JP2014174075A - Piezoelectric element, pressure sensor, and method of increasing impact resistance strength of piezoelectric element - Google Patents

Piezoelectric element, pressure sensor, and method of increasing impact resistance strength of piezoelectric element Download PDF

Info

Publication number
JP2014174075A
JP2014174075A JP2013048721A JP2013048721A JP2014174075A JP 2014174075 A JP2014174075 A JP 2014174075A JP 2013048721 A JP2013048721 A JP 2013048721A JP 2013048721 A JP2013048721 A JP 2013048721A JP 2014174075 A JP2014174075 A JP 2014174075A
Authority
JP
Japan
Prior art keywords
plate
piezoelectric
insulating plate
insulating
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013048721A
Other languages
Japanese (ja)
Other versions
JP6205144B2 (en
Inventor
Mikio Maeda
幹雄 前田
Katsuhiko Fukui
克彦 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2013048721A priority Critical patent/JP6205144B2/en
Publication of JP2014174075A publication Critical patent/JP2014174075A/en
Application granted granted Critical
Publication of JP6205144B2 publication Critical patent/JP6205144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure detection element having high impact resistance.SOLUTION: A piezoelectric element includes a piezoelectric plate made of single crystal zinc oxide and the like and an insulation plate whose impact resistance strength is larger than the piezoelectric plate and that has conducting means on the surface thereof. The piezoelectric plate and insulation plate are laminated and bundled in parallel to the surface direction thereof.

Description

本発明は、圧力を検知する圧電素子に関し、更に詳述すれば、本発明は耐衝撃強度が高い圧電素子、耐衝撃強度が高い圧力センサ及び圧電素子の耐衝撃強度の増加方法に関する。本圧電素子は、特に自動車等の内燃機関の燃焼圧力の測定等に好適に使用される。   The present invention relates to a piezoelectric element that detects pressure. More specifically, the present invention relates to a piezoelectric element having high impact resistance, a pressure sensor having high impact resistance, and a method for increasing the impact resistance of a piezoelectric element. This piezoelectric element is suitably used particularly for measuring the combustion pressure of an internal combustion engine such as an automobile.

近年、自動車業界に於いては、エンジンに種々のセンサを取付け、センサが検出するデータを基礎としてエンジンの動作を制御することが行われている。中でも、走行経済性を向上させるため、エンジンの動作の制御に種々の改良が加えられている。その例として、希薄燃焼制御システムがある。このシステムを採用するエンジンにおいては、圧電材料を圧力検知素子とする圧力センサをシリンダー内に組込んで、エンジンの燃焼圧を直接測定している(例えば特許文献1、2)。   In recent years, in the automobile industry, various sensors are attached to an engine, and the operation of the engine is controlled based on data detected by the sensor. In particular, various improvements have been made to control the operation of the engine in order to improve running economy. An example is a lean combustion control system. In an engine employing this system, a pressure sensor using a piezoelectric material as a pressure detection element is incorporated in a cylinder, and the combustion pressure of the engine is directly measured (for example, Patent Documents 1 and 2).

希薄燃焼制御システムにおいては、燃料ガス濃度を希薄な状態にして燃焼させるので、通常のエンジンと比較してプレイグニッションが多発し、その際の燃焼圧は、通常の燃焼圧の数倍にも達する。従って、燃焼圧測定用センサに対しても、プレイグニッション時に発生する衝撃圧に耐え得る強度、特に圧電素子に高い耐衝撃強度を有することが求められている。しかし、既存の圧電材料は、十分の耐衝撃強度を持たず、プレイグニッション時に、圧電材料が破壊されることがある。   In a lean combustion control system, since the fuel gas concentration is burned in a lean state, preignition occurs more frequently than in a normal engine, and the combustion pressure at that time reaches several times the normal combustion pressure. . Therefore, the sensor for measuring the combustion pressure is also required to have a strength capable of withstanding the impact pressure generated during preignition, particularly a high impact strength of the piezoelectric element. However, the existing piezoelectric material does not have sufficient impact strength, and the piezoelectric material may be destroyed during preignition.

特許文献3は、圧電材料をチタン酸鉛系から、ニオブ酸リチウム(LiNbO3)に変更することにより、耐熱性を高める技術を開示している。 Patent Document 3 discloses a technique for improving heat resistance by changing the piezoelectric material from lead titanate to lithium niobate (LiNbO 3 ).

しかし、これら特許文献は、何れも耐衝撃圧を高めることについては言及していない。   However, none of these patent documents mentions to increase the impact pressure resistance.

特許公開2011−174882Patent Publication 2011-174882 特許公開平2000−277233Patent Publication 2000-277233 特許公開平5−172680Patent Publication 5-172680

本発明は、上記事情に鑑みなされたもので、その目的とするところは、耐衝撃性の高い圧電素子を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a piezoelectric element having high impact resistance.

本発明者は上記目的を達成するために鋭意検討を行った。従来の圧電材料を利用する圧電素子の耐衝撃強度は、圧電素子を構成する材質の有する固有の値を示す。従って、圧力検知素子の耐衝撃強度は、圧電材料を変える以外は変更できないと従来考えられている。   The inventor has intensively studied to achieve the above object. The impact resistance strength of a piezoelectric element using a conventional piezoelectric material indicates a unique value of the material constituting the piezoelectric element. Therefore, it is conventionally considered that the impact resistance strength of the pressure detecting element cannot be changed except by changing the piezoelectric material.

一方、本発明者等は、圧電素子の耐衝撃強度よりも高い耐衝撃強度を有する絶縁材料を用いて形成した絶縁板を圧電素子に積重して圧電素子を構成すると、驚くことに、圧電素子の耐衝撃強度が大きく向上することを発見した。   On the other hand, the present inventors surprisingly found that when a piezoelectric element is formed by stacking an insulating plate formed using an insulating material having an impact strength higher than that of the piezoelectric element on the piezoelectric element, the piezoelectric element is formed. It was discovered that the impact resistance strength of the device was greatly improved.

