JP2014173553A - Heat insulation duct for high-temperature gas - Google Patents

Heat insulation duct for high-temperature gas Download PDF

Info

Publication number
JP2014173553A
JP2014173553A JP2013048871A JP2013048871A JP2014173553A JP 2014173553 A JP2014173553 A JP 2014173553A JP 2013048871 A JP2013048871 A JP 2013048871A JP 2013048871 A JP2013048871 A JP 2013048871A JP 2014173553 A JP2014173553 A JP 2014173553A
Authority
JP
Japan
Prior art keywords
temperature gas
lining member
heat
heat insulating
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013048871A
Other languages
Japanese (ja)
Other versions
JP5503767B1 (en
Inventor
Takatoshi Watanabe
隆俊 渡辺
Tomoyoshi Mizutani
友好 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2013048871A priority Critical patent/JP5503767B1/en
Priority to PCT/JP2014/055381 priority patent/WO2014141936A1/en
Priority to TW103108494A priority patent/TWI485320B/en
Application granted granted Critical
Publication of JP5503767B1 publication Critical patent/JP5503767B1/en
Publication of JP2014173553A publication Critical patent/JP2014173553A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/24Heat or noise insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulation duct for high-temperature gas capable of suppressing weld cracks, high-temperature cracks, peeling, or the like while avoiding on-site construction of a heat insulation material.SOLUTION: A heat insulation duct 10 includes a casing 18 that forms a high-temperature gas passage 8. The casing 18 includes: an internal member 32 made of a metal plate that is exposed to the high-temperature gas passage 8; an external member 34 made of a metal plate that is exposed to ambient air; and a flexible heat insulation material 36 interposed between the internal member 32 and the external member 34. The internal member 32 is engaged with the heat insulation material 36 and is coupled to the external member 34 with the insulation material 36 interposed therebetween in a relatively movable manner.

Description

本発明は、例えば、ガスタービンと排熱ボイラとの間に配置される、高温ガス用の保温ダクトに関するものである。   The present invention relates to a heat insulation duct for high-temperature gas, for example, disposed between a gas turbine and an exhaust heat boiler.

ガスタービンの排気ガスは、500℃以上の高温で、しかも回転流であるから、ガスタービンの排気ダクトは、ステンレス板またはモリブデン鋼鋼板(SB材)で構成され、板材の外側に断熱材を外張りした、いわゆる外部保温のものが用いられている。外部保温の場合、現地(設置場所)にて断熱材の施工を行う必要がある。具体的には、排気ダクトのフランジの増し締めを行うために、試運転時まで断熱材を施さない状態で放置し、試運転時に熱がかかって伸びた状態で増し締めを行ってから断熱材の施工を行う。そのため、現地での工期が長くなるとともに、試運転前の放置している間に、排気ダクト、ボルト孔等に錆が発生する恐れがあり、錆の発生を抑制するための対策を施す必要があり、手間がかかる。なお、サイレンサに関する技術であるが、繊維系の吸音材をサイレンサケーシングに取り付け、吸音材の表面を多孔板や金網でカバーしたものもある(例えば、特許文献1)。   Since the exhaust gas of the gas turbine is at a high temperature of 500 ° C. or more and is a rotating flow, the exhaust duct of the gas turbine is made of a stainless steel plate or a molybdenum steel plate (SB material), and a heat insulating material is provided outside the plate material. A stretched so-called external heat retaining material is used. In the case of external heat insulation, it is necessary to perform insulation work at the site (installation location). Specifically, in order to retighten the flange of the exhaust duct, leave it in a state where no heat insulating material is applied until the trial run, and after performing the tightening in a state where heat is applied during the trial run and stretch, I do. For this reason, the construction period at the site will be longer, and rust may be generated in the exhaust ducts, bolt holes, etc. while leaving it before the trial run, and it is necessary to take measures to suppress the occurrence of rust. ,It takes time and effort. In addition, although it is a technique regarding a silencer, there is also a technique in which a fiber-based sound absorbing material is attached to a silencer casing, and the surface of the sound absorbing material is covered with a perforated plate or a metal net (for example, Patent Document 1).

特許第3073420号公報Japanese Patent No. 3073420

また、例えば、コジェネレーション設備の場合、排気ガスは、排熱ボイラの圧力損失等により内圧も0.25KpaGと高く、しかも、高温で回転流であるので、排熱ボイラの入口側の排気ダクトの溶接部に亀裂が入る可能性がある。さらに、運用上、「毎日起動停止を行う運転」や「一週間おきに起動停止を行う運転」などの場合、特に熱による伸縮荷重や残留応力の繰り返し荷重により、排気ダクトの材料そのものが劣化し、溶接部以外にも高温割れが発生することがある。そこで、排気ダクトの内部に、キャスタブル(耐火材)やセラミック断熱材を施すことで、このような溶接割れ、高温割れ等を回避していた。   Further, for example, in the case of a cogeneration facility, the exhaust gas has a high internal pressure of 0.25 KpaG due to the pressure loss of the exhaust heat boiler, etc. and is a rotating flow at a high temperature, so the exhaust duct on the inlet side of the exhaust heat boiler There is a possibility that the weld will crack. In addition, in operation, in the case of “operations that start and stop every day” and “operations that start and stop every other week”, the exhaust duct material itself deteriorates due to the expansion and contraction load due to heat and the repeated load of residual stress. In addition to the weld, hot cracking may occur. Then, such a weld crack, a high temperature crack, etc. were avoided by giving a castable (refractory material) and a ceramic heat insulating material inside the exhaust duct.

しかしながら、キャスタブルは、振動に弱く、割れが発生し易いので、ガスタービンの排気ダクトに適用すると脱落することが懸念される。また、セラミック断熱材を用いた内部断熱構造は、整流された排気ガスが流れるダクト、内面積が十分あって低流速の排気ガスが流れるダクト等には適しているが、ガスタービンの出口のように、流速が100m/s前後ある回転流の場合は、セラミック断熱材を押さえる重ね合わせた瓦状のプレート(熱伸びを考慮してスライドするように構成されたプレート)の隙間に排気ガスが入って、プレートが変形し、剥がれ落ちてしまったり、断熱材が吸い上げられて飛散したりすることが懸念される。   However, castables are susceptible to vibration and easily cracked, so there is a concern that they will fall off when applied to an exhaust duct of a gas turbine. In addition, the internal heat insulation structure using ceramic heat insulating material is suitable for ducts through which rectified exhaust gas flows, ducts with sufficient internal area and low flow velocity exhaust gas, etc. In addition, in the case of a rotating flow with a flow velocity of around 100 m / s, exhaust gas enters the gap between the stacked tile-shaped plates (plates configured to slide in consideration of thermal elongation) that hold down the ceramic insulation. Therefore, there is a concern that the plate may be deformed and peeled off, or the heat insulating material may be sucked up and scattered.

