図1はカメラに内蔵される沈胴式のズームレンズ鏡筒1の内部構造を示したものであり、具体的にはズームレンズ鏡筒1の収納(沈胴)状態を表している。以下の説明では、ズームレンズ鏡筒1における撮影光学系の撮影光軸Oに沿う方向を光軸方向と呼び、光軸被写体側を前方、像側を後方と定義する。また、撮影光軸Oを軸とした円周方向を周方向と定義する。
FIG. 1 shows the internal structure of a retractable zoom lens barrel 1 built in the camera. Specifically, the zoom lens barrel 1 is stored (collapsed). In the following description, the direction along the photographing optical axis O of the photographing optical system in the zoom lens barrel 1 is referred to as an optical axis direction, the optical axis subject side is defined as the front, and the image side is defined as the rear. Further, a circumferential direction with the photographing optical axis O as an axis is defined as a circumferential direction.
ズームレンズ鏡筒1の撮影光学系は、被写体側から順に第1レンズ群L1、第2レンズ群L2、第3レンズ群L3及び第4レンズ群L4を有し、第1レンズ群L1から第3レンズ群L3までの3つの群は不図示のズームモータの駆動により位置制御され、第4レンズ群L4は不図示のフォーカシングモータの駆動により位置制御される。第4レンズ群L4の後方には撮像素子17が配置されている。
The photographing optical system of the zoom lens barrel 1 includes a first lens group L1, a second lens group L2, a third lens group L3, and a fourth lens group L4 in order from the subject side, and the first lens group L1 to the third lens group L1. The positions of the three groups up to the lens group L3 are controlled by driving a zoom motor (not shown), and the position of the fourth lens group L4 is controlled by driving a focusing motor (not shown). An image sensor 17 is disposed behind the fourth lens unit L4.
ズームレンズ鏡筒1は、図示を省略する筒状のハウジングを有し、ハウジング内にカム環11が支持されている。カム環11とハウジングの間には、ズームレンズ鏡筒1の繰り出し状態で外観を構成する外観筒(図示略)が設けられている。カム環11はズームモータの駆動に応じて周方向に回転駆動される。カム環11の外面にはガイド突起11aが設けられ、ガイド突起11aがハウジングの内周面に形成したガイド溝に対して摺動可能に嵌っている。ガイド溝はリード溝やカム溝からなり、ガイド突起11aがガイド溝に案内されることによりカム環11の光軸方向の位置が制御される。ズームレンズ鏡筒1が図1の収納状態から撮影状態に変化するとき、カム環11は光軸方向前方に回転繰出される。
The zoom lens barrel 1 has a cylindrical housing (not shown), and a cam ring 11 is supported in the housing. Between the cam ring 11 and the housing, there is provided an external cylinder (not shown) that forms an external appearance when the zoom lens barrel 1 is extended. The cam ring 11 is rotationally driven in the circumferential direction according to the driving of the zoom motor. A guide projection 11a is provided on the outer surface of the cam ring 11, and the guide projection 11a is slidably fitted into a guide groove formed on the inner peripheral surface of the housing. The guide groove includes a lead groove and a cam groove, and the position of the cam ring 11 in the optical axis direction is controlled by the guide protrusion 11a being guided by the guide groove. When the zoom lens barrel 1 is changed from the housed state in FIG. 1 to the photographing state, the cam ring 11 is rotated forward in the optical axis direction.
カム環11の内側には周方向へ延びる結合溝11bが形成され、結合溝11bに対して直進案内環10の結合突起10aが摺動可能に嵌っている。結合溝11bと結合突起10aの嵌合により、カム環11と直進案内環10は光軸方向での相対移動が規制され(光軸方向へ共に移動し)、相対回転は可能な関係にある。直進案内環10はハウジングの内周面に形成された光軸方向への長溝(不図示)に対して摺動可能に嵌っており、直進案内環10はハウジングに対する回転が規制され、光軸方向にのみ移動可能に直進案内される。
A coupling groove 11b extending in the circumferential direction is formed inside the cam ring 11, and a coupling projection 10a of the linear guide ring 10 is slidably fitted into the coupling groove 11b. Due to the fitting of the coupling groove 11b and the coupling projection 10a, the cam ring 11 and the linear guide ring 10 are restricted in relative movement in the optical axis direction (moved together in the optical axis direction) and can be relatively rotated. The rectilinear guide ring 10 is slidably fitted in a long groove (not shown) in the optical axis direction formed on the inner peripheral surface of the housing, and the rectilinear guide ring 10 is restricted from rotating with respect to the housing, and is in the optical axis direction. It is guided straight ahead so that it can only move.
図2、図19及び図20に示すように、直進案内環10には周方向位置を異ならせて3つの直進案内溝10bが形成されている。各直進案内溝10bは光軸方向に延びる長溝であり、径方向に貫通している。各直進案内溝10bに対して3群移動環8の直進案内キー8aが光軸方向へ摺動可能に嵌っており、直進案内溝10bと直進案内キー8aの関係によって3群移動環8が光軸方向へ可動に直進案内される。各直進案内キー8aの内側には支持溝8b(図2)が形成されており、各直進案内キー8aの外面上にカムフォロアCF3が突設されている。各カムフォロアCF3は、カム環11の内周面に形成したカム溝CG3に対して摺動可能に嵌っており、カム環11が回転すると、カムフォロアCF3がカム溝CG3の案内を受けて3群移動環8の光軸方向位置が制御される。
As shown in FIGS. 2, 19 and 20, the rectilinear guide ring 10 is formed with three rectilinear guide grooves 10b at different circumferential positions. Each rectilinear guide groove 10b is a long groove extending in the optical axis direction, and penetrates in the radial direction. A rectilinear guide key 8a of the third group moving ring 8 is fitted to each rectilinear guide groove 10b so as to be slidable in the optical axis direction, and the third group moving ring 8 is lighted by the relationship between the rectilinear guide groove 10b and the straight guide key 8a. It is guided to move straight in the axial direction. A support groove 8b (FIG. 2) is formed inside each linear guide key 8a, and a cam follower CF3 projects from the outer surface of each linear guide key 8a. Each cam follower CF3 is slidably fitted to a cam groove CG3 formed on the inner peripheral surface of the cam ring 11. When the cam ring 11 rotates, the cam follower CF3 receives the guidance of the cam groove CG3 and moves in three groups. The position of the ring 8 in the optical axis direction is controlled.
図2、図15ないし図20に示すように、3群移動環8内には防振レンズユニット14とシャッタユニット16が支持される。防振レンズユニット14の詳細は後述するが、防振レンズユニット14内には防振枠(防振移動部材)18と挿脱枠(挿脱部材)20を介して第3レンズ群L3が保持されている。
As shown in FIGS. 2 and 15 to 20, a vibration-proof lens unit 14 and a shutter unit 16 are supported in the third group moving ring 8. Although details of the vibration-proof lens unit 14 will be described later, the third lens group L3 is held in the vibration-proof lens unit 14 via a vibration-proof frame (vibration-proof moving member) 18 and an insertion / removal frame (insertion / removal member) 20. Has been.
図1に示すように、第1レンズ群L1は1群筒12の内部に保持され、第2レンズ群L2は2群筒13の内部に保持されている。2群筒13は直進案内環10を介して光軸方向に直進移動可能に案内されており、1群筒12も同様に光軸方向に直進移動可能に案内されている。1群筒12はカム環11の外側に位置する外観筒であり、カム環11の外周面に形成したカム溝CG1に対して1群筒12に設けたカムフォロアCF1が摺動可能に嵌っている。また、2群筒13はカム環11の内側に位置しており、カム環11の内周面に形成したカム溝CG2に対して2群筒13に設けたカムフォロアCF2が摺動可能に嵌っている。カム環11が回転すると、カムフォロアCF1がカム溝CG1の案内を受けて1群筒12の光軸方向位置が制御され、カムフォロアCF2がカム溝CG2の案内を受けて2群筒13の光軸方向位置が制御される。
As shown in FIG. 1, the first lens group L <b> 1 is held inside the first group cylinder 12, and the second lens group L <b> 2 is held inside the second group cylinder 13. The second group cylinder 13 is guided through the linear guide ring 10 so as to be linearly movable in the optical axis direction, and the first group cylinder 12 is similarly guided so as to be linearly movable in the optical axis direction. The first group cylinder 12 is an external cylinder located outside the cam ring 11, and a cam follower CF1 provided in the first group cylinder 12 is slidably fitted into a cam groove CG1 formed on the outer peripheral surface of the cam ring 11. . The second group cylinder 13 is located inside the cam ring 11, and the cam follower CF2 provided in the second group cylinder 13 is slidably fitted to the cam groove CG2 formed on the inner peripheral surface of the cam ring 11. Yes. When the cam ring 11 rotates, the cam follower CF1 receives the guide of the cam groove CG1 to control the position of the first group cylinder 12 in the optical axis direction, and the cam follower CF2 receives the guide of the cam groove CG2 to the direction of the optical axis of the second group cylinder 13 The position is controlled.
3群移動環8内に支持される第3レンズ群L3は、撮影光軸O上の光路に対する挿脱動作と、光路上で撮影光軸Oと直交する平面に沿って所定の範囲で移動する防振動作が可能な光学要素である。第3レンズ群L3の支持駆動機構の詳細を以下に説明する。
The third lens unit L3 supported in the third group moving ring 8 moves in a predetermined range along a plane orthogonal to the imaging optical axis O on the optical path, and an insertion / removal operation with respect to the optical path on the imaging optical axis O. It is an optical element capable of anti-vibration operation. Details of the support driving mechanism of the third lens unit L3 will be described below.
3群移動環8は撮影光軸Oを囲む筒状部8cを有し、筒状部8cの内側には内径方向に突出する内側フランジ8dが周方向に部分的に(間欠的に)形成されており、内側フランジ8dの前側に防振レンズユニット14が支持され、内側フランジ8dの後側にシャッタユニット16が支持される。図2、図15及び図19に示すように、内側フランジ8dには、光軸方向前方に向けて開口するそれぞれ3つのネジ螺合孔8e及びバネ収納凹部8fと、光軸方向前方に突出する軸突起8gが形成されている。
The third group moving ring 8 has a cylindrical portion 8c surrounding the photographing optical axis O, and an inner flange 8d protruding in the inner diameter direction is partially (intermittently) formed in the circumferential direction inside the cylindrical portion 8c. The anti-vibration lens unit 14 is supported on the front side of the inner flange 8d, and the shutter unit 16 is supported on the rear side of the inner flange 8d. As shown in FIGS. 2, 15, and 19, the inner flange 8 d protrudes forward in the optical axis direction with three screw screw holes 8 e and spring accommodating recesses 8 f opening forward in the optical axis direction. A shaft protrusion 8g is formed.