本発明は、上記発見に基づいて完成するに到ったものである。   The present invention has been completed based on the above discovery.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 圧電板と、前記圧電板よりも大きな耐衝撃強度を有すると共にその表面に導電化手段を有する絶縁板とを有する圧電素子であって、
圧電板と、絶縁板とを、前記圧電板と絶縁板との面方向を平行にして積層してなる圧電素子。
[1] A piezoelectric element having a piezoelectric plate and an insulating plate having an impact resistance greater than that of the piezoelectric plate and having conductive means on its surface,
A piezoelectric element formed by laminating a piezoelectric plate and an insulating plate with the surface directions of the piezoelectric plate and the insulating plate being parallel.

〔2〕 圧電板と、前記圧電板よりも大きな耐衝撃強度を有すると共にその表面に導電化手段を有する第1絶縁板とを、前記圧電板と第1絶縁板との面方向を平行にして積層してなる積層板と、
前記積層板の厚さに対して、±5μmの厚さを有すると共に前記圧電板よりも大きな耐衝撃強度を有する第2絶縁板とを、
前記積層板と第2絶縁板との厚さ方向の面を突合わせてなる圧電素子。
[2] A piezoelectric plate and a first insulating plate having a larger impact resistance than the piezoelectric plate and having a conductive means on the surface thereof, with the surface directions of the piezoelectric plate and the first insulating plate being parallel to each other. Laminated laminates, and
A second insulating plate having a thickness of ± 5 μm with respect to the thickness of the laminated plate and having a greater impact strength than the piezoelectric plate;
A piezoelectric element formed by abutting surfaces in the thickness direction of the laminated plate and the second insulating plate.

〔3〕 圧電板と、前記圧電板の厚さに対して、±5μmの厚さを有すると共に前記圧電板よりも大きな耐衝撃強度を有する第3絶縁板とを、前記圧電板と第3絶縁板との厚さ方向の面を突合わせて配設し、
更にこれら圧電板と第3絶縁板との上面を覆って前記圧電板よりも大きな耐衝撃強度を有する第4絶縁板を積層してなる圧電素子。
[3] A piezoelectric plate and a third insulating plate having a thickness of ± 5 μm with respect to the thickness of the piezoelectric plate and having a higher impact strength than the piezoelectric plate, the piezoelectric plate and the third insulating plate Arrange the surface in the thickness direction with the plate,
Further, a piezoelectric element formed by laminating a fourth insulating plate that covers the upper surfaces of the piezoelectric plate and the third insulating plate and has a greater impact strength than the piezoelectric plate.

〔4〕 圧電板が、単結晶酸化亜鉛、ニオブ酸リチウム、タンタル酸リチウム、又は水晶からなる〔1〕乃至〔3〕の何れかに記載の圧電素子。   [4] The piezoelectric element according to any one of [1] to [3], wherein the piezoelectric plate is made of single crystal zinc oxide, lithium niobate, lithium tantalate, or quartz.

〔5〕 絶縁板が、石英ガラス、水晶、アルミナ又はダイヤモンドからなる(但し、圧電板が水晶からなる場合は絶縁板が水晶である場合を除く。) 〔1〕乃至〔3〕に記載の圧電素子。   [5] The piezoelectric plate according to any one of [1] to [3], wherein the insulating plate is made of quartz glass, quartz, alumina, or diamond (however, when the piezoelectric plate is made of quartz, the insulating plate is quartz). element.

〔6〕 〔1〕乃至〔3〕の何れかに記載の圧電素子を組込んでなる圧力センサ。   [6] A pressure sensor incorporating the piezoelectric element according to any one of [1] to [3].

〔7〕 圧電板と、前記圧電板よりも大きな耐衝撃強度を有すると共にその表面に導電化手段を有する絶縁板とを、前記圧電板と絶縁板との面方向を平行にして積層して束ねる圧電素子の耐衝撃強度の増加方法。   [7] A piezoelectric plate and an insulating plate having a greater impact strength than the piezoelectric plate and having a conductive means on the surface thereof are laminated and bundled with the surface directions of the piezoelectric plate and the insulating plate being parallel. A method for increasing the impact strength of a piezoelectric element.

〔8〕 圧電板と、前記圧電板よりも大きな耐衝撃強度を有すると共にその表面に導電化手段を有する第1絶縁板とを、前記圧電板と第1絶縁板との面方向を平行にして積層してなる積層板と、
前記積層板の厚さに対して、±5μmの厚さを有すると共に前記圧電板よりも大きな耐衝撃強度を有する第2絶縁板と、を
前記積層板と第2絶縁板との厚さ方向の面を突合わせて束ねる圧電素子の耐衝撃強度の増加方法。
[8] A piezoelectric plate and a first insulating plate having a greater impact strength than the piezoelectric plate and having a conductive means on the surface thereof, with the surface directions of the piezoelectric plate and the first insulating plate being parallel to each other. Laminated laminates, and
A second insulating plate having a thickness of ± 5 μm with respect to the thickness of the laminated plate and having a greater impact strength than the piezoelectric plate; and a thickness direction between the laminated plate and the second insulating plate. A method of increasing the impact strength of a piezoelectric element that is bundled by butting surfaces.

〔9〕 圧電板と、前記圧電板の厚さに対して、±5μmの厚さを有すると共に前記圧電板よりも大きな耐衝撃強度を有する第3絶縁板とを、前記圧電板と第3絶縁板との厚さ方向の面を突合わせて配設し、
更にこれら圧電板と第3絶縁板との上面を覆って前記圧電板よりも大きな耐衝撃強度を有する第4絶縁板を積層して束ねる圧電素子の耐衝撃強度の増加方法。
[9] A piezoelectric plate and a third insulating plate having a thickness of ± 5 μm with respect to the thickness of the piezoelectric plate and having a higher impact strength than the piezoelectric plate, the piezoelectric plate and the third insulating plate Arrange the surface in the thickness direction with the plate,
Furthermore, a method for increasing the impact strength of a piezoelectric element in which the upper surfaces of the piezoelectric plate and the third insulating plate are covered and a fourth insulating plate having a greater impact strength than the piezoelectric plate is laminated and bundled.

