-baking in an oven at a curing temperature of 230 ° C. and a curing time of 30 minutes.

実施例6
[感放射線性樹脂組成物(β−III)を用いた硬化膜の形成]
無アルカリガラス基板上に、実施例3で調製した感放射線性樹脂組成物(β−III)をスピンナにより塗布した後、100℃のホットプレート上で2分間プレベークすることにより塗膜を形成した。
次に、所定のパターンを備えたフォトマスクを介し、得られた塗膜に高圧水銀ランプを用いて露光量800J/mとして放射線照射を行い、0.4質量%のテトラメチルアンモニウムヒドロキシド水溶液にて、25℃で80秒間現像を行った。
次に、オーブン中で230℃の硬化温度および30分間の硬化時間でポストベークすることにより、所定の形状にパターニングされた硬化膜を形成した。
Example 6
[Formation of cured film using radiation-sensitive resin composition (β-III)]
The radiation-sensitive resin composition (β-III) prepared in Example 3 was applied on an alkali-free glass substrate with a spinner, and then pre-baked on a hot plate at 100 ° C. for 2 minutes to form a coating film.
Next, the obtained coating film was irradiated with radiation at an exposure amount of 800 J / m 2 using a high-pressure mercury lamp through a photomask having a predetermined pattern, and a 0.4% by mass aqueous tetramethylammonium hydroxide solution was obtained. Then, development was performed at 25 ° C. for 80 seconds.
Next, a cured film patterned into a predetermined shape was formed by post-baking in an oven at a curing temperature of 230 ° C. and a curing time of 30 minutes.

実施例7
[パターニング性の評価]
実施例1〜実施例3で調製した感放射線性樹脂組成物(β−I〜β−III)をそれぞれ用い、ガラス基板(「コーニング(登録商標)7059」(コーニング社製))に、スピン塗布法を用いて塗布した後、ホットプレート上で90℃にて2分間プレベークして、それぞれの塗膜を形成した。
Example 7
[Evaluation of patterning properties]
Using each of the radiation-sensitive resin compositions (β-I to β-III) prepared in Examples 1 to 3, spin coating was performed on a glass substrate (“Corning (registered trademark) 7059” (manufactured by Corning)). After coating using the method, each coating film was formed by prebaking on a hot plate at 90 ° C. for 2 minutes.

次いで、得られた各ガラス基板上の塗膜に対し、キヤノン(株)製PLA(登録商標)−501F露光機(超高圧水銀ランプ)を用い、5cm×8cmのパターンを有するマスクを介して露光を行った。その後、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液にて、25℃で60秒間、現像した。次いで、超純水で1分間流水洗浄を行い、5cm×8cmの開口部を有するようにパターニングされた硬化膜を形成した。   Next, the obtained coating film on each glass substrate is exposed through a mask having a pattern of 5 cm × 8 cm using a PLA (registered trademark) -501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. Went. Then, it developed for 60 second at 25 degreeC with the 2.38 mass% tetramethylammonium hydroxide aqueous solution. Next, running water was washed with ultrapure water for 1 minute to form a cured film patterned to have a 5 cm × 8 cm opening.

パターニングされた各硬化膜の端部分を光学顕微鏡で観察し、現像残渣がなく、パターンが直線状に形成されている場合をパターニング性良好と判断した。
その結果、実施例1〜実施例3で調製した感放射線性樹脂組成物(β−I〜β−III)をそれぞれ用い、パターニングして形成された硬化膜のパターニング性はいずれも良好であった。
The edge part of each patterned cured film was observed with an optical microscope, and it was judged that the patterning property was good when there was no development residue and the pattern was formed linearly.
As a result, the patterning properties of the cured films formed by patterning using the radiation-sensitive resin compositions (β-I to β-III) prepared in Examples 1 to 3 were all good. .

実施例8
[耐熱性の評価]
実施例4の形成方法による硬化膜について、さらにオーブン中、230℃で20分加熱し、この加熱前後での膜厚を触針式膜厚測定機(アルファステップIQ、KLAテンコール社)で測定した。そして、残膜率(処理後膜厚/処理前膜厚×100)を算出し、この残膜率を耐熱性とした。残膜率は99%であり、耐熱性は良好と判断した。
Example 8
[Evaluation of heat resistance]
About the cured film by the formation method of Example 4, it heated at 230 degreeC for 20 minute (s) further in oven, and measured the film thickness before and behind this heating with the stylus type film thickness measuring device (alpha step IQ, KLA Tencor). . And the remaining film rate (film thickness after a process / film thickness before a process x100) was computed, and this remaining film rate was made into heat resistance. The residual film ratio was 99%, and the heat resistance was judged to be good.

同様に実施例5の形成方法による硬化膜について、さらにオーブン中、230℃で20分加熱し、この加熱前後での膜厚を触針式膜厚測定機(アルファステップIQ、KLAテンコール社)で測定した。そして、残膜率(処理後膜厚/処理前膜厚×100)を算出し、この残膜率を耐熱性とした。残膜率は99%であり、耐熱性は良好と判断した。   Similarly, the cured film by the forming method of Example 5 was further heated in an oven at 230 ° C. for 20 minutes, and the film thickness before and after this heating was measured with a stylus-type film thickness measuring machine (Alphastep IQ, KLA Tencor). It was measured. And the remaining film rate (film thickness after a process / film thickness before a process x100) was computed, and this remaining film rate was made into heat resistance. The residual film ratio was 99%, and the heat resistance was judged to be good.

同様に実施例6の形成方法による硬化膜について、さらにオーブン中、230℃で20分加熱し、この加熱前後での膜厚を触針式膜厚測定機(アルファステップIQ、KLAテンコール社)で測定した。そして、残膜率(処理後膜厚/処理前膜厚×100)を算出し、この残膜率を耐熱性とした。残膜率は99%であり、耐熱性は良好と判断した。   Similarly, the cured film by the forming method of Example 6 was further heated in an oven at 230 ° C. for 20 minutes, and the film thickness before and after this heating was measured with a stylus-type film thickness measuring machine (Alphastep IQ, KLA Tencor). It was measured. And the remaining film rate (film thickness after a process / film thickness before a process x100) was computed, and this remaining film rate was made into heat resistance. The residual film ratio was 99%, and the heat resistance was judged to be good.

実施例9
[耐光性の評価]
実施例4の形成方法による硬化膜について、さらに、UV照射装置(UVX−02516S1JS01、ウシオ社)を用いて、130mWの照度で800000J/mの紫外光を照射して、照射後の膜減り量を調べた。膜減り量は2%以下であり、耐光性は良好と判断した。
Example 9
[Evaluation of light resistance]
About the cured film by the formation method of Example 4, further, UV irradiation apparatus (UVX-02516S1JS01, Ushio Inc.) was used to irradiate 800,000 J / m 2 of ultraviolet light at an illuminance of 130 mW, and the film reduction after irradiation I investigated. The amount of film loss was 2% or less, and light resistance was judged to be good.

同様に、実施例5の形成方法による硬化膜について、さらに、UV照射装置(UVX−02516S1JS01、ウシオ社)を用いて、130mWの照度で800000J/mの紫外光を照射して、照射後の膜減り量を調べた。膜減り量は2%以下であり、耐光性は良好と判断した。 Similarly, the cured film obtained by the formation method of Example 5 was further irradiated with 80000 J / m 2 of ultraviolet light at an illuminance of 130 mW using a UV irradiation apparatus (UVX-02516S1JS01, Ushio Inc.). The amount of film loss was examined. The amount of film loss was 2% or less, and light resistance was judged to be good.

同様に、実施例6の形成方法による硬化膜について、さらに、UV照射装置(UVX−02516S1JS01、ウシオ社)を用いて、130mWの照度で800000J/mの紫外光を照射して、照射後の膜減り量を調べた。膜減り量は2%以下であり、耐光性は良好と判断した。 Similarly, the cured film obtained by the formation method of Example 6 was further irradiated with UV light of 800000 J / m 2 at an illuminance of 130 mW using a UV irradiation apparatus (UVX-02516S1JS01, Ushio). The amount of film loss was examined. The amount of film loss was 2% or less, and light resistance was judged to be good.

実施例10
[蛍光特性の評価]
実施例4の形成方法による硬化膜について、さらに、絶対PL量子収率測定装置(C9920−02G、浜松ホトニクス社)を用いて、25℃における蛍光量子収率を調べた。蛍光量子収率は80%であり、蛍光特性は良好と判断した。
Example 10
[Evaluation of fluorescence characteristics]
About the cured film by the formation method of Example 4, the fluorescence quantum yield in 25 degreeC was further investigated using the absolute PL quantum yield measuring apparatus (C9920-02G, Hamamatsu Photonics). The fluorescence quantum yield was 80%, and the fluorescence characteristics were judged to be good.

同様に、実施例5の形成方法による硬化膜について、さらに、絶対PL量子収率測定装置(C9920−02G、浜松ホトニクス社)を用いて、25℃における蛍光量子収率を調べた。蛍光量子収率は71%であり、蛍光特性は良好と判断した。   Similarly, the fluorescence quantum yield at 25 ° C. of the cured film obtained by the formation method of Example 5 was further examined using an absolute PL quantum yield measuring apparatus (C9920-02G, Hamamatsu Photonics). The fluorescence quantum yield was 71%, and the fluorescence characteristics were judged to be good.

同様に、実施例6の形成方法による硬化膜について、さらに、絶対PL量子収率測定装置(C9920−02G、浜松ホトニクス社)を用いて、25℃における蛍光量子収率を調べた。蛍光量子収率は63%であり、蛍光特性は良好と判断した。   Similarly, the fluorescence quantum yield at 25 ° C. of the cured film obtained by the formation method of Example 6 was further examined using an absolute PL quantum yield measuring apparatus (C9920-02G, Hamamatsu Photonics). The fluorescence quantum yield was 63%, and the fluorescence characteristics were judged to be good.

本発明の感放射線性樹脂組成物を用いて形成された硬化膜は、耐熱性や耐光性等の信頼性に優れ、また、パターニングも容易であり、表示素子やそれを用いた電子機器の他、LEDおよび太陽電池の分野でも利用することができる。   The cured film formed using the radiation-sensitive resin composition of the present invention is excellent in reliability such as heat resistance and light resistance, is easy to pattern, and other than display elements and electronic devices using the same. It can also be used in the field of LEDs and solar cells.

1、1a 塗膜
2、12、16 基板
3 フォトマスク
4、4a 放射線
5 硬化膜
11 波長変換基板
13、13a、13b、13c 発光層
14 ブラックマトリクス
15 接着剤層
17、17a、17b、17c 光源
18 光源基板
100 発光表示素子
1, 1a Coating 2, 12, 16 Substrate 3 Photomask 4, 4a Radiation 5 Cured film 11 Wavelength conversion substrate 13, 13a, 13b, 13c Light emitting layer 14 Black matrix 15 Adhesive layer 17, 17a, 17b, 17c Light source 18 Light source substrate 100 Light emitting display element

Claims (10)

[A]アルカリ可溶性樹脂、
[B]光酸発生体、および
[C]半導体量子ドット
を含有することを特徴とする感放射線性樹脂組成物。
[A] alkali-soluble resin,
[B] A radiation-sensitive resin composition comprising a photoacid generator, and [C] a semiconductor quantum dot.
[C]半導体量子ドットが、2族元素、12族元素、13族元素、14族元素、15族元素および16族元素よりなる群から選ばれる少なくとも2種の元素を含む化合物からなることを特徴とする請求項1に記載の感放射線性樹脂組成物。   [C] The semiconductor quantum dot is made of a compound containing at least two elements selected from the group consisting of a group 2 element, a group 12 element, a group 13 element, a group 14 element, a group 15 element and a group 16 element. The radiation sensitive resin composition according to claim 1. [C]半導体量子ドットが、Inを構成成分として含む化合物からなることを特徴とする請求項1または2に記載の感放射線性樹脂組成物。   [C] The radiation-sensitive resin composition according to claim 1 or 2, wherein the semiconductor quantum dots are composed of a compound containing In as a constituent component. [C]半導体量子ドットが、InP/ZnS化合物、CuInS/ZnS化合物、AgInS化合物、(ZnS/AgInS)固溶体/ZnS化合物、ZnドープAgInS化合物およびSi化合物よりなる群から選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の感放射線性樹脂組成物。 [C] At least one semiconductor quantum dot is selected from the group consisting of InP / ZnS compound, CuInS 2 / ZnS compound, AgInS 2 compound, (ZnS / AgInS 2 ) solid solution / ZnS compound, Zn-doped AgInS 2 compound and Si compound. The radiation-sensitive resin composition according to claim 1, wherein the radiation-sensitive resin composition is a seed. [A]アルカリ可溶性樹脂が、カルボキシル基を有するアクリル樹脂、ポリイミド樹脂、ポリシロキサンおよびノボラック樹脂よりなる群から選ばれる少なくとも1種であることを特徴とする請求項1〜4のいずれか1項に記載の感放射線性樹脂組成物。   [A] The alkali-soluble resin is at least one selected from the group consisting of an acrylic resin having a carboxyl group, a polyimide resin, a polysiloxane, and a novolac resin. The radiation sensitive resin composition as described. [B]光酸発生体が、キノンジアジド化合物からなることを特徴とする請求項1〜5のいずれか1項に記載の感放射線性樹脂組成物。   [B] The radiation-sensitive resin composition according to any one of claims 1 to 5, wherein the photoacid generator comprises a quinonediazide compound. [A]アルカリ可溶性樹脂100質量部に対する[C]半導体量子ドットの含有量が0.1質量部〜100質量部であることを特徴とする請求項1〜6のいずれか1項に記載の感放射線性樹脂組成物。   [A] Content of [C] semiconductor quantum dot with respect to 100 mass parts of alkali-soluble resin is 0.1 mass part-100 mass parts, The feeling of any one of Claims 1-6 characterized by the above-mentioned. Radiation resin composition. 請求項1〜7のいずれか1項に記載の感放射線性樹脂組成物を用いて形成されたことを特徴とする硬化膜。   A cured film formed using the radiation-sensitive resin composition according to claim 1. 請求項1〜7のいずれか1項に記載の感放射線性樹脂組成物を用いて形成された発光層を有することを特徴とする発光表示素子。   A light-emitting display element comprising a light-emitting layer formed using the radiation-sensitive resin composition according to claim 1. 請求項9に記載の発光表示素子の発光層の形成方法であって、
(1)請求項1〜7のいずれか1項に記載の感放射線性樹脂組成物の塗膜を基板上に形成する工程、
(2)工程(1)で形成した塗膜の少なくとも一部に放射線を照射する工程、
(3)工程(2)で放射線を照射された塗膜を現像する工程、および
(4)工程(3)で現像された塗膜を加熱する工程
を有することを特徴とする発光層の形成方法。
A method for forming a light emitting layer of a light emitting display element according to claim 9,
(1) The process of forming the coating film of the radiation sensitive resin composition of any one of Claims 1-7 on a board | substrate,
(2) A step of irradiating at least a part of the coating film formed in step (1),
(3) A step of developing the coating film irradiated with radiation in the step (2), and (4) a step of heating the coating film developed in the step (3). .
JP2013048340A 2013-03-11 2013-03-11 Radiation sensitive resin composition, cured film, light emitting display element, and method for forming light emitting layer Active JP6065665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048340A JP6065665B2 (en) 2013-03-11 2013-03-11 Radiation sensitive resin composition, cured film, light emitting display element, and method for forming light emitting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048340A JP6065665B2 (en) 2013-03-11 2013-03-11 Radiation sensitive resin composition, cured film, light emitting display element, and method for forming light emitting layer

Publications (2)

Publication Number Publication Date
JP2014174406A true JP2014174406A (en) 2014-09-22
JP6065665B2 JP6065665B2 (en) 2017-01-25

Family

ID=51695661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048340A Active JP6065665B2 (en) 2013-03-11 2013-03-11 Radiation sensitive resin composition, cured film, light emitting display element, and method for forming light emitting layer

Country Status (1)

