JP2014173943A - Rader system - Google Patents

Rader system Download PDF

Info

Publication number
JP2014173943A
JP2014173943A JP2013045631A JP2013045631A JP2014173943A JP 2014173943 A JP2014173943 A JP 2014173943A JP 2013045631 A JP2013045631 A JP 2013045631A JP 2013045631 A JP2013045631 A JP 2013045631A JP 2014173943 A JP2014173943 A JP 2014173943A
Authority
JP
Japan
Prior art keywords
pulses
signal
pulse
processing
pulse pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013045631A
Other languages
Japanese (ja)
Other versions
JP6030006B2 (en
Inventor
Yoji Kobayashi
洋史 小林
Hiroyuki Nishida
博行 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013045631A priority Critical patent/JP6030006B2/en
Publication of JP2014173943A publication Critical patent/JP2014173943A/en
Application granted granted Critical
Publication of JP6030006B2 publication Critical patent/JP6030006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rader system capable of minimizing erroneous deletion of a movement target by a blind speed and accurately detecting the speed of target in an MTI processing.SOLUTION: The rader system includes: an antenna unit for transmitting and receiving signals; a transmitting/receiving unit for generating a transmission signal having multiple pulses with different time intervals between pulses in a CPI to transmit it to the antenna unit and performing reception processing of a received signal input from the antenna unit; and a signal processor for processing MTI processing for the received signal and calculating a frequency and an amplitude of the received signal for each pulse pattern by selecting pulses whose pulse patterns structuring a stagger unit are the same.

Description

本発明の実施形態は、レーダ装置に関する。   Embodiments described herein relate generally to a radar apparatus.

レーダ装置にはMTI(moving target indicator)処理とパルスドップラ処理を行うものがある。ここで、MTI処理はある時間間隔を開けて受信した信号の差分をとることにより速度を持たない固定成分を除去し、速度成分を抽出する処理である。MTIでは反射波の位相回転量が2πの整数倍となる場合に、目標が移動しているにもかかわらず速度成分を検知できない場合が生じる。これをブラインド速度という。従来のレーダ装置では、このブラインド速度による目標の誤消去を低減するために、パルス間の繰り返し周期を変更するスタガが行われている。   Some radar devices perform MTI (moving target indicator) processing and pulse Doppler processing. Here, the MTI process is a process of removing a fixed component having no speed by taking a difference between signals received with a certain time interval and extracting a speed component. In MTI, when the amount of phase rotation of the reflected wave is an integral multiple of 2π, the speed component may not be detected even though the target is moving. This is called blind speed. In a conventional radar apparatus, staggering is performed to change the repetition cycle between pulses in order to reduce erroneous erasure of a target due to this blind speed.

また、パルスドップラ処理を行うレーダ装置では、複数のパルスを用いて移動目標のドップラ成分の抽出を行う。この所定のパルス数の繰り返しのパターンの間隔をCPI(Coherent Processing Interval)という。   Further, a radar apparatus that performs pulse Doppler processing extracts a Doppler component of a moving target using a plurality of pulses. The interval between the repeated patterns of the predetermined number of pulses is referred to as CPI (Coherent Processing Interval).

パルスドップラ処理を行うレーダでもMTIを行うことは可能であるが、通常パルスドップラの処理負荷を考慮してCPI内のパルス繰り返し周期は一定とし、パルス間で繰り返し周期を変更するパルス間スタガは行われないため、このCPIにおいては目標の移動速度がブラインド速度と一致した場合に目標を検出することができなくなる。こういったレーダ装置ではブラインド速度対処として、次のCPIにおいてはパルス繰り返し周波数を変更するグループスタガや次のスキャンにおいてパルス繰り返し周波数を変更するスキャン間スタガが行われてきた。   A radar that performs pulse Doppler processing can also perform MTI, but the pulse repetition period in the CPI is usually fixed in consideration of the processing load of pulse Doppler, and an inter-pulse stagger that changes the repetition period between pulses is performed. In this CPI, the target cannot be detected when the target moving speed matches the blind speed. In such a radar apparatus, as a countermeasure against the blind speed, a group stagger for changing the pulse repetition frequency in the next CPI and an inter-scan stagger for changing the pulse repetition frequency in the next scan have been performed.