本発明の圧電素子は、圧電板と、絶縁板とを積重して用いているので、耐衝撃強度が高く、例えばエンジンの燃焼圧の測定等に好適に使用できる。   Since the piezoelectric element of the present invention uses the piezoelectric plate and the insulating plate stacked, it has high impact strength and can be suitably used for measuring, for example, engine combustion pressure.

図1は、本発明の第1の態様の圧電素子の一例を示す側面図である。FIG. 1 is a side view showing an example of the piezoelectric element according to the first aspect of the present invention. 図2は、本発明の第2の態様の圧電素子の一例を示す、側面図である。FIG. 2 is a side view showing an example of the piezoelectric element according to the second aspect of the present invention. 図3は、本発明の第3の態様の圧電素子の一例を示す、側面図である。FIG. 3 is a side view showing an example of the piezoelectric element according to the third aspect of the present invention. 図4は、本発明の圧電素子をセンサに組込んだ状態の一例を示す一部省略側面断面図である。FIG. 4 is a partially omitted side sectional view showing an example of a state in which the piezoelectric element of the present invention is incorporated in a sensor.

以下、図面を参照して、本発明の実施態様に付き、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の態様)
図1は、本発明の第1の圧電素子100の形態例を示す。この例に於いては、圧電板2と、絶縁板4とは、互いの板面を平行にして積層され、束ねられている。6は、導電膜等の導電化手段で、圧電板2と絶縁板4との界面、絶縁板4の厚さ方向の面(本図に於いては、側面)、及び絶縁板4の表面(本図に於いては上面)に形成されている。センサにこの圧電素子を組込んで圧力を測定する場合、圧電板2の表面に誘起された電荷が、この導電化手段6を通して不図示の電極に供給される。
(First aspect)
FIG. 1 shows an embodiment of a first piezoelectric element 100 of the present invention. In this example, the piezoelectric plate 2 and the insulating plate 4 are laminated and bundled with their plate surfaces parallel to each other. 6 is a conductive means such as a conductive film, which is an interface between the piezoelectric plate 2 and the insulating plate 4, a surface in the thickness direction of the insulating plate 4 (side surface in this figure), and a surface of the insulating plate 4 ( In this figure, it is formed on the upper surface). When the pressure is measured by incorporating this piezoelectric element into the sensor, the charge induced on the surface of the piezoelectric plate 2 is supplied to an electrode (not shown) through the conductive means 6.

導電化手段6の形成方法としては、絶縁板4の表面に直接形成しても良い。例えば、導電ペースト、金、白金、銅等の導電性金属薄膜のコーティング等の公知の方法が制限無く採用できる。更には、金属板をコ字状に曲げた治具を形成し、この治具の中に絶縁板を挟み込む方法も例示できる。   The conductive means 6 may be formed directly on the surface of the insulating plate 4. For example, a known method such as coating of a conductive metal thin film such as a conductive paste, gold, platinum, or copper can be used without limitation. Furthermore, a method of forming a jig by bending a metal plate into a U-shape and sandwiching an insulating plate in the jig can be exemplified.

このように積層されることにより、圧電素子100の耐衝撃性は大きく向上する。   By being laminated in this way, the impact resistance of the piezoelectric element 100 is greatly improved.

圧電板2の材質としては、圧電性を示す公知の圧電体の何れも使用することが出来る。具体的には、ジルコン酸チタン酸鉛、チタン酸鉛、チタン酸バリウム、マグネシウムニオビウムチタン酸鉛、酸化亜鉛、窒化アルミニウム、水晶、タンタル酸リチウム、ニオブ酸リチウム、ポリフッカビニリデン等が、例示される。   As the material of the piezoelectric plate 2, any known piezoelectric body exhibiting piezoelectricity can be used. Specific examples include lead zirconate titanate, lead titanate, barium titanate, lead magnesium niobium titanate, zinc oxide, aluminum nitride, crystal, lithium tantalate, lithium niobate, and polyfucca vinylidene. .

これらの圧電体の中でも、耐熱性が高く、大きな圧電性を示すことから、タンタル酸リチウム、ニオブ酸リチウム、単結晶酸化亜鉛が好ましく、特に単結晶酸化亜鉛が好ましい。   Among these piezoelectric bodies, lithium tantalate, lithium niobate, and single crystal zinc oxide are preferable because of high heat resistance and large piezoelectricity, and single crystal zinc oxide is particularly preferable.

圧電板2の平面形状(本態様に於いては長方形)は、特に制限が無く、正方形、長方形、多角形、不定形、円形、楕円形、菱形等の任意の形状を採用できる。圧電板の大きさも特に制限がないが、センサに組込むことを考えると、縦、横が0.5〜10mmが好ましく、1〜5mmがより好ましく、1〜3mmが特に好ましい。   The planar shape (in this embodiment, a rectangle) of the piezoelectric plate 2 is not particularly limited, and any shape such as a square, a rectangle, a polygon, an indefinite shape, a circle, an ellipse, or a rhombus can be adopted. The size of the piezoelectric plate is not particularly limited, but considering that it is incorporated in the sensor, the length and width are preferably 0.5 to 10 mm, more preferably 1 to 5 mm, and particularly preferably 1 to 3 mm.

圧電板2の厚みは、特に制限がないが、センサに組込むことを考慮すると、0.1〜5mmが好ましく、0.3〜2mmがより好ましい。   The thickness of the piezoelectric plate 2 is not particularly limited, but is preferably 0.1 to 5 mm, more preferably 0.3 to 2 mm in consideration of incorporation into the sensor.

絶縁板4は、前記圧電板よりも大きな耐衝撃強度を有する電気的絶縁板である。絶縁抵抗は、比抵抗として、1.0E+13Ω・cm以上であることが好ましく、1.0E+14Ω・cm以上であることがより好ましい。   The insulating plate 4 is an electrical insulating plate having a greater impact strength than the piezoelectric plate. The insulation resistance is preferably 1.0E + 13 Ω · cm or more, and more preferably 1.0E + 14 Ω · cm or more, as a specific resistance.