Country Link
JP (1) JP6065665B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160036483A (en) * 2014-09-25 2016-04-04 제이에스알 가부시끼가이샤 Curable resin composition, cured film, light emitting element, wavelength conversion film, and method for forming light emitting layer
KR20160066221A (en) * 2014-12-02 2016-06-10 동우 화인켐 주식회사 Self emission type photosensitive resin composition, color filter manufactured using thereof and image display device having the same
WO2016098570A1 (en) * 2014-12-15 2016-06-23 Jsr株式会社 Organic el element, curable resin composition, method for forming wavelength conversion unit, and organic el device
JP2016128909A (en) * 2015-01-09 2016-07-14 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Photosensitive resin composition, color conversion panel using the same, and display device
CN105911816A (en) * 2015-02-25 2016-08-31 东友精细化工有限公司 Curable composition comprising quantum dot color, filter manufactured using thereof and image display device having the same
WO2016134820A1 (en) * 2015-02-27 2016-09-01 Merck Patent Gmbh A photosensitive composition and color converting film
JP2017048355A (en) * 2015-09-04 2017-03-09 Jsr株式会社 Composition for forming cured film, cured film, light-emitting display element and method for forming cured film
WO2017054898A1 (en) 2015-09-29 2017-04-06 Merck Patent Gmbh A photosensitive composition and color converting film
JPWO2016125836A1 (en) * 2015-02-04 2018-01-18 堺ディスプレイプロダクト株式会社 Positive photosensitive siloxane composition, active matrix substrate, display device, and method of manufacturing active matrix substrate
WO2018024592A1 (en) 2016-08-01 2018-02-08 Merck Patent Gmbh A photosensitive composition, color converting medium, optical devices and method for preparing the thereof
JP2018120134A (en) * 2017-01-26 2018-08-02 東洋インキScホールディングス株式会社 Quantum dot and quantum dot-containing composition
WO2019002239A1 (en) 2017-06-29 2019-01-03 Merck Patent Gmbh Composition comprising a semiconducting light emitting nanoparticle
WO2019105798A1 (en) * 2017-11-30 2019-06-06 Merck Patent Gmbh Composition comprising a semiconducting light emitting nanoparticle
KR20190068263A (en) * 2017-12-08 2019-06-18 삼성에스디아이 주식회사 Semiconductor resist composition, and method of forming patterns using the composition
US10854661B2 (en) 2015-01-21 2020-12-01 Jsr Corporation Solid-state imaging device, infrared-absorbing composition, and flattened-film-forming curable composition
WO2021238487A1 (en) * 2020-05-27 2021-12-02 京东方科技集团股份有限公司 Quantum dot light-emitting structure and manufacturing method therefor, and display device
WO2024075581A1 (en) * 2022-10-05 2024-04-11 信越化学工業株式会社 Photosensitive resin composition, photosensitive resin coating, photosensitive dry film, pattern forming method, and light-emitting element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128539A (en) * 2003-10-21 2005-05-19 Samsung Electronics Co Ltd Photosensitive semiconductor nanocrystals, photosensitive composition for forming semiconductor nanocrystal pattern and pattern forming method using these
JP2006514709A (en) * 2002-10-02 2006-05-11 スリーエム イノベイティブ プロパティズ カンパニー Multiphoton photosensitization method
JP2009543159A (en) * 2006-07-10 2009-12-03 ピクセリジェント・テクノロジーズ・エルエルシー Lithographic resist
WO2010058162A2 (en) * 2008-11-19 2010-05-27 Nanoco Technologies Ltd Semiconductor nanoparticle-based light emitting devices and associated materials and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514709A (en) * 2002-10-02 2006-05-11 スリーエム イノベイティブ プロパティズ カンパニー Multiphoton photosensitization method
JP2005128539A (en) * 2003-10-21 2005-05-19 Samsung Electronics Co Ltd Photosensitive semiconductor nanocrystals, photosensitive composition for forming semiconductor nanocrystal pattern and pattern forming method using these
JP2009543159A (en) * 2006-07-10 2009-12-03 ピクセリジェント・テクノロジーズ・エルエルシー Lithographic resist
WO2010058162A2 (en) * 2008-11-19 2010-05-27 Nanoco Technologies Ltd Semiconductor nanoparticle-based light emitting devices and associated materials and methods
JP2012509604A (en) * 2008-11-19 2012-04-19 ナノコ テクノロジーズ リミテッド LIGHT EMITTING DEVICE USING SEMICONDUCTOR NANOPARTICLES, RELATED MATERIAL AND METHOD