図3に示すように、防振レンズユニット14は、光軸方向前方に位置するセンサホルダ(支持部材)22と光軸方向後方に位置するコイル台座(支持部材)24の間に防振枠18と挿脱枠20を保持した構造である。図3、図7、図9及び図10に示すように、センサホルダ22は概ね撮影光軸Oと直交する板状の本体部を有しており、撮影光軸Oが通る中央部に内側開口22aを有する。センサホルダ22の周方向の一部は、内側開口22aがセンサホルダ22の外周部分まで連通した開放部22a-1になっており、開放部22a-1に近いセンサホルダ22の内周部に、内側開口22aをさらに外径方向に向けて切り欠いた形状の内周逃げ部22bが形成されている。センサホルダ22の前面側には有底の凹部である第1センサ保持部22cと第2センサ保持部22dが形成されている。
As shown in FIG. 3, the anti-vibration lens unit 14 includes an anti-vibration frame 18 between a sensor holder (support member) 22 positioned forward in the optical axis direction and a coil base (support member) 24 positioned rearward in the optical axis direction. And the insertion / removal frame 20 is held. As shown in FIGS. 3, 7, 9, and 10, the sensor holder 22 has a plate-like main body portion that is substantially orthogonal to the photographing optical axis O, and has an inner opening at a central portion through which the photographing optical axis O passes. 22a. Part of the circumferential direction of the sensor holder 22 is an open portion 22a-1 in which the inner opening 22a communicates with the outer peripheral portion of the sensor holder 22, and an inner peripheral portion of the sensor holder 22 close to the open portion 22a-1 An inner circumferential relief 22b having a shape in which the inner opening 22a is further cut out in the outer diameter direction is formed. A first sensor holding part 22c and a second sensor holding part 22d, which are bottomed concave parts, are formed on the front side of the sensor holder 22.
図10に示すように、センサホルダ22のうち防振枠18に対向する後面側には、周方向に位置を異ならせて3つのボール支持凹部22eが形成されている。各ボール支持凹部22eの周囲には、ボール支持凹部22eよりも開口面積の大きい逃げ凹部22fが形成されている。3つのボール支持凹部22eと逃げ凹部22fは、撮影光軸Oから概ね等距離に位置し、撮影光軸Oを中心とする周方向に概ね等間隔(約120度の間隔)で配置されている。ボール支持凹部22eと逃げ凹部22fはそれぞれ、撮影光軸Oと直交する底面を有する有底の凹部であり、光軸方向後方に向けて開口している。3つのボール支持凹部22eはいずれも底面を囲む内周壁が円筒状をなしている。3つの逃げ凹部22fのうち1つはボール支持凹部22eと略同心の円筒状の内周壁を有し、残る2つの逃げ凹部22fの内周壁は、撮影光軸Oと直交する平面内において概ね正方形をなす角筒状をなしている。後者の角筒状の逃げ凹部22fを、移動規制凹部22f-1と呼ぶ。
As shown in FIG. 10, three ball support recesses 22 e are formed on the rear surface side of the sensor holder 22 facing the vibration isolation frame 18 so as to have different positions in the circumferential direction. Around each ball support recess 22e, an escape recess 22f having an opening area larger than that of the ball support recess 22e is formed. The three ball support recesses 22e and the relief recesses 22f are located at approximately the same distance from the photographic optical axis O, and are disposed at substantially equal intervals (approximately 120 degrees apart) in the circumferential direction around the photographic optical axis O. . Each of the ball support recess 22e and the escape recess 22f is a bottomed recess having a bottom surface orthogonal to the photographing optical axis O, and opens toward the rear in the optical axis direction. Each of the three ball support recesses 22e has a cylindrical inner peripheral wall surrounding the bottom surface. One of the three escape recesses 22f has a cylindrical inner peripheral wall substantially concentric with the ball support recess 22e, and the inner peripheral walls of the remaining two escape recesses 22f are generally square in a plane orthogonal to the photographing optical axis O. It has a rectangular tube shape. The latter square cylindrical relief recess 22f is referred to as a movement restricting recess 22f-1.
センサホルダ22の外周部近傍には、光軸方向に貫通する2つのネジ挿通孔22gが形成されている。2つのネジ挿通孔22gは光軸方向において略同じ位置にある。センサホルダ22の外周部には、撮影光軸Oを挟んで略対称の位置関係にある2つのバネ掛け突起22hと、光軸方向後方に突出する複数(4つ)の係合片22iと、各係合片22iよりも小さい突出量で光軸方向後方に突出する複数の当付部22jが設けられている。各係合片22iの端部には、撮影光軸Oに接近する内径方向への爪が形成されている。センサホルダ22はさらに、光軸方向へ貫通する2つの位置決め孔22kを有する。
Two screw insertion holes 22 g that penetrate in the optical axis direction are formed in the vicinity of the outer periphery of the sensor holder 22. The two screw insertion holes 22g are substantially at the same position in the optical axis direction. On the outer periphery of the sensor holder 22, two spring hooking projections 22h that are in a substantially symmetrical positional relationship across the photographing optical axis O, and a plurality (four) of engagement pieces 22i that protrude rearward in the optical axis direction, A plurality of contact portions 22j that protrude rearward in the optical axis direction with a smaller protrusion amount than the respective engagement pieces 22i are provided. At the end of each engagement piece 22i, a claw in the inner diameter direction that approaches the photographing optical axis O is formed. The sensor holder 22 further has two positioning holes 22k penetrating in the optical axis direction.
図3ないし図6、図11ないし図14に示すように、コイル台座24は撮影光軸Oを囲む枠状体であり、センサホルダ22の内側開口22aに対応する形状の内側開口24aが形成され、センサホルダ22の内周逃げ部22bに対応する位置に内周逃げ部24bが形成されている。センサホルダ22と同様に、コイル台座24の周方向の一部は内側開口24aに続く開放部24a-1によって開放されているが、開放部24a-1の後部が橋絡部24cによって接続されている。橋絡部24cは撮影光軸Oと略直交する板状の遮光板部24dを有する。図6、図12及び図14に示すように、遮光板部24dは光軸方向の肉厚が異なる厚肉部分と薄肉部分を有し、厚肉部分に光軸方向へ貫通するネジ挿通孔24eが形成されている。図11、図13及び図17に示すように、撮影光軸Oに沿って見ると、コイル台座24におけるネジ挿通孔24e(の中心)と、センサホルダ22における2つのネジ挿通孔22g(の中心)は、概ね撮影光軸Oを囲む正三角形の頂点に位置している。換言すれば、計3つのネジ挿通孔22g、24eが撮影光軸Oを中心とする周方向に略等間隔で配置されている。但し、2つのネジ挿通孔22gが同じ光軸方向位置にあるのに対し、ネジ挿通孔24eはネジ挿通孔22gに対して光軸方向後方にオフセットした位置にある(図18参照)。
As shown in FIGS. 3 to 6 and 11 to 14, the coil base 24 is a frame-like body that surrounds the photographing optical axis O, and an inner opening 24 a having a shape corresponding to the inner opening 22 a of the sensor holder 22 is formed. An inner circumferential relief portion 24b is formed at a position corresponding to the inner circumferential relief portion 22b of the sensor holder 22. Similar to the sensor holder 22, a part of the coil base 24 in the circumferential direction is opened by an open portion 24a-1 following the inner opening 24a, but the rear portion of the open portion 24a-1 is connected by a bridging portion 24c. Yes. The bridging portion 24c has a plate-shaped light shielding plate portion 24d substantially orthogonal to the photographing optical axis O. As shown in FIGS. 6, 12, and 14, the light shielding plate portion 24 d has a thick portion and a thin portion having different thicknesses in the optical axis direction, and a screw insertion hole 24 e that penetrates the thick portion in the optical axis direction. Is formed. As shown in FIGS. 11, 13, and 17, when viewed along the photographing optical axis O, the screw insertion hole 24 e (center) of the coil base 24 and the two screw insertion holes 22 g (center of the sensor holder 22). ) Is generally located at the apex of an equilateral triangle surrounding the photographing optical axis O. In other words, a total of three screw insertion holes 22g and 24e are arranged at substantially equal intervals in the circumferential direction around the photographing optical axis O. However, the two screw insertion holes 22g are at the same position in the optical axis direction, whereas the screw insertion hole 24e is at a position offset backward in the optical axis direction with respect to the screw insertion hole 22g (see FIG. 18).
図3に示すように、コイル台座24の前面側には有底の凹部である第1コイル支持部24fと第2コイル支持部24gが形成されている。第1コイル支持部24fと第2コイル支持部24gはそれぞれ撮影光軸Oと略直交する底面を有する凹部であり、第1コイル支持部24fの底面から光軸方向前方に向けて一対の支持突起24hが突出形成され、第2コイル支持部24gの底面から光軸方向前方に向けて一対の支持突起24iが突出形成されている。
As shown in FIG. 3, a first coil support portion 24 f and a second coil support portion 24 g which are bottomed concave portions are formed on the front side of the coil base 24. Each of the first coil support 24f and the second coil support 24g is a recess having a bottom surface substantially orthogonal to the imaging optical axis O, and a pair of support protrusions from the bottom surface of the first coil support 24f toward the front in the optical axis direction. 24h protrudes and a pair of support protrusions 24i protrude from the bottom surface of the second coil support portion 24g toward the front in the optical axis direction.
図3ないし図6に示すように、コイル台座24の外周部の複数箇所に光軸方向前方に突出する当付部24jが設けられている。当付部24jの一つには、光軸方向前方に突出する位置決め突起24kが形成されている。第1コイル支持部24fと第2コイル支持部24gの間には、光軸方向前方に突出する位置決め突起24mが設けられている。また、コイル台座24の外周部から外径方向に向けて、周方向に略等間隔で3つの支持突起24nが突設されている。
As shown in FIGS. 3 to 6, contact portions 24 j that protrude forward in the optical axis direction are provided at a plurality of locations on the outer peripheral portion of the coil base 24. One of the contact portions 24j is formed with a positioning protrusion 24k that protrudes forward in the optical axis direction. A positioning protrusion 24m that protrudes forward in the optical axis direction is provided between the first coil support portion 24f and the second coil support portion 24g. In addition, three support protrusions 24n are projected from the outer peripheral portion of the coil base 24 toward the outer diameter direction at substantially equal intervals in the circumferential direction.
防振枠18は撮影光軸Oを囲む枠状体であり、センサホルダ22の内側開口22aとコイル台座24の内側開口24aに連通する内側開口18aを有し、内周逃げ部22bと内周逃げ部24bに対応する位置に軸支部18bが設けられている。軸支部18bには軸支持孔18cが光軸方向に貫通形成されている。コイル台座24と同様に、防振枠18の周方向の一部は内側開口18aが外周部分まで連通した開放部18a-1となっているが、図3ないし図7、図9、図10、図15などに示すように、開放部18a-1の前部が光軸方向前方に向けてオフセットした形状の橋絡部18dによって接続されている。防振枠18にはさらに、コイル台座24の位置決め突起24mを挿入可能な逃げ孔18eが形成されている。
The anti-vibration frame 18 is a frame-like body that surrounds the photographing optical axis O, and has an inner opening 18 a that communicates with the inner opening 22 a of the sensor holder 22 and the inner opening 24 a of the coil base 24. A shaft support portion 18b is provided at a position corresponding to the escape portion 24b. A shaft support hole 18c is formed through the shaft support portion 18b in the optical axis direction. Similar to the coil pedestal 24, a part in the circumferential direction of the vibration isolation frame 18 is an open portion 18 a-1 in which the inner opening 18 a communicates with the outer peripheral portion, but FIG. 3 to FIG. 7, FIG. 9, FIG. As shown in FIG. 15 and the like, the front part of the open part 18a-1 is connected by a bridge part 18d having a shape offset toward the front in the optical axis direction. The vibration isolating frame 18 is further formed with a relief hole 18e into which the positioning protrusion 24m of the coil base 24 can be inserted.