本発明は、前記課題に鑑みてなされたもので、現地にて断熱材の施工を回避しつつ、溶接割れ、高温割れ、剥がれ等を抑制できる高温ガスの保温ダクトを提供することを目的とする。   This invention was made in view of the said subject, and it aims at providing the heat insulation duct of the high temperature gas which can suppress a weld crack, a high temperature crack, peeling, etc., avoiding construction of a heat insulating material on-site. .

上記目的を達成するために、本発明の高温ガスの保温ダクトは、高温ガス通路を形成するケーシングが、前記高温ガス通路に露出した金属板製の内張り部材と、金属板製の外張り部材と、その間に介装された可撓性の断熱材とを有し、前記内張り部材が、前記断熱材に係止されて、前記断熱材を介して前記外張り部材に相対移動可能に連結されている。   In order to achieve the above object, the hot gas insulation duct according to the present invention includes a metal plate lining member in which a casing forming a high temperature gas passage is exposed to the high temperature gas passage, and a metal plate outer member. A flexible heat insulating material interposed therebetween, and the lining member is locked to the heat insulating material and connected to the outer surface member via the heat insulating material so as to be relatively movable. Yes.

この構成によれば、高温ガス通路を形成するケーシングが、高温ガス通路に露出した内張り部材と、外気に露出した外張り部材と、その間に介装された可撓性の断熱材とを有する、いわゆる内部保温で構成されているので、断熱材の施工を工場で行うことができ、現地での断熱材の施工および錆対策が不要となる。また、ケーシングの内部に耐火材や断熱材を施す必要がないので、これらの脱落や剥がれが起こることもない。さらに、保温ダクトの外郭を構成する外張り部材は高温ガスにさらされないので、外張り部材に設けられるフランジ部、シール部等の劣化や高温割れの発生を抑制することができる。しかも、外張り部材は高温ガスにさらされないので、ステンレス板、モリブデン鋼鋼板のような高価な耐熱性金属を用いる必要がなくなり、全体として保温ダクトを安価に製造できる。さらに、内張り部材が、断熱材に係止されて、断熱材を介して外張り部材に相対移動可能に連結されているので、内張り部材に発生する熱応力を抑制できるうえ、高温ガスに接する箇所に、溶接部を無くして溶接割れの発生を抑えることができる。   According to this configuration, the casing forming the high temperature gas passage has the lining member exposed to the high temperature gas passage, the outer lining member exposed to the outside air, and the flexible heat insulating material interposed therebetween. Since it is constituted by so-called internal heat insulation, it is possible to construct the heat insulating material at the factory, and it is not necessary to install the heat insulating material and prevent rust on site. Moreover, since it is not necessary to apply a refractory material or a heat insulating material to the inside of the casing, they will not fall off or peel off. Further, since the outer member constituting the outer shell of the heat retaining duct is not exposed to the high temperature gas, it is possible to suppress the deterioration of the flange portion and the seal portion provided in the outer member and the occurrence of the hot crack. Moreover, since the outer member is not exposed to the high temperature gas, it is not necessary to use an expensive heat-resistant metal such as a stainless steel plate or a molybdenum steel steel plate, and the heat insulation duct can be manufactured at a low cost as a whole. Furthermore, since the lining member is locked to the heat insulating material and connected to the outer lining member through the heat insulating material so as to be relatively movable, the thermal stress generated in the lining member can be suppressed, and the portion that contacts the high temperature gas Furthermore, the occurrence of weld cracks can be suppressed by eliminating the weld.

本発明において、前記内張り部材の端部に、外側へ突出して前記断熱材の端面に係止される係止片が設けられていることが好ましい。この構成によれば、簡単な構造で、溶接部を設けることなく、内張り部材を外張り部材に相対移動可能に連結できる。   In this invention, it is preferable that the locking piece which protrudes outside and is locked to the end surface of the said heat insulating material is provided in the edge part of the said lining member. According to this configuration, the lining member can be connected to the outer lining member so as to be relatively movable without providing a weld portion with a simple structure.

係止片を備える場合、前記内張り部材の前記係止片の内側部分が、折り曲げられて重合した重合部を有し、前記係止片の外側部分が前記外張り部材に固定されていることが好ましい。この構成によれば、重合部の変形により、内張り部材の熱伸びを吸収できる。   When provided with a locking piece, the inner part of the locking piece of the lining member has a superposed part that is bent and superposed, and the outer part of the locking piece is fixed to the outer member. preferable. According to this configuration, the thermal elongation of the lining member can be absorbed by the deformation of the overlapping portion.

本発明において、前記ケーシングは、平板状の上壁、下壁、および一対の側壁が連結されて横断面矩形の前記高温ガス通路を形成しており、前記各壁において前記内張り部材が、前記断熱材を介して前記外張り部材に相対移動可能に連結されていることが好ましい。この構成によれば、前記各壁が平板状であるから、製造が容易になる。   In the present invention, the casing has a flat upper wall, a lower wall, and a pair of side walls connected to form the high-temperature gas passage having a rectangular cross section, and the lining member is formed on each of the walls. It is preferable to be connected to the outer member through a material so as to be relatively movable. According to this structure, since each said wall is flat form, manufacture becomes easy.

前記ケーシングが横断面矩形の高温ガス通路を形成する場合、前記内張り部材の前記係止片の内側部分が、折り曲げられて重合した重合部を有し、隣接する壁の間の隙間に、前記重合部と、その外側に位置する断熱緩衝材とが配置されていることが好ましい。この構成によれば、重合部により、内張り部材の変形が吸収されるとともに、断熱緩衝材により、壁間の熱伸びの吸収と熱伝達の遮断とがなされる。   When the casing forms a hot gas passage having a rectangular cross section, an inner portion of the locking piece of the lining member has a superposed portion that is bent and superposed, and the superposition is provided in a gap between adjacent walls. It is preferable that the part and the heat insulation buffer material located in the outer side are arrange | positioned. According to this configuration, the overlapping portion absorbs the deformation of the lining member, and the heat insulating cushioning material absorbs thermal expansion between the walls and blocks heat transfer.