しかし、高速移動目標に対処するレーダ装置や目標の検出機会が少ないレーダ装置においては、1CPI目標を検出できないことにより追尾精度が低下するなどの問題点があった。   However, in a radar apparatus that deals with a high-speed moving target or a radar apparatus with few target detection opportunities, there is a problem in that tracking accuracy is lowered because a 1 CPI target cannot be detected.

特開2009−63507号公報JP 2009-63507 A

従って、MTI処理におけるブラインド速度による移動目標の誤消去を最小限にしつつ高精度に目標の速度を検知できるレーダ装置が求められている。   Accordingly, there is a need for a radar apparatus that can detect a target speed with high accuracy while minimizing erroneous deletion of a moving target due to blind speed in MTI processing.

上記の課題を解決するために、本発明の一実施形態は、信号の送受信を行う空中線装置と、CPI内においてパルス間の時間間隔が異なる複数のパルスを有する送信信号を生成して空中線装置に送出し、空中線装置から入力した受信信号の受信処理を行う送受信装置と、受信信号に対してMTI処理を行い、CPIを構成するパルス内で繰り返し周期が同じもの同士を選択して受信信号の周波数と振幅を算出する信号処理装置と、を備えるレーダ装置を提供する。   In order to solve the above problem, an embodiment of the present invention generates an antenna device that transmits and receives signals and a transmission signal having a plurality of pulses having different time intervals between pulses in the CPI. Transmitting / receiving device that performs reception processing of received signal input from antenna device, and MTI processing on received signal, and selects the same repetition frequency within the pulses that constitute CPI, and the frequency of the received signal And a signal processing device for calculating the amplitude.

レーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of a radar apparatus. 本実施形態におけるスタガ単位の例を示す図である。It is a figure which shows the example of the stagger unit in this embodiment. パルスパターンを示す図である。It is a figure which shows a pulse pattern. 信号処理装置が行ったFFTの結果の例を示す図である。It is a figure which shows the example of the result of FFT performed by the signal processing apparatus. 信号処理装置が行った積算処理を示す図である。It is a figure which shows the integration process which the signal processing apparatus performed. 信号処理装置の動作を示す図である。It is a figure which shows operation | movement of a signal processing apparatus.

以下、レーダ装置の一実施形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a radar apparatus will be described in detail with reference to the drawings.

本実施形態のレーダ装置は、信号の送受信を行う空中線装置と、CPI内においてパルス間の時間間隔が異なる複数のパルスを有する送信信号を生成して空中線装置に送出し、空中線装置から入力した受信信号の受信処理を行う送受信装置と、受信信号に対してMTI処理を行い、CPIを構成するパルス内で繰り返し周期が同じもの同士を選択して受信信号の周波数と振幅を算出する信号処理装置と、備える。   The radar apparatus according to the present embodiment generates a transmission signal having a plurality of pulses having different time intervals between pulses in the CPI and transmits / receives the signal to / from the antenna apparatus, and receives the input from the antenna apparatus. A transmission / reception device that performs signal reception processing, and a signal processing device that performs MTI processing on the reception signal, selects signals having the same repetition period in the pulses constituting the CPI, and calculates the frequency and amplitude of the reception signal Prepare.

図1は、本実施形態のレーダ装置の構成を示すブロック図である。図1に示すように、本実施形態のレーダ装置は、信号の送受信を行う空中線装置10と、送信信号を生成して空中線装置10に送出し、空中線装置10から入力した受信信号の受信処理を行う送受信装置20と、受信信号の信号処理を行う信号処理装置30と、を備える。   FIG. 1 is a block diagram illustrating a configuration of a radar apparatus according to the present embodiment. As shown in FIG. 1, the radar apparatus according to the present embodiment performs an antenna device 10 that transmits and receives signals, and generates a transmission signal, transmits the signal to the antenna device 10, and performs reception processing of a reception signal input from the antenna device 10. A transmission / reception device 20 that performs the signal processing, and a signal processing device 30 that performs signal processing of the received signal.

空中線装置10は、例えば、反射板を用いるリフレクタ方式や複数のアンテナ素子をアレイ状に配置し、送信信号の位相を変化させることにより送信信号の送出方向を変化させるアレイアンテナ方式を用いることができる。   The antenna apparatus 10 can use, for example, a reflector system using a reflector or an array antenna system in which a plurality of antenna elements are arranged in an array and the transmission signal transmission direction is changed by changing the phase of the transmission signal. .

送受信装置20は、CPI内においてパルス間の時間間隔が異なる複数のパルスを有する送信信号を生成及び受信を行う。   The transmission / reception device 20 generates and receives a transmission signal having a plurality of pulses having different time intervals between pulses in the CPI.

ここで、本実施形態のレーダ装置にはMTI(moving target indicator)処理とパルスドップラ処理を行う。MTI処理はある時間間隔を開けて受信した信号の差分をとることにより速度を持たない固定成分を除去し、速度成分を抽出する処理である。   Here, the radar apparatus of the present embodiment performs a moving target indicator (MTI) process and a pulse Doppler process. The MTI process is a process for removing a fixed component having no speed and extracting a speed component by taking a difference between signals received at a certain time interval.

このレーダ装置は、パルスドップラ処理を行う所定のパルス数を送信する。この所定のパルスの期間をCPI(Coherent Processing Interval)という。   This radar apparatus transmits a predetermined number of pulses for performing pulse Doppler processing. This predetermined pulse period is referred to as CPI (Coherent Processing Interval).

信号処理装置30は、演算装置であるCPU31と、記憶装置であるRAM32、及びROM33と、を備える。   The signal processing device 30 includes a CPU 31 that is an arithmetic device, a RAM 32 that is a storage device, and a ROM 33.

信号処理装置30は、受信信号に対してMTI処理を行い、CPIを構成するパルスパターンにおいて繰り返し周期が同じもの同士を選択して、例えばFFT(高速フーリエ変換)によってパルスパターンごとに受信信号の周波数と振幅を算出し、算出されたパルスパターンごとの周波数と振幅について周波数ごとに振幅を積算して目標の速度を検出する。   The signal processing device 30 performs MTI processing on the received signal, selects those having the same repetition period in the pulse patterns constituting the CPI, and receives the frequency of the received signal for each pulse pattern by, for example, FFT (Fast Fourier Transform). And the amplitude is calculated, and the target velocity is detected by integrating the amplitude for each frequency with respect to the calculated frequency and amplitude for each pulse pattern.

図2は、本実施形態におけるCPI内のパルス間スタガの例を示す図である。図2に示すように、送受信装置20は、CPI内のパルス間隔を互いに異なった時間間隔にして送信信号を生成する。   FIG. 2 is a diagram illustrating an example of an inter-pulse stagger in the CPI in the present embodiment. As shown in FIG. 2, the transmission / reception device 20 generates a transmission signal with different pulse intervals in the CPI.

図2には、スタガ単位のパルス数が3個の場合を示す。第1のパルスと次の第2のパルスの時間間隔をA、第2のパルスと次の第3のパルスの時間間隔をB、第3のパルスと後続するパルスとの時間間隔をCとし、以降はまたA、B、Cの繰り返しとする。このA、B、Cの繰り返し周期の単位をスタガ単位と呼ぶ。   FIG. 2 shows a case where the number of staggered pulses is three. The time interval between the first pulse and the next second pulse is A, the time interval between the second pulse and the next third pulse is B, the time interval between the third pulse and the following pulse is C, Thereafter, A, B, and C are repeated. The unit of the repetition period of A, B, and C is called a stagger unit.

時間間隔Aと時間間隔Bと時間間隔Cとを互いに異ならせることにより、目標の移動速度とブラインド速度とが一致することを最小限にすることが可能となる。   By making the time interval A, the time interval B, and the time interval C different from each other, it is possible to minimize the coincidence between the target moving speed and the blind speed.

スタガ単位を構成する各パルスの時間間隔の順序は後続するスタガ単位を構成する各パルスの時間間隔の順序と等しい。すなわち、スタガ単位において、時間間隔Aと時間間隔Bと時間間隔Cとによってパルスが生成される場合、後続するスタガ単位も時間間隔Aと時間間隔Bと時間間隔Cとによってパルスが生成される。   The order of the time intervals of the pulses constituting the stagger unit is equal to the order of the time intervals of the pulses constituting the subsequent stagger unit. That is, when a pulse is generated by the time interval A, the time interval B, and the time interval C in the stagger unit, a pulse is also generated by the time interval A, the time interval B, and the time interval C in the subsequent stagger unit.

図3は、パルスパターンを示す図である。図3に示すように、パルスパターンはスタガ単位内のパルス数がn個(nは整数)の時、連続するn個のパルスが選択され、n個のパルスパターンが定義される。   FIG. 3 is a diagram showing a pulse pattern. As shown in FIG. 3, when the number of pulses in the stagger unit is n (n is an integer), n consecutive pulses are selected, and n pulse patterns are defined.

具体的には、スタガ単位内のパルス数が3個である場合、パルスパターンはABC(以下、Xという。)、BCA(以下、Yという。)、CAB(以下、Zという。)の3パターンである。CPIにn+1個のスタガ単位が含まれる場合、各パルスパターンはn個定義できる。   Specifically, when the number of pulses in the stagger unit is 3, the pulse pattern includes three patterns of ABC (hereinafter referred to as X), BCA (hereinafter referred to as Y), and CAB (hereinafter referred to as Z). It is. When n + 1 stagger units are included in the CPI, n pulse patterns can be defined.

各パルスパターン、この例においてはX、Y、及びZの時間間隔及びその合計はそれぞれ等しい。   Each pulse pattern, in this example X, Y, and Z time intervals and their sum, are equal.

信号処理装置30は、受信信号についてパルスパターンごとにFFTを行う。すなわち、Xについて、第1のX(X1)から第nのXを用いてFFTを行い、Y、Zも同様にn個を用いてFFTを行う。   The signal processing device 30 performs FFT on the received signal for each pulse pattern. That is, with respect to X, FFT is performed using the first X (X1) to nth X, and n is similarly used for Y and Z.

図4は、信号処理装置30が行ったFFTの結果の例を示す図である。図4に示すように、信号処理装置30は受信信号についてパルスパターンX、Y、Zごとに周波数ごとの振幅を算出する。   FIG. 4 is a diagram illustrating an example of the result of the FFT performed by the signal processing device 30. As shown in FIG. 4, the signal processing device 30 calculates the amplitude for each frequency for each pulse pattern X, Y, Z for the received signal.

図5は、信号処理装置30が行った積算処理を示す図である。図5に示すように、信号処理装置30は、各パルスパターンのFFTの結果について周波数ごとに振幅を積算することにより、目標の移動速度を判定する。   FIG. 5 is a diagram illustrating the integration process performed by the signal processing device 30. As shown in FIG. 5, the signal processing device 30 determines the target moving speed by integrating the amplitude for each frequency with respect to the FFT result of each pulse pattern.

図6は、信号処理装置30の動作を示す図である。図6に示すように、ステップ601において、信号処理装置30は受信信号を送受信装置20から入力する。   FIG. 6 is a diagram illustrating the operation of the signal processing device 30. As shown in FIG. 6, in step 601, the signal processing device 30 inputs a reception signal from the transmission / reception device 20.

ステップ602において、信号処理装置30は、受信信号をパルスごとにRAM32に格納する。   In step 602, the signal processing device 30 stores the received signal in the RAM 32 for each pulse.

ステップ603において、信号処理装置30は、CPI分の受信信号を格納したかを判定する。信号処理装置30は、CPI分の受信信号を格納したと判定した場合、ステップ604に進み、格納していないと判定した場合、ステップ601に戻る。   In step 603, the signal processing apparatus 30 determines whether or not reception signals for CPI have been stored. The signal processing device 30 proceeds to step 604 when it is determined that the received signals for CPI have been stored, and returns to step 601 when it is determined that it has not been stored.

ステップ604において、信号処理装置30はステップ608までの処理をn回繰り返す。すなわち、信号処理装置30は、ステップ605においてX1についてMTI処理を行い、ステップ606においてY1についてMTI処理を行い、ステップ607においてZ1についてMTI処理を行う。この各処理をXn、Yn、Znまで行う。   In step 604, the signal processing apparatus 30 repeats the processing up to step 608 n times. That is, the signal processing apparatus 30 performs MTI processing for X1 in step 605, performs MTI processing for Y1 in step 606, and performs MTI processing for Z1 in step 607. These processes are performed up to Xn, Yn, and Zn.