絶縁板4の材質としては、石英ガラス、テンパックスガラス、ネオセラムガラス、バイコールガラス、パイレックス(登録商標)ガラス、水晶、炭化ケイ素、アルミナ、窒化ケイ素、ジルコニア、コーディエライト又はダイヤモンド等が例示される。   Examples of the material of the insulating plate 4 include quartz glass, Tempax glass, neoceram glass, Vycor glass, Pyrex (registered trademark) glass, crystal, silicon carbide, alumina, silicon nitride, zirconia, cordierite, and diamond. The

絶縁板4の耐衝撃性は、圧電板の耐衝撃強度の2倍以上、通常2〜20倍が好ましく、5倍以上がより好ましい。耐衝撃強度の測定方法は、後述する。   The impact resistance of the insulating plate 4 is preferably 2 times or more, usually 2 to 20 times, more preferably 5 times or more the impact strength of the piezoelectric plate. A method for measuring the impact strength will be described later.

この圧電素子は、センサに組込まれた際に、圧電板面に垂直方向Xから圧力が負荷される。   When this piezoelectric element is incorporated in a sensor, pressure is applied from the vertical direction X to the piezoelectric plate surface.

圧電板2と、絶縁板4とを束ねる形態としては、特に制限が無く、任意の束ね方が採用できる。   There is no restriction | limiting in particular as a form which bundles the piezoelectric plate 2 and the insulating board 4, Arbitrary bundling methods are employable.

圧電板2と、絶縁板4とを束ねる方法としては、導電性ペースト、セラミック系接着材等を利用する接着方法がある。更には、金属やセラミックス製の枠を使用して、その内部に閉じこめる方法がある。   As a method of bundling the piezoelectric plate 2 and the insulating plate 4, there is an adhesion method using a conductive paste, a ceramic adhesive, or the like. Furthermore, there is a method of using a metal or ceramic frame and confining it inside.

また、導電性ペーストの硬化膜に圧電板12と、絶縁板14とを貼着しても良い。   Alternatively, the piezoelectric plate 12 and the insulating plate 14 may be attached to a cured film of conductive paste.

なお、上記例に於いては、圧電板2と絶縁板4とは束ねられて積層構造を形成しているが、具体的に何らかの束ね手段を用いて両者が固着されている必要はない。使用時に、例えば、センサに組込まれたときに、結果的に圧電板2と絶縁板4とが図1に示す積層構造に保たれていればよい。このことは、以下の各形態に於いても同様である。   In the above example, the piezoelectric plate 2 and the insulating plate 4 are bundled to form a laminated structure. However, it is not necessary that the two are specifically fixed using some kind of bundling means. When used, for example, when assembled in a sensor, the piezoelectric plate 2 and the insulating plate 4 need only be maintained in the laminated structure shown in FIG. This also applies to the following embodiments.

本発明の圧電素子は、圧力センサに組込まれて、圧力測定に使用される。図4は、図1に示す圧電素子100が組込まれた圧力センサの電極部分を示す一部省略断面図である。なお、圧力センサの構造自体は公知である。   The piezoelectric element of the present invention is incorporated in a pressure sensor and used for pressure measurement. 4 is a partially omitted cross-sectional view showing an electrode portion of a pressure sensor in which the piezoelectric element 100 shown in FIG. 1 is incorporated. The structure of the pressure sensor itself is known.

図4中、400は、圧力センサの電極部である。有底円筒状のダイヤフラム32の底壁上には、下電極34が載置されている。下電極34の上面には、圧電板2と絶縁板4とが積層されて束ねられた本発明の圧電素子100が載置されている。圧電素子100の上面には、更に上電極40が載置されている。   In FIG. 4, 400 is an electrode part of a pressure sensor. On the bottom wall of the bottomed cylindrical diaphragm 32, the lower electrode 34 is placed. On the upper surface of the lower electrode 34, the piezoelectric element 100 of the present invention in which the piezoelectric plate 2 and the insulating plate 4 are laminated and bundled is placed. An upper electrode 40 is further placed on the upper surface of the piezoelectric element 100.

(第2の形態)
図2は、本発明の第2の形態の圧電素子200の一例を示す。この例に於いては、圧電板60と、第1絶縁板62とが、互いの板面を平行にして厚さ方向に積層され、束ねられて、積層板64が構成されている。66は、導電膜からなる導電化手段で、圧電板60と第1絶縁板62との界面、第1絶縁板62の厚さ方向の面、及び第1絶縁板62の表面(本図に於いては上面)に形成されている。センサにこの圧電素子を組込んだ場合、この導電膜66を通じて、圧電板60に誘起された電荷が電極に供給される。
(Second form)
FIG. 2 shows an example of a piezoelectric element 200 according to the second embodiment of the present invention. In this example, a piezoelectric plate 60 and a first insulating plate 62 are laminated in the thickness direction with their plate surfaces parallel to each other and bundled to form a laminated plate 64. Reference numeral 66 denotes conductive means made of a conductive film, which is an interface between the piezoelectric plate 60 and the first insulating plate 62, a surface in the thickness direction of the first insulating plate 62, and a surface of the first insulating plate 62 (in this figure). The upper surface). When this piezoelectric element is incorporated in the sensor, the charge induced in the piezoelectric plate 60 is supplied to the electrode through the conductive film 66.

68は、第2絶縁板で、前記積層板64の厚さに対して、±5μm、好ましくは±3μm、より好ましくは±2μmの厚さを有する。第2絶縁板68と前記積層板64とは、これらの厚さ方向の面を突合わせて束ねられている。厚さは、マイクロメーターを用いて測定できる。   Reference numeral 68 denotes a second insulating plate having a thickness of ± 5 μm, preferably ± 3 μm, more preferably ± 2 μm with respect to the thickness of the laminated plate 64. The second insulating plate 68 and the laminated plate 64 are bundled by abutting the surfaces in the thickness direction. The thickness can be measured using a micrometer.