図3ないし図5、図9、図10に示すように、防振枠18には、第1センサ保持部22cと第1コイル支持部24fに対向する位置に第1磁石保持部18fが形成され、第2センサ保持部22dと第2コイル支持部24gに対向する位置に第2磁石保持部18gが形成されている。
As shown in FIGS. 3 to 5, 9, and 10, the vibration isolation frame 18 has a first magnet holding portion 18 f formed at a position facing the first sensor holding portion 22 c and the first coil support portion 24 f. A second magnet holding portion 18g is formed at a position facing the second sensor holding portion 22d and the second coil support portion 24g.
図3、図4、図5、図8及び図9に示すように、防振枠18のうちセンサホルダ22に対向する前面側には、位置を異ならせて3つのボール支持筒部18hが形成されている。3つのボール支持筒部18hは、撮影光軸Oから概ね等距離に位置し、かつ撮影光軸Oを中心とする周方向に概ね等間隔(約120度の間隔)で配置されており、それぞれのボール支持筒部18hはセンサホルダ22のボール支持凹部22eに対向する位置関係にある。各ボール支持筒部18hは光軸方向前方に突出する円筒形状をなし、光軸方向の前端部が開口し、光軸方向の後端部に底面を有する。各ボール支持筒部18hの内部には球状の転動体であるガイドボール28が転動可能に支持される。図8に示すように、各ガイドボール28は、ボール支持筒部18hの底面に当接した状態で該ボール支持筒部18hの先端(前端)よりも前方に突出する直径に設定されており、センサホルダ22におけるボール支持凹部22eの底面に当接して挟持される。以下では、ガイドボール28を挟持するボール支持筒部18hの底面とボール支持凹部22eの底面をそれぞれボール当接面と呼ぶ。これらのボール当接面はいずれも撮影光軸Oと略直交する平滑な平面である。ガイドボール28は光軸直交方向にはボール支持筒部18h内に遊嵌しており、ガイドボール28はボール支持筒部18h内の中央付近に位置するときにはボール支持筒部18hの内周壁に当接しない(図8参照)。
As shown in FIGS. 3, 4, 5, 8, and 9, three ball support cylinders 18 h are formed at different positions on the front side of the vibration isolation frame 18 facing the sensor holder 22. Has been. The three ball support tube portions 18h are located at approximately the same distance from the photographing optical axis O and are disposed at substantially equal intervals (intervals of approximately 120 degrees) in the circumferential direction around the photographing optical axis O. The ball support cylinder portion 18 h is in a positional relationship facing the ball support recess 22 e of the sensor holder 22. Each ball support cylinder portion 18h has a cylindrical shape protruding forward in the optical axis direction, has a front end portion in the optical axis direction opened, and has a bottom surface in the rear end portion in the optical axis direction. Inside each ball support cylinder portion 18h, a guide ball 28, which is a spherical rolling element, is supported in a rollable manner. As shown in FIG. 8, each guide ball 28 is set to have a diameter protruding forward from the tip (front end) of the ball support cylinder portion 18h in a state of being in contact with the bottom surface of the ball support cylinder portion 18h. The sensor holder 22 is held in contact with the bottom surface of the ball support recess 22e. Hereinafter, the bottom surface of the ball support cylinder 18h that holds the guide ball 28 and the bottom surface of the ball support recess 22e are referred to as ball contact surfaces, respectively. Each of these ball contact surfaces is a smooth plane substantially orthogonal to the photographing optical axis O. The guide ball 28 is loosely fitted in the ball support tube portion 18h in the direction orthogonal to the optical axis. When the guide ball 28 is located near the center of the ball support tube portion 18h, the guide ball 28 contacts the inner peripheral wall of the ball support tube portion 18h. Do not touch (see FIG. 8).
防振枠18の外周部には2つのバネ掛け突起18iが設けられている。各バネ掛け突起18iはセンサホルダ22に設けたバネ掛け突起22hと光軸方向に対向する位置にあり、各バネ掛け突起18iと各バネ掛け突起22hの間に引張バネ30が張設されている。防振枠18は、2つの引張バネ30の付勢力によってセンサホルダ22に接近する方向(前方)に付勢され、3つのボール支持筒部18hのボール当接面を3つのガイドボール28に当接させることで、センサホルダ22に対する防振枠18の前方への移動が規制される。この状態で各ボール支持筒部18hのボール当接面は対応するガイドボール28に対してそれぞれ点接触しており、この点接触部分を摺接させることで(もしくは、ガイドボール28がボール支持筒部18hの内周壁に当接していないときはガイドボール28を転動させながら)、防振枠18は撮影光軸Oと直交する方向へ自在に移動可能になっている。
Two spring hooking projections 18 i are provided on the outer peripheral portion of the vibration isolation frame 18. Each spring hooking protrusion 18i is in a position facing the spring hooking protrusion 22h provided on the sensor holder 22 in the optical axis direction, and a tension spring 30 is stretched between each spring hooking protrusion 18i and each spring hooking protrusion 22h. . The anti-vibration frame 18 is urged in the direction approaching the sensor holder 22 (forward) by the urging force of the two tension springs 30, and the ball contact surfaces of the three ball support cylinders 18 h are applied to the three guide balls 28. By making contact, the forward movement of the vibration isolation frame 18 with respect to the sensor holder 22 is restricted. In this state, the ball contact surface of each ball support cylinder portion 18h is in point contact with the corresponding guide ball 28, and the point contact portion is brought into sliding contact (or the guide ball 28 is in contact with the ball support cylinder). The anti-vibration frame 18 is freely movable in a direction orthogonal to the photographing optical axis O while the guide ball 28 rolls when not in contact with the inner peripheral wall of the portion 18h.
図8に示すように、ガイドボール28を挟んで防振枠18とセンサホルダ22を結合させた状態で、各移動規制凹部22f-1の内壁面と各ボール支持筒部18hの外周面との間にクリアランスD1があり、各ボール支持筒部18hの外周面を各移動規制凹部22f-1の内壁面に当接させるまでの範囲で、防振枠18がセンサホルダ22に対して撮影光軸Oと直交する平面内で自在に移動することができる。移動規制凹部22f-1ではない円筒状の内周壁を有する一つの逃げ凹部22fとボール支持筒部18hの間には、クリアランスD1よりも大きなクリアランスが確保されており、防振枠18の可動範囲内では互いに当接することがない。
As shown in FIG. 8, with the anti-vibration frame 18 and the sensor holder 22 coupled with the guide ball 28 interposed therebetween, the inner wall surface of each movement restricting recess 22f-1 and the outer peripheral surface of each ball supporting cylinder portion 18h There is a clearance D1 between them, and the anti-vibration frame 18 with respect to the sensor holder 22 is in the range of the photographing optical axis until the outer peripheral surface of each ball support cylinder portion 18h comes into contact with the inner wall surface of each movement restricting recess 22f-1. It can move freely in a plane orthogonal to O. A clearance larger than the clearance D1 is secured between one relief recess 22f having a cylindrical inner peripheral wall that is not the movement restricting recess 22f-1 and the ball support cylinder portion 18h, and the movable range of the vibration isolation frame 18 is secured. They do not touch each other.
防振枠18を可動に支持したセンサホルダ22の後部にコイル台座24が固定される。このとき、2つの位置決め孔22kに対して位置決め突起24kと位置決め突起24mを嵌合することによって位置決めしつつ、センサホルダ22の後面を当付部24jに対して当接させ、コイル台座24の前面を当付部22jに当接させることで、センサホルダ22とコイル台座24の光軸方向の間隔が定まる。さらにセンサホルダ22の係合片22iの先端の爪をコイル台座24の後面に係合させることで、センサホルダ22とコイル台座24の光軸方向の離間が規制される(図12、図14参照)。
A coil base 24 is fixed to the rear portion of the sensor holder 22 that movably supports the vibration isolation frame 18. At this time, while positioning by positioning the positioning projections 24k and 24m into the two positioning holes 22k, the rear surface of the sensor holder 22 is brought into contact with the contact portion 24j, and the front surface of the coil base 24 Is brought into contact with the contact portion 22j, thereby determining the distance between the sensor holder 22 and the coil base 24 in the optical axis direction. Further, by engaging the claw at the tip of the engagement piece 22i of the sensor holder 22 with the rear surface of the coil base 24, the separation between the sensor holder 22 and the coil base 24 in the optical axis direction is regulated (see FIGS. 12 and 14). ).
組み合わせた状態のセンサホルダ22とコイル台座24は、防振枠18の移動を妨げない形状になっている。例えば、防振枠18において軸支部18bは前後方向に突出し、橋絡部18dは前方に突出しているが、軸支部18bは内周逃げ部22bと内周逃げ部24bの内側に所定のクリアランスをもって位置し(図4、図7、図11及び図13参照)、橋絡部18dは開放部22a-1の間に所定のクリアランスをもって位置している(図7参照)。また、防振枠18の逃げ孔18eとコイル台座24の位置決め突起24mの間にもクリアランスが確保されている。これらの各部のクリアランスは、先に述べたボール支持筒部18hと移動規制凹部22f-1の間のクリアランスD1よりも大きく設定されており、センサホルダ22やコイル台座24に対する撮影光軸Oと直交する平面内での防振枠18の移動は、ボール支持筒部18hと移動規制凹部22f-1以外の箇所で制限されることがない。
The sensor holder 22 and the coil base 24 in a combined state have a shape that does not hinder the movement of the vibration isolation frame 18. For example, in the anti-vibration frame 18, the shaft support portion 18b protrudes in the front-rear direction and the bridging portion 18d protrudes forward, but the shaft support portion 18b has a predetermined clearance inside the inner peripheral escape portion 22b and the inner peripheral escape portion 24b. The bridge portion 18d is positioned with a predetermined clearance between the open portions 22a-1 (see FIG. 7). A clearance is also ensured between the escape hole 18 e of the vibration isolation frame 18 and the positioning projection 24 m of the coil base 24. The clearances of these parts are set to be larger than the clearance D1 between the ball support cylinder 18h and the movement restricting recess 22f-1 described above, and are orthogonal to the imaging optical axis O with respect to the sensor holder 22 and the coil base 24. The movement of the anti-vibration frame 18 within the plane to be performed is not restricted at any place other than the ball support cylinder 18h and the movement restricting recess 22f-1.
防振枠18を挟んでセンサホルダ22とコイル台座24を組み合わせた状態で、それぞれの内側開口18a、22a及び24aが光軸方向に連通して、後述する挿脱枠20の可動空間を形成する。また、光軸方向前方にオフセットした形状の防振枠18の橋絡部18dと、光軸方向後方にオフセットした形状のコイル台座24の橋絡部24cの間に、後述する離脱位置に回動した挿脱枠20を収納させる収納空間が形成される。
In a state where the sensor holder 22 and the coil base 24 are combined with the vibration isolating frame 18 interposed therebetween, the respective inner openings 18a, 22a and 24a communicate with each other in the optical axis direction to form a movable space of the insertion / removal frame 20 described later. . Further, it pivots to a later-described detachment position between the bridge portion 18d of the anti-vibration frame 18 having a shape offset forward in the optical axis direction and the bridge portion 24c of the coil base 24 having a shape offset backward in the optical axis direction. A storage space for storing the inserted / removed frame 20 is formed.
防振枠18は電磁アクチュエータによって駆動される。電磁アクチュエータは、防振枠18に支持される2つの永久磁石31、32と、コイル台座24に支持される2つのコイル33、34を有するボイスコイルモータである。図3、図10、図11及び図13に示すように、永久磁石31と永久磁石32の形状及び大きさは略同一であり、それぞれ細長矩形の薄板状をなしている。永久磁石31は第1磁石保持部18fの凹部内に嵌合保持され、永久磁石32は第2磁石保持部18gの凹部内に嵌合保持されている。永久磁石31と永久磁石32はそれぞれ、短手方向の略中央を通り長手方向に向く磁力境界線Q1、Q2(図11、図13、図21)で分割される半割領域の一方がN極で他方がS極となっている。第1磁石保持部18fと第2磁石保持部18gによる保持状態で、永久磁石31とコイル33は、撮影光軸Oを含む基準平面(第1の基準平面)P1(図11、図13、図21)に関して対称の関係で配置される。永久磁石31と永久磁石32は、基準平面P1に対して、防振レンズユニット14の外縁側(撮影光軸Oから遠い側)から内径側(撮影光軸Oに近い側)に向かうにつれて互いの磁力境界線Q1、Q2の間隔を大きくする傾きを持たせて配置されており、基準平面P1に対する磁力境界線Q1と磁力境界線Q2の傾き角は正逆で約45度に設定されている。つまり、永久磁石31と永久磁石32は互いの磁力境界線Q1、Q2を略直交させる関係にある。
The anti-vibration frame 18 is driven by an electromagnetic actuator. The electromagnetic actuator is a voice coil motor having two permanent magnets 31 and 32 supported by the vibration isolation frame 18 and two coils 33 and 34 supported by the coil base 24. As shown in FIGS. 3, 10, 11, and 13, the permanent magnet 31 and the permanent magnet 32 have substantially the same shape and size, and each has a thin rectangular plate shape. The permanent magnet 31 is fitted and held in the recess of the first magnet holding portion 18f, and the permanent magnet 32 is fitted and held in the recess of the second magnet holding portion 18g. Permanent magnet 31 and permanent magnet 32 each have one of the half regions divided by magnetic boundary lines Q1 and Q2 (FIGS. 11, 13, and 21) passing through substantially the center in the short direction and extending in the longitudinal direction. And the other is the S pole. In the holding state by the first magnet holding part 18f and the second magnet holding part 18g, the permanent magnet 31 and the coil 33 have a reference plane (first reference plane) P1 including the photographing optical axis O (FIGS. 11, 13, and FIG. 21) in a symmetrical relationship. The permanent magnet 31 and the permanent magnet 32 move from the outer edge side (the side far from the photographing optical axis O) to the inner diameter side (the side closer to the photographing optical axis O) with respect to the reference plane P1. The magnetic field boundary lines Q1 and Q2 are arranged with an inclination to increase the interval between them, and the inclination angle of the magnetic field boundary line Q1 and the magnetic field boundary line Q2 with respect to the reference plane P1 is set to about 45 degrees in the opposite direction. That is, the permanent magnet 31 and the permanent magnet 32 have a relationship in which the magnetic boundary lines Q1 and Q2 are substantially orthogonal to each other.
図3、図11、図13及び図21に示すように、コイル33、34は、略平行な一対の長辺部と該長辺部を接続する一対の湾曲部を有する空芯コイルであり、その形状及び大きさは略同一である。コイル33は空芯部33aに一対の支持突起24hを挿入させて(図21参照)第1コイル支持部24f上に保持され、コイル34は空芯部34aに一対の支持突起24iを挿入させて(図21参照)第2コイル支持部24g上に保持される。第1コイル支持部24fと第2コイル支持部24gによる保持状態で、コイル33の長辺(長軸)方向が永久磁石31の磁力境界線Q1と略平行になり、コイル34の長辺(長軸)方向が永久磁石32の磁力境界線Q2と略平行になる。防振枠18が防振機構による駆動範囲の中央に位置する状態(振れ補正動作を行なっていない光学設計上の初期位置にある状態)で、図11、図13及び図21のように撮影光軸Oに沿って見て、コイル33において長辺部と平行で空芯部33aを通る長軸が永久磁石31の磁力境界線Q1と略一致しており、コイル34において長辺部と平行で空芯部34aを通る長軸が永久磁石32の磁力境界線Q2と略一致している。すなわちコイル33、34は、基準平面P1に対して、防振レンズユニット14の外縁側(撮影光軸Oから遠い側)から内径側(撮影光軸Oに近い側)に向かうにつれて互いの長軸(長辺部)の間隔を大きくする傾きを持たせて配置されており、基準平面P1に対するコイル33とコイル34の長軸の傾斜角は、正逆で約45度に設定されている。つまり、コイル33とコイル34は互いの長軸を略直交させる関係にある。コイル33、34はフレキシブル基板を介してカメラの制御基板に接続されていて、制御基板上の制御回路によってコイル33とコイル34の通電制御が行われる。
As shown in FIGS. 3, 11, 13, and 21, the coils 33 and 34 are air-core coils having a pair of substantially parallel long side portions and a pair of curved portions that connect the long side portions, Its shape and size are substantially the same. The coil 33 is held on the first coil support part 24f by inserting a pair of support protrusions 24h into the air core part 33a (see FIG. 21), and the coil 34 is inserted by inserting a pair of support protrusions 24i into the air core part 34a. (Refer FIG. 21) It hold | maintains on the 2nd coil support part 24g. In the holding state by the first coil support portion 24f and the second coil support portion 24g, the long side (long axis) direction of the coil 33 is substantially parallel to the magnetic boundary line Q1 of the permanent magnet 31, and the long side (long side) of the coil 34 is long. (Axis) direction is substantially parallel to the magnetic force boundary line Q <b> 2 of the permanent magnet 32. In a state where the vibration isolating frame 18 is located at the center of the driving range by the vibration isolating mechanism (in an initial position in the optical design where the shake correcting operation is not performed), the photographing light as shown in FIGS. When viewed along the axis O, the long axis of the coil 33 that is parallel to the long side portion and passes through the air core portion 33a is substantially coincident with the magnetic force boundary line Q1 of the permanent magnet 31, and the coil 34 is parallel to the long side portion. The long axis passing through the air core part 34 a substantially coincides with the magnetic force boundary line Q <b> 2 of the permanent magnet 32. In other words, the coils 33 and 34 have a long axis relative to the reference plane P1 as they go from the outer edge side (the side farther from the photographing optical axis O) to the inner diameter side (the side closer to the photographing optical axis O). It is arranged with an inclination to increase the interval of (long side part), and the inclination angle of the long axis of the coil 33 and the coil 34 with respect to the reference plane P1 is set to about 45 degrees in the forward and reverse directions. That is, the coil 33 and the coil 34 have a relationship in which their major axes are substantially orthogonal. The coils 33 and 34 are connected to a control board of the camera via a flexible board, and energization control of the coils 33 and 34 is performed by a control circuit on the control board.
以上の構成の電磁アクチュエータでは、永久磁石31とコイル33が光軸方向に対向しており、コイル33に通電すると、撮影光軸Oと直交する平面内で磁力境界線Q1(コイル33の長軸)と略直交する方向への推力が作用する。この推力の作用方向をY軸とする(図11、図13、図21)。また、永久磁石32とコイル34が光軸方向に対向しており、コイル34に通電すると、撮影光軸Oと直交する平面内で磁力境界線Q2(コイル34の長軸)と略直交する方向への推力が作用する。この推力の作用方向をX軸とする(図11、図13、図21)。X軸とY軸はいずれも基準平面P1に対して約45度の角度で交差する関係(互いに略直交する関係)にあり、各コイル33、34への通電制御によって、撮影光軸Oと直交する平面内で防振枠18を移動させることができる。図11や図13に示すように、防振枠18が可動範囲の中央に位置する状態で、永久磁石31とコイル33の中心(長手方向と短手方向の両方の中央)を通りY軸に沿う線と、永久磁石32とコイル34の中心(長手方向と短手方向の両方の中央)を通りX軸に沿う線の交点は、撮影光軸O上(基準平面P1上)に位置する。
In the electromagnetic actuator having the above configuration, the permanent magnet 31 and the coil 33 are opposed to each other in the optical axis direction, and when the coil 33 is energized, the magnetic force boundary line Q1 (the long axis of the coil 33) in a plane orthogonal to the photographing optical axis O. ) Acts in a direction substantially orthogonal to. The direction in which this thrust acts is the Y axis (FIGS. 11, 13, and 21). Further, the permanent magnet 32 and the coil 34 face each other in the optical axis direction, and when the coil 34 is energized, the direction substantially orthogonal to the magnetic boundary line Q2 (long axis of the coil 34) in a plane orthogonal to the photographing optical axis O. The thrust to is applied. The acting direction of this thrust is taken as the X axis (FIGS. 11, 13, and 21). Both the X axis and the Y axis intersect with the reference plane P1 at an angle of about 45 degrees (a relationship that is substantially orthogonal to each other), and are orthogonal to the imaging optical axis O by energization control of the coils 33 and 34. The anti-vibration frame 18 can be moved within the plane to be moved. As shown in FIG. 11 and FIG. 13, with the vibration isolating frame 18 positioned at the center of the movable range, it passes through the center of the permanent magnet 31 and the coil 33 (the center in both the longitudinal direction and the short direction) to the Y axis. The intersection of the line along the line along the X axis passing through the center of the permanent magnet 32 and the coil 34 (the center in both the longitudinal direction and the short direction) is located on the photographing optical axis O (on the reference plane P1).