ステップ609において、信号処理装置30はMTI処理後のXについてX1からXnを用いてFFTにより周波数ごとの振幅を算出する。   In step 609, the signal processing apparatus 30 calculates the amplitude for each frequency by FFT using X1 to Xn for X after MTI processing.

ステップ610において、信号処理装置30はMTI処理後のYについてY1からYnを用いてFFTにより周波数ごとの振幅を算出する。   In step 610, the signal processing apparatus 30 calculates the amplitude for each frequency by FFT using Y1 to Yn for Y after MTI processing.

ステップ611において、信号処理装置30はMTI処理後のZについてZ1からZnを用いてFFTにより周波数ごとの振幅を算出する。   In step 611, the signal processing apparatus 30 calculates the amplitude for each frequency by FFT using Z1 to Zn for Z after MTI processing.

ステップ612において、信号処理装置30は、パルスパターンごとに算出された振幅を周波数ごとに積算する。すなわち、信号処理装置30はXについてのFFTの結果と、YについてのFFTの結果と、ZについてのFFTの結果とを積算する。   In step 612, the signal processing device 30 integrates the amplitude calculated for each pulse pattern for each frequency. That is, the signal processing device 30 integrates the FFT result for X, the FFT result for Y, and the FFT result for Z.

ステップ613において、信号処理装置30は積算結果から目標の移動速度を検出する。   In step 613, the signal processing device 30 detects the target moving speed from the integration result.

以上のべたように、本実施形態のレーダ装置は、信号の送受信を行う空中線装置10と、CPI内においてパルス間の時間間隔が異なる複数のパルスを有する送信信号を生成して空中線装置10に送出し、空中線装置10から入力した受信信号の受信処理を行う送受信装置20と、受信信号に対してMTI処理を行い、CPIを構成するパルスパターンが同じもの同士を選択してパルスパターンごとに受信信号の周波数と振幅を算出し、算出されたパルスパターンごとの周波数と振幅について周波数ごとに振幅を積算して目標の速度を検出する信号処理装置30と、を備える。   As described above, the radar apparatus according to the present embodiment generates an antenna apparatus 10 that transmits and receives signals, and a transmission signal having a plurality of pulses having different time intervals between pulses in the CPI, and transmits the transmission signal to the antenna apparatus 10. The transmission / reception device 20 that performs reception processing of the reception signal input from the antenna device 10 and the MTI processing on the reception signal are performed, and those having the same pulse pattern constituting the CPI are selected to receive signals for each pulse pattern. And a signal processing device 30 that detects the target speed by integrating the amplitude for each frequency with respect to the calculated frequency and amplitude for each pulse pattern.

従って、CPI内においてスタガを行っているため、MTI処理におけるブラインド速度による移動目標の誤消去を最小限にするとともに高精度に目標の速度を検知できるという効果がある。   Therefore, since staggering is performed in the CPI, it is possible to minimize the erroneous erasure of the moving target due to the blind speed in the MTI process and to detect the target speed with high accuracy.

いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10:アンテナ装置
20:送受信装置
30:信号処理装置
10: Antenna device 20: Transmission / reception device 30: Signal processing device

Claims (5)

信号の送受信を行う空中線装置と、
CPI内においてパルス間の時間間隔が異なる複数のパルスを有する送信信号を生成して前記空中線装置に送出し、前記空中線装置から入力した受信信号の受信処理を行う送受信装置と、
前記受信信号に対してMTI処理を行い、CPIを構成するパルスパターンが同じもの同士を選択して前記パルスパターンごとに受信信号の周波数と振幅を算出する信号処理装置と、
を備えるレーダ装置。
An antenna device for transmitting and receiving signals;
A transmission / reception device that generates a transmission signal having a plurality of pulses with different time intervals between pulses in the CPI, sends the transmission signal to the antenna device, and performs reception processing of the reception signal input from the antenna device;
A signal processing device that performs MTI processing on the received signal, selects the same pulse pattern constituting the CPI, and calculates the frequency and amplitude of the received signal for each pulse pattern;
A radar apparatus comprising:
前記信号処理装置は、
算出された前記パルスパターンごとの前記周波数と前記振幅について前記周波数ごとに前記振幅を積算して目標の速度を検出する請求項1記載のレーダ装置。
The signal processing device includes:
The radar apparatus according to claim 1, wherein the target velocity is detected by integrating the amplitude for each frequency with respect to the calculated frequency and amplitude for each pulse pattern.
前記パルスパターンを構成するパルス間の時間間隔の合計は、各パルスパターンにおいて等しい請求項2記載のレーダ装置。   The radar apparatus according to claim 2, wherein a sum of time intervals between pulses constituting the pulse pattern is equal in each pulse pattern. 前記スタガ単位を構成する各パルスの時間間隔の順序は後続するスタガ単位を構成する各パルスの時間間隔の順序と等しい請求項3記載のレーダ装置。   The radar apparatus according to claim 3, wherein the order of the time intervals of the pulses constituting the stagger unit is equal to the order of the time intervals of the pulses constituting the subsequent stagger unit. 前記パルスパターンは、
スタガ単位内のパルス数がn個(nは整数)の時、連続するn個のパルスが選択され、n個のパルスパターンが定義される請求項4記載のレーダ装置。
The pulse pattern is
5. The radar apparatus according to claim 4, wherein when the number of pulses in the stagger unit is n (n is an integer), n consecutive pulses are selected and n pulse patterns are defined.
JP2013045631A 2013-03-07 2013-03-07 Radar equipment Active JP6030006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045631A JP6030006B2 (en) 2013-03-07 2013-03-07 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045631A JP6030006B2 (en) 2013-03-07 2013-03-07 Radar equipment

Publications (2)

Publication Number Publication Date
JP2014173943A true JP2014173943A (en) 2014-09-22
JP6030006B2 JP6030006B2 (en) 2016-11-24

Family

ID=51695300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045631A Active JP6030006B2 (en) 2013-03-07 2013-03-07 Radar equipment

Country Status (1)

Country Link
JP (1) JP6030006B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9786054B2 (en) 2013-09-30 2017-10-10 Kabushiki Kaisha Toshiba Medical image processing device, treatment system and medical image processing method
KR101844151B1 (en) * 2016-08-26 2018-03-30 광운대학교 산학협력단 Apparatus and method for moving target detection of mobile platform radar considering Altitude line clutter
CN109856609A (en) * 2019-01-02 2019-06-07 成都纳雷科技有限公司 A kind of Waveform generation method removing radar blind speed
JP2021144012A (en) * 2020-03-13 2021-09-24 株式会社デンソー Radar system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618088A (en) * 1970-02-26 1971-11-02 Us Federal Aviation Admin Second-time-around echo immune radar system
FR2412852A1 (en) * 1977-12-22 1979-07-20 Labo Cent Telecommunicat Doppler pulse radar with multiple repetition frequencies - transmits blocks of pulses, with pulse repetition frequency being randomly selected
JPS5992371A (en) * 1982-11-19 1984-05-28 Nec Corp Radar signal processing system
JPS6255583A (en) * 1985-09-04 1987-03-11 Toshiba Corp Radar signal transmission system
EP0444458A2 (en) * 1990-03-02 1991-09-04 Siemens Aktiengesellschaft Pulsdopplerradar
JPH0519046A (en) * 1991-07-11 1993-01-26 Toshiba Corp Signal-processing device
JPH05341040A (en) * 1991-08-12 1993-12-24 Toshiba Corp Radar signal processing device
JPH0666930A (en) * 1992-08-17 1994-03-11 Mitsubishi Electric Corp Radar apparatus
JPH06123772A (en) * 1991-09-24 1994-05-06 Shinkichi Nishimoto Encoded pulse doppler radar system
JP2002520624A (en) * 1998-07-14 2002-07-09 レイセオン・カンパニー Non-coherent gain enhancement techniques for improved detection evaluation performance
JP2002214330A (en) * 2001-01-22 2002-07-31 Mitsubishi Electric Corp Pulse radar apparatus
JP2010048761A (en) * 2008-08-25 2010-03-04 Toshiba Corp Radar apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618088A (en) * 1970-02-26 1971-11-02 Us Federal Aviation Admin Second-time-around echo immune radar system
FR2412852A1 (en) * 1977-12-22 1979-07-20 Labo Cent Telecommunicat Doppler pulse radar with multiple repetition frequencies - transmits blocks of pulses, with pulse repetition frequency being randomly selected
JPS5992371A (en) * 1982-11-19 1984-05-28 Nec Corp Radar signal processing system
JPS6255583A (en) * 1985-09-04 1987-03-11 Toshiba Corp Radar signal transmission system
EP0444458A2 (en) * 1990-03-02 1991-09-04 Siemens Aktiengesellschaft Pulsdopplerradar
JPH0519046A (en) * 1991-07-11 1993-01-26 Toshiba Corp Signal-processing device
JPH05341040A (en) * 1991-08-12 1993-12-24 Toshiba Corp Radar signal processing device
JPH06123772A (en) * 1991-09-24 1994-05-06 Shinkichi Nishimoto Encoded pulse doppler radar system
JPH0666930A (en) * 1992-08-17 1994-03-11 Mitsubishi Electric Corp Radar apparatus
JP2002520624A (en) * 1998-07-14 2002-07-09 レイセオン・カンパニー Non-coherent gain enhancement techniques for improved detection evaluation performance
JP2002214330A (en) * 2001-01-22 2002-07-31 Mitsubishi Electric Corp Pulse radar apparatus
JP2010048761A (en) * 2008-08-25 2010-03-04 Toshiba Corp Radar apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9786054B2 (en) 2013-09-30 2017-10-10 Kabushiki Kaisha Toshiba Medical image processing device, treatment system and medical image processing method
KR101844151B1 (en) * 2016-08-26 2018-03-30 광운대학교 산학협력단 Apparatus and method for moving target detection of mobile platform radar considering Altitude line clutter
CN109856609A (en) * 2019-01-02 2019-06-07 成都纳雷科技有限公司 A kind of Waveform generation method removing radar blind speed
CN109856609B (en) * 2019-01-02 2023-06-16 成都纳雷科技有限公司 Waveform generation method for removing radar blind speed
JP2021144012A (en) * 2020-03-13 2021-09-24 株式会社デンソー Radar system
JP7310665B2 (en) 2020-03-13 2023-07-19 株式会社デンソー radar equipment

Also Published As

Publication number Publication date
JP6030006B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6190140B2 (en) Target detection apparatus and target detection method
JP5862023B2 (en) Target tracking system and target tracking method
JP6030006B2 (en) Radar equipment
WO2017200041A1 (en) Speed detecting device
JP5072694B2 (en) Target detection device
JP6384018B2 (en) Automotive radar equipment
CN112630771B (en) Multi-target tracking method and system based on millimeter wave equipment
JP2017156219A (en) Tracking device, tracking method, and program
JP2015184235A (en) Probe device, measurement method, and program
WO2019199349A3 (en) Multi-static frequency diverse waveform (mfdw)
JP6251087B2 (en) Target detection apparatus and target detection method
JP2017090220A (en) Radar device
CN108072864B (en) Multi-target detection method based on variable-carrier frequency modulation sequence
JP2006329669A (en) Radar system
JP2010019678A (en) Signal processor
CN108008377A (en) A kind of accurate speed-measuring method of low repetition based on multi-carrier frequency
JP7242227B2 (en) RADAR SYSTEM AND PRI CONTROL METHOD OF RADAR SYSTEM
JP6147617B2 (en) Radar apparatus and signal processing method thereof
JP2007315951A (en) Pulse radar device
RU2362182C1 (en) Radial velocity measurement method and radiolocation station for its implementation
JP2014174068A (en) Radar device
JP6385448B2 (en) Target detection apparatus, radar apparatus, and target detection method
JP2007256135A (en) Radar system
JP2014159975A (en) Radar device and method for controlling the same
RU2496117C1 (en) Method of measuring displacement parameters of probing signal source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161019

R151 Written notification of patent or utility model registration

Ref document number: 6030006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151