断熱緩衝材を備える場合、前記断熱緩衝材の内側で前記隙間に弾性的に嵌め込まれて前記高温ガスの遮断と前記断熱緩衝材の位置規制とを行う押さえ部材を備えていることが好ましい。この構成によれば、押さえ部材により、高温ガスが断熱緩衝材に直接当たって損傷させるのを防止できるとともに、断熱緩衝材を適切な位置に保持できる。   When the heat insulating cushioning material is provided, it is preferable to include a pressing member that is elastically fitted into the gap inside the heat insulating cushioning material and blocks the high-temperature gas and restricts the position of the heat insulating cushioning material. According to this configuration, the pressing member can prevent the hot gas from directly hitting the heat-insulating buffer material and causing damage, and can hold the heat-insulating buffer material in an appropriate position.

本発明において、前記内張り部材が、対向する端部間の中間部で前記外張り部材に締結されていることが好ましい。この構成によれば、中間部で締結することで、熱膨張による内張り部材の内側への膨らみを効果的に抑制できる。また、締結箇所を中間部の1箇所とすることで、締結部材を介した外張り部材への熱伝達も最小限に抑えることができる。さらに、この締結により、天井となる上壁の断熱材の厚みで内張り部材が大きく内側へ変形することも、断熱材がずれて下方へ移動することも防止できる。   In the present invention, it is preferable that the lining member is fastened to the outer lining member at an intermediate portion between opposing end portions. According to this structure, the fastening to the inner side of the lining member due to thermal expansion can be effectively suppressed by fastening at the intermediate portion. Moreover, heat transfer to the outer member via the fastening member can be minimized by setting the fastening portion to one place in the intermediate portion. Furthermore, this fastening can prevent the lining member from being greatly deformed inward by the thickness of the heat insulating material on the upper wall serving as the ceiling, or preventing the heat insulating material from shifting and moving downward.

本発明の高温ガスの保温ダクトによれば、高温ガス通路を形成するケーシングが内部保温で構成されているので、断熱材の施工を工場で行うことができ、現地での断熱材の施工および錆対策が不要となる。また、外張り部材は高温ガスにさらされないので、外張り部材に設けられるフランジ部、シール部等の劣化や高温割れの発生を抑制することができるとともに、高価な耐熱性金属を用いる必要がなくなり、全体として保温ダクトを安価に製造できる。さらに、内張り部材が、断熱材を介して外張り部材に相対移動可能に連結されているので、内張り部材に発生する熱応力を抑制できるうえに、高温ガスに接する箇所に、溶接部を無くして溶接割れの発生を抑えることができる。   According to the hot gas insulation duct of the present invention, since the casing forming the high temperature gas passage is constituted by internal heat insulation, it is possible to perform the construction of the heat insulating material at the factory, the construction of the heat insulating material at the site and the rust. No countermeasure is required. In addition, since the outer member is not exposed to the high temperature gas, it is possible to suppress the deterioration of the flange portion, the seal portion, etc. provided on the outer member and the occurrence of hot cracking, and it is not necessary to use an expensive heat resistant metal. As a whole, the heat insulation duct can be manufactured at low cost. Furthermore, since the lining member is connected to the outer lining member through a heat insulating material so as to be relatively movable, the thermal stress generated in the lining member can be suppressed, and a welded portion is eliminated at a location in contact with the high temperature gas. Generation of weld cracks can be suppressed.

本発明の第1実施形態に係る高温ガスの保温ダクトを備えたガスタービンシステムを示す概略構成図である。It is a schematic structure figure showing a gas turbine system provided with a heat insulation duct of hot gas concerning a 1st embodiment of the present invention. 同保温ダクトの側面図である。It is a side view of the heat insulation duct. 同保温ダクトの縦断面図である。It is a longitudinal cross-sectional view of the heat insulation duct. 図2のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 図4のケーシングの上壁の端部近傍を拡大して示す断面図である。It is sectional drawing which expands and shows the edge part vicinity of the upper wall of the casing of FIG. 図4のVI部を拡大して示す断面図である。It is sectional drawing which expands and shows the VI section of FIG. 図2のVII−VII線面図である。FIG. 7 is a VII-VII line view of FIG. 2. 図3のVIII部を拡大して示す断面図である。It is sectional drawing which expands and shows the VIII part of FIG. 図3のIX部を拡大して示す断面図である。It is sectional drawing which expands and shows the IX part of FIG.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1に、ガスタービンを用いたコージェネレーションシステムの概略構成図を示す。このシステムは、ガスタービンGTの駆動力によって減速機R/Gを介して発電機Gのロータを回転させて発電電力を得るものである。ガスタービンGTは圧縮機2,燃焼器4およびタービン6を備え、このガスタービンGTから排出される排ガスEは、排気通路である高温ガス通路8を通って外部に排出される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration diagram of a cogeneration system using a gas turbine. In this system, generated power is obtained by rotating the rotor of the generator G through the reduction gear R / G by the driving force of the gas turbine GT. The gas turbine GT includes a compressor 2, a combustor 4, and a turbine 6. An exhaust gas E discharged from the gas turbine GT is discharged to the outside through a high-temperature gas passage 8 that is an exhaust passage.

詳細には、ガスタービンGTの排ガス出口に、高温ガス通路8の一部を構成する高温ガスの保温ダクト10が接続され、保温ダクト10の下流側に排熱ボイラ12が、排熱ボイラ12の下流側にエコノマイザ14が連結されている。エコノマイザ14に給水された水は排ガスEにより予熱され、排熱ボイラ12へ供給されて蒸気化される。排熱ボイラ12からの蒸気は、例えば、吸収式冷凍機や温水発生用の熱源などに利用される。排熱ボイラ12およびエコノマイザ14を通過して熱回収された排ガスGは、排気ダクト16を通じて大気に放出される。   Specifically, a heat insulation duct 10 for high-temperature gas constituting a part of the high-temperature gas passage 8 is connected to an exhaust gas outlet of the gas turbine GT, and an exhaust heat boiler 12 is connected to the downstream side of the heat insulation duct 10. An economizer 14 is connected to the downstream side. The water supplied to the economizer 14 is preheated by the exhaust gas E, supplied to the exhaust heat boiler 12 and vaporized. The steam from the exhaust heat boiler 12 is used, for example, as an absorption refrigerator or a heat source for generating hot water. The exhaust gas G that has been heat-recovered through the exhaust heat boiler 12 and the economizer 14 is released to the atmosphere through the exhaust duct 16.

図2に示すように、高温用の保温ダクト10は、高温ガス通路8の一部を形成するケーシング18を有している。ケーシング18は、図4に示すように、平板状の上壁20、下壁22、および一対の側壁24,24が連結されて横断面矩形の高温ガス通路8を形成している。   As shown in FIG. 2, the high temperature insulation duct 10 has a casing 18 that forms a part of the high temperature gas passage 8. As shown in FIG. 4, the casing 18 is formed by connecting a flat upper wall 20, a lower wall 22, and a pair of side walls 24, 24 to form a hot gas passage 8 having a rectangular cross section.

図3に示すように、ケーシング18内の高温ガス通路8は、下流に向かって通路面積が増大している。ケーシング18の上流端に円筒状の入口管26が溶接により連結され、入口管26の上流端部に鍔状の第1フランジ28が溶接で固着されている。第1フランジ28に、複数のボルト挿通孔(図示せず)が周方向に並んで形成されている。   As shown in FIG. 3, the passage area of the hot gas passage 8 in the casing 18 increases toward the downstream. A cylindrical inlet pipe 26 is connected to the upstream end of the casing 18 by welding, and a flange-shaped first flange 28 is fixed to the upstream end of the inlet pipe 26 by welding. A plurality of bolt insertion holes (not shown) are formed in the first flange 28 side by side in the circumferential direction.

ケーシング18の下流端部に、鍔状の第2フランジ30が溶接で固着されている。第2フランジ30に、複数のボルト挿通孔(図示せず)が周方向に並んで形成されている。図示しないボルトを用いて、第1フランジ28が、図2に示すガスタービンGTの排ガス出口に連結され、第2フランジ30がボイラ14の入口に連結されている。   A flange-like second flange 30 is fixed to the downstream end of the casing 18 by welding. A plurality of bolt insertion holes (not shown) are formed in the second flange 30 side by side in the circumferential direction. The first flange 28 is connected to the exhaust gas outlet of the gas turbine GT shown in FIG. 2 and the second flange 30 is connected to the inlet of the boiler 14 using bolts (not shown).

図4に示すように、各壁20,22,24においてケーシング18は、高温ガス通路8に露出した金属板製の内張り部材32と、外気に露出した金属板製の外張り部材34と、その間に介装された可撓性の断熱材36とを有している。   As shown in FIG. 4, in each of the walls 20, 22, and 24, the casing 18 includes a metal plate lining member 32 exposed to the high temperature gas passage 8, a metal plate lining member 34 exposed to the outside air, and a space therebetween. And a flexible heat insulating material 36 interposed therebetween.

内張り部材32は、ステンレス板、モリブデン鋼板等の耐熱性の高い金属からなり、この実施形態では、厚さ2mmのSUS304製である。外張り部材34は、安価な一般構造用の鋼材からなり、この実施形態では、厚さ6mmのSS400製である。外張り部材34の外表面には防錆塗料が塗布されている。   The lining member 32 is made of a metal having high heat resistance such as a stainless steel plate or a molybdenum steel plate, and is made of SUS304 having a thickness of 2 mm in this embodiment. The outer member 34 is made of an inexpensive general structural steel material, and in this embodiment is made of SS400 having a thickness of 6 mm. A rust preventive paint is applied to the outer surface of the outer member 34.

図5に示すように、断熱材36は、最内側の第1断熱層38と、その外側の第2断熱層40と、その外側で最外側の第3断熱層42とからなる。この実施形態では、第1断熱層38には断熱性の高いセラミックウールが用いられ、第2断熱層40および第3断熱層42には安価なロックウールが用いられている。このように、断熱材36を多層構造とすることで、高温となる内側に断熱性の高い断熱材を配置し、比較的低温の外側に安価な断熱材を配置でき、効果的に断熱ができるとともに、全体として断熱材の費用を抑えることができる。断熱材36は、2層または4層以上であってもよく、また単層であってもよい。   As shown in FIG. 5, the heat insulating material 36 includes an innermost first heat insulating layer 38, an outer second heat insulating layer 40, and an outermost third heat insulating layer 42 on the outer side. In this embodiment, ceramic wool having high heat insulating properties is used for the first heat insulating layer 38, and inexpensive rock wool is used for the second heat insulating layer 40 and the third heat insulating layer 42. Thus, by making the heat insulating material 36 into a multilayer structure, a heat insulating material having high heat insulating properties can be arranged on the inner side that becomes high temperature, and an inexpensive heat insulating material can be arranged on the outer side having a relatively low temperature, so that heat insulation can be effectively performed. At the same time, the cost of the heat insulating material can be reduced as a whole. The heat insulating material 36 may be two layers, four layers or more, or may be a single layer.

内張り部材32の四辺のそれぞれを形成する端部32aに、外側へ突出した係止片44が形成され、この係止片44を断熱材36の端面36aに係止することで、内張り部材32が、断熱材36を介して外張り部材34に対し、平行な方向に相対移動可能に連結されている。係止片44の外側端部44aが外張り部材34に溶接により固定されている。   Locking pieces 44 projecting outward are formed at the end portions 32a forming the four sides of the lining member 32. By locking the locking pieces 44 to the end surface 36a of the heat insulating material 36, the lining member 32 is The outer member 34 is connected to the outer member 34 via the heat insulating material 36 so as to be relatively movable in a parallel direction. The outer end 44a of the locking piece 44 is fixed to the outer member 34 by welding.

係止片44は、鋼板が折り曲げられて重合された重合部50を有している。詳細には、内張り部材32の端部32aが外側に折り曲げられたのち内側に折り返され、さらに外側に折り曲げられて三重の重合部50が形成され、この重合部50の先端が、外側に延出して係止片44を形成している。これにより、二点鎖線で示すように、内張り部材32が熱伸びした場合でも、重合部50が開くように変形して熱伸びが吸収される。   The locking piece 44 has a superposed part 50 in which a steel plate is bent and superposed. Specifically, the end portion 32a of the lining member 32 is folded outward and then folded inward, and further folded outward to form a triple overlapping portion 50. The leading end of the overlapping portion 50 extends outward. Thus, a locking piece 44 is formed. Thereby, as shown by a two-dot chain line, even when the lining member 32 is thermally stretched, it is deformed so that the overlapping portion 50 is opened and the thermal elongation is absorbed.

図4に示すように、内張り部材32は、対向する端部32a,32a間の中間部32bで、締結部材52により外張り部材34に締結されている。詳細には、図6に示すように、内張り部材32の中間部32bに開口54が形成されており、この開口54に、外側端が外張り部材34に溶接Wで固定された頭なしの全ねじボルト58が挿通されている。全ねじボルト58の内側端部を覆うように内張り部材32の内側と外側に当て板56,56を当接させた状態で、全ねじボルト58の内側端部を貫通させ、この内側端部に、内側と外側からナット60,60を螺合させ、ナット60,60の締結力によって当て板56,56で内張り部材32を挟持する。   As shown in FIG. 4, the lining member 32 is fastened to the outer lining member 34 by a fastening member 52 at an intermediate portion 32 b between the opposing end portions 32 a and 32 a. Specifically, as shown in FIG. 6, an opening 54 is formed in the intermediate portion 32 b of the lining member 32, and the entire headless head whose outer end is fixed to the lining member 34 by welding W is formed in this opening 54. A screw bolt 58 is inserted. In the state where the contact plates 56 and 56 are in contact with the inner side and the outer side of the lining member 32 so as to cover the inner end portion of the full screw bolt 58, the inner end portion of the full screw bolt 58 is passed through, The nuts 60 and 60 are screwed together from the inside and the outside, and the lining member 32 is held between the contact plates 56 and 56 by the fastening force of the nuts 60 and 60.

これにより、全ねじボルト58、ナット60,60を介して内張り部材32が外張り部材34に締結されている。つまり、全ねじボルト58および2つのナット60,60が前記締結部材52を構成している。   Thereby, the lining member 32 is fastened to the outer lining member 34 via the full screw bolt 58 and the nuts 60 and 60. That is, the full screw bolt 58 and the two nuts 60, 60 constitute the fastening member 52.

図7は、下壁22と側壁24との連結部を示す。下壁22の上面22aと側壁24の下端面24aとは第1の隙間S1を介して対向している。また、側壁24の外張り部材34に、下方に延長された延長部64が形成されている。延長部64は、下壁22の外側端面22bの外側を下方に延び、下壁22の外張り部材34に溶接により連結されている。この連結部は、補強板66の溶接により補強されている。延長部64と下壁22の外側端面22bとの間には第2の隙間S2が形成されており、第2の隙間S2は第1の隙間S1に連通している。   FIG. 7 shows a connecting portion between the lower wall 22 and the side wall 24. The upper surface 22a of the lower wall 22 and the lower end surface 24a of the side wall 24 are opposed to each other via the first gap S1. An extension 64 extending downward is formed on the outer member 34 of the side wall 24. The extension portion 64 extends outwardly from the outer end surface 22b of the lower wall 22 and is connected to the outer member 34 of the lower wall 22 by welding. This connecting portion is reinforced by welding of the reinforcing plate 66. A second gap S2 is formed between the extension portion 64 and the outer end surface 22b of the lower wall 22, and the second gap S2 communicates with the first gap S1.

第1の隙間S1に、側壁24の重合部50が配置され、第2の隙間S2に、下壁22の重合部50が配置されている。また、第2の隙間S2の全体、および第1の隙間S1における側壁24の重合部50の外側(図7の右側)に、断熱緩衝材68が配置されている。断熱緩衝材68は、例えば、セラミックブランケットである。   The overlapping portion 50 of the side wall 24 is disposed in the first gap S1, and the overlapping portion 50 of the lower wall 22 is disposed in the second gap S2. Further, the heat insulating cushioning material 68 is disposed on the entire second gap S2 and on the outer side (right side in FIG. 7) of the overlapping portion 50 of the side wall 24 in the first gap S1. The heat insulating cushioning material 68 is, for example, a ceramic blanket.

第1の隙間S1における側壁24の重合部50の外側で断熱緩衝材68の内側に、押さえ部材70が配置されている。押さえ部材70は、ばね鋼板をV字形状に折り曲げて構成されている。押さえ部材70は、第1の隙間S1における断熱緩衝材68の内側に弾性的に嵌め込まれ、高温ガスが断熱緩衝材68に直接当たるのを遮断するとともに、断熱緩衝材68の位置規制を行っている。側壁24の重合部50により、押さえ部材70が高温ガス通路8に抜け出すのを防止している。   A pressing member 70 is disposed inside the heat insulating cushioning material 68 outside the overlapping portion 50 of the side wall 24 in the first gap S1. The holding member 70 is configured by bending a spring steel plate into a V shape. The holding member 70 is elastically fitted inside the heat insulating cushioning material 68 in the first gap S1 to block the high temperature gas from directly hitting the heat insulating cushioning material 68 and to regulate the position of the heat insulating cushioning material 68. Yes. The holding member 70 is prevented from coming out into the high temperature gas passage 8 by the overlapping portion 50 of the side wall 24.

図7は、下壁22と側壁24との連結部を示しているが、他の隣接する壁の間の連結部も同様の構造となっている。このように、ケーシング18では、内張り部材32と外張り部材34とが広い面積で接触することのない構造となっている。その結果、高温ガス通路8内で排ガスEの温度は550℃を超えるが、外気に露出する外張り部材34の表面温度は70℃未満に保たれている。   Although FIG. 7 shows the connecting portion between the lower wall 22 and the side wall 24, the connecting portion between other adjacent walls has the same structure. Thus, the casing 18 has a structure in which the lining member 32 and the outer lining member 34 do not come into contact with each other over a wide area. As a result, the temperature of the exhaust gas E exceeds 550 ° C. in the high temperature gas passage 8, but the surface temperature of the outer member 34 exposed to the outside air is kept below 70 ° C.

図8は、ケーシング18の下壁22と入口管26との連結部を示す。入口管26も、ケーシング18と同様に、内張り部材72と外張り部材74と3層構造の断熱材76とを有している。内張り部材72の両端には、環状の係止部材69,69が連結されている。入口管26の外張り部材74の上流側端部74aに、前記第1フランジ28が溶接で固着されている。第1フランジ28と係止部材69は非接触である。外張り部材74の外周面における中間部よりもやや上流側に、鍔状の突部78が溶接によって固定されている。   FIG. 8 shows a connecting portion between the lower wall 22 of the casing 18 and the inlet pipe 26. Similarly to the casing 18, the inlet pipe 26 also includes a lining member 72, an lining member 74, and a heat insulating material 76 having a three-layer structure. At both ends of the lining member 72, annular locking members 69 are connected. The first flange 28 is fixed to the upstream end 74a of the outer member 74 of the inlet pipe 26 by welding. The first flange 28 and the locking member 69 are not in contact with each other. A flange-shaped protrusion 78 is fixed by welding on the slightly upstream side of the intermediate portion on the outer peripheral surface of the outer member 74 by welding.

ケーシング18の下壁22の上流側端面22cと入口管26の下流側端面26aとは第3の隙間S3を介して対向している。また、下壁22の外張り部材34に、上流側に延長された延長部80が形成され、この延長部80が、入口管26の外張り部材74の突部78に溶接により固定されている。   The upstream end surface 22c of the lower wall 22 of the casing 18 and the downstream end surface 26a of the inlet pipe 26 are opposed to each other via the third gap S3. An extension 80 extending upstream is formed on the outer member 34 of the lower wall 22, and this extension 80 is fixed to the protrusion 78 of the outer member 74 of the inlet pipe 26 by welding. .

第3の隙間S3に、下壁22の重合部50が配置され、さらに、その外側に前述の断熱緩衝材68が配置されている。また、第3の隙間S3における下壁22の重合部50の外側で断熱緩衝材68の内側に、前述の押さえ部材70が配置されている。下壁22の外張り部材34の外周面における第3の隙間S3に対応する位置に、補強部材82が溶接により固着されている。図8は、下壁22と入口管26との連結部を示しているが、他の壁20,24と入口管26との間の連結部も同様の構造となっている。   In the third gap S3, the overlapping portion 50 of the lower wall 22 is disposed, and further, the above-described heat insulating cushioning material 68 is disposed on the outside thereof. Further, the pressing member 70 described above is disposed inside the heat insulating cushioning material 68 outside the overlapping portion 50 of the lower wall 22 in the third gap S3. A reinforcing member 82 is fixed by welding at a position corresponding to the third gap S3 on the outer peripheral surface of the outer member 34 of the lower wall 22. FIG. 8 shows a connecting portion between the lower wall 22 and the inlet pipe 26, but the connecting portions between the other walls 20 and 24 and the inlet pipe 26 have the same structure.

図9は、ケーシング18の上壁20と排熱ボイラ12の入口との連結部を示す。上壁20の外張り部材34の下流側端部に、前記第2フランジ30が溶接で固着され、その外方が補強部材84により補強されている。第2フランジ30と内張り部材32は非接触である。   FIG. 9 shows a connecting portion between the upper wall 20 of the casing 18 and the inlet of the exhaust heat boiler 12. The second flange 30 is fixed to the downstream end portion of the outer member 34 of the upper wall 20 by welding, and the outer side thereof is reinforced by a reinforcing member 84. The second flange 30 and the lining member 32 are not in contact with each other.

上壁20の上流側端面20aと排熱ボイラ12の入口の上流側端面12aとは第4の隙間S4を介して対向している。この第4の隙間S4に、上壁20の重合部50が配置され、さらに、その外側に前述の断熱緩衝材68が配置されている。また、第4の隙間S4における上壁20の重合部50の外側で断熱緩衝材68の内側に、前述の押さえ部材70が配置されている。   The upstream end surface 20a of the upper wall 20 and the upstream end surface 12a of the inlet of the exhaust heat boiler 12 are opposed to each other through the fourth gap S4. In the fourth gap S4, the overlapping portion 50 of the upper wall 20 is disposed, and further, the above-described heat insulating cushioning material 68 is disposed outside thereof. Further, the pressing member 70 described above is disposed inside the heat insulating cushioning material 68 outside the overlapping portion 50 of the upper wall 20 in the fourth gap S4.

図9は、上壁20と排熱ボイラ12の入口との連結部を示しているが、他の壁22,24と排熱ボイラ12の入口との間の連結部も同様の構造となっている。このように、第1および第2フランジ28,30は、低温である外張り部材74,34に溶接されており、第1および第2フランジ28,30と、高温となる内張り部材72,32および高温ガス通路8との間には、断熱材76,36および断熱緩衝材68が介在されている。また、高温となる内張り部材72,32には溶接部がない。つまり、内張り部材32,72は、高温ガスからの耐熱に特化した部材であり、外張り部材34,74は、ダクトの強度を確保するための部材である。   FIG. 9 shows the connecting portion between the upper wall 20 and the inlet of the exhaust heat boiler 12, but the connecting portion between the other walls 22, 24 and the inlet of the exhaust heat boiler 12 has the same structure. Yes. Thus, the first and second flanges 28 and 30 are welded to the low temperature outer members 74 and 34, and the first and second flanges 28 and 30 and the high temperature liner members 72, 32 and Between the hot gas passage 8, heat insulating materials 76 and 36 and a heat insulating buffer material 68 are interposed. Moreover, the lining members 72 and 32 which become high temperature do not have a welding part. That is, the lining members 32 and 72 are members specialized for heat resistance from high-temperature gas, and the lining members 34 and 74 are members for ensuring the strength of the duct.

上記構成において、図4に示す高温ガス通路8を形成するケーシング18が、内張り部材32と、外張り部材34と、その間に介装された断熱材36とを有する、いわゆる内部保温で構成されているので、断熱材36の施工を工場で行うことができ、現地での断熱材32の施工が不要となる。その結果、現場作業員の技能の差による施工レベルのばらつきがなくなり、保温ダクト10の品質が確保される。また、試運転前に現場で放置されることもなくなるので、ボルト孔等に錆が発生するのを抑制できる。さらに、ケーシング18の内部に耐火材や断熱材を施す必要がないので、これらの脱落や剥がれが起こることもない。   In the above configuration, the casing 18 forming the high-temperature gas passage 8 shown in FIG. 4 is constituted by so-called internal heat insulation having a lining member 32, an outer lining member 34, and a heat insulating material 36 interposed therebetween. Therefore, the construction of the heat insulating material 36 can be performed at the factory, and the construction of the heat insulating material 32 on site is not necessary. As a result, there is no variation in the construction level due to the difference in the skills of field workers, and the quality of the heat insulation duct 10 is ensured. Moreover, since it is no longer left on site before the trial operation, it is possible to suppress the occurrence of rust in the bolt holes. Furthermore, since it is not necessary to apply a refractory material or a heat insulating material to the inside of the casing 18, they will not fall off or peel off.

さらに、外張り部材34は高温ガスにさらされないので、第1および第2フランジ部28,30やシール部材の劣化を抑制することができる。しかも、外張り部材34は高温ガスにさらされないので、外張り部材34にステンレス板、モリブデン鋼鋼板のような高価な耐熱性金属を用いる必要がなくなり、全体として保温ダクト10を安価に製造できる。また、内張り部材32が、断熱材36に係止されて、断熱材36を介して外張り部材34に相対移動可能に連結されているので、内張り部材32に発生する熱応力を抑制できるうえ、高温ガスに接する箇所に、溶接部を無くして溶接割れの発生を抑えることができる。   Furthermore, since the outer member 34 is not exposed to the high-temperature gas, deterioration of the first and second flange portions 28 and 30 and the seal member can be suppressed. Moreover, since the outer member 34 is not exposed to the high-temperature gas, it is not necessary to use an expensive heat-resistant metal such as a stainless steel plate or a molybdenum steel plate for the outer member 34, and the heat retaining duct 10 can be manufactured at a low cost as a whole. Further, since the lining member 32 is locked to the heat insulating material 36 and connected to the outer lining member 34 via the heat insulating material 36 so as to be relatively movable, the thermal stress generated in the lining member 32 can be suppressed, It is possible to suppress the occurrence of weld cracks by eliminating the welded portion at the location in contact with the high temperature gas.

図5に示す内張り部材32の端部32aに係止片44が設けられ、この係止片44が折り曲げられて重合した重合部50を有し、係止片44の外側部分が外張り部材34に固定されている。これにより、簡単な構造で、溶接部を設けることなく、断熱材36を介して内張り部材32を外張り部材34に対して相対移動可能に連結できる。しかも、重合部50を設けたことにより、内張り部材32の熱伸びを吸収できる。また、ケーシング18の各壁20,22,24が平板状であるから、製造が容易になる。   A locking piece 44 is provided at an end portion 32 a of the lining member 32 shown in FIG. 5, and the overlapping piece 50 is formed by bending the locking piece 44, and an outer portion of the locking piece 44 is an outer member 34. It is fixed to. Thereby, it is possible to connect the lining member 32 to the outer lining member 34 via the heat insulating material 36 so as to be relatively movable without providing a welded portion with a simple structure. Moreover, by providing the overlapping portion 50, the thermal elongation of the lining member 32 can be absorbed. Moreover, since each wall 20,22,24 of the casing 18 is flat form, manufacture becomes easy.

図7に示すように、ケーシング18における隣接する壁20,22,24の間の第1の隙間S1に、重合部50と、その外側に位置する断熱緩衝材68とが配置されているので、
重合部50により、内張り部材32の変形が吸収されるとともに、断熱緩衝材68により、壁間20,22,24の熱伸びの吸収と熱伝達の遮断とがなされる。
As shown in FIG. 7, since the overlapping portion 50 and the heat insulating cushioning material 68 located outside the first gap S <b> 1 between the adjacent walls 20, 22, 24 in the casing 18 are arranged,
The overlapping portion 50 absorbs the deformation of the lining member 32, and the heat insulating cushioning material 68 absorbs thermal expansion between the walls 20, 22, and 24 and blocks heat transfer.

さらに、第1の隙間S1における重合部50の外側で断熱緩衝材68の内側に、押さえ部材70が嵌め込まれているので、高温ガスの遮断と断熱緩衝材68の位置規制とを実現できる。   Furthermore, since the pressing member 70 is fitted inside the heat insulating cushioning material 68 outside the overlapping portion 50 in the first gap S1, it is possible to realize blocking of high-temperature gas and position regulation of the heat insulating cushioning material 68.

図4の内張り部材32が、対向する端部32a,32a間の中間部32bで外張り部材34に締結されているので、熱膨張による内張り部材32の内側への膨らみを効果的に抑制できる。また、締結箇所を中間部32bの1箇所とすることで、締結部材52を介した外張り部材34への熱伝達も最小限に抑えることができる。さらに、この締結により、天井となる上壁20の断熱材36の厚みで内張り部材32が大きく内側へ変形することも、断熱材36がずれて斜め下方(図2の右側)へ移動することも防止できる。   Since the lining member 32 of FIG. 4 is fastened to the outer lining member 34 at the intermediate portion 32b between the opposing end portions 32a and 32a, the bulging inward of the lining member 32 due to thermal expansion can be effectively suppressed. Moreover, heat transfer to the outer member 34 via the fastening member 52 can be minimized by setting the fastening portion to one portion of the intermediate portion 32b. Further, by this fastening, the lining member 32 may be greatly deformed inward by the thickness of the heat insulating material 36 of the upper wall 20 serving as the ceiling, or the heat insulating material 36 may be shifted and moved obliquely downward (right side in FIG. 2). Can be prevented.

本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。例えば、上記実施形態では、各壁20,22,24において、内張り部材32が断熱材36を介して外張り部材34に相対移動可能に連結されているが、各壁20,22,24の少なくとも一つにおいて、内張り部材32が断熱材36を介して外張り部材34に相対移動可能に連結されていればよい。したがって、そのようなものも本発明の範囲内に含まれる。   The present invention is not limited to the above-described embodiment, and various additions, modifications, or deletions can be made without departing from the gist of the present invention. For example, in the above embodiment, the lining member 32 is connected to the outer lining member 34 via the heat insulating material 36 in each of the walls 20, 22, and 24 so as to be relatively movable. In one case, the lining member 32 may be connected to the outer lining member 34 through the heat insulating material 36 so as to be relatively movable. Therefore, such a thing is also included in the scope of the present invention.

8 高温ガス通路
10 保温ダクト
18 ケーシング
20 上壁
22 下壁
24 側壁
32 内張り部材
34 外張り部材
36 断熱材
36a 断熱材の端面
44 係止片
50 重合部
68 断熱緩衝材
70 押さえ部材
S1 第1の隙間(隣接する壁の間の隙間)
8 Hot gas passage 10 Thermal insulation duct 18 Casing 20 Upper wall 22 Lower wall 24 Side wall 32 Inner member 34 Outer member 36 Insulating material 36a End surface 44 of insulating material 50 Locking piece 50 Superposition part 68 Insulating buffer material 70 Holding member S1 First Gap (gap between adjacent walls)

Claims (7)

高温ガス通路を形成するケーシングが、前記高温ガス通路に露出した金属板製の内張り部材と、金属板製の外張り部材と、その間に介装された可撓性の断熱材とを有し、
前記内張り部材が、前記断熱材に係止されて、前記断熱材を介して前記外張り部材に相対移動可能に連結されている高温ガスの保温ダクト。
The casing forming the high temperature gas passage has a metal plate lining member exposed in the high temperature gas passage, a metal plate lining member, and a flexible heat insulating material interposed therebetween.
A high temperature gas heat insulation duct in which the lining member is locked to the heat insulating material and is connected to the outer lining member through the heat insulating material so as to be relatively movable.
請求項1に記載の高温ガスの保温ダクトにおいて、前記内張り部材の端部に、外側へ突出して前記断熱材の端面に係止される係止片が設けられている高温ガスの保温ダクト。   2. The hot gas heat insulation duct according to claim 1, wherein an engagement piece that protrudes outward and is engaged with an end surface of the heat insulating material is provided at an end portion of the lining member. 請求項2に記載の高温ガスの保温ダクトにおいて、前記内張り部材の前記係止片の内側部分が、折り曲げられて重合した重合部を有し、前記係止片の外側部分が前記外張り部材に固定されている高温ガスの保温ダクト。   The heat insulation duct for high-temperature gas according to claim 2, wherein an inner portion of the locking piece of the lining member has a superposed portion that is bent and overlapped, and an outer portion of the locking piece is formed on the outer lining member. Fixed hot gas insulation duct. 請求項1から3のいずれか一項に記載の高温ガスの保温ダクトにおいて、前記ケーシングは、平板状の上壁、下壁、および一対の側壁が連結されて横断面矩形の前記高温ガス通路を形成しており、
前記各壁において前記内張り部材が、前記断熱材を介して前記外張り部材に相対移動可能に連結されている高温ガスの保温ダクト。
The high temperature gas heat insulation duct according to any one of claims 1 to 3, wherein the casing has a flat upper wall, a lower wall, and a pair of side walls connected to each other to form the hot gas passage having a rectangular cross section. Formed,
A heat insulation duct for high-temperature gas in which the lining member is connected to the outer lining member via the heat insulating material so as to be relatively movable in each wall.
請求項4に記載の高温ガスの保温ダクトにおいて、前記内張り部材の前記係止片の内側部分が、折り曲げられて重合した重合部を有し、
隣接する壁の間の隙間に、前記重合部と、その外側に位置する断熱緩衝材とが配置されている高温ガスの保温ダクト。
The heat insulation duct for high-temperature gas according to claim 4, wherein an inner portion of the locking piece of the lining member has a superposed portion that is bent and superposed.
A heat-insulating duct for high-temperature gas, in which the overlapping portion and a heat-insulating buffer material located outside the overlapping portion are arranged in a gap between adjacent walls.
請求項5に記載の高温ガスの保温ダクトにおいて、前記断熱緩衝材の内側で前記隙間に弾性的に嵌め込まれて前記高温ガスの遮断と前記断熱緩衝材の位置規制とを行う押さえ部材を備えた高温ガスの保温ダクト。   The heat insulation duct for high-temperature gas according to claim 5, further comprising a pressing member that is elastically fitted into the gap inside the heat-insulating buffer material and blocks the high-temperature gas and restricts the position of the heat-insulating buffer material. High temperature gas insulation duct. 請求項1〜6のいずれか一項に記載の高温ガスの保温ダクトにおいて、前記内張り部材が、対向する端部間の中間部で前記外張り部材に締結されている高温ガスの保温ダクト。   The hot gas insulation duct according to any one of claims 1 to 6, wherein the lining member is fastened to the outer member at an intermediate portion between opposing ends.
JP2013048871A 2013-03-12 2013-03-12 Hot gas insulation duct Expired - Fee Related JP5503767B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013048871A JP5503767B1 (en) 2013-03-12 2013-03-12 Hot gas insulation duct
PCT/JP2014/055381 WO2014141936A1 (en) 2013-03-12 2014-03-04 Heat-retaining duct for high-temperature gas
TW103108494A TWI485320B (en) 2013-03-12 2014-03-11 Thermal insulating duct for high temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048871A JP5503767B1 (en) 2013-03-12 2013-03-12 Hot gas insulation duct

Publications (2)

Publication Number Publication Date
JP5503767B1 JP5503767B1 (en) 2014-05-28
JP2014173553A true JP2014173553A (en) 2014-09-22

Family

ID=50941819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048871A Expired - Fee Related JP5503767B1 (en) 2013-03-12 2013-03-12 Hot gas insulation duct

Country Status (3)

Country Link
JP (1) JP5503767B1 (en)
TW (1) TWI485320B (en)
WO (1) WO2014141936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096605A (en) * 2015-11-27 2017-06-01 三菱日立パワーシステムズ株式会社 Gas passageway, manufacturing method for heat recovery steam generator having the same and for the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238841A (en) * 1994-02-25 1995-09-12 Mitsubishi Heavy Ind Ltd Expansion joint structure
JPH10176530A (en) * 1996-12-19 1998-06-30 Hitachi Ltd Non-metallic telescopic joint
TWI308201B (en) * 2003-08-01 2009-04-01 Babcock Hitachi Kk
EP2283218B1 (en) * 2008-03-31 2016-04-27 Mitsubishi Heavy Industries, Ltd. Thermal insulation structure
JP5039684B2 (en) * 2008-11-28 2012-10-03 三菱重工業株式会社 silencer
CN101806382A (en) * 2010-04-12 2010-08-18 山西省交通科学研究院 Metal heat-preserving delivery hose
DE102011114060A1 (en) * 2011-09-22 2013-03-28 Ihi Charging Systems International Gmbh Heat shield for an exhaust gas turbocharger and arrangement of a heat shield between two housing parts of an exhaust gas turbocharger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096605A (en) * 2015-11-27 2017-06-01 三菱日立パワーシステムズ株式会社 Gas passageway, manufacturing method for heat recovery steam generator having the same and for the same

Also Published As

Publication number Publication date
JP5503767B1 (en) 2014-05-28
TW201502360A (en) 2015-01-16
TWI485320B (en) 2015-05-21
WO2014141936A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP6817200B2 (en) Heterogeneous fittings during high temperature, high pressure transients and under periodic loads
JP5503767B1 (en) Hot gas insulation duct
WO2011063613A1 (en) Sealing structure of water cooling screen passing through water wall
JP5237064B2 (en) Exhaust duct
JP5616995B2 (en) Opening and closing device for hot gas passage
US20170009658A1 (en) Insulation support system for an exhaust gas system
JP5696064B2 (en) Exhaust gas catalytic equipment
KR100942183B1 (en) Duct assembly for flue
KR100942657B1 (en) Mechanical sleeve type expansion joint of heat recovery system generator
JP6594182B2 (en) Gas passage, exhaust heat recovery boiler having the same, and method for manufacturing gas passage
JP2009024631A (en) Gas turbine facility
JP4031726B2 (en) Expansion joint and its assembly method
US10605401B2 (en) Expansion joint containing dynamic flange
RU132518U1 (en) HIGH TEMPERATURE FABRIC COMPENSATOR
JP5461648B2 (en) Exhaust duct
RU183124U1 (en) EXHAUST GAS-TURBINE UNIT
US10480351B2 (en) Segmented liner
JP6691834B2 (en) Heat transfer tube of fluidized bed boiler
RU160651U1 (en) EXHAUST PIPING OF A GAS-TURBINE INSTALLATION
JP6653186B2 (en) Refractory structures
CN210069814U (en) Gas boiler with expansion joint
JP2008190611A (en) Expansion joint using stainless steel bellows pipe
CN103421921B (en) Valve body of hot blast valve
JP3177117U (en) Repair jig for heat exchanger
RU2267689C2 (en) Device for compensation of relocations of a gas duct

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5503767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees