JP2014173013A - Cationic polyketone porous membrane - Google Patents

Cationic polyketone porous membrane Download PDF

Info

Publication number
JP2014173013A
JP2014173013A JP2013047313A JP2013047313A JP2014173013A JP 2014173013 A JP2014173013 A JP 2014173013A JP 2013047313 A JP2013047313 A JP 2013047313A JP 2013047313 A JP2013047313 A JP 2013047313A JP 2014173013 A JP2014173013 A JP 2014173013A
Authority
JP
Japan
Prior art keywords
polyketone
porous membrane
polyketone porous
filter
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013047313A
Other languages
Japanese (ja)
Other versions
JP6110694B2 (en
Inventor
Masayuki Kaneda
真幸 金田
Daisuke Sato
大輔 佐藤
Toru Morita
徹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2013047313A priority Critical patent/JP6110694B2/en
Publication of JP2014173013A publication Critical patent/JP2014173013A/en
Application granted granted Critical
Publication of JP6110694B2 publication Critical patent/JP6110694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyketone porous membrane which is useful as a filter for filtration having high fraction performance of cationic particles as a filter for filtration with long service life of filtration, and which has heat resistance and chemical resistance, and which can remove anionic particles, gels, and anion.SOLUTION: The polyketone porous membrane is made of polyketone including a 1-oxo trimethylene repeated unit represented by the chemical formula (1), and the porous membrane has 5-90% of void, and +5 mV to +80 mV of zeta potential.

Description

本発明は、ポリケトン多孔膜及びその用途に関する。さらに詳しくは、本発明は、粒子及びゲル吸着性、イオン吸着性、及び粒子分画性に優れた、ポリケトン多孔膜を含む液体ろ過フィルターに関する。   The present invention relates to a polyketone porous membrane and its use. More specifically, the present invention relates to a liquid filtration filter including a polyketone porous membrane having excellent particle and gel adsorption properties, ion adsorption properties, and particle fractionation properties.

近年、半導体・電子部品製造、バイオ医薬品分野、ケミカル分野、食品工業分野の製造プロセスにおいて、微粒子、ゲル、ウイルス等の不純物を効率的に除去することができる濾材が求められている。濾過対象物のサイズよりも小さい孔径の濾材を使用すれば、上記不純物はある程度までは除去可能である。しかしながら、一般に孔径が小さくなる程、濾過における圧力損失が大きくなり、透過流速が減少してしまう。そこで、極めて小さい不純物を十分に濾過でき、なおかつ圧力損失が少ない濾材が求められている。また、ゲルのような比較的柔らかい異物は、せん断を受けた際に変形し、一旦フィルターで捕捉されても作用する圧力によりフィルターから押し出されてしまう。近年、光学用途用のポリマー、半導体製造用のレジスト、液晶ディスプレー製造用顔料分散レジスト、セラミックコンデンサースラリー中のバインダー樹脂等において、ゲル状異物除去への高精度濾過の要求が高まっている。一部のフィルターでは、処理気液が有機溶媒である場合、腐食性を有する場合があり、また高温環境下で使用される場合もある。このような場合、フィルターには耐薬品性、化学安定性、耐熱性が要求される場合が多い。現在、微小な不純物等の除去が可能で、かつ耐薬品性を持つ濾材として、ポリエチレン多孔膜またはポリテトラエチレン多孔膜が用いられている。しかしながら、ポリエチレン多孔膜は耐熱性が低いという問題がある。また、ポリテトラフルオロエチレン多孔膜は非常に高価であり、10nm程度の微小な不純物を除去できる孔径を持った濾材を作りにくいという問題がある。更に、上記濾材は共に疎水性であり、水系の処理液を濾過する場合には、濾材に予め親水化処理を施しておくか、濾材を使用前にアルコール浸漬してから使用しなければならないという問題がある。   In recent years, filter media capable of efficiently removing impurities such as fine particles, gels and viruses have been demanded in manufacturing processes in semiconductor / electronic component manufacturing, biopharmaceutical field, chemical field and food industry field. If a filter medium having a pore size smaller than the size of the object to be filtered is used, the impurities can be removed to some extent. However, in general, the smaller the pore size, the greater the pressure loss in filtration and the lower the permeate flow rate. Therefore, there is a demand for a filter medium that can sufficiently filter very small impurities and has little pressure loss. Moreover, a relatively soft foreign substance such as a gel is deformed when subjected to shearing, and is pushed out of the filter by the pressure that acts even if it is once captured by the filter. In recent years, there is an increasing demand for high-precision filtration for removing gel-like foreign substances in polymers for optical applications, resists for semiconductor production, pigment dispersion resists for liquid crystal display production, binder resins in ceramic capacitor slurries, and the like. In some filters, when the treatment gas / liquid is an organic solvent, it may be corrosive and may be used in a high temperature environment. In such cases, the filter is often required to have chemical resistance, chemical stability, and heat resistance. At present, a polyethylene porous membrane or a polytetraethylene porous membrane is used as a filter medium capable of removing minute impurities and having chemical resistance. However, the polyethylene porous membrane has a problem of low heat resistance. Further, the polytetrafluoroethylene porous membrane is very expensive, and there is a problem that it is difficult to make a filter medium having a pore diameter capable of removing minute impurities of about 10 nm. Furthermore, both of the above filter media are hydrophobic, and when filtering an aqueous treatment liquid, the filter media must be subjected to hydrophilic treatment in advance, or the filter media must be used after being immersed in alcohol before use. There's a problem.

一方、セラミックコンデンサーの原料スラリーや半導体研磨用のCMPスラリーでは、粒子分画用フィルターとしても、多孔膜が用いられている。現在使用されている分画フィルター用濾材としてはポリプロピレン不織布等が用いられているが、濾過精度が低く、また濾過抵抗が高いという問題がある。   On the other hand, a porous film is also used as a particle fraction filter in ceramic capacitor material slurry and semiconductor polishing CMP slurry. Polypropylene nonwoven fabric or the like is used as a filter material for a fraction filter currently used, but there are problems that filtration accuracy is low and filtration resistance is high.

ところで、パラジウム又はニッケルを触媒として一酸化炭素とオレフィンとを重合させることにより得られる、一酸化炭素とオレフィンとが完全交互共重合した脂肪族ポリケトン(以下、ポリケトンともいう。)が知られている。ポリケトンは、その高い結晶性により、繊維又はフィルムとしたときに、高力学物性、高融点、耐有機溶媒性及び耐薬品性等の特性を有する。特に、オレフィンがエチレンの場合、該ポリケトンの融点は240℃以上となる。このようなポリケトンは、例えば、ポリエチレンと比較して耐熱性に優れる。従って、ポリケトンを加工して多孔膜とすることで得られるポリケトン多孔膜も、耐熱性と耐薬品性とを持つ。更に、ポリケトンは水及び各種有機溶媒との親和性があること、また、原料の一酸化炭素及びエチレンは比較的安価であり、ポリケトンのポリマー価格が安くなる可能性があることから、孔径の小さいポリケトン多孔膜は濾材として産業上の活用が期待できる。   By the way, an aliphatic polyketone (hereinafter also referred to as a polyketone) obtained by polymerizing carbon monoxide and an olefin using palladium or nickel as a catalyst and in which carbon monoxide and an olefin are completely alternately copolymerized is known. . Due to its high crystallinity, polyketone has properties such as high mechanical properties, high melting point, organic solvent resistance and chemical resistance when it is made into a fiber or film. In particular, when the olefin is ethylene, the melting point of the polyketone is 240 ° C. or higher. Such a polyketone is excellent in heat resistance as compared with polyethylene, for example. Therefore, the polyketone porous film obtained by processing polyketone to form a porous film also has heat resistance and chemical resistance. In addition, since the polyketone has an affinity with water and various organic solvents, and since carbon monoxide and ethylene as raw materials are relatively inexpensive, the polymer price of the polyketone may be reduced, so the pore size is small. Polyketone porous membranes are expected to be industrially utilized as filter media.

ポリケトン多孔膜が濾材として有用であることは、例えば、以下の特許文献1及び特許文献2に記載されている。しかしながら、特許文献1及び特許文献2に開示されたポリケトン多孔膜は、孔径より大きなサイズの粒子の除去は可能であるものの、濾過抵抗が大きく、交換頻度も高く、濾過寿命が不十分であるという問題を有していた。また、小さなゲル状異物に対しては、濾過精度が不十分であった。   The fact that the polyketone porous membrane is useful as a filter medium is described in, for example, Patent Document 1 and Patent Document 2 below. However, although the polyketone porous membrane disclosed in Patent Document 1 and Patent Document 2 can remove particles having a size larger than the pore diameter, it has high filtration resistance, high replacement frequency, and insufficient filtration life. Had a problem. In addition, the filtration accuracy was insufficient for small gel-like foreign matters.

一方、特許文献1及び特許文献2に開示されたポリケトン多孔膜を粒子分画フィルターに用いた場合は、分画性能についてはある程度目的を達成することが可能であるものの、吸着による収率低下や濾過寿命が短くなるとい問題があった。   On the other hand, when the polyketone porous membrane disclosed in Patent Document 1 and Patent Document 2 is used for a particle fraction filter, the objective of the fractionation performance can be achieved to some extent, There was a problem when the filtration life was shortened.