センサホルダ22の第1センサ保持部22cと第2センサ保持部22dにはそれぞれ、防振枠18上の永久磁石31の前方に位置する磁気センサ35と、永久磁石32の前方に位置する磁気センサ36が組み付けられる(図7、図11、図13及び図21参照)。磁気センサ35と磁気センサ36はカメラの制御基板に接続するフレキシブル基板50(図2、図3、図15、図17)上に支持されており、センサホルダ22の前面側に取り付けられたフレキシブル基板50は押さえ板51によって保持される。磁気センサ35と磁気センサ36はホールセンサであり、電磁アクチュエータによる防振枠18の移動に応じて永久磁石31の位置が変化すると磁気センサ35の出力が変化し、永久磁石32の位置が変化すると磁気センサ36の出力が変化し、この2つの磁気センサ35、36の出力変化によって、防振枠18の位置を検出することができる。図11や図13に示すように、防振枠18が可動範囲の中央に位置する状態で、磁気センサ35は永久磁石31の中心に対向して位置しており、磁気センサ36は永久磁石32の中心に対向して位置している。そして、磁気センサ35によって防振枠18の位置検出が行われるY軸方向の線と、磁気センサ36によって防振枠18の位置検出が行われるX軸方向の線の交点が撮影光軸O上に位置する。カメラの起動時などに、ボール支持筒部18hと移動規制凹部22f-1によって制限される移動端まで防振枠18を駆動させることにより、各磁気センサ35、36の校正が行われる。
The first sensor holding portion 22c and the second sensor holding portion 22d of the sensor holder 22 are respectively provided with a magnetic sensor 35 positioned in front of the permanent magnet 31 on the vibration isolation frame 18 and a magnetic sensor positioned in front of the permanent magnet 32. 36 is assembled (see FIGS. 7, 11, 13 and 21). The magnetic sensor 35 and the magnetic sensor 36 are supported on a flexible substrate 50 (FIGS. 2, 3, 15, and 17) connected to the control substrate of the camera, and are mounted on the front side of the sensor holder 22. 50 is held by a pressing plate 51. The magnetic sensor 35 and the magnetic sensor 36 are Hall sensors. When the position of the permanent magnet 31 changes according to the movement of the vibration isolation frame 18 by the electromagnetic actuator, the output of the magnetic sensor 35 changes, and the position of the permanent magnet 32 changes. The output of the magnetic sensor 36 changes, and the position of the anti-vibration frame 18 can be detected by the output change of the two magnetic sensors 35 and 36. As shown in FIGS. 11 and 13, the magnetic sensor 35 is positioned to face the center of the permanent magnet 31 with the vibration isolation frame 18 positioned at the center of the movable range, and the magnetic sensor 36 is the permanent magnet 32. It is located opposite the center. The intersection of the line in the Y-axis direction where the position of the image stabilizer frame 18 is detected by the magnetic sensor 35 and the line in the X-axis direction where the position of the image stabilizer frame 18 is detected by the magnetic sensor 36 is on the photographing optical axis O. Located in. When the camera is activated, the magnetic sensors 35 and 36 are calibrated by driving the anti-vibration frame 18 to the moving end limited by the ball support cylinder 18h and the movement restricting recess 22f-1.
防振枠18上には、撮影光軸Oと平行な回動軸37を中心として回動(揺動)可能に挿脱枠20が支持されている。回動軸37の両端部は防振枠18に形成した軸支持孔18cに挿入支持されている。挿脱枠20は、第3レンズ群L3を保持するレンズ保持筒部(保持部)20aと、回動軸37によって軸支される軸孔部(軸支部)20bと、レンズ保持筒部20aと軸孔部20bを接続する腕部20cを備えている。挿脱枠20は、挿入位置(図2、図4ないし図7、図9ないし図12、図15、図16、図19、図20、図21の実線)と離脱位置(図1、図13、図14、図17、図18、図21の二点鎖線)の間で動作可能であり、防振枠18に設けたストッパ18j(図10)に対してレンズ保持筒部20aから突出するストッパ当接部20dを当接させることで挿入位置が決まる。一端部を防振枠18に係合させ、他端部を挿脱枠20の腕部20cに係合させたトーションコイルバネからなる挿入付勢バネ38が、挿脱枠20を挿入位置方向へ付勢している。
An insertion / removal frame 20 is supported on the vibration isolation frame 18 so as to be rotatable (swingable) about a rotation axis 37 parallel to the photographing optical axis O. Both ends of the rotation shaft 37 are inserted and supported in shaft support holes 18 c formed in the vibration isolation frame 18. The insertion / removal frame 20 includes a lens holding tube portion (holding portion) 20a that holds the third lens unit L3, a shaft hole portion (shaft support portion) 20b that is supported by the rotating shaft 37, and a lens holding tube portion 20a. The arm part 20c which connects the axial hole part 20b is provided. The insertion / removal frame 20 has an insertion position (solid lines in FIGS. 2, 4 to 7, 9 to 12, 15, 16, 19, 20, and 21) and a removal position (FIGS. 1, 13). 14, FIG. 17, FIG. 18, and FIG. 21, and a stopper that protrudes from the lens holding cylinder 20 a with respect to a stopper 18 j (FIG. 10) provided on the vibration isolation frame 18. The insertion position is determined by contacting the contact portion 20d. An insertion biasing spring 38 comprising a torsion coil spring having one end engaged with the vibration isolating frame 18 and the other end engaged with the arm 20c of the insertion / removal frame 20 applies the insertion / removal frame 20 toward the insertion position. It is fast.
挿脱枠20が挿入位置にあるとき、第3レンズ群L3が撮影光軸O上に位置する。挿脱枠20は離脱駆動レバー40によって挿入位置から離脱位置へ回動される。離脱駆動レバー40については後述する。挿脱枠20が離脱位置に回動すると、第3レンズ群L3の中心が撮影光軸Oから離れて防振レンズユニット14の外縁部方向に変位する。防振レンズユニット14における内側開口18a、22a及び24aは、このときのレンズ保持筒部20aの移動軌跡(回動軸37を中心とする円弧状軌跡)に対応する逃げ形状を有しており、防振枠18とセンサホルダ22とコイル台座24は挿脱枠20の回動を妨げない。挿脱枠20が離脱位置まで回動すると、防振枠18の橋絡部18dとコイル台座24の橋絡部24cの間のスペースにレンズ保持筒部20aが進入する。
When the insertion / removal frame 20 is in the insertion position, the third lens unit L3 is located on the photographing optical axis O. The insertion / removal frame 20 is rotated from the insertion position to the removal position by the separation drive lever 40. The separation drive lever 40 will be described later. When the insertion / removal frame 20 is rotated to the removal position, the center of the third lens unit L3 moves away from the photographing optical axis O and is displaced toward the outer edge of the image stabilizing lens unit 14. The inner openings 18a, 22a, and 24a in the anti-vibration lens unit 14 have a relief shape corresponding to the movement trajectory of the lens holding cylinder portion 20a at this time (arc-shaped trajectory centered on the rotation shaft 37). The anti-vibration frame 18, the sensor holder 22, and the coil base 24 do not hinder the rotation of the insertion / removal frame 20. When the insertion / removal frame 20 rotates to the disengagement position, the lens holding cylinder portion 20a enters the space between the bridge portion 18d of the vibration isolation frame 18 and the bridge portion 24c of the coil base 24.
図2、図15、図17及び図18に示すように、防振レンズユニット14は3つの取付ネジ42を用いて3群移動環8に取り付けられる。取り付けに際しては、3群移動環8における3つのバネ収納凹部8fにそれぞれ圧縮バネ44を挿入してから、コイル台座24を光軸方向後方に向けた状態の防振レンズユニット14を内側フランジ8dに対して前方から接近させる。すると、バネ収納凹部8fから突出する各圧縮バネ44の前端部がコイル台座24の後面に当接する。ここで、センサホルダ22の2つのネジ挿通孔22gとコイル台座24のネジ挿通孔24eのそれぞれに対して取付ネジ42を前方から挿入し、各取付ネジ42をネジ螺合孔8eに螺合させる。ネジ螺合孔8eに対する取付ネジ42の螺合量を大きくすると各圧縮バネ44が圧縮され、圧縮に対する復元力によって防振レンズユニット14が3群移動環8内で光軸方向前方に付勢される。防振レンズユニット14の前方への移動は各取付ネジ42の頭部によって制限され、3群移動環8内での防振レンズユニット14の光軸方向位置が決まる。また、図17に示すように、コイル台座24から突出する3つの支持突起24nが3群移動環8の3つの支持溝8bに係合して、撮影光軸Oと直交する平面内での防振レンズユニット14の位置が決まる。この取付状態で各取付ネジ42の螺合量を変化させるとネジの頭部の光軸方向位置が変化し、これに追従して防振レンズユニット14の位置が変化する。3つの取付ネジ42の螺合量を均等に変化させた場合は、撮影光軸Oに対する傾きを変化させずに3群移動環8内での防振レンズユニット14の光軸方向位置が変化し、取付ネジ42の螺合量を個別に変化させた場合は、撮影光軸Oに対する防振レンズユニット14(第3レンズ群L3の光軸)の傾きが変化する。
As shown in FIGS. 2, 15, 17, and 18, the anti-vibration lens unit 14 is attached to the third group moving ring 8 using three attachment screws 42. At the time of attachment, after the compression springs 44 are respectively inserted into the three spring housing recesses 8f in the third group moving ring 8, the anti-vibration lens unit 14 with the coil base 24 facing rearward in the optical axis direction is attached to the inner flange 8d. Approach it from the front. Then, the front end portion of each compression spring 44 protruding from the spring housing recess 8 f comes into contact with the rear surface of the coil base 24. Here, the attachment screws 42 are inserted from the front into the two screw insertion holes 22g of the sensor holder 22 and the screw insertion holes 24e of the coil base 24, and the respective attachment screws 42 are screwed into the screw screw holes 8e. . When the screwing amount of the mounting screw 42 with respect to the screw screw hole 8e is increased, each compression spring 44 is compressed, and the anti-vibration lens unit 14 is urged forward in the optical axis direction within the third group moving ring 8 by the restoring force against the compression. The The forward movement of the anti-vibration lens unit 14 is limited by the head of each mounting screw 42, and the position of the anti-vibration lens unit 14 in the optical axis direction within the third group moving ring 8 is determined. In addition, as shown in FIG. 17, the three support protrusions 24 n protruding from the coil base 24 engage with the three support grooves 8 b of the third group moving ring 8, thereby preventing the projection within a plane orthogonal to the photographing optical axis O. The position of the vibration lens unit 14 is determined. When the screwing amount of each mounting screw 42 is changed in this mounting state, the position of the screw head in the optical axis direction changes, and the position of the vibration-proof lens unit 14 changes following this. When the screwing amounts of the three mounting screws 42 are evenly changed, the position of the vibration-proof lens unit 14 in the optical axis direction within the third group moving ring 8 changes without changing the inclination with respect to the photographing optical axis O. When the screwing amount of the mounting screw 42 is changed individually, the inclination of the image stabilizing lens unit 14 (the optical axis of the third lens unit L3) with respect to the photographing optical axis O changes.