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065178A (en) * 2014-09-25 2016-04-28 Jsr株式会社 Curable resin composition, cured film, wavelength conversion film, light-emitting element, and method for forming light-emitting layer
TWI671368B (en) * 2014-09-25 2019-09-11 日商Jsr股份有限公司 Curable resin composition, cured film, wavelength conversion film, light emitting element, and method for forming light emitting layer
KR20160036483A (en) * 2014-09-25 2016-04-04 제이에스알 가부시끼가이샤 Curable resin composition, cured film, light emitting element, wavelength conversion film, and method for forming light emitting layer
KR102276034B1 (en) 2014-09-25 2021-07-12 제이에스알 가부시끼가이샤 Curable resin composition, cured film, light emitting element, wavelength conversion film, and method for forming light emitting layer
KR101996102B1 (en) 2014-12-02 2019-07-03 동우 화인켐 주식회사 Self emission type photosensitive resin composition, color filter manufactured using thereof and image display device having the same
KR20160066221A (en) * 2014-12-02 2016-06-10 동우 화인켐 주식회사 Self emission type photosensitive resin composition, color filter manufactured using thereof and image display device having the same
WO2016098570A1 (en) * 2014-12-15 2016-06-23 Jsr株式会社 Organic el element, curable resin composition, method for forming wavelength conversion unit, and organic el device
JPWO2016098570A1 (en) * 2014-12-15 2017-10-05 Jsr株式会社 Organic EL element, curable resin composition, wavelength conversion part forming method, and organic EL device
JP2016128909A (en) * 2015-01-09 2016-07-14 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Photosensitive resin composition, color conversion panel using the same, and display device
US10854661B2 (en) 2015-01-21 2020-12-01 Jsr Corporation Solid-state imaging device, infrared-absorbing composition, and flattened-film-forming curable composition
JPWO2016125836A1 (en) * 2015-02-04 2018-01-18 堺ディスプレイプロダクト株式会社 Positive photosensitive siloxane composition, active matrix substrate, display device, and method of manufacturing active matrix substrate
KR20160103787A (en) * 2015-02-25 2016-09-02 동우 화인켐 주식회사 Curable composition comprising quantum dot, color filter manufactured using thereof and image display device having the same
TWI676668B (en) * 2015-02-25 2019-11-11 南韓商東友精細化工有限公司 Curable composition containing quantum dots, color filter manufactured by the same, and image display device
CN105911816A (en) * 2015-02-25 2016-08-31 东友精细化工有限公司 Curable composition comprising quantum dot color, filter manufactured using thereof and image display device having the same
KR101995930B1 (en) * 2015-02-25 2019-07-03 동우 화인켐 주식회사 Curable composition comprising quantum dot, color filter manufactured using thereof and image display device having the same
WO2016134820A1 (en) * 2015-02-27 2016-09-01 Merck Patent Gmbh A photosensitive composition and color converting film
KR102638805B1 (en) * 2015-02-27 2024-02-20 메르크 파텐트 게엠베하 A photosensitive composition and color converting film
JP2018512614A (en) * 2015-02-27 2018-05-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Photosensitive composition and color conversion film
CN107250912B (en) * 2015-02-27 2021-06-22 默克专利有限公司 Photosensitive composition and color conversion film
KR20170128366A (en) * 2015-02-27 2017-11-22 메르크 파텐트 게엠베하 A photosensitive composition and color converting film
US10509319B2 (en) 2015-02-27 2019-12-17 Merck Patent Gmbh Photosensitive composition and color converting film
CN107250912A (en) * 2015-02-27 2017-10-13 默克专利股份有限公司 Photosensitive composition and color conversion coatings film
JP7032931B2 (en) 2015-02-27 2022-03-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Photosensitive composition and color conversion film
JP2017048355A (en) * 2015-09-04 2017-03-09 Jsr株式会社 Composition for forming cured film, cured film, light-emitting display element and method for forming cured film
US11269255B2 (en) 2015-09-29 2022-03-08 Merck Patent Gmbh Photosensitive composition and color converting film
US10678134B2 (en) 2015-09-29 2020-06-09 Merck Patent Gmbh Photosensitive composition and color converting film
CN108139666A (en) * 2015-09-29 2018-06-08 默克专利有限公司 Photosensitive composition and color conversion coatings film
WO2017054898A1 (en) 2015-09-29 2017-04-06 Merck Patent Gmbh A photosensitive composition and color converting film
WO2018024592A1 (en) 2016-08-01 2018-02-08 Merck Patent Gmbh A photosensitive composition, color converting medium, optical devices and method for preparing the thereof
JP2018120134A (en) * 2017-01-26 2018-08-02 東洋インキScホールディングス株式会社 Quantum dot and quantum dot-containing composition
US11746284B2 (en) 2017-06-29 2023-09-05 Merck Patent Gmbh Composition comprising a semiconducting light emitting nanoparticle
WO2019002239A1 (en) 2017-06-29 2019-01-03 Merck Patent Gmbh Composition comprising a semiconducting light emitting nanoparticle
WO2019105798A1 (en) * 2017-11-30 2019-06-06 Merck Patent Gmbh Composition comprising a semiconducting light emitting nanoparticle
CN111386330A (en) * 2017-11-30 2020-07-07 默克专利股份有限公司 Compositions comprising semiconducting luminescent nanoparticles
US11732188B2 (en) 2017-11-30 2023-08-22 Merck Patent Gmbh Composition comprising a semiconducting light emitting nanoparticle
JP2021504544A (en) * 2017-11-30 2021-02-15 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Compositions containing semi-conducting luminescent nanoparticles
KR20190068263A (en) * 2017-12-08 2019-06-18 삼성에스디아이 주식회사 Semiconductor resist composition, and method of forming patterns using the composition
KR102255906B1 (en) 2017-12-08 2021-05-24 삼성에스디아이 주식회사 Semiconductor resist composition, and method of forming patterns using the composition
WO2021238487A1 (en) * 2020-05-27 2021-12-02 京东方科技集团股份有限公司 Quantum dot light-emitting structure and manufacturing method therefor, and display device
WO2024075581A1 (en) * 2022-10-05 2024-04-11 信越化学工業株式会社 Photosensitive resin composition, photosensitive resin coating, photosensitive dry film, pattern forming method, and light-emitting element

Also Published As

Publication number Publication date
JP6065665B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6065665B2 (en) Radiation sensitive resin composition, cured film, light emitting display element, and method for forming light emitting layer
JP6497251B2 (en) Cured film forming composition, cured film, light emitting display element, cured film forming method and dispersion
JP2017032918A (en) Composition for forming cured film, cured film, light-emitting display element, film and method for forming cured film
KR102089410B1 (en) Organic el element, radiation-sensitive resin composition and cured film
JP6601218B2 (en) Resin composition, heat-resistant resin film manufacturing method, and display device
TWI666511B (en) Negative photosensitive resin composition, cured film cured therefrom, manufacturing method thereof, optical device having the same and image sensor
JP6427876B2 (en) Radiation sensitive resin composition, cured film, light emitting element, and method for forming light emitting layer
JP6123620B2 (en) Radiation-sensitive resin composition, display element insulating film, method for forming the same, and display element
KR20110001903A (en) Positive radiation-sensitive composition, cured film, interlayer insulating film, method of forming the interlayer insulating film, display device, and siloxane polymer for forming the interlayer insulating film
JP6171927B2 (en) Radiation sensitive resin composition, cured film, light emitting element, and method for forming light emitting layer
KR20160108164A (en) Light emitting device and radiation-sensitive material
WO2015170524A1 (en) Photosensitive resin composition, cured film, protective film, insulating film, and electronic device
JP6451065B2 (en) Photosensitive resin composition, cured film, protective film, insulating film, and electronic device
KR20200060466A (en) Positive photosensitive siloxane composition and cured film using same
TW201529668A (en) Method for manufacturing cured film of display element, radiation-sensitive resin composition and application thereof, and heating apparatus
KR20110070815A (en) Radiation-sensitive composition, cured film and process for forming the same
JP6657684B2 (en) Composition for forming cured film, cured film, light emitting display element, and method for forming cured film
KR102195513B1 (en) Curable resin composition, cured film, light emitting element, and method for forming light emitting layer
JP2013109216A (en) Positive radiation-sensitive composition, cured film for display element, method for forming cured film for display element, and display element
TWI735595B (en) Positive photosensitive polyalkylsiloxane composition and application of the same
TWI511201B (en) Semiconductor element, semiconductor substrate, radiation-sensitive resin composition, protective film and display element
JP4556639B2 (en) Negative photosensitive resin composition, transparent cured film formed therefrom, and element having cured film
WO2021171984A1 (en) Organic el display device, production method for cured product, and production method for organic el display device
JP2016068279A (en) Structure comprising planarizing layer
WO2023095785A1 (en) Photosensitive resin composition, cured article, organic el display device, semiconductor device, and method for producing cured article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6065665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250