特開平2−4431号公報Japanese Patent Laid-Open No. 2-4431 特開2002−348401号公報JP 2002-348401 A

本発明が解決しようとする課題は、耐熱性および耐薬品性を有し、アニオン性粒子、ゲル及びアニオンの除去が可能であり、かつ、濾過寿命が長い濾過用フィルターとして、並びに、カチオン性粒子の分画性能が高い濾過用フィルターとして有用なポリケトン多孔膜を提供することである。   The problem to be solved by the present invention is a filter for filtration having heat resistance and chemical resistance, capable of removing anionic particles, gels and anions, and having a long filtration life, and cationic particles. It is to provide a polyketone porous membrane useful as a filter for filtration having a high fractionation performance.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、正のゼータ電位を有するポリケトン多孔膜が上記課題を解決することを発見し、本発明に至った。すなわち本発明は、以下の[1]〜[8]に記載する通りのものである。
[1]下記化学式(1):

Figure 2014173013
で表される1−オキソトリメチレン繰り返し単位を含むポリケトンからなるポリケトン多孔膜であって、該多孔膜の空隙率が5〜90%であり、かつ、該多孔膜のゼータ電位が+5mV〜+80mVであることを特徴とするポリケトン多孔膜。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a polyketone porous film having a positive zeta potential can solve the above-mentioned problems, and have reached the present invention. That is, the present invention is as described in the following [1] to [8].
[1] The following chemical formula (1):
Figure 2014173013
A polyketone porous membrane comprising a polyketone containing a 1-oxotrimethylene repeating unit represented by: wherein the porosity of the porous membrane is 5 to 90%, and the zeta potential of the porous membrane is +5 mV to +80 mV A polyketone porous membrane characterized by being.

[2]1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩からなる群から選ばれる1つ以上の官能基を含み、かつ、陰イオン交換容量が0.01〜10ミリ当量/gである、前記[1]に記載のポリケトン多孔膜。   [2] One or more functional groups selected from the group consisting of primary amino groups, secondary amino groups, tertiary amino groups, and quaternary ammonium salts, and an anion exchange capacity of 0.01 to 10 The polyketone porous membrane according to [1], which has milliequivalents / g.

[3]前記[1]又は[2]に記載のポリケトン多孔膜を有する濾過用フィルター。   [3] A filter for filtration having the polyketone porous membrane according to [1] or [2].

[4]粒子又はゲル吸着除去用フィルターである、前記[3]に記載の濾過用フィルター。   [4] The filter for filtration according to [3], which is a filter for removing particles or gels.

[5]イオン吸着用フィルターである、前記[3]に記載の濾過用フィルター。   [5] The filtration filter according to [3], which is an ion adsorption filter.

[6]粒子分画用フィルターである、前記[3]に記載の濾過用フィルター。   [6] The filter for filtration according to [3], which is a filter for particle fractionation.

本発明のポリケトン多孔膜を液体ろ過フィルターとして用いた場合、正のゼータ電位を有するためアニオン性粒子に対する吸着力に優れ、多孔膜の孔径よりも小さなアニオン性粒子を除去することが可能となり、目詰まりが極めて少なく、長時間その性能が維持されるため、フィルター交換の頻度を少なくすることが可能となる。さらに、ゲルのように圧力によって変形し、従来の多孔膜フィルターではすり抜けが起こるような異物に対しても、低圧で濾過を行うことが可能となる。例えば、半導体製造に使用されるフォトレジスト溶液中の小サイズの未溶解ゲル状異物を除去することが可能となり、マイクロブリッジ欠陥の発生頻度が抑えられるため、半導体デバイス製造における収率を格段に向上させることが出来る。また、その性能が長時間にわたり維持されるため、フィルター交換頻度が減少し、コストダウンにも貢献することが可能である。   When the polyketone porous membrane of the present invention is used as a liquid filtration filter, since it has a positive zeta potential, it has excellent adsorption power to anionic particles, and anionic particles smaller than the pore size of the porous membrane can be removed. Since the clogging is extremely small and the performance is maintained for a long time, the frequency of filter replacement can be reduced. Furthermore, it is possible to perform filtration at a low pressure even for foreign substances that are deformed by pressure, such as gel, and slip through the conventional porous membrane filter. For example, it is possible to remove small-sized undissolved gel-like foreign substances in the photoresist solution used in semiconductor manufacturing, and the frequency of microbridge defects can be suppressed, which significantly improves the yield in semiconductor device manufacturing. It can be made. In addition, since the performance is maintained for a long time, the frequency of filter replacement is reduced, which can contribute to cost reduction.

以下、本発明を詳細に説明する。
本発明の一態様は、一酸化炭素とエチレン性不飽和化合物が交互に共重合した下記化学式(1):

Figure 2014173013
で表される1−オキソトリメチレン繰り返し単位を含むポリケトンからなるポリケトン多孔膜を含む。本発明のポリケトン膜は実質的にポリケトンのみで構成されていてもよし、ポリケトンと別の材料(例えば、一つ以上の不織布)とを複合化して構成してもよい。 Hereinafter, the present invention will be described in detail.
One embodiment of the present invention is the following chemical formula (1) in which carbon monoxide and an ethylenically unsaturated compound are alternately copolymerized:
Figure 2014173013
The polyketone porous film which consists of a polyketone containing the 1-oxo trimethylene repeating unit represented by these is included. The polyketone film of the present invention may be substantially composed of only a polyketone, or may be composed of a composite of a polyketone and another material (for example, one or more nonwoven fabrics).

ポリケトン多孔膜中のポリケトンの含有率は、ポリケトンが本来持つ耐熱性及び耐薬品性を反映させるという観点から、多いほど好ましい。別の材料と複合化されない平膜状である場合、ポリケトン多孔膜中のポリケトン含有率は、70〜100質量%が好ましく、80〜100質量%がより好ましく、90〜100質量%が更に好ましい。また、不織布等が複合化されているポリケトン多孔複合膜では、ポリケトンが持つ耐熱性及び耐薬品性と、不織布等が持つ力学特性を両立させるという観点から、ポリケトン多孔複合膜中のポリケトン含有率は、10〜70質量%が好ましく、10〜60質量%がより好ましく、10〜50質量%が更に好ましい。ポリケトン多孔膜中のポリケトンには、0〜30重量%lの割合で他の繰り返し単位があってもよい。ポリケトン多孔膜中のポリケトンの含有率は、該多孔膜を構成する成分のうちポリケトンのみを溶解する溶媒によってポリケトンを溶解除去する方法、又は、ポリケトン以外を溶解する溶媒によってポリケトン以外を溶解除去する方法によって確認される。   The content of the polyketone in the polyketone porous film is preferably as large as possible from the viewpoint of reflecting the heat resistance and chemical resistance inherent in the polyketone. In the case of a flat film that is not combined with another material, the polyketone content in the polyketone porous film is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass. In addition, in the polyketone porous composite film in which a nonwoven fabric or the like is combined, the polyketone content in the polyketone porous composite film is from the viewpoint of achieving both the heat resistance and chemical resistance of the polyketone and the mechanical properties of the nonwoven fabric and the like. 10-70 mass% is preferable, 10-60 mass% is more preferable, 10-50 mass% is still more preferable. The polyketone in the polyketone porous film may have other repeating units at a ratio of 0 to 30% by weight. The polyketone content in the polyketone porous membrane is determined by a method of dissolving and removing the polyketone with a solvent that dissolves only the polyketone among the components constituting the porous membrane, or a method of dissolving and removing other than the polyketone with a solvent that dissolves other than the polyketone Confirmed by.

本発明のポリケトン多孔膜の空隙率は5〜90%である。空隙率は、下記数式:
空隙率(%)=(1−G/ρ/V)×100
{式中、Gはポリケトン多孔膜の質量(g)であり、ρはポリケトン多孔膜を構成する全ての樹脂の質量平均密度(g/cm)であり、そしてVはポリケトン多孔膜の体積(cm)である。}により算出される。上記数式において、質量平均密度ρは、ポリケトン多孔膜が、ポリケトンとは密度の異なる樹脂と、ポリケトン樹脂との複合化によって構成される場合、各々の樹脂の密度にその構成質量比率を乗じた値の和である。例えば、ρA及びρBの密度をそれぞれ持つ繊維がGA及びGBの質量比率で構成された不織布に、密度ρpのポリケトンがGpの質量比率で複合されているときには、質量平均密度は、下記数式:
質量平均密度=(ρA・GA+ρB・GB+ρp・Gp)/(GA+GB+Gp)
で表される。空隙率が5%より低いポリケトン多孔膜は、例えば、濾材として用いられる場合、透過流束が小さい、粒子捕集効率が悪い、閉塞までの時間が短い等の不具合を生じる。本発明のポリケトン多孔膜の空隙率としては30〜90%がより好ましく、40〜90%が更に好ましく、50〜90%が最も好ましい。
The porosity of the polyketone porous membrane of the present invention is 5 to 90%. The porosity is the following formula:
Porosity (%) = (1−G / ρ / V) × 100
{In the formula, G is the mass (g) of the polyketone porous membrane, ρ is the mass average density (g / cm 3 ) of all resins constituting the polyketone porous membrane, and V is the volume of the polyketone porous membrane ( cm 3 ). }. In the above formula, the mass average density ρ is a value obtained by multiplying the density of each resin by its constituent mass ratio when the polyketone porous film is composed of a resin having a density different from that of the polyketone and a polyketone resin. Is the sum of For example, when a polyketone having a density ρp is combined with a mass ratio of Gp on a non-woven fabric in which fibers having a density of ρA and ρB are configured by a mass ratio of GA and GB, the mass average density is expressed by the following formula:
Mass average density = (ρA · GA + ρB · GB + ρp · Gp) / (GA + GB + Gp)
It is represented by For example, when the polyketone porous membrane having a porosity of less than 5% is used as a filter medium, problems such as a small permeation flux, poor particle collection efficiency, and a short time until clogging occur. The porosity of the polyketone porous membrane of the present invention is more preferably 30 to 90%, still more preferably 40 to 90%, and most preferably 50 to 90%.

ポリケトン多孔膜は、平均貫通孔径10〜50000nmを有する。
平均貫通孔径は、ハーフドライ法(ASTM E1294−89に準拠)により測定される値である。平均貫通孔径が10nmより小さいポリケトン多孔膜が例えば濾材として用いられた場合、平均貫通孔径が小さすぎるために圧力損失の著しい増大又は透過流束の著しい減少が起こる。一方、平均貫通孔径が50000nmより大きいポリケトン多孔膜が例えば濾過用フィルターとして用いられた場合、平均貫通孔径が大きすぎて除去可能な粒子が限られてしまう。ポリケトン多孔膜の平均貫通孔径は、20〜40000nmがより好ましく、30〜30000nmが更に好ましく、50〜20000nmが特に好ましい。
The polyketone porous membrane has an average through-hole diameter of 10 to 50000 nm.
The average through-hole diameter is a value measured by a half dry method (based on ASTM E1294-89). When a polyketone porous membrane having an average through-hole diameter of less than 10 nm is used, for example, as a filter medium, the average through-hole diameter is too small, resulting in a significant increase in pressure loss or a significant decrease in permeation flux. On the other hand, when a polyketone porous membrane having an average through-hole diameter larger than 50000 nm is used as a filter for filtration, for example, the average through-hole diameter is too large and the particles that can be removed are limited. The average through-hole diameter of the polyketone porous membrane is more preferably 20 to 40000 nm, still more preferably 30 to 30000 nm, and particularly preferably 50 to 20000 nm.

本発明のポリケトン多孔膜は、ゼータ電位+5.0〜+80mVを有する。ゼータ電位が+5.0mVより低いポリケトン多孔膜では、アニオン性粒子に対する吸着力が弱く、十分な除去性能を発揮できない。また、カチオン性粒子の分画フィルターとして用いる場合には、吸着によるロスにより得られる粒子の収率が減るという問題が生じる。一方、ゼータ電位が+80mVより大きい場合は、ポリケトン膜の強度低下が起こり使用できない、また、目詰まりが起こり流量圧損が大きくなるなどの問題が生じる場合がある。ポリケトン多孔膜のゼータ電位は+5.0〜+60mVが好ましく、+5.0〜+50mVがより好ましい。   The polyketone porous membrane of the present invention has a zeta potential of +5.0 to +80 mV. In a polyketone porous membrane having a zeta potential lower than +5.0 mV, the adsorptive power with respect to anionic particles is weak, and sufficient removal performance cannot be exhibited. Further, when used as a fractional filter for cationic particles, there arises a problem that the yield of particles obtained due to loss due to adsorption is reduced. On the other hand, when the zeta potential is larger than +80 mV, the polyketone film may be unusable due to a decrease in strength, and may cause problems such as clogging and increased flow pressure loss. The zeta potential of the polyketone porous membrane is preferably +5.0 to +60 mV, more preferably +5.0 to +50 mV.

ポリケトン多孔膜の形状は特に限定されない。しかしながら、好ましい例として、ポリケトン多孔膜は平膜状であり、別の好ましい例として、ポリケトン多孔膜は長手方向に貫通した1つ以上の空隙を有する中空糸膜である。ポリケトン多孔膜の形状は目的・用途に応じて使い分けることができる。また、本発明のポリケトン多孔膜は、ポリケトンと少なくとも1つの不織布とが複合化されたものであることができる。   The shape of the polyketone porous membrane is not particularly limited. However, as a preferred example, the polyketone porous membrane has a flat membrane shape, and as another preferred example, the polyketone porous membrane is a hollow fiber membrane having one or more voids penetrating in the longitudinal direction. The shape of the polyketone porous membrane can be properly used according to the purpose and application. In addition, the polyketone porous membrane of the present invention can be a composite of polyketone and at least one nonwoven fabric.

本発明のポリケトン多孔膜は、本来の性能を妨げない範囲内で、無機フィラー、光安定剤、酸化防止剤、帯電防止剤、親水性高分子、タンパク吸着性物質等の、機能性物質を含んでもよい。具体的には、ポリケトン多孔膜は、機械的強度、耐衝撃性、及び耐熱性を上げるために、無機フィラーとしてガラス繊維、カーボン繊維等の無機繊維、又はカーボンナノチューブ等を含んでもよい。また、ポリケトン多孔膜は、光及び酸化に対する安定性を向上させるために、光安定剤として紫外線吸収剤、ヒンダードアミン系光安定剤等を含んでもよく、酸化防止剤としてフェノール系、リン系、又は硫黄系の酸化防止剤等を含んでもよい。更に、ポリケトン多孔膜は、帯電防止剤として各種界面活性剤等を含んでもよい。   The polyketone porous membrane of the present invention contains a functional substance such as an inorganic filler, a light stabilizer, an antioxidant, an antistatic agent, a hydrophilic polymer, and a protein-adsorbing substance within a range that does not hinder the original performance. But you can. Specifically, the polyketone porous film may contain glass fibers, inorganic fibers such as carbon fibers, or carbon nanotubes as inorganic fillers in order to increase mechanical strength, impact resistance, and heat resistance. In addition, the polyketone porous film may contain an ultraviolet absorber, a hindered amine light stabilizer, etc. as a light stabilizer in order to improve stability against light and oxidation, and a phenol, phosphorus, or sulfur as an antioxidant. A system antioxidant or the like may also be included. Further, the polyketone porous film may contain various surfactants as an antistatic agent.

本発明のポリケトン多孔膜の一態様は、1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム塩からなる群から選ばれる1つ以上の官能基を有する。
官能基を有する形態の例としては、化学結合や物理的に結合した状態が挙げられる。化学結合としては、共有結合のようなものであってもよい。共有結合としては、C−C結合、C=N結合、ピロール環を介する結合などが挙げられる。化学結合する物質としては、ポリマーであってもよいし、分子量の小さいモノマーのようなものであってもよい。一方、物理的に結合した状態としては、水素結合、ファンデルワールス力、静電引力、疎水相互作用のような分子間力によって化学結合を介さずに結合した吸着や付着の様な状態が挙げられる。物理的に結合した状態としては、ポリマーが付着された状態などが挙げられる。ポリマーの分子量が1000以上である場合、物理的な結合力が強く水溶液中でも安定したゼータ電位を発現する。正のゼータ電位を付与するためのポリマーとしては、ポリエチレンイミン、ポリジアリルジメチルアンモニウムクロリド、アミノ基含有カチオン性ポリ(メタ)アクリル酸エステル、アミノ基含有カチオン性ポリ(メタ)アクリルアミド、ポリアミンアミド−エピクロロヒドリン、ポリアリルアミン、ポリジシアンジアミド、キトサン、カチオン化キトサン、アミノ基含有カチオン化デンプン、アミノ基含有カチオン化セルロース、アミノ基含有カチオン化ポリビニルアルコール及び上記ポリマーの酸塩が挙げられる。また、上記ポリマーあるいはポリマーの酸塩は、他のポリマーとの共重合体であってもよい。十分なゼータ電位を有するという点で、上記ポリマーあるいはポリマーの酸塩の割合は、5〜100重量%、好ましくは30〜100重量%、より好ましくは50〜100重量%である。
One aspect of the polyketone porous membrane of the present invention has one or more functional groups selected from the group consisting of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium salt.
Examples of the form having a functional group include a chemical bond and a physically bonded state. The chemical bond may be a covalent bond. Examples of the covalent bond include a C—C bond, a C═N bond, and a bond via a pyrrole ring. The substance to be chemically bonded may be a polymer or a monomer having a small molecular weight. On the other hand, the physically bonded state includes an adsorbed or adhered state that is bonded without intermediary force such as hydrogen bond, van der Waals force, electrostatic attraction, and hydrophobic interaction. It is done. Examples of the physically bonded state include a state where a polymer is attached. When the molecular weight of the polymer is 1000 or more, the physical binding force is strong and a stable zeta potential is expressed even in an aqueous solution. Polymers for imparting a positive zeta potential include polyethyleneimine, polydiallyldimethylammonium chloride, amino group-containing cationic poly (meth) acrylate, amino group-containing cationic poly (meth) acrylamide, and polyamine amide-epi. Examples include chlorohydrin, polyallylamine, polydicyandiamide, chitosan, cationized chitosan, amino group-containing cationized starch, amino group-containing cationized cellulose, amino group-containing cationized polyvinyl alcohol, and acid salts of the above polymers. The polymer or the acid salt of the polymer may be a copolymer with another polymer. In terms of having a sufficient zeta potential, the proportion of the polymer or the acid salt of the polymer is 5 to 100% by weight, preferably 30 to 100% by weight, more preferably 50 to 100% by weight.

また、ポリケトン多孔膜に正のゼータ電位を付与するという観点で、ポリケトンは下記化学式(2)〜(5):

Figure 2014173013
Figure 2014173013
Figure 2014173013
Figure 2014173013
{式中、Rは、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基からなる群から選ばれる1つ以上の官能基を含む置換基である。}で表される構造のいずれかを含む共重合体であってもよい。 Further, from the viewpoint of imparting a positive zeta potential to the polyketone porous membrane, the polyketone has the following chemical formulas (2) to (5):
Figure 2014173013
Figure 2014173013
Figure 2014173013
Figure 2014173013
{In the formula, R is a substituent containing one or more functional groups selected from the group consisting of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group. }, A copolymer containing any of the structures represented by:

1級アミノ基としては−R1−NH(R1は炭素数1〜20の直鎖状または分岐状アルキレン鎖である。)が挙げられる。また、2級アミノ基としては、−R1−NR2H(R1は炭素数1〜20の直鎖状又は分岐状アルキレン鎖であり、そして、R2は炭素数1〜20の直鎖状又は分岐状アルキル基である。)が挙げられる。さらに、3級アミノ基としては、−R1−NR2R3(R1は炭素数1〜20の直鎖状又は分岐状アルキレン鎖であり、そしてR2とR3は炭素数1〜20の直鎖状又は分岐状アルキル基である。)が挙げられる。そして、4級アンモニウム塩としては−R1−NR2R3R4X(R1は炭素数1〜20の直鎖状又は分岐状アルキレン鎖であり、R2、R3及びR4は炭素数1〜20の直鎖状又は分岐状アルキル基であり、そしてXはF、Cl、Br、I、CHSO などのアニオンである。)が挙げられる。 The primary amino group (R1 is a linear or branched alkylene chain having 1 to 20 carbon atoms.) -R1-NH 2 and the like. As the secondary amino group, -R1-NR2H (R1 is a linear or branched alkylene chain having 1 to 20 carbon atoms, and R2 is a linear or branched alkyl group having 1 to 20 carbon atoms. Group). Further, as the tertiary amino group, -R1-NR2R3 (R1 is a linear or branched alkylene chain having 1 to 20 carbon atoms, and R2 and R3 are linear or branched structures having 1 to 20 carbon atoms. An alkyl group). As the quaternary ammonium salt, -R1-NR2R3R4X (R1 is a linear or branched alkylene chain having 1 to 20 carbon atoms, and R2, R3 and R4 are linear or branched structures having 1 to 20 carbon atoms. An alkyl group, and X is an anion such as F , Cl , Br , I and CH 3 SO 3 ).

本発明の一態様に係るポリケトン多孔膜の陰イオン交換容量は、0.01〜10ミリ当量/gであることが好ましい。陰イオン交換容量は、該膜を一定量の塩酸で処理し、消費された塩酸量を水酸化ナトリウムで中和滴定した場合、下記の方法により求められる。
5重量%水酸化ナトリウム水溶液200mlをビーカー(ビーカーAとする)に入れ、ポリケトン多孔膜を30分間浸漬した後、取り出す。取り出したポリケトン多孔膜を更に15分間水洗した後、別のビーカー(ビーカーBとする)に入れる。これに、濃度Xモル/lの塩酸をYml入れて、上記のポリケトン膜30分間浸漬した後、ポリケトン多孔膜を取り出す。取り出したポリケトン多孔膜は50mlの水で洗浄し、ビーカーB内の液に加える。これを、濃度1モル/lの水酸化ナトリウム水溶液で滴定し、下記数式にて容量を算出する。
陰イオン交換容量(ミリ当量/g)=[X(モル/l) × Y(ml) − 1(モル/l)× 滴定に要した水酸化ナトリウム水溶液量(ml)]/サンプル重量(g)
The anion exchange capacity of the polyketone porous membrane according to one embodiment of the present invention is preferably 0.01 to 10 meq / g. The anion exchange capacity can be obtained by the following method when the membrane is treated with a certain amount of hydrochloric acid and the amount of consumed hydrochloric acid is neutralized and titrated with sodium hydroxide.
200 ml of 5% by weight sodium hydroxide aqueous solution is put in a beaker (beaker A), and the polyketone porous membrane is immersed for 30 minutes and then taken out. The removed polyketone porous membrane is further washed with water for 15 minutes, and then placed in another beaker (beaker B). Into this, Yml of hydrochloric acid having a concentration of X mol / l is put, and after the polyketone film is immersed for 30 minutes, the polyketone porous film is taken out. The removed polyketone porous membrane is washed with 50 ml of water and added to the liquid in the beaker B. This is titrated with an aqueous sodium hydroxide solution having a concentration of 1 mol / l, and the volume is calculated by the following mathematical formula.
Anion exchange capacity (milli equivalent / g) = [X (mol / l) × Y (ml) −1 (mol / l) × amount of aqueous sodium hydroxide required for titration (ml)] / sample weight (g)

陰イオン交換容量が0.01ミリ当量/gより小さいポリケトン多孔膜は、安定して+5mV以上のゼータ電位が得られない場合があり、粒子の捕捉率が低い、効果の持続時間が短いなどの不具合を生じる。一方、10ミリ当量/gより大きい場合は、ゼータ電位の値がばらつき、性能が安定したフィルターを作ることができない。安定したゼータ電位が得られるという点で、上記容量は、0.01〜5ミリ当量/gであることがより好ましく、0.01〜2ミリ当量/gであることが更に好ましい。   A polyketone porous membrane having an anion exchange capacity of less than 0.01 meq / g may not stably obtain a zeta potential of +5 mV or more, has a low particle trapping rate, a short duration of effect, etc. It causes a defect. On the other hand, when it is larger than 10 meq / g, the value of the zeta potential varies and a filter with stable performance cannot be made. In terms of obtaining a stable zeta potential, the capacity is more preferably 0.01 to 5 meq / g, and still more preferably 0.01 to 2 meq / g.

以下、本発明のポリケトン多孔膜の製造方法の一例について説明する。
ポリケトンの重合方法としては、特に制限はないが、例えば、オートクレーブ等の反応容器の溶媒中で、エチレンと一酸化炭素を反応させる。溶媒としては、水、メタノール、エタノール、プロパノール、ブタノール、ヘキサフルオロイソプロパノールが挙げられ、これらの混合溶媒として使用してもよい。より好ましい溶媒としては、重合活性等のコストの観点から、水、メタノールである。ポリケトンの原料としては、一酸化炭素とエチレンが主体となるが、ポリケトンの加工性を考慮して、エチレン以外のプロペン、ヘキセン、シクロヘキセン、スチレン等のエチレン性不飽和化合物を混合させる場合がある。
Hereinafter, an example of the manufacturing method of the polyketone porous membrane of this invention is demonstrated.
The polyketone polymerization method is not particularly limited, but, for example, ethylene and carbon monoxide are reacted in a solvent in a reaction vessel such as an autoclave. Examples of the solvent include water, methanol, ethanol, propanol, butanol, and hexafluoroisopropanol, and may be used as a mixed solvent thereof. More preferred solvents are water and methanol from the viewpoint of costs such as polymerization activity. The raw materials for polyketone are mainly carbon monoxide and ethylene, but in consideration of the processability of polyketone, ethylenically unsaturated compounds such as propene, hexene, cyclohexene and styrene other than ethylene may be mixed.

ポリケトンの重合は、溶媒に溶解した有機金属錯体触媒の存在下で進行する。尚、有機金属錯体触媒とは、周期律表の(a)第10族遷移金属化合物、(b)第15族の原子を有する配位子からなるものである。更に、かかる(a)第10族、(b)第15族の原子を有する配位子に、第3成分として(c)酸を加えてもよい。(a)成分中の第10族遷移金属化合物の例としては、ニッケル又はパラジウムの錯体、カルボン酸塩、リン酸塩、カルバミン酸塩、スルホン酸塩を挙げることができ、その具体例としては、酢酸ニッケル、ニッケルアセチルアセトネート、酢酸パラジウム、トリフルオロ酢酸パラジウム、パラジウムアセチルアセトネート、塩化パラジウム等を挙げることができる。(b)成分の第15族の原子を有する配位子の例としては、1,3−ビス(ジフェニルホスフィノ)プロパン、1,3−ビス{ジ(2−メトキシフェニル)ホスフィノ}プロパン等のリン二座配位子を挙げることができる。(c)酸の例としては、トリフルオロ酢酸、メタンスルホン酸、p−トルエンスルホン酸のpKaが4以下の有機酸の陰イオンを挙げることができる。   Polymerization of polyketone proceeds in the presence of an organometallic complex catalyst dissolved in a solvent. The organometallic complex catalyst is composed of (a) a Group 10 transition metal compound of the periodic table and (b) a ligand having a Group 15 atom. Furthermore, an acid (c) may be added as a third component to the ligand having an atom of Group 10 (a) and Group 15 (b). Examples of Group 10 transition metal compounds in component (a) include nickel or palladium complexes, carboxylates, phosphates, carbamates, and sulfonates. Specific examples thereof include: Examples thereof include nickel acetate, nickel acetylacetonate, palladium acetate, palladium trifluoroacetate, palladium acetylacetonate, and palladium chloride. Examples of ligands having a Group 15 atom of component (b) include 1,3-bis (diphenylphosphino) propane, 1,3-bis {di (2-methoxyphenyl) phosphino} propane, and the like. Mention may be made of phosphorus bidentate ligands. (C) As an example of an acid, the anion of organic acid whose pKa of trifluoroacetic acid, methanesulfonic acid, and p-toluenesulfonic acid is 4 or less can be mentioned.

有機金属錯体触媒として用いる遷移金属化合物(a)の使用量は、他の重合条件によってその好適な値が異なるため、一概にその範囲を定めることはできないが、好ましくは反応帯域の容量1リットル当り0.1〜1000マイクロモルである。反応帯域の容量とは、反応器中の液相容量をいう。配位子(b)の使用量も制限されるものではないが、遷移金属化合物1モル当たり0.8〜3モルである。酸(c)の使用量は、パラジウム化合物1モル当たり、0.1〜100モルである。   The amount of the transition metal compound (a) used as the organometallic complex catalyst varies depending on the other polymerization conditions, and therefore the range cannot generally be determined. 0.1 to 1000 micromolar. The capacity of the reaction zone refers to the liquid phase capacity in the reactor. Although the usage-amount of a ligand (b) is not restrict | limited, It is 0.8-3 mol per mol of transition metal compounds. The usage-amount of an acid (c) is 0.1-100 mol per mol of palladium compounds.

有機金属錯体触媒は、遷移金属化合物(a)、配位子(b)、及び好ましくは酸(c)を混合することによって生成する。有機金属錯体触媒の使用法についての制限はないが、予め、各成分の混合物からなる有機金属錯体触媒を調製してから反応容器内に添加することが好ましい。有機金属錯体触媒を調製する場合には、先ず、遷移金属化合物(a)及び配位子(b)を混合し、次いで、酸(c)を混合することが好ましい。触媒組成物の調製に用いる溶媒は、アルコール、アセトン、及びメチルエチルケトンから選ばれる有機溶媒が好ましい。また、上記(a)、(b)、及び(c)3成分からなる触媒に、重合活性を維持する効果が高いという観点から、ベンゾキノン、ナフトキノンの酸化剤を添加することが好ましい。これらキノン類の添加量は、遷移金属化合物1モル当たり10〜200モルである。キノン類の添加は、触媒組成物に添加してから反応容器に添加する方法、重合溶媒に添加する方法のいずれであってもよく、必要に応じて、反応中に反応容器内に連続的に添加してもよい。   The organometallic complex catalyst is produced by mixing the transition metal compound (a), the ligand (b), and preferably the acid (c). Although there is no restriction | limiting about the usage method of an organometallic complex catalyst, It is preferable to prepare the organometallic complex catalyst which consists of a mixture of each component previously, and to add in reaction container. When preparing an organometallic complex catalyst, it is preferable to first mix the transition metal compound (a) and the ligand (b), and then mix the acid (c). The solvent used for preparing the catalyst composition is preferably an organic solvent selected from alcohol, acetone, and methyl ethyl ketone. Moreover, it is preferable to add the oxidizing agent of a benzoquinone and a naphthoquinone to the catalyst which consists of said (a), (b) and (c) three components from a viewpoint that the effect which maintains a polymerization activity is high. The addition amount of these quinones is 10-200 mol per 1 mol of transition metal compounds. The addition of quinones may be either a method of adding to the catalyst composition and then adding to the reaction vessel, or a method of adding to the polymerization solvent, and if necessary, continuously into the reaction vessel during the reaction. It may be added.

重合温度は70〜150℃、重合圧力は1〜50MPaであることが好ましく、重合時間は1〜10時間である。重合が完了したポリケトンは懸濁液の状態で反応容器内から抜き出される。反応容器から抜き出された懸濁液は必要に応じてフラッシュタンクを通過させて、懸濁液内に残留する未反応の一酸化炭素及びエチレンを除去する。次いで、ポリケトン懸濁液を、重合溶媒に用いた溶媒と同一種類の溶媒を用いて洗浄しながら、遠心脱水機等の公知の遠心分級器によりポリケトン粉体と液体成分とを分離する。その後、加熱気体を吹き付ける方法、ポリケトン粉体を攪拌しながら加熱気体を通す方法等、公知の装置、方法を用いポリケトン粉体に残存する液体成分を乾燥、除去し、ポリケトンを単離する。   The polymerization temperature is preferably 70 to 150 ° C., the polymerization pressure is preferably 1 to 50 MPa, and the polymerization time is 1 to 10 hours. The polyketone that has been polymerized is withdrawn from the reaction vessel in the form of a suspension. The suspension extracted from the reaction vessel is passed through a flash tank as necessary to remove unreacted carbon monoxide and ethylene remaining in the suspension. Next, the polyketone suspension and the liquid component are separated by a known centrifugal classifier such as a centrifugal dehydrator while washing the polyketone suspension using the same type of solvent as the polymerization solvent. Thereafter, the liquid component remaining in the polyketone powder is dried and removed using a known apparatus and method such as a method of blowing heated gas, a method of passing the heated gas while stirring the polyketone powder, and the polyketone is isolated.

以上のようにして得られたポリケトンをレゾルシン水溶液に溶解する。レゾルシン水溶液の濃度は60〜72wt%の範囲である。また、ポリマー濃度は5〜30wt%の範囲である。レゾルシン水溶液の濃度とポリマー濃度との組合せにより、ポリケトン多孔質膜の孔径がコントロール可能であり、所望の孔径により適宜決められる。ポリケトンの極限粘度に特に制限は無いが、溶解性や多孔質膜への成形しやすさの観点から、0.5〜5dl/gである。   The polyketone obtained as described above is dissolved in a resorcin solution. The concentration of the resorcinol aqueous solution is in the range of 60 to 72 wt%. The polymer concentration is in the range of 5-30 wt%. The pore diameter of the polyketone porous membrane can be controlled by the combination of the concentration of the resorcin solution and the polymer concentration, and can be appropriately determined depending on the desired pore diameter. Although there is no restriction | limiting in particular in the intrinsic viscosity of a polyketone, it is 0.5-5 dl / g from a viewpoint of solubility or the ease of shaping | molding to a porous membrane.

以上のようにレゾルシン水溶液にポリケトンを溶解したドープを凝固剤で凝固させることで、平膜状又は中空糸状のポリケトン多孔質膜を作製する。平膜形状であれば、Tダイ等のフィルムダイからドープを吐出して凝固浴中で凝固させる方法や、基材にダイコーター、ロールコーター、バーコーター等の装置を用いてドープを塗工した後に凝固浴中で凝固させる方法等、従来公知のものがそのまま適用できる。中空糸形状であれば、二重管オリフィスやC型オリフィスなどを用いて、外側の輪状オリフィスからはドープを、また、内側の円状オリフィスからは凝固剤を吐出しながら凝固浴中で凝固させる方法等、従来公知のものがそのまま適応できる。   As described above, a dope obtained by dissolving a polyketone in a resorcin solution is coagulated with a coagulant to produce a flat polyketone or hollow fiber polyketone porous membrane. If it is a flat film shape, the dope is applied using a method such as discharging a dope from a film die such as a T die and solidifying it in a coagulation bath, or using a device such as a die coater, roll coater or bar coater. Conventionally known methods such as a method of coagulating in a coagulation bath later can be applied as they are. If it is a hollow fiber shape, it is solidified in a coagulation bath using a double-tube orifice or C-type orifice while discharging dope from the outer ring-shaped orifice and coagulant from the inner circular orifice. Conventionally known methods such as methods can be applied as they are.

凝固剤は、メタノール、エタノール、及びプロパノールから選択される水溶液であり、その濃度は35〜70wt%である。このようにして得られた凝固膜を、必要に応じて凝固剤や水等でさらに洗浄した後、70〜100℃の温水中に1〜30分間浸漬する。
上述の温水処理後のポリケトン多孔質膜を、必要に応じて、メタノール、エタノール、及びプロパノールから選択される溶媒に浸漬して、多孔質膜に含まれる水を溶媒と置換する。その後、加熱ロールに接触させる方法、熱風を吹きかける方法、電熱ヒーターで非接触加熱して乾燥する方法等、又はこれらを組み合わせた方法等、公知の乾燥方法で乾燥する。加熱ロールに接触させる方法が最も効率が良いため好適に選ばれる。乾燥温度は、60〜200℃の範囲で、乾燥させる液体の種類により適宜選ばれる。本発明のポリケトン多孔膜の乾燥では、乾燥時に収縮や延伸による面方向への変形が少ない方法であることが重要である。許容される面方向への変形倍率は0.9〜1.1の範囲である。
The coagulant is an aqueous solution selected from methanol, ethanol, and propanol, and its concentration is 35 to 70 wt%. The coagulated film thus obtained is further washed with a coagulant, water or the like as necessary, and then immersed in warm water at 70 to 100 ° C. for 1 to 30 minutes.
The polyketone porous membrane after the above-mentioned hot water treatment is immersed in a solvent selected from methanol, ethanol, and propanol as necessary to replace the water contained in the porous membrane with the solvent. Then, it dries with a well-known drying method, such as the method of making it contact with a heating roll, the method of spraying a hot air, the method of drying by non-contact heating with an electric heater, or the method of combining these. The method of contacting the heating roll is preferably selected because it is the most efficient. The drying temperature is appropriately selected depending on the type of liquid to be dried in the range of 60 to 200 ° C. In the drying of the polyketone porous membrane of the present invention, it is important that the method is less susceptible to deformation in the surface direction due to shrinkage or stretching during drying. The allowable deformation ratio in the plane direction is in the range of 0.9 to 1.1.

乾燥後に、膜構造を安定化するために80〜200℃の範囲で熱処理を行う場合がある。熱処理を行うことで、ポリケトン多孔質膜を50〜150℃での加温状態で使用する場合や、水等の表面張力の高い溶媒を含浸させた後に再び乾燥させた場合に、膜構造の変形を抑制することが可能となる。その際にも、収縮や延伸による面方向への変形倍率が少ない方法が重要であり、許容される面方向への変形倍率は0.9〜1.1の範囲である。   After drying, heat treatment may be performed in the range of 80 to 200 ° C. in order to stabilize the film structure. Deformation of the membrane structure when the polyketone porous membrane is used in a heated state at 50 to 150 ° C. by heat treatment or when it is impregnated with a solvent having a high surface tension such as water and then dried again. Can be suppressed. Also in this case, a method having a small deformation ratio in the plane direction due to shrinkage or stretching is important, and the allowable deformation ratio in the plane direction is in the range of 0.9 to 1.1.

官能基を含ませる方法については特に制限はないが、化学反応による方法、物理反応による方法、コーティングによる方法、さらにこれらを組み合わせた方法などが挙げられる。化学反応による方法は、パール・クノール反応などが挙げられる。また、物理反応による方法はプラズマ処理やコロナ処理などが挙げられる。コーティングによる方法はポリマーを含む水溶液などに含浸させる方法が挙げられる。その他の方法としては電子線グラフト反応などが挙げられる。   There are no particular restrictions on the method of incorporating the functional group, but examples thereof include a chemical reaction method, a physical reaction method, a coating method, and a combination of these. Examples of the chemical reaction method include the Pearl-Kunol reaction. Examples of the physical reaction method include plasma treatment and corona treatment. Examples of the coating method include a method of impregnating an aqueous solution containing a polymer. Other methods include electron beam graft reaction.

ポリケトン多孔膜に正のゼータ電位を付与するという観点で、ポリケトン多孔膜に正のゼータ電位を有するポリマーなどを付着又はコーティングさせてもよい。付着又はコーティングさせる方法としては、水や有機溶剤などにポリマーを溶解させた溶液にポリケトンを含浸させた後、取り出して乾燥させる方法などが挙げられる。乾燥の前後に加熱処理や水洗などを行ってもよい。正のゼータ電位を有するポリマーとしては、ポリエチレンイミン、ポリジアリルジメチルアンモニウムクロリド、アミノ基含有カチオン性ポリ(メタ)アクリル酸エステル、アミノ基含有カチオン性ポリ(メタ)アクリルアミド、ポリアミンアミド−エピクロロヒドリン、ポリアリルアミン、ポリジシアンジアミド、キトサン、カチオン化キトサン、アミノ基含有カチオン化デンプン、アミノ基含有カチオン化セルロース、アミノ基含有カチオン化ポリビニルアルコール及び上記ポリマーの酸塩が挙げられる。また、上記ポリマーあるいはポリマーの酸塩は、他のポリマーとの共重合体であってもよい。   From the viewpoint of imparting a positive zeta potential to the polyketone porous membrane, a polymer having a positive zeta potential may be attached to or coated on the polyketone porous membrane. Examples of the method of attaching or coating include a method of impregnating a polyketone with a solution in which a polymer is dissolved in water or an organic solvent, and then taking out and drying. Heat treatment or washing with water may be performed before and after drying. Examples of polymers having a positive zeta potential include polyethyleneimine, polydiallyldimethylammonium chloride, amino group-containing cationic poly (meth) acrylic acid ester, amino group-containing cationic poly (meth) acrylamide, and polyamine amide-epichlorohydrin. , Polyallylamine, polydicyandiamide, chitosan, cationized chitosan, amino group-containing cationized starch, amino group-containing cationized cellulose, amino group-containing cationized polyvinyl alcohol and acid salts of the above polymers. The polymer or the acid salt of the polymer may be a copolymer with another polymer.

ポリケトン多孔膜に正のゼータ電位を付与するという観点で、ポリケトン多孔膜を構成するポリケトンの少なくとも1つの水素原子を他の基に置換する場合、置換方法としては、例えば、電子線、γ線、プラズマ等の照射によってポリケトンにラジカルを発生させた後、望みの機能を発現する官能基を有する反応性モノマーを付加させる方法が挙げられる。反応性モノマーの例としては、1級アミン、2級アミン、3級アミン、4級アンモニウム塩を含むアクリル酸、メタクリル酸、ビニルスルホン酸の誘導体、アリルアミン、p−ビニルベンジルトリメチルアンモニウムクロライド等が挙げられる。より具体的な例としては、アクリル酸3−(ジメチルアミノ)プロピル、メタクリル酸3−(ジメチルアミノ)プロピル、N−[3−(ジメチルアミノ)プロピル]アクリルアミド、N−[3−(ジメチルアミノ)プロピル]メタクリルアミド、(3−アクリルアミドプロピル)トリメチルアンモニウムクロリド、トリメチル[3−(メタクリロイルアミノ)プロピル]アンモニウムクロリドなどが挙げられる。上記の置換処理は、ポリケトンを多孔膜に成型する前に行ってもよいし、多孔膜に成型した後に行ってもよいが、成型性の観点から、多孔膜に成型した後に行う方が好ましい。   In the case of substituting at least one hydrogen atom of the polyketone constituting the polyketone porous membrane with another group from the viewpoint of imparting a positive zeta potential to the polyketone porous membrane, examples of the substitution method include electron beam, γ-ray, Examples include a method in which a radical is generated in a polyketone by irradiation with plasma or the like, and then a reactive monomer having a functional group that exhibits a desired function is added. Examples of reactive monomers include primary amine, secondary amine, tertiary amine, quaternary ammonium salt-containing acrylic acid, methacrylic acid, derivatives of vinyl sulfonic acid, allylamine, p-vinylbenzyltrimethylammonium chloride, and the like. It is done. More specific examples include 3- (dimethylamino) propyl acrylate, 3- (dimethylamino) propyl methacrylate, N- [3- (dimethylamino) propyl] acrylamide, and N- [3- (dimethylamino). Propyl] methacrylamide, (3-acrylamidopropyl) trimethylammonium chloride, trimethyl [3- (methacryloylamino) propyl] ammonium chloride, and the like. The substitution treatment may be performed before the polyketone is molded into the porous film or may be performed after the polyketone is molded into the porous film, but is preferably performed after the polyketone is molded into the porous film from the viewpoint of moldability.

また、下記化学式(2):

Figure 2014173013
{式中、Rは、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基からなる群から選ばれる1つ以上の官能基を含む置換基である。}で表される構造を含むポリケトンを製造する場合、任意の方法が可能であるが、ポリケトンと1級アミンとの脱水縮合反応によって、上記構造を含むポリケトンを製造することが、簡便性の面で好ましい。エチレンジアミン、1,3−プロパンジアミン、1,4−ブタンジアミン、1,2−シクロヘキサンジアミン、N−メチルエチレンジアミン、N−メチルプロパンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルプロパンジアミン、N−アセチルエチレンジアミン、イソホロンジアミン等の様に一級アミンを含むジアミン、トリアミン、テトラアミン、ポリエチレンイミン等の多官能化アミンであれば、多くの活性点を付与することが出来るので好ましい。上記脱水縮合反応は、ポリケトンを多孔膜に成型する前に行ってもよいし、多孔膜に成型した後に行ってもよいが、成型性の観点から、多孔膜に成型した後に行う方が好ましい。 Further, the following chemical formula (2):
Figure 2014173013
{In the formula, R is a substituent containing one or more functional groups selected from the group consisting of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group. }, Any method is possible. However, it is convenient to produce a polyketone containing the above structure by a dehydration condensation reaction between the polyketone and a primary amine. Is preferable. Ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,2-cyclohexanediamine, N-methylethylenediamine, N-methylpropanediamine, N, N-dimethylethylenediamine, N, N-dimethylpropanediamine, N -A diamine containing a primary amine such as acetylethylenediamine and isophoronediamine, and a polyfunctional amine such as triamine, tetraamine and polyethyleneimine is preferred because many active sites can be imparted. The dehydration condensation reaction may be performed before the polyketone is formed into a porous film or may be performed after the polyketone is formed into a porous film. However, from the viewpoint of moldability, it is preferably performed after the polyketone is formed into a porous film.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
以下の実施例及び比較例における各測定値の測定方法は以下の通りであった。
1.ポリケトンの極限粘度[η]
以下の定義式に基づいて極限粘度を求めた。

Figure 2014173013
{式中、tは、純度98%以上のヘキサフルオロイソプロパノールの25℃での粘度管の流下時間であり、Tは、該ヘキサフルオロイソプロパノールに溶解したポリケトン希釈溶液の25℃での粘度管の流下時間であり、そしてCは、上記ポリケトン希釈溶液100ml中のグラム単位による溶質の質量値である。}。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
The measuring method of each measured value in the following examples and comparative examples was as follows.
1. Intrinsic viscosity of polyketone [η]
The intrinsic viscosity was determined based on the following definition formula.
Figure 2014173013
{Wherein t is the flow time of the viscosity tube at 25 ° C. of hexafluoroisopropanol having a purity of 98% or more, and T is the flow time of the viscosity tube at 25 ° C. of the polyketone diluted solution dissolved in the hexafluoroisopropanol. Time, and C is the mass value of the solute in grams in 100 ml of the polyketone dilution solution. }.

2.平均孔径(nm)
PMI社のパームポロメーター(型式:CFP−1200AEX)を用い、浸液にPMI社製のガルウィック(表面張力=15.6dynes/cm)を用い、ASTM E1294−89に準拠し、ハーフドライ法により測定した。
2. Average pore diameter (nm)
Using a PMI palm porometer (model: CFP-1200AEX), PMI Gullwick (surface tension = 15.6 dynes / cm) as the immersion liquid, according to ASTM E1294-89, and by the half-dry method It was measured.

3.膜厚(μm)
ダイヤルゲージ(尾崎製作所:PEACOCK No.25)にて、ポリケトン多孔膜の膜厚を、格子状に5mm間隔で9箇所(3点×3点)選んだ測定点にて測定し、数平均値として得られる平均厚みLp(μm)を膜厚とした。
3. Film thickness (μm)
Using a dial gauge (Ozaki Seisakusho: PEACOCK No. 25), measure the thickness of the polyketone porous film at 9 measurement points (3 points x 3 points) at 5 mm intervals in a lattice shape, and use it as the number average value. The average thickness Lp (μm) obtained was taken as the film thickness.

4.空隙率(ε)(%)
空隙率(ε)は、下記の数式(2):
ε=1−G/ρ/(t・A) (2)
{式中、Gは、ポリケトン膜の重量(g)であり、ρは、ポリケトン多孔膜を構成する高分子の密度(g/cm)であり、tは、ポリケトン多孔膜の平均厚み(cm)であり、そしてAは、ポリケトン多孔膜の面積(cm)である。}により求めた。
4). Porosity (ε) (%)
The porosity (ε) is expressed by the following formula (2):
ε = 1−G / ρ / (t · A) (2)
{In the formula, G is the weight (g) of the polyketone membrane, ρ is the density (g / cm 3 ) of the polymer constituting the polyketone porous membrane, and t is the average thickness (cm ) And A is the area (cm 2 ) of the polyketone porous membrane. }.

5.透気抵抗度(sec/100ml)
JIS P8117(ガーレー法)に準拠して、透気抵抗度を測定した。
5. Air permeability resistance (sec / 100ml)
The air resistance was measured according to JIS P8117 (Gurley method).

6.引張強度(MPa)、伸度、及び強度低下率(%)
横型引張強度試験機(熊谷理機工業製)を用い、15mm幅の短冊状に切り出したサンプルについて、チャック間距離:80mm、伸長速度:80m/minの条件で5点の破断強度を測定し、その数平均を引張強度(MPa)とした。
また、下記式により、破断時の伸度を算出した。
伸度(%)=[破断時のチャック間距離(mm)−80(mm)]/80(mm) × 100
また、下記式により、強度低下率を算出した。
強度低下率(%)=(ポリケトン多孔膜の強度−元のポリケトン多孔膜の強度)/元のポリケトン多孔膜の強度 x 100
6). Tensile strength (MPa), elongation, and strength reduction rate (%)
Using a horizontal tensile strength tester (manufactured by Kumagai Riki Kogyo Co., Ltd.), about a sample cut into a strip shape having a width of 15 mm, the breaking strength at 5 points was measured under the conditions of a distance between chucks: 80 mm and an elongation rate: 80 m / min. The number average was taken as the tensile strength (MPa).
Further, the elongation at break was calculated by the following formula.
Elongation (%) = [Distance between chucks at break (mm) −80 (mm)] / 80 (mm) × 100
Further, the strength reduction rate was calculated by the following formula.
Strength reduction rate (%) = (strength of polyketone porous membrane−strength of original polyketone porous membrane) / strength of original polyketone porous membrane × 100

7.単位厚み当たりの圧力損失(kPa/μm)
ポリケトン多孔平膜を円形に打ち抜き、ステンレス製ホルダ(アドバンテック製、有効濾過面積3.5cm2)に平膜を固定し、1.4mL/min/cm2で蒸留水を240分間濾過して10分後及び240分後の圧力損失を測定し、厚み(μm)で割って、単位厚み当たりの圧力損失(kPa/μm)を算出した。
7). Pressure loss per unit thickness (kPa / μm)
The polyketone porous flat membrane is punched into a circle, and the flat membrane is fixed to a stainless steel holder (manufactured by Advantech, effective filtration area 3.5 cm 2 ). Distilled water is filtered for 240 minutes at 1.4 mL / min / cm 2 for 10 minutes. The pressure loss after and after 240 minutes was measured and divided by the thickness (μm) to calculate the pressure loss per unit thickness (kPa / μm).

8.粒子捕集効率(%)
平膜状のポリケトン多孔膜を濾材として、粒子濃度2.0ppmのアニオン基でコーティングされたポリスチレンラテックス水分散液を、差圧100kPa、有効濾過面積3.5cm2で5分間全量濾過した。濾液の粒子濃度C(ppm)を測定し、下記式より粒子捕集効率(%)を算出した。
粒子捕集効率(%)=(1−C/2)×100
尚、ポリスチレンの濃度は、紫外可視分光光度計(日本分光:V−650)を用い、濃度既知のポリスチレンラテックス水分散液から検量線を作成し、測定した。
8). Particle collection efficiency (%)
Using a flat polyketone porous membrane as a filter medium, a polystyrene latex aqueous dispersion coated with anion groups having a particle concentration of 2.0 ppm was filtered for 5 minutes at a differential pressure of 100 kPa and an effective filtration area of 3.5 cm 2 . The particle concentration C (ppm) of the filtrate was measured, and the particle collection efficiency (%) was calculated from the following formula.
Particle collection efficiency (%) = (1-C / 2) × 100
The concentration of polystyrene was measured by creating a calibration curve from a polystyrene latex aqueous dispersion having a known concentration using an ultraviolet-visible spectrophotometer (JASCO: V-650).

9.ゼータ電位(mV)
ポリケトン膜のゼータ電位は、ゼータ電位測定システムELS−Z(大塚電子株式会社製)を用いて、電気泳動光散乱法により測定した。平板試料用セルユニット(大塚電子株式会社製)のセル上面にポリケトン膜を取り付け、モニター粒子(大塚電子製)を分散させたpH=6〜7の10mM塩化ナトリウム水溶液でセルを満たし、モニター粒子の電気泳動を行い、セル上下面間の7点においてモニター粒子の電気移動度を測定した。得られた電気移動度のデータを森・岡本の式およびSmoluchowskiの式で解析することにより、ポリケトン膜のゼータ電位を算出した。
9. Zeta potential (mV)
The zeta potential of the polyketone film was measured by an electrophoretic light scattering method using a zeta potential measurement system ELS-Z (manufactured by Otsuka Electronics Co., Ltd.). A polyketone film was attached to the upper surface of a cell unit for flat plate cell (Otsuka Electronics Co., Ltd.), and the cells were filled with 10 mM sodium chloride aqueous solution with pH = 6 to 7 in which monitor particles (Otsuka Electronics) were dispersed. Electrophoresis was performed, and the electric mobility of the monitor particles was measured at 7 points between the upper and lower surfaces of the cell. The zeta potential of the polyketone film was calculated by analyzing the obtained electrical mobility data using the Mori-Okamoto equation and the Smoluchowski equation.

10.陰イオン交換容量測定
5重量%水酸化ナトリウム水溶液200mlをビーカー(ビーカーAとする)に入れ、ポリケトン多孔膜を30分間浸漬した後、取り出した。取り出したポリケトン多孔膜を更に15分間水洗した後、別のビーカー(ビーカーBとする)に入れた。これに、濃度Xモル/lの塩酸をYml入れて、上記のポリケトン膜30分間浸漬した後、ポリケトン多孔膜を取り出した。取り出したポリケトン多孔膜は50mlの水で洗浄し、ビーカーB内の液に加えた。これを、濃度1モル/lの水酸化ナトリウム水溶液で滴定し、下記数式にて容量を算出した。
陰イオン交換容量(ミリ当量/g)=[X(モル/l) × Y(ml)− 1 (モル/l)× 滴定に要した水酸化ナトリウム水溶液量(ml)]/サンプル 重量(g)
10. Anion exchange capacity measurement 200 ml of 5% by weight aqueous sodium hydroxide solution was placed in a beaker (beaker A), the polyketone porous membrane was immersed for 30 minutes, and then taken out. The removed polyketone porous membrane was further washed with water for 15 minutes, and then placed in another beaker (beaker B). Yml of hydrochloric acid having a concentration of X mol / l was added thereto and immersed in the polyketone film for 30 minutes, and then the polyketone porous film was taken out. The removed polyketone porous membrane was washed with 50 ml of water and added to the liquid in the beaker B. This was titrated with an aqueous sodium hydroxide solution having a concentration of 1 mol / l, and the volume was calculated by the following mathematical formula.
Anion exchange capacity (milli equivalent / g) = [X (mol / l) × Y (ml) −1 (mol / l) × amount of aqueous sodium hydroxide required for titration (ml)] / sample weight (g)

[実施例1]
エチレンと一酸化炭素が完全交互共重合した極限粘度3.4dl/gのポリケトンを、ポリマー濃度10.7wt%で63wt%レゾルシン水溶液に添加し、80℃で2時間攪拌したところ、ポリケトンは溶解して均一透明なドープが得られた。
得られたドープをアプリケータでガラス板に塗布した。これを50wt%のメタノール水溶液中に10分間浸漬して凝固させた後、水で洗浄し、さらに80℃の温水中に30分間浸漬した。これを2−プロパノールで溶媒置換した後、枠固定して80℃で乾燥を行った。
このポリケトン膜を、酢酸1重量%を含む10重量%エチレンジアミン水溶液に80℃で30分間浸漬させた。次いで、ポリケトン多孔膜を取り出して水、メタノール、アセトンの順で良く洗浄した後60℃で乾燥して、N−エチルーピロール成分含有ポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は110nmであり、厚みは100μm、空隙率は81%、透気抵抗度は38秒/100ml、引張強度は3.6MPa、伸度は18.0%であった。また、陰イオン交換容量は0.2ミリ当量/g、ゼータ電位は+17mVであった。圧力損失は、10分後で20.0kPa/μm、240分後では20.2kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 1]
When a polyketone having an intrinsic viscosity of 3.4 dl / g in which ethylene and carbon monoxide are completely alternately copolymerized is added to a 63 wt% resorcin solution at a polymer concentration of 10.7 wt% and stirred at 80 ° C for 2 hours, the polyketone dissolves. And a uniform transparent dope was obtained.
The obtained dope was applied to a glass plate with an applicator. This was immersed in a 50 wt% aqueous methanol solution for 10 minutes to solidify, washed with water, and further immersed in warm water at 80 ° C. for 30 minutes. This was subjected to solvent substitution with 2-propanol, fixed in a frame, and dried at 80 ° C.
This polyketone film was immersed in a 10% by weight ethylenediamine aqueous solution containing 1% by weight of acetic acid at 80 ° C. for 30 minutes. Next, the polyketone porous film was taken out, washed well in order of water, methanol, and acetone, and then dried at 60 ° C. to prepare an N-ethyl-pyrrole component-containing polyketone porous film.
The thus obtained polyketone porous membrane has an average pore diameter of 110 nm, a thickness of 100 μm, a porosity of 81%, a gas permeability resistance of 38 seconds / 100 ml, a tensile strength of 3.6 MPa, and an elongation of 18. 0%. The anion exchange capacity was 0.2 meq / g, and the zeta potential was +17 mV. The pressure loss was 20.0 kPa / μm after 10 minutes and 20.2 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例2]
エチレンジアミンの代わりにN,N-ジメチルアミノ−1,3−プロパンジアミンを用いて浸漬時間を5分にした以外は、実施例1と同じ条件でポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は120nmであり、厚みは98μm、空隙率は82%、透気抵抗度は40秒/100ml、引張強度は3.8MPa、伸度は20.0%であった。また、陰イオン交換容量はは0.02ミリ当量/g、ゼータ電位は+11mVであった。圧力損失は、10分後で20.5kPa/μm、240分後では20.5kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 2]
A polyketone porous membrane was produced under the same conditions as in Example 1 except that N, N-dimethylamino-1,3-propanediamine was used instead of ethylenediamine and the immersion time was changed to 5 minutes.
The polyketone porous membrane thus obtained has an average pore diameter of 120 nm, a thickness of 98 μm, a porosity of 82%, an air resistance of 40 seconds / 100 ml, a tensile strength of 3.8 MPa, and an elongation of 20. 0%. The anion exchange capacity was 0.02 meq / g, and the zeta potential was +11 mV. The pressure loss was 20.5 kPa / μm after 10 minutes and 20.5 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例3]
エチレンと一酸化炭素が完全交互共重合した極限粘度3.4dl/gのポリケトンを、ポリマー濃度12wt%で61wt%レゾルシン水溶液に添加し、80℃で2時間攪拌したところ、ポリケトンは溶解して均一透明なドープが得られた。
得られたドープをアプリケータでガラス板に塗布した。これを50wt%のメタノール水溶液中に10分間浸漬して凝固させた後、水で洗浄し、さらに80℃の温水中に30分間浸漬した。これを2−プロパノールで溶媒置換した後、枠固定して80℃で乾燥を行った。
このポリケトン膜を、酢酸1重量%を含む10重量%N,N−ジメチルアミノ−1,3−プロパンジアミン水溶液に80℃で30分間浸漬させた。次いで、ポリケトン多孔膜を取り出して水、メタノール、アセトンの順で良く洗浄した後60℃で乾燥して、N,N−ジメチルアミノ基含有ポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は50nmであり、厚みは105μm、空隙率は80%、透気抵抗度は47秒/100ml、引張強度は3.7MPa、伸度は18.0%であった。また、陰イオン交換容量は0.2ミリ当量/g、ゼータ電位は+15mVであった。圧力損失は、10分後で22.5kPa/μm、240分後では22.5kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 3]
When a polyketone having an intrinsic viscosity of 3.4 dl / g in which ethylene and carbon monoxide are completely alternately copolymerized is added to a 61 wt% resorcin solution at a polymer concentration of 12 wt% and stirred at 80 ° C. for 2 hours, the polyketone dissolves and becomes homogeneous. A transparent dope was obtained.
The obtained dope was applied to a glass plate with an applicator. This was immersed in a 50 wt% aqueous methanol solution for 10 minutes to solidify, washed with water, and further immersed in warm water at 80 ° C. for 30 minutes. This was subjected to solvent substitution with 2-propanol, fixed in a frame, and dried at 80 ° C.
This polyketone film was immersed in an aqueous 10 wt% N, N-dimethylamino-1,3-propanediamine solution containing 1 wt% acetic acid at 80 ° C. for 30 minutes. Subsequently, the polyketone porous membrane was taken out, washed well in order of water, methanol, and acetone, and then dried at 60 ° C. to prepare an N, N-dimethylamino group-containing polyketone porous membrane.
The polyketone porous membrane thus obtained has an average pore diameter of 50 nm, a thickness of 105 μm, a porosity of 80%, a gas permeability resistance of 47 seconds / 100 ml, a tensile strength of 3.7 MPa, and an elongation of 18. 0%. The anion exchange capacity was 0.2 meq / g and the zeta potential was +15 mV. The pressure loss was 22.5 kPa / μm after 10 minutes and 22.5 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例4]
エチレンジアミンの代わりにN,N−ジメチルアミノ−1,3−プロパンジアミンを用いた以外は、実施例1と同じ条件でポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は110nmであり、厚みは101μm、空隙率は80%、透気抵抗度は38秒/100ml、引張強度は3.7MPa、伸度は18.3%であった。また、陰イオン交換容量は0.2ミリ当量/g、ゼータ電位は+15mVであった。圧力損失は、10分後で20.5kPa/μm、240分後では20.6kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 4]
A polyketone porous membrane was produced under the same conditions as in Example 1 except that N, N-dimethylamino-1,3-propanediamine was used instead of ethylenediamine.
The thus obtained polyketone porous membrane has an average pore diameter of 110 nm, a thickness of 101 μm, a porosity of 80%, a gas permeability resistance of 38 seconds / 100 ml, a tensile strength of 3.7 MPa, and an elongation of 18. 3%. The anion exchange capacity was 0.2 meq / g and the zeta potential was +15 mV. The pressure loss was 20.5 kPa / μm after 10 minutes and 20.6 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例5]
エチレンと一酸化炭素が完全交互共重合した極限粘度3.4dl/gのポリケトンを、ポリマー濃度10.7wt%で68wt%レゾルシン水溶液に添加し、80℃で2時間攪拌したところ、ポリケトンは溶解して均一透明なドープが得られた。
得られたドープをアプリケータでガラス板に塗布した。これを50wt%のメタノール水溶液中に10分間浸漬して凝固させた後、水で洗浄し、さらに80℃の温水中に30分間浸漬した。これを2−プロパノールで溶媒置換した後、枠固定して80℃で乾燥を行った。
このポリケトン膜を、酢酸1重量%を含む10重量%N,N−ジメチルアミノ−1,3−プロパンジアミン水溶液に80℃で30分間浸漬させた。ついで、ポリケトン多孔膜を取り出して水、メタノール、アセトンの順で良く洗浄した後60℃で乾燥して、N,N−ジメチルアミノ基含有ポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は500nmであり、厚みは110μm、空隙率は83%、透気抵抗度は9秒/100ml、引張強度は3.6MPa、伸度は18.0%であった。また、陰イオン交換容量は0.2ミリ当量/g、ゼータ電位は+15mVであった。圧力損失は、10分後で15.5kPa/μm、240分後では15.4kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 5]
When a polyketone having an intrinsic viscosity of 3.4 dl / g in which ethylene and carbon monoxide are completely alternately copolymerized is added to a 68 wt% resorcin solution at a polymer concentration of 10.7 wt% and stirred at 80 ° C. for 2 hours, the polyketone dissolves. And a uniform transparent dope was obtained.
The obtained dope was applied to a glass plate with an applicator. This was immersed in a 50 wt% aqueous methanol solution for 10 minutes to solidify, washed with water, and further immersed in warm water at 80 ° C. for 30 minutes. This was subjected to solvent substitution with 2-propanol, fixed in a frame, and dried at 80 ° C.
This polyketone film was immersed in an aqueous 10 wt% N, N-dimethylamino-1,3-propanediamine solution containing 1 wt% acetic acid at 80 ° C. for 30 minutes. Subsequently, the polyketone porous membrane was taken out, washed well in order of water, methanol, and acetone, and then dried at 60 ° C. to prepare an N, N-dimethylamino group-containing polyketone porous membrane.
The thus obtained polyketone porous membrane has an average pore diameter of 500 nm, a thickness of 110 μm, a porosity of 83%, a gas permeability resistance of 9 seconds / 100 ml, a tensile strength of 3.6 MPa, and an elongation of 18. 0%. The anion exchange capacity was 0.2 meq / g and the zeta potential was +15 mV. The pressure loss was 15.5 kPa / μm after 10 minutes and 15.4 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例6]
浸漬時間を3時間にした以外は、実施例1と同じ条件でポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は110nmであり、厚みは105μm、空隙率は81%、透気抵抗度は39秒/100ml、引張強度は3.6MPa、伸度は16.4%であった。また、陰イオン交換容量は1.20ミリ当量/g、ゼータ