挿脱枠20を挿入位置から離脱位置へ回動させる離脱駆動レバー40は、支持座41を用いて3群移動環8に支持される。図2、図15、図18及び図19に示すように、3群移動環8における軸突起8gの周囲に2つの固定突起8hが形成されている(図18には一方の固定突起8hのみ表されている)。支持座41は、撮影光軸Oと略直交する円板状をなす前方支持部41aと、前方支持部41aから突出する一対の抜止脚部41bを有する。前方支持部41aの中央には円形孔が形成されている。一対の抜止脚部41bはそれぞれ前方支持部41aに対して光軸方向後方に突出してから外径方向に曲げられた形状をなしている。前方支持部41aの円形孔に軸突起8gの先端部を嵌合させ(図16参照)、各抜止脚部41bの端部を固定突起8hの光軸方向後面側に係合させることで(図18参照)、支持座41が3群移動環8に固定的に支持される。図6に示すように、防振レンズユニット14を構成するコイル台座24には離脱駆動レバー40を収納するレバー収納部24pが形成されている。レバー収納部24pはコイル台座24の後面の一部を切り欠いた形状の凹部24p-1と、凹部24p-1の側方に位置する切欠部24p-2を有している。また、防振枠18の側部には、コイル台座24の切欠部24p-2と重なる位置に切欠部18kが形成されている。図2、図11、図13、図15ないし図20に示すように、防振レンズユニット14は概ね3群移動環8の筒状部8cの内径サイズに対応した円形状の外形形状を有しており、シャッタユニット16も同様の円形状の外形形状を有している。防振枠18の切欠部18kとコイル台座24の切欠部24p-2は、この円形状の防振レンズユニット14の周縁領域の一部を除去した形状であり、撮影光軸Oに沿って見たとき、シャッタユニット16と重なる位置に切欠部18kと切欠部24p-2が位置する。防振レンズユニット14を3群移動環8に組み付けると、軸突起8gと支持座41が切欠部24p-2と切欠部18kの側方空間に挿入される(図16参照)。
A detachment drive lever 40 that rotates the insertion / removal frame 20 from the insertion position to the detachment position is supported by the third group moving ring 8 using a support seat 41. As shown in FIGS. 2, 15, 18 and 19, two fixed protrusions 8h are formed around the shaft protrusion 8g in the third group moving ring 8 (FIG. 18 shows only one fixed protrusion 8h. Have been). The support seat 41 includes a front support portion 41a having a disk shape substantially orthogonal to the photographing optical axis O, and a pair of retaining leg portions 41b protruding from the front support portion 41a. A circular hole is formed in the center of the front support portion 41a. Each of the pair of retaining legs 41b protrudes rearward in the optical axis direction with respect to the front support portion 41a and then is bent in the outer diameter direction. By fitting the tip end portion of the shaft projection 8g into the circular hole of the front support portion 41a (see FIG. 16), the end portion of each retaining leg portion 41b is engaged with the rear side in the optical axis direction of the fixed projection 8h (see FIG. 16). 18), the support seat 41 is fixedly supported by the third group moving ring 8. As shown in FIG. 6, a lever housing portion 24 p for housing the detachment drive lever 40 is formed on the coil base 24 constituting the vibration-proof lens unit 14. The lever storage portion 24p has a concave portion 24p-1 in which a part of the rear surface of the coil base 24 is cut out, and a cutout portion 24p-2 located on the side of the concave portion 24p-1. Further, a notch 18k is formed on the side of the vibration isolating frame 18 at a position overlapping the notch 24p-2 of the coil base 24. As shown in FIGS. 2, 11, 13, and 15 to 20, the anti-vibration lens unit 14 has a circular outer shape generally corresponding to the inner diameter size of the cylindrical portion 8 c of the third group moving ring 8. The shutter unit 16 has a similar circular outer shape. The cutout portion 18k of the vibration isolation frame 18 and the cutout portion 24p-2 of the coil pedestal 24 have a shape obtained by removing a part of the peripheral region of the circular vibration isolation lens unit 14, and are viewed along the photographing optical axis O. When this occurs, the notch 18k and the notch 24p-2 are located at a position overlapping the shutter unit 16. When the anti-vibration lens unit 14 is assembled to the third group moving ring 8, the shaft protrusion 8g and the support seat 41 are inserted into the lateral space of the notch 24p-2 and the notch 18k (see FIG. 16).
離脱駆動レバー40は、軸突起8gによって軸支される軸孔を有する軸孔部40aと、軸孔部40aから外径方向に延出される押圧アーム40b及び被押圧突起40cを有する。図16に示すように、軸孔部40aの軸孔に軸突起8gを挿入させた状態で支持座41を3群移動環8に組み付けると、支持座41の前方支持部41aと3群移動環8の内側フランジ8d(軸突起8gの基部)に挟まれて、3群移動環8に対する離脱駆動レバー40の光軸方向後方への移動が規制される。この状態で軸突起8gを中心とした離脱駆動レバー40の回動が可能である。図16に示すように、軸孔部40aの外側に、トーションバネからなるレバー付勢バネ46のコイル部が挿入されている。レバー付勢バネ46のコイル部から延出される一対のバネ端部は、支持座41の抜止脚部41bと離脱駆動レバー40に対して係合している。この離脱駆動レバー40の支持状態では、凹部24p-1に押圧アーム40bが重なり、切欠部24p-2と切欠部18kに軸孔部40aが進入する(図12、図14及び図16参照)。また、押圧アーム40bの先端部付近の側面が挿脱枠20に設けた被押圧部20eに対向する(図11、図13参照)。被押圧部20eは軸孔部20bの近傍に設けられており、光軸方向に一様な断面形状を有する突起として形成されている。図11や図13に示すように、被押圧部20eにおける押圧アーム40bとの対向部分は軸線を撮影光軸Oと平行とした円筒状の外周面として形成されており、押圧アーム40bと被押圧部20eは、離脱駆動レバー40から挿脱枠20へ回動方向の力を伝達するが、撮影光軸Oと平行な方向への力を伝達しない関係にある。
The separation drive lever 40 includes a shaft hole portion 40a having a shaft hole that is pivotally supported by the shaft protrusion 8g, a pressing arm 40b extending from the shaft hole portion 40a in the outer diameter direction, and a pressed protrusion 40c. As shown in FIG. 16, when the support seat 41 is assembled to the third group moving ring 8 with the shaft protrusion 8g inserted into the shaft hole of the shaft hole portion 40a, the front support portion 41a of the support seat 41 and the third group moving ring are assembled. 8, the rearward movement of the detachment drive lever 40 with respect to the third group moving ring 8 is restricted by the inner flange 8d (base portion of the shaft projection 8g). In this state, the separation drive lever 40 can be rotated around the shaft protrusion 8g. As shown in FIG. 16, a coil portion of a lever urging spring 46 made of a torsion spring is inserted outside the shaft hole portion 40a. A pair of spring end portions extending from the coil portion of the lever biasing spring 46 is engaged with the retaining leg portion 41 b of the support seat 41 and the separation drive lever 40. In the support state of the detachment drive lever 40, the pressing arm 40b overlaps the recess 24p-1, and the shaft hole 40a enters the notch 24p-2 and the notch 18k (see FIGS. 12, 14, and 16). Further, the side surface near the tip of the pressing arm 40b faces the pressed portion 20e provided on the insertion / removal frame 20 (see FIGS. 11 and 13). The pressed portion 20e is provided in the vicinity of the shaft hole portion 20b, and is formed as a protrusion having a uniform cross-sectional shape in the optical axis direction. As shown in FIGS. 11 and 13, a portion of the pressed portion 20e facing the pressing arm 40b is formed as a cylindrical outer peripheral surface whose axis is parallel to the imaging optical axis O, and the pressing arm 40b and the pressed arm are pressed. The part 20e transmits a force in the rotational direction from the detachment drive lever 40 to the insertion / removal frame 20, but does not transmit a force in a direction parallel to the photographing optical axis O.
離脱駆動レバー40は、軸突起8gを中心として図11、図12及び図20に示す挿入許容位置と図13及び図14に示す離脱強制位置の間で回動(揺動)する。挿入付勢バネ38の付勢力は離脱位置から挿入位置方向(図11及び図13の反時計方向)へ挿脱枠20を回動付勢している。離脱駆動レバー40は、離脱強制位置から挿入許容位置方向(図11及び図13の時計方向)へレバー付勢バネ46によって回動付勢されている。このレバー付勢バネ46による付勢方向への離脱駆動レバー40の回動端、すなわち離脱駆動レバー40の挿入許容位置は、3群移動環8の筒状部8cの内周面に形成したストッパ部に当接することによって定められる。一方、挿入付勢バネ38による付勢方向への挿脱枠20の回動は、挿脱枠20dとストッパ18jの当接によって規制される(図10)。挿脱枠20と離脱駆動レバー40がそれぞれのストッパに当接している状態が図11及び図12であり、このとき被押圧部20eと押圧アーム40bが互いに離間している(図11にクリアランスD2として示す)。この被押圧部20eと押圧アーム40bの間のクリアランスD2は、防振レンズユニット14内での防振枠18の可動範囲(移動規制凹部22f-1の内面にボール支持筒部18hの外周面が当接するまでの範囲)内では、被押圧部20eを押圧アーム40bに接触させない大きさに設定されている。換言すれば、離脱駆動レバー40は、挿入許容位置にあるときに、電磁アクチュエータによる防振枠18と挿脱枠20の防振用の駆動を規制しない。そして、挿脱枠20と離脱駆動レバー40に外力が加わらなければ、挿入付勢バネ38の付勢力で挿脱枠20を挿入位置に保持する図11及び図12の状態に維持される。
The detachment drive lever 40 pivots (swings) between the insertion allowable position shown in FIGS. 11, 12, and 20 and the detachment forced position shown in FIGS. The urging force of the insertion urging spring 38 urges the insertion / removal frame 20 to rotate from the disengagement position toward the insertion position (counterclockwise in FIGS. 11 and 13). The separation drive lever 40 is urged by a lever urging spring 46 from the detachment forcing position toward the insertion allowable position (clockwise in FIGS. 11 and 13). A rotation end of the detachment drive lever 40 in the urging direction by the lever urging spring 46, that is, an insertion allowable position of the detachment drive lever 40 is a stopper formed on the inner peripheral surface of the cylindrical portion 8c of the third group moving ring 8. It is determined by contacting the part. On the other hand, the rotation of the insertion / removal frame 20 in the biasing direction by the insertion biasing spring 38 is regulated by the contact between the insertion / removal frame 20d and the stopper 18j (FIG. 10). 11 and 12 show the state where the insertion / removal frame 20 and the separation drive lever 40 are in contact with the respective stoppers. At this time, the pressed portion 20e and the pressing arm 40b are separated from each other (the clearance D2 in FIG. 11). As shown). The clearance D2 between the pressed portion 20e and the pressing arm 40b is a movable range of the vibration isolation frame 18 within the vibration isolation lens unit 14 (the outer peripheral surface of the ball support cylindrical portion 18h is on the inner surface of the movement restricting recess 22f-1). Within the range until contact), the pressed portion 20e is set to a size that does not contact the pressing arm 40b. In other words, the separation drive lever 40 does not restrict the vibration-proof drive of the vibration isolation frame 18 and the insertion / removal frame 20 by the electromagnetic actuator when it is in the insertion allowable position. If no external force is applied to the insertion / removal frame 20 and the separation drive lever 40, the insertion / removal frame 20 is maintained in the insertion position by the biasing force of the insertion biasing spring 38 as shown in FIGS.
図2、図19及び図20に示すように、直進案内環10の内側には離脱押圧突起10cが突出形成されている。離脱押圧突起10cには光軸方向後方を向くカム面10dが形成されている。カム面10dによって被押圧突起40cを押圧することで、離脱駆動レバー40を挿入許容位置方向から離脱強制位置へ回動させることができる。被押圧突起40cにはカム面10dに対応した傾斜のカム面が形成されている。
As shown in FIGS. 2, 19, and 20, a release pressing protrusion 10 c is formed to protrude inside the linear guide ring 10. A cam surface 10d facing rearward in the optical axis direction is formed on the separation pressing projection 10c. By pressing the pressed protrusion 40c with the cam surface 10d, the separation driving lever 40 can be rotated from the insertion allowable position direction to the separation forcing position. An inclined cam surface corresponding to the cam surface 10d is formed on the pressed protrusion 40c.