ここで、圧電板、(第1、又は第2)絶縁板、導電膜等については、すでに述べた。   Here, the piezoelectric plate, the (first or second) insulating plate, the conductive film, etc. have already been described.

(第3の形態)
図3は、本発明の第3の形態の圧電素子300の一例を示す。この例に於いて、12は、圧電板で、14は、第3絶縁板である。第3絶縁板14は、圧電板12の厚さに対して、±5μm以内の厚さであることが好ましく、±3μm以内であることがより好ましく、2μm以内であることが特に好ましい。
(Third form)
FIG. 3 shows an example of a piezoelectric element 300 according to the third embodiment of the present invention. In this example, 12 is a piezoelectric plate and 14 is a third insulating plate. The third insulating plate 14 is preferably within a thickness of ± 5 μm, more preferably within ± 3 μm, and particularly preferably within 2 μm with respect to the thickness of the piezoelectric plate 12.

圧電板12と、第3絶縁板14とは、互いに厚さ方向の面を突合わせて配設されている。更に、これら圧電板12と、第3絶縁板14との一方の板面(本図に於いては上面)を覆って第4絶縁板10が積層されている。なお、16は、導電膜等からなる導電化手段で、圧電板12と第4絶縁板10との界面、第4絶縁板10の厚さ方向の面(本図に於いては側面)、及び第4絶縁板10の表面(本図に於いては上面)に形成されている。   The piezoelectric plate 12 and the third insulating plate 14 are disposed with their surfaces in the thickness direction abutting each other. Further, a fourth insulating plate 10 is laminated so as to cover one plate surface (the upper surface in the figure) of the piezoelectric plate 12 and the third insulating plate 14. Reference numeral 16 denotes a conductive means made of a conductive film or the like, which is an interface between the piezoelectric plate 12 and the fourth insulating plate 10, a surface in the thickness direction of the fourth insulating plate 10 (side surface in this figure), and It is formed on the surface of the fourth insulating plate 10 (the upper surface in the figure).

第4絶縁板10の厚さは、特に制限がないが、実用上、第3絶縁板14とほぼ同様の厚さが好ましい。その他材質等は、第1の形態で述べた。   The thickness of the fourth insulating plate 10 is not particularly limited, but practically the same thickness as that of the third insulating plate 14 is preferable. Other materials are described in the first embodiment.

以下、実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

耐衝撃性試験
現在、圧電材料の耐衝撃性試験を行うために適当な装置は、市販されていない。そこで、本発明者等は、宮城県産業技術総合センターの加速式衝撃試験装置SM-110-MP(エアブラウン社製)を用いて、耐衝撃性試験を行った。
Impact resistance testing Currently, no suitable device is available on the market for performing impact resistance testing of piezoelectric materials. Therefore, the present inventors conducted an impact resistance test using an acceleration impact test apparatus SM-110-MP (manufactured by Air Brown) of Miyagi Prefectural Industrial Technology Center.

耐衝撃試験方法を、以下に記載する。先ず、試験治具を衝撃試験装置に取付け、この治具に試料(圧電素子)を取付けた。衝撃試験装置に取付けた治具の落下速度を所定値に設定した。治具を落下させ、試験装置の基台に衝突させた。この衝突により、試料に衝撃を与えた。その後、試料の割れの有無を目視で観察した。   The impact resistance test method is described below. First, a test jig was attached to an impact test apparatus, and a sample (piezoelectric element) was attached to the jig. The dropping speed of the jig attached to the impact test apparatus was set to a predetermined value. The jig was dropped and collided with the base of the test apparatus. The impact was given to the sample by this collision. Then, the presence or absence of the crack of a sample was observed visually.

一方、治具に取付けられた重力センサの加速度を読取った。この加速度を用いて、下記式から衝撃荷重を算出した。なお、治具重量は、1.07066Kgであった。

衝撃荷重(N)=加速度(m/s2)x 治具重量(Kg)x 9.80665

算出した衝撃荷重を試料面積(mm2)で除算することにより、単位面積あたりの衝撃強度(MPa)を算出した。
On the other hand, the acceleration of the gravity sensor attached to the jig was read. Using this acceleration, the impact load was calculated from the following equation. The jig weight was 1.07066 kg.

Impact load (N) = acceleration (m / s 2 ) x jig weight (Kg) x 9.80665

The impact strength (MPa) per unit area was calculated by dividing the calculated impact load by the sample area (mm 2 ).

実施例1
図1に示す第1の形態の圧電素子を製造した。東京電波株式会社製の寸法が10x10x0.5mmの酸化亜鉛(ZnO)の単結晶板を、2mmx2mmx0.5mm(厚さ)の寸法に切断し、圧電板を製造した。一方、石英ガラスを用いて同寸法の絶縁板を製造した。スーパーエンジニアリングプラスチックPPSGF40(ガラス繊維40%補強ポリフェニレンスルフィド)で作成した円筒ガイド内に、これらの圧電板と、絶縁板とを挿入し、これらを積層することにより、圧電素子を製造した。同様にして、圧電素子を合計10個製造した。
Example 1
A piezoelectric element of the first form shown in FIG. 1 was manufactured. A single plate of zinc oxide (ZnO) having dimensions of 10 × 10 × 0.5 mm manufactured by Tokyo Denki Co., Ltd. was cut into a size of 2 mm × 2 mm × 0.5 mm (thickness) to produce a piezoelectric plate. On the other hand, the insulating board of the same dimension was manufactured using quartz glass. Piezoelectric elements were manufactured by inserting these piezoelectric plates and insulating plates into a cylindrical guide made of super engineering plastic PPSGF40 (40% glass fiber reinforced polyphenylene sulfide) and laminating them. Similarly, a total of 10 piezoelectric elements were manufactured.

なお、この実施例に於いては、耐衝撃性試験の結果を得ることを主目的としていたので、導電膜は形成していなかった。   In this example, since the main purpose was to obtain the result of the impact resistance test, the conductive film was not formed.