3群移動環8の筒状部8cの内側には、押さえ部材19(図2)を用いて、内側フランジ8dの後方にシャッタユニット16が支持されている。シャッタユニット16は絞り兼用のシャッタ羽根16s(図1、図16、図18)を内蔵するシャッタハウジング16aの中央に光軸方向へ貫通する撮影開口16bを有し、内蔵のシャッタアクチュエータでシャッタ羽根16sを駆動して開口サイズを変化させて、撮影開口16bを通る光量を調整する。
On the inner side of the cylindrical portion 8c of the third group moving ring 8, a shutter unit 16 is supported behind the inner flange 8d using a pressing member 19 (FIG. 2). The shutter unit 16 has a photographing opening 16b penetrating in the optical axis direction at the center of a shutter housing 16a containing a shutter blade 16s (FIGS. 1, 16, and 18) that also serves as an aperture. The shutter blade 16s is formed by a built-in shutter actuator. To adjust the amount of light passing through the photographing aperture 16b by changing the aperture size.
以上の構造からなるズームレンズ鏡筒1の動作を説明する。撮影状態では、挿脱枠20は挿入付勢バネ38の付勢力によって挿入位置に保持されており、第3レンズ群L3は第2レンズ群L2と第3レンズ群L4の間の光軸方向位置にある。また、離脱駆動レバー40は、レバー付勢バネ46の付勢力によって挿入許容位置に保持されている。コイル台座24の内側開口24aの一部領域(開放部24a-1付近)を塞ぐ位置にある遮光板部24dは、第3レンズ群L3を通らずに内側開口24aを通過しようとする有害光を遮断する。第1レンズ群L1から第3レンズ群L3の3つのレンズ群はカム環11の回転駆動によって光軸方向に所定の軌跡で移動して変倍動作を行い、第4レンズ群L4はフォーカシングモータによって独立して光軸方向に移動して合焦動作を行う。
The operation of the zoom lens barrel 1 having the above structure will be described. In the photographing state, the insertion / removal frame 20 is held at the insertion position by the biasing force of the insertion biasing spring 38, and the third lens group L3 is positioned in the optical axis direction between the second lens group L2 and the third lens group L4. It is in. The detachment drive lever 40 is held at the insertion allowable position by the urging force of the lever urging spring 46. The light-shielding plate portion 24d at a position that covers a part of the inner opening 24a of the coil base 24 (near the open portion 24a-1) does not allow harmful light to pass through the inner opening 24a without passing through the third lens group L3. Cut off. The three lens units from the first lens unit L1 to the third lens unit L3 move along a predetermined locus in the optical axis direction by rotational driving of the cam ring 11, and perform a zooming operation. The fourth lens unit L4 is operated by a focusing motor. It moves independently in the direction of the optical axis and performs the focusing operation.
撮影状態では、ズームレンズ鏡筒1に加わる振れの方向と大きさに応じて、電磁アクチュエータによって防振枠18を光軸直交平面内で駆動することで第3レンズ群L3を撮影光軸Oに対してシフトさせ、結像面上での被写体像のずれ(像振れ)を抑制することができる。詳細には、カメラに内蔵したジャイロセンサによってレンズ鏡筒の移動角速度を検出し、その振れの角速度を時間積分して移動角度を求め、該移動角度から結像面上での像の移動量を演算すると共に、この像振れをキャンセルするための第3レンズ群L3(防振枠18)の駆動量及び駆動方向を演算する。そして、この演算値に基づいてコイル33とコイル34の通電制御を行う。すると、3つのガイドボール28に対して防振枠18の後面側のボール当接面(ボール支持筒部18hの底面)が支持案内を受けながら防振枠18が移動される。挿入位置にある挿脱枠20は防振枠18と共に移動する。前述の通り、被押圧部20eと押圧アーム40bの間にクリアランスD2(図11)が設けられているため、離脱駆動レバー40は、防振枠18と挿脱枠20の防振用の駆動を規制しない。撮影状態における防振枠18の実用上の防振駆動範囲は、ボール支持筒部18hが移動規制凹部22f-1の内壁面に当接しない範囲で設定される。
In the photographing state, the third lens unit L3 is moved to the photographing optical axis O by driving the vibration isolating frame 18 within the optical axis orthogonal plane by the electromagnetic actuator according to the direction and magnitude of the shake applied to the zoom lens barrel 1. Accordingly, the shift (image blur) of the subject image on the imaging plane can be suppressed. Specifically, the moving angular velocity of the lens barrel is detected by a gyro sensor built in the camera, the angular velocity of the shake is time-integrated to obtain a moving angle, and the moving amount of the image on the imaging surface is calculated from the moving angle. In addition to the calculation, the driving amount and driving direction of the third lens unit L3 (anti-vibration frame 18) for canceling the image blur are calculated. Then, energization control of the coil 33 and the coil 34 is performed based on the calculated value. Then, the anti-vibration frame 18 is moved with respect to the three guide balls 28 while the ball contact surface on the rear side of the anti-vibration frame 18 (the bottom surface of the ball support cylinder portion 18h) receives support guidance. The insertion / removal frame 20 at the insertion position moves together with the vibration isolation frame 18. As described above, since the clearance D2 (FIG. 11) is provided between the pressed portion 20e and the pressing arm 40b, the separation drive lever 40 drives the vibration isolation frame 18 and the insertion / removal frame 20 for vibration isolation. Not regulated. The practical vibration-proof drive range of the vibration-proof frame 18 in the photographing state is set in a range where the ball support cylinder portion 18h does not contact the inner wall surface of the movement restricting recess 22f-1.
撮影状態から図1の収納状態になるとき、ズームモータによって3群移動環8、直進案内環10、カム環11、1群筒12及び2群筒13がそれぞれ光軸方向後方に移動される。撮影状態から収納状態への移行では3群移動環8よりも直進案内環10の方が光軸方向後方への移動量が大きく、直進案内環10内に形成した離脱押圧突起10cが3群移動環8内に支持された離脱駆動レバー40の被押圧突起40cに接近し、カム面10dが被押圧突起40cに当接する。すると、離脱押圧突起10cのカム面10dが被押圧突起40cを押圧して、直進案内環10の後退移動力から分力が生じてレバー付勢バネ46の付勢力に抗して離脱駆動レバー40が挿入許容位置から離脱強制位置へ向けて回動され、押圧アーム40bが被押圧部20eに当接する。押圧アーム40bを被押圧部20eに当接させた離脱駆動レバー40は、挿入付勢バネ38の付勢力に抗して挿脱枠20を挿入位置から離脱位置へ押圧回動させる。
When the photographing state is changed to the retracted state of FIG. 1, the third group moving ring 8, the linear guide ring 10, the cam ring 11, the first group cylinder 12 and the second group cylinder 13 are moved rearward in the optical axis direction by the zoom motor. In the transition from the photographing state to the storage state, the linear guide ring 10 has a larger rearward movement amount than the third group moving ring 8, and the separation pressing projection 10c formed in the straight guide ring 10 moves three groups. The cam surface 10d comes into contact with the pressed projection 40c by approaching the pressed projection 40c of the separation drive lever 40 supported in the ring 8. Then, the cam surface 10d of the release pressing projection 10c presses the pressed projection 40c, and a component force is generated from the backward movement force of the rectilinear guide ring 10 to resist the urging force of the lever urging spring 46. Is rotated from the insertion allowable position toward the forcible separation position, and the pressing arm 40b contacts the pressed portion 20e. The detachment drive lever 40 having the pressing arm 40b in contact with the pressed portion 20e rotates the insertion / removal frame 20 from the insertion position to the separation position against the urging force of the insertion urging spring 38.
ここで、挿脱枠20を支持する防振枠18に対して、2つの引張バネ30によってボール当接面(ボール支持筒部18hの底面)をガイドボール28に押し付けさせる方向の付勢力が作用している。挿入付勢バネ38によって与えられる挿脱枠20の回動抵抗と、引張バネ30によって与えられる防振枠18の移動抵抗の大きさは任意に設定可能である。例えば、挿脱枠20の回動抵抗を防振枠18の移動抵抗よりも大きく設定した場合、挿脱枠20に作用する離脱駆動レバー40の押圧力が防振枠18に伝わり、挿脱枠20の離脱位置方向への回動が開始されるよりも前に、防振枠18が挿脱枠20と共に離脱位置方向へ移動される。そして、ボール支持筒部18hの外周面が移動規制凹部22f-1の内壁面に当接する位置まで防振枠18が移動される。防振枠18のそれ以上の移動が規制されると、挿脱枠20が挿入位置から離脱位置へ回動される。つまり、第3レンズ群L3の離脱移動の一部を防振枠18にも担わせる構成となる。
Here, an urging force in a direction in which the ball contact surface (the bottom surface of the ball support cylinder portion 18 h) is pressed against the guide ball 28 by the two tension springs 30 acts on the vibration isolation frame 18 that supports the insertion / removal frame 20. doing. The rotational resistance of the insertion / removal frame 20 provided by the insertion biasing spring 38 and the magnitude of the movement resistance of the vibration isolation frame 18 provided by the tension spring 30 can be arbitrarily set. For example, when the rotational resistance of the insertion / removal frame 20 is set to be larger than the movement resistance of the vibration isolation frame 18, the pressing force of the detachment drive lever 40 acting on the insertion / removal frame 20 is transmitted to the vibration isolation frame 18, and The anti-vibration frame 18 is moved together with the insertion / removal frame 20 in the direction of the separation position before the rotation of the 20 in the direction of the separation position is started. Then, the vibration isolating frame 18 is moved to a position where the outer peripheral surface of the ball support cylindrical portion 18h contacts the inner wall surface of the movement restricting recess 22f-1. When the further movement of the vibration isolation frame 18 is restricted, the insertion / removal frame 20 is rotated from the insertion position to the removal position. That is, a part of the separation movement of the third lens unit L3 is also carried by the vibration isolation frame 18.
挿脱枠20の離脱位置への回動によって、第3レンズ群L3が撮影光軸O上から離脱される。図1に示すように、ズームレンズ鏡筒1が収納状態まで達すると、第3レンズ群L3(レンズ保持筒部20a)の離脱によって空いた3群移動環8内の空間に第2レンズ群L2が進入し、撮影光軸Oと直交する方向に第2レンズ群L2と第3レンズ群L3が並んで位置する。また、撮影状態では3群移動環8の後方に位置していた第3レンズ群L4がシャッタユニット16の内側まで進入する。これにより、複数の光学要素を光軸上に直列状に並べて収納するタイプのレンズ鏡筒に比べて、収納時の光軸方向サイズを小さくすることができる。
The third lens unit L3 is detached from the photographing optical axis O by the rotation of the insertion / removal frame 20 to the separation position. As shown in FIG. 1, when the zoom lens barrel 1 reaches the retracted state, the second lens group L2 is placed in the space in the third group moving ring 8 that is vacated by the separation of the third lens group L3 (lens holding cylinder portion 20a). Enters, and the second lens unit L2 and the third lens unit L3 are arranged side by side in a direction orthogonal to the photographing optical axis O. In addition, the third lens group L4 located behind the third group moving ring 8 in the photographing state enters the shutter unit 16 inside. Thereby, the optical axis direction size at the time of accommodation can be made smaller than a lens barrel of a type in which a plurality of optical elements are accommodated in series on the optical axis.
収納状態から撮影状態に移行するときには逆に、3群移動環8よりも直進案内環10が光軸方向前方へ大きく移動し、離脱押圧突起10cによる離脱駆動レバー40の押圧(離脱強制位置への保持)が解除され、離脱駆動レバー40がレバー付勢バネ46の付勢力によって挿入許容位置に戻る。すると、挿入付勢バネ38の付勢力によって挿脱枠20が離脱位置から挿入位置へと回動される。撮影状態になるときには、必要に応じて防振枠18を電磁アクチュエータで駆動させて磁気センサ35、36の校正を行う。
On the contrary, when moving from the storage state to the photographing state, the linear guide ring 10 moves more forward in the optical axis direction than the third group moving ring 8, and the release drive lever 40 is pressed by the release pressing projection 10c (to the release forced position). (Holding) is released, and the separation drive lever 40 returns to the insertion allowable position by the biasing force of the lever biasing spring 46. Then, the insertion / removal frame 20 is rotated from the removal position to the insertion position by the biasing force of the insertion biasing spring 38. When the photographing state is set, the vibration isolation frame 18 is driven by an electromagnetic actuator as necessary to calibrate the magnetic sensors 35 and 36.
図21に示すように、防振レンズユニット14では、電磁アクチュエータを構成する2つの永久磁石31、32と2つのコイル33、34がそれぞれ基準平面P1に関して対称に配置されている。基準平面P1に対して直交し撮影光軸Oを通る基準平面(第2の基準平面)P2を設定すると、永久磁石31、32の磁力境界線Q1、Q2は、基準平面P2から離れるにつれて基準平面P1に接近する方向に傾斜しており、基準平面P1に対する各磁力境界線Q1、Q2の傾斜角は正逆で約45度である。
As shown in FIG. 21, in the vibration proof lens unit 14, the two permanent magnets 31 and 32 and the two coils 33 and 34 constituting the electromagnetic actuator are arranged symmetrically with respect to the reference plane P1. When a reference plane (second reference plane) P2 that is orthogonal to the reference plane P1 and passes through the photographic optical axis O is set, the magnetic boundary lines Q1 and Q2 of the permanent magnets 31 and 32 become the reference plane as the distance from the reference plane P2 increases. It is inclined in a direction approaching P1, and the inclination angle of each magnetic boundary line Q1, Q2 with respect to the reference plane P1 is approximately 45 degrees in the forward and reverse directions.
2つの永久磁石31、32は防振枠18に支持されており、防振枠18上にはさらに挿脱枠20が支持されている。図21のように撮影光軸Oに沿って見たとき、永久磁石31と永久磁石32は、基準平面P2を挟んだ両側領域のうち一方の領域に、撮影光軸Oを中心とする周方向に略90度の間隔で配置されている。これに対して挿脱枠20の回動中心である回動軸37は、基準平面P2を挟んだ両側領域のうち、永久磁石31、32とコイル33、34が設けられている側と反対側の領域内で、基準平面P1の近傍位置に設けられている。図21中のR1は、撮影光軸Oを中心とし回動軸37の軸線を通る仮想円であり、各永久磁石31、32は仮想円R1上に位置している。換言すれば、永久磁石31、32と回動軸37は、撮影光軸Oから概ね等しい径方向距離に配置されている。
The two permanent magnets 31 and 32 are supported by the vibration isolation frame 18, and the insertion / removal frame 20 is further supported on the vibration isolation frame 18. When viewed along the photographic optical axis O as shown in FIG. 21, the permanent magnet 31 and the permanent magnet 32 are circumferentially centered on the photographic optical axis O in one of both side regions sandwiching the reference plane P <b> 2. Are arranged at intervals of approximately 90 degrees. On the other hand, the rotation shaft 37 that is the rotation center of the insertion / removal frame 20 is opposite to the side where the permanent magnets 31 and 32 and the coils 33 and 34 are provided in both side regions sandwiching the reference plane P2. In the vicinity of the reference plane P1. R1 in FIG. 21 is a virtual circle that passes through the axis of the rotation shaft 37 with the photographing optical axis O as the center, and the permanent magnets 31 and 32 are located on the virtual circle R1. In other words, the permanent magnets 31 and 32 and the rotation shaft 37 are disposed at substantially the same radial distance from the photographing optical axis O.
挿脱枠20は、回動軸37に軸支される軸孔部20bから延設される腕部20cの先端にレンズ保持筒部20aを設けた形状である。図21に実線で示す挿脱枠20の挿入位置では、レンズ保持筒部20aに保持された第3レンズ群L3が撮影光軸O上に位置し、腕部20cは概ね基準平面P1に沿って、永久磁石31、32が設けられている側とは反対側に延設されている。このとき防振枠18における重心は、撮影光軸Oに近いG1(図21)に位置する。当該位置に重心を設定したことによって、電磁アクチュエータを用いて防振枠18を防振駆動させるときに、X軸やY軸への推力と干渉する不適切なモーメントの発生が抑制され、防振枠18を高精度に動作させることができる。重心は撮影光軸Oに近いことが好ましく、基準平面P1を中心として図21にWで示す範囲内(永久磁石31と永久磁石32の間)に回動軸37を設定することで、重心が撮影光軸Oに近づいてモーメントの抑制効果が高くなる。より詳しくは、図21にハッチングで示した有効軸領域K内が、好適な重心位置を得るための条件を満たした回動軸37の位置となる。有効軸領域Kは、撮影光軸Oを基準とした中心角が基準平面P1を挟んで正逆に15度の範囲の扇状の領域である。
The insertion / removal frame 20 has a shape in which a lens holding cylinder portion 20 a is provided at the tip of an arm portion 20 c that extends from a shaft hole portion 20 b that is pivotally supported by the rotation shaft 37. In the insertion position of the insertion / removal frame 20 indicated by the solid line in FIG. 21, the third lens group L3 held by the lens holding cylinder 20a is positioned on the photographing optical axis O, and the arm 20c is substantially along the reference plane P1. Further, it extends to the side opposite to the side where the permanent magnets 31 and 32 are provided. At this time, the center of gravity of the image stabilizing frame 18 is located at G1 (FIG. 21) close to the photographing optical axis O. By setting the center of gravity at the position, when an anti-vibration frame 18 is driven to be anti-vibrated using an electromagnetic actuator, the generation of an inappropriate moment that interferes with the thrust to the X-axis and the Y-axis is suppressed. The frame 18 can be operated with high accuracy. The center of gravity is preferably close to the photographing optical axis O, and the center of gravity is set by setting the rotating shaft 37 within the range indicated by W in FIG. 21 (between the permanent magnet 31 and the permanent magnet 32) with the reference plane P1 as the center. The effect of suppressing the moment increases as it approaches the photographing optical axis O. More specifically, the inside of the effective axis region K indicated by hatching in FIG. 21 is the position of the rotating shaft 37 that satisfies the conditions for obtaining a suitable center of gravity position. The effective axis region K is a fan-shaped region whose central angle with respect to the photographing optical axis O is in the range of 15 degrees forward and backward with the reference plane P1 in between.
本実施形態と異なる比較例を図22に示す。この比較例では、挿脱枠20’を軸支する回動軸37’が図21の有効軸領域Kと範囲Wを外れて配置されており、図22に実線で示す挿入位置に挿脱枠20’を保持させたとき、挿脱枠20’を支持する防振枠(図22には表されていない)の重心がG2に位置する。重心G2は図21の範囲Wを外れて永久磁石31に接近した偏った位置にある。そのため、電磁アクチュエータによってX軸やY軸への推力を付与したとき、重心G2回りに防振枠を回転させようとする力が大きく作用し、防振枠の動作精度に悪影響が及びやすくなる。
A comparative example different from the present embodiment is shown in FIG. In this comparative example, the rotation shaft 37 ′ that pivotally supports the insertion / removal frame 20 ′ is disposed outside the effective axis region K and the range W in FIG. 21, and the insertion / removal frame is at the insertion position indicated by the solid line in FIG. When 20 ′ is held, the center of gravity of the anti-vibration frame (not shown in FIG. 22) that supports the insertion / removal frame 20 ′ is positioned at G2. The center of gravity G2 is at a biased position outside the range W in FIG. For this reason, when thrust is applied to the X-axis and Y-axis by the electromagnetic actuator, a force for rotating the vibration-isolating frame around the center of gravity G2 acts greatly, and the operation accuracy of the vibration-isolating frame is likely to be adversely affected.
以上のように、永久磁石31、32に対して重量バランスが良くなる位置に挿脱枠20の回動軸37を配置することで、防振枠18を防振駆動させる際の負荷を軽減させ、高精度な防振制御を実現することができる。
As described above, the rotation shaft 37 of the insertion / removal frame 20 is arranged at a position where the weight balance is improved with respect to the permanent magnets 31 and 32, thereby reducing the load when the vibration isolation frame 18 is driven for vibration isolation. Highly accurate anti-vibration control can be realized.
以上、図示実施形態に基づき説明したが、本発明はこれに限定されるものではない。例えば、図示実施形態の防振レンズユニット14では、防振枠18上に永久磁石31、32を支持したムービングマグネットタイプの電磁アクチュエータを採用しているが、防振枠18上にコイル33、34を支持したムービングコイルタイプの電磁アクチュエータにも適用が可能である。永久磁石31、32と同様にコイル33、34も撮影光軸Oから偏心した位置で防振枠18上に支持されるため、コイル33、34に対する重量バランスの良い位置に挿脱枠20を配置することで、図示実施形態と同様の効果が得られる。
As mentioned above, although demonstrated based on illustration embodiment, this invention is not limited to this. For example, the anti-vibration lens unit 14 of the illustrated embodiment employs a moving magnet type electromagnetic actuator that supports the permanent magnets 31 and 32 on the anti-vibration frame 18, but the coils 33 and 34 on the anti-vibration frame 18. It can also be applied to a moving coil type electromagnetic actuator that supports Like the permanent magnets 31 and 32, the coils 33 and 34 are also supported on the vibration isolating frame 18 at a position eccentric from the photographing optical axis O, so the insertion / removal frame 20 is arranged at a position with a good weight balance with respect to the coils 33 and 34. By doing so, the same effect as the illustrated embodiment can be obtained.
また、挿脱枠20を挿入位置と離脱位置の間で動作させる手段を図示実施形態と異ならせることもできる。例えば、図示実施形態では、被押圧部20eを離脱駆動レバー40で押圧することによって挿脱枠20を挿入位置から離脱位置へ回動させているが、撮像素子17を保持する撮像素子ホルダに光軸方向前方へ突出する突起を設け、3群移動環8が光軸方向後方に移動したとき、この突起によって挿脱枠20を押圧させる構造にすることもできる。なお、図示実施形態では3群移動環8内で防振レンズユニット14の後方にシャッタユニット16が配置されているため、撮像素子ホルダに設けた突起で挿脱枠20を押圧する場合には、シャッタユニット16との干渉が生じない配置にするとよい。
Further, the means for operating the insertion / removal frame 20 between the insertion position and the separation position can be different from that of the illustrated embodiment. For example, in the illustrated embodiment, the insertion / removal frame 20 is rotated from the insertion position to the separation position by pressing the pressed portion 20 e with the separation drive lever 40, but light is applied to the image sensor holder that holds the image sensor 17. A projection that protrudes forward in the axial direction may be provided, and when the third group moving ring 8 moves rearward in the optical axis direction, the insertion / removal frame 20 may be pressed by the projection. In the illustrated embodiment, since the shutter unit 16 is disposed behind the anti-vibration lens unit 14 in the third group moving ring 8, when the insertion / removal frame 20 is pressed by the protrusion provided on the image sensor holder, It is preferable to arrange such that interference with the shutter unit 16 does not occur.