前記加速式衝撃試験装置を用いて、これらの圧電素子の耐衝撃性試験を行った。得られた破壊しない衝撃強度は640MPaであった。   These piezoelectric elements were subjected to an impact resistance test using the accelerated impact test apparatus. The obtained impact strength without breaking was 640 MPa.

比較例1
圧電材料として、実施例1で用いた酸化亜鉛の単結晶と同一の単結晶を用いて2mmx2mmx0.5mm(厚さ)の圧電素子を製造した。
Comparative Example 1
A piezoelectric element of 2 mm × 2 mm × 0.5 mm (thickness) was manufactured using the same single crystal as the single crystal of zinc oxide used in Example 1 as the piezoelectric material.

実施例1と同様にして、この圧電素子の耐衝撃性試験を行った。得られた破壊しない衝撃強度は130MPaであった。   In the same manner as in Example 1, an impact resistance test of this piezoelectric element was performed. The obtained non-breaking impact strength was 130 MPa.

実施例2
図2に示す第2の形態の圧電素子を製造した。先ず、酸化亜鉛(ZnO)の単結晶を用いて、1mmx1mmx0.5mm(厚さ)の圧電板60を製造した。一方、石英ガラスを用いて同寸法の第1絶縁板62を製造した。これらの圧電板と、絶縁板とをスーパーエンジニアリングプラスチックPPSGF40で作成した円筒ガイド内に絶縁板とを積層し、積層板64を製造した。
Example 2
A piezoelectric element of the second form shown in FIG. 2 was manufactured. First, a 1 mm × 1 mm × 0.5 mm (thickness) piezoelectric plate 60 was manufactured using a single crystal of zinc oxide (ZnO). On the other hand, the 1st insulating board 62 of the same dimension was manufactured using quartz glass. These piezoelectric plates and insulating plates were laminated with insulating plates in a cylindrical guide made of super engineering plastic PPSGF 40 to produce a laminated plate 64.

石英ガラスで、1mmx1mmx1mm(厚さ)の第2絶縁板68を作製した。
前記積層板64の厚さ面に、第2絶縁板68の厚さ面を突合わせるように第2絶縁板68を円筒ガイド内に挿入し、圧電素子を製造した。圧電素子は、合計10個製造した。なお、積層板の厚さと、第2絶縁板の厚さの差は、全て5μm以内であった。
A second insulating plate 68 of 1 mm × 1 mm × 1 mm (thickness) was made of quartz glass.
The second insulating plate 68 was inserted into the cylindrical guide so that the thickness surface of the laminated plate 64 and the thickness surface of the second insulating plate 68 were abutted to manufacture a piezoelectric element. A total of ten piezoelectric elements were manufactured. The difference between the thickness of the laminated plate and the thickness of the second insulating plate was all within 5 μm.

なお、この実施例に於いては、耐衝撃性試験の結果を得ることを主目的としていたので、導電化手段66は形成していなかった。   In this embodiment, since the main purpose was to obtain the result of the impact resistance test, the conductive means 66 was not formed.

前記加速式衝撃試験装置を用いて、これらの圧電素子の耐衝撃性試験を行った。得られた破壊しない衝撃強度は600MPaであった。   These piezoelectric elements were subjected to an impact resistance test using the accelerated impact test apparatus. The obtained non-breaking impact strength was 600 MPa.

比較例2
積層板64の厚さが、第2絶縁板68の厚さよりも10μm小さい積層板を用いた以外は、実施例2と同様の圧電素子を製造した。この場合は、耐衝撃試験では、破壊しない衝撃強度は550MPaと高かったが、センサ感度が、低下していた。
Comparative Example 2
A piezoelectric element similar to that of Example 2 was manufactured, except that a laminated plate having a thickness of 10 μm smaller than that of the second insulating plate 68 was used. In this case, in the impact resistance test, the impact strength without breaking was as high as 550 MPa, but the sensor sensitivity was lowered.

実施例3
図3に示す第3の形態の圧電素子を製造した。先ず、酸化亜鉛(ZnO)の単結晶を用いて、1mmx1mmx0.5mm(厚さ)の圧電板12を製造した。一方、石英ガラスを用いて同寸法の第3絶縁板14を製造した。これらの圧電板12と絶縁板14とを、スーパーエンジニアリングプラスチックPPSGF40で作成した円筒ガイド内に互いに厚さ面を突合わせて載置した。
Example 3
A piezoelectric element of the third form shown in FIG. 3 was manufactured. First, a 1 mm × 1 mm × 0.5 mm (thickness) piezoelectric plate 12 was manufactured using a single crystal of zinc oxide (ZnO). On the other hand, the 3rd insulating board 14 of the same dimension was manufactured using quartz glass. The piezoelectric plate 12 and the insulating plate 14 were placed in a cylindrical guide made of super engineering plastic PPSGF 40 with their thickness surfaces facing each other.

次に、石英ガラスで、1mmx1mmx0.5mm(厚さ)の第4絶縁板10を製造した。   Next, the 4th insulating board 10 of 1 mm x 1 mm x 0.5 mm (thickness) was manufactured with quartz glass.

前記載置した圧電板12と第3絶縁板14との上面に、第4絶縁板10を積層し、圧電素子を製造した。圧電素子は、合計10個製造した。なお、圧電板の厚さと、第3絶縁板の厚さの差は、全て5μm以内であった。   The fourth insulating plate 10 was laminated on the upper surfaces of the piezoelectric plate 12 and the third insulating plate 14 placed as described above to manufacture a piezoelectric element. A total of ten piezoelectric elements were manufactured. The difference between the thickness of the piezoelectric plate and the thickness of the third insulating plate was all within 5 μm.

なお、この実施例に於いては、耐衝撃性試験の結果を得ることを主目的としていたので、導電膜は形成していなかった。   In this example, since the main purpose was to obtain the result of the impact resistance test, the conductive film was not formed.

前記加速式衝撃試験装置を用いて、これらの圧電素子の耐衝撃性試験を行った。得られた破壊しない衝撃強度は550MPaであった。   These piezoelectric elements were subjected to an impact resistance test using the accelerated impact test apparatus. The obtained impact strength without breaking was 550 MPa.

比較例3
圧電板の厚さが、第3絶縁板の厚さよりも10μm小さい圧電板を用いた以外は、実施例3と同様の圧電素子を製造した。この場合は、耐衝撃試験では、破壊しない衝撃強度は550MPaと高かったが、センサ感度が、低下していた。
Comparative Example 3
A piezoelectric element similar to that of Example 3 was manufactured, except that a piezoelectric plate having a thickness of 10 μm smaller than the thickness of the third insulating plate was used. In this case, in the impact resistance test, the impact strength without breaking was as high as 550 MPa, but the sensor sensitivity was lowered.

100、200、300 圧電素子
2、12、60 圧電板
4 絶縁板
10 第4絶縁板
14 第3絶縁板
16 導電化手段
32 ダイヤフラム
34 下電極
40 上電極
62 第1絶縁板
64 積層板
6、66 導電化手段
68 第2絶縁板

100, 200, 300 Piezoelectric elements 2, 12, 60 Piezoelectric plate 4 Insulating plate 10 Fourth insulating plate 14 Third insulating plate 16 Conducting means 32 Diaphragm 34 Lower electrode 40 Upper electrode 62 First insulating plate 64 Laminated plates 6, 66 Conducting means 68 second insulating plate

Claims (9)

圧電板と、前記圧電板よりも大きな耐衝撃強度を有すると共にその表面に導電化手段を有する絶縁板とを有する圧電素子であって、
圧電板と、絶縁板とを、前記圧電板と絶縁板との面方向を平行にして積層してなる圧電素子。
A piezoelectric element having a piezoelectric plate and an insulating plate having a larger impact resistance than the piezoelectric plate and having a conductive means on its surface,
A piezoelectric element formed by laminating a piezoelectric plate and an insulating plate with the surface directions of the piezoelectric plate and the insulating plate being parallel.
圧電板と、前記圧電板よりも大きな耐衝撃強度を有すると共にその表面に導電化手段を有する第1絶縁板とを、前記圧電板と第1絶縁板との面方向を平行にして積層してなる積層板と、
前記積層板の厚さに対して、±5μmの厚さを有すると共に前記圧電板よりも大きな耐衝撃強度を有する第2絶縁板と、を
前記積層板と第2絶縁板との厚さ方向の面を突合わせてなる圧電素子。
A piezoelectric plate and a first insulating plate having a greater impact strength than the piezoelectric plate and having a conductive means on the surface are laminated with the surface directions of the piezoelectric plate and the first insulating plate being parallel to each other. A laminated board,
A second insulating plate having a thickness of ± 5 μm with respect to the thickness of the laminated plate and having a greater impact strength than the piezoelectric plate; and a thickness direction between the laminated plate and the second insulating plate. Piezoelectric elements made by butting surfaces.
圧電板と、前記圧電板の厚さに対して、±5μmの厚さを有すると共に前記圧電板よりも大きな耐衝撃強度を有する第3絶縁板とを、前記圧電板と第3絶縁板との厚さ方向の面を突合わせて配設し、
更にこれら圧電板と第3絶縁板との上面を覆って前記圧電板よりも大きな耐衝撃強度を有する第4絶縁板を積層してなる圧電素子。
A piezoelectric plate, and a third insulating plate having a thickness of ± 5 μm with respect to the thickness of the piezoelectric plate and having a greater impact resistance than the piezoelectric plate, the piezoelectric plate and the third insulating plate Arrange the surfaces in the thickness direction to face each other,
Further, a piezoelectric element formed by laminating a fourth insulating plate that covers the upper surfaces of the piezoelectric plate and the third insulating plate and has a greater impact strength than the piezoelectric plate.
圧電板が、単結晶酸化亜鉛、ニオブ酸リチウム、タンタル酸リチウム、又は水晶からなる請求項1乃至3の何れかに記載の圧電素子。 The piezoelectric element according to any one of claims 1 to 3, wherein the piezoelectric plate is made of single crystal zinc oxide, lithium niobate, lithium tantalate, or quartz. 絶縁板が、石英ガラス、水晶、アルミナ又はダイヤモンドからなる(但し、圧電板が水晶からなる場合は絶縁板が水晶である場合を除く。)請求項1乃至3の何れかに記載の圧電素子。 The piezoelectric element according to any one of claims 1 to 3, wherein the insulating plate is made of quartz glass, quartz, alumina, or diamond (provided that the piezoelectric plate is made of quartz, excluding the case where the insulating plate is quartz). 請求項1乃至3の何れかに記載の圧電素子を組込んでなる圧力センサ。 A pressure sensor incorporating the piezoelectric element according to claim 1. 圧電板と、前記圧電板よりも大きな耐衝撃強度を有すると共にその表面に導電化手段を有する絶縁板とを、前記圧電板と絶縁板との面方向を平行にして積層して束ねる圧電素子の耐衝撃強度の増加方法。 A piezoelectric element in which a piezoelectric plate and an insulating plate having impact resistance greater than that of the piezoelectric plate and having a conductive means on the surface thereof are stacked and bundled with the surface directions of the piezoelectric plate and the insulating plate being parallel. Method to increase impact strength. 圧電板と、前記圧電板よりも大きな耐衝撃強度を有すると共にその表面に導電化手段を有する第1絶縁板とを、前記圧電板と第1絶縁板との面方向を平行にして積層してなる積層板と、
前記積層板の厚さに対して、±5μmの厚さを有すると共に前記圧電板よりも大きな耐衝撃強度を有する第2絶縁板と、を
前記積層板と第2絶縁板との厚さ方向の面を突合わせて束ねる圧電素子の耐衝撃強度の増加方法。
A piezoelectric plate and a first insulating plate having a greater impact strength than the piezoelectric plate and having a conductive means on the surface are laminated with the surface directions of the piezoelectric plate and the first insulating plate being parallel to each other. A laminated board,
A second insulating plate having a thickness of ± 5 μm with respect to the thickness of the laminated plate and having a greater impact strength than the piezoelectric plate; and a thickness direction between the laminated plate and the second insulating plate. A method of increasing the impact strength of a piezoelectric element that is bundled by butting surfaces.
圧電板と、前記圧電板の厚さに対して、±5μmの厚さを有すると共に前記圧電板よりも大きな耐衝撃強度を有する第3絶縁板とを、前記圧電板と第3絶縁板との厚さ方向の面を突合わせて配設し、
更にこれら圧電板と第3絶縁板との上面を覆って前記圧電板よりも大きな耐衝撃強度を有する第4絶縁板を積層して束ねる圧電素子の耐衝撃強度の増加方法。
A piezoelectric plate, and a third insulating plate having a thickness of ± 5 μm with respect to the thickness of the piezoelectric plate and having a greater impact resistance than the piezoelectric plate, the piezoelectric plate and the third insulating plate Arrange the surfaces in the thickness direction to face each other,
Furthermore, a method for increasing the impact strength of a piezoelectric element in which the upper surfaces of the piezoelectric plate and the third insulating plate are covered and a fourth insulating plate having a greater impact strength than the piezoelectric plate is laminated and bundled.
JP2013048721A 2013-03-12 2013-03-12 Piezoelectric element, pressure sensor, and method for increasing impact strength of piezoelectric element Expired - Fee Related JP6205144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048721A JP6205144B2 (en) 2013-03-12 2013-03-12 Piezoelectric element, pressure sensor, and method for increasing impact strength of piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048721A JP6205144B2 (en) 2013-03-12 2013-03-12 Piezoelectric element, pressure sensor, and method for increasing impact strength of piezoelectric element

Publications (2)

Publication Number Publication Date
JP2014174075A true JP2014174075A (en) 2014-09-22
JP6205144B2 JP6205144B2 (en) 2017-09-27

Family

ID=51695410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048721A Expired - Fee Related JP6205144B2 (en) 2013-03-12 2013-03-12 Piezoelectric element, pressure sensor, and method for increasing impact strength of piezoelectric element

Country Status (1)

Country Link
JP (1) JP6205144B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151838A (en) * 1981-03-16 1982-09-20 Nippon Soken Inc Knocking detector for internal-combustion engine
JPS6166967U (en) * 1984-10-05 1986-05-08
JPH04130051U (en) * 1991-05-24 1992-11-30 日本電子機器株式会社 Cylinder pressure sensor for internal combustion engines
JPH05172680A (en) * 1991-12-24 1993-07-09 Ngk Spark Plug Co Ltd Pressure sensor
JP2000277233A (en) * 1999-03-24 2000-10-06 Ngk Spark Plug Co Ltd Spark plug with built-in pressure sensor
US20030154957A1 (en) * 2002-02-20 2003-08-21 Viswanathan Subramanian Integrated bolt two-piece sleeve design for flat response knock sensor
JP2011174882A (en) * 2010-02-25 2011-09-08 Citizen Finetech Miyota Co Ltd Combustion pressure sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151838A (en) * 1981-03-16 1982-09-20 Nippon Soken Inc Knocking detector for internal-combustion engine
JPS6166967U (en) * 1984-10-05 1986-05-08
JPH04130051U (en) * 1991-05-24 1992-11-30 日本電子機器株式会社 Cylinder pressure sensor for internal combustion engines
JPH05172680A (en) * 1991-12-24 1993-07-09 Ngk Spark Plug Co Ltd Pressure sensor
JP2000277233A (en) * 1999-03-24 2000-10-06 Ngk Spark Plug Co Ltd Spark plug with built-in pressure sensor
US20030154957A1 (en) * 2002-02-20 2003-08-21 Viswanathan Subramanian Integrated bolt two-piece sleeve design for flat response knock sensor
JP2011174882A (en) * 2010-02-25 2011-09-08 Citizen Finetech Miyota Co Ltd Combustion pressure sensor

Also Published As

Publication number Publication date
JP6205144B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP5019120B2 (en) Detection sensor
US9478728B2 (en) Piezoelectric devices
US10276774B2 (en) Multilayer ceramic structure, manufacturing method therefor and piezoelectric actuator
WO2008150536A3 (en) Piezo devices with air-spaced cantilever
US20200408619A1 (en) Mechanical-stress sensor and manufacturing method
Saboonchi et al. MEMS sensor fusion: Acoustic emission and strain
JP5083984B2 (en) Detection sensor, vibrator
CN109211461A (en) For monitoring the capacitive pressure transducer of the especially building structure made of concrete
CN105378614B (en) Pressing detection sensors
JP4909607B2 (en) 2-axis acceleration sensor
JP2009133772A (en) Detection sensor and oscillator
CN101427393B (en) Piezoelectric film device
JP6205144B2 (en) Piezoelectric element, pressure sensor, and method for increasing impact strength of piezoelectric element
JP5866907B2 (en) Force sensor, force detection device, robot hand, robot, and method of manufacturing force sensor
JPH02248865A (en) Acceleration detector
US20170350300A1 (en) Particulate matter detection element
CN109212262B (en) High-temperature piezoelectric acceleration sensor based on transverse vibration mode
JP2014219341A (en) Piezo-electric type vibration sensor
Mehdipour et al. Finding the optimum polarization boundary line for enhancing the performance of clamped piezoelectric circular plates
Johnson et al. High-temperature (> 1000 C) acoustic emission sensor
JPWO2010024276A1 (en) Multilayer piezoelectric element
WO2013027741A1 (en) Piezoelectric vibration sensor
Akashah et al. Modelling of Piezoelectric Sensor with Different Materials Approach for Partial Discharge Detection on Power Transformer: PZT-5H, ZnO and AlN
CN201322756Y (en) Piezoelectric ring-metal casing structure accelerometer
Zheng et al. Multiphysics simulation of the effect of sensing and spacer layers on SAW velocity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6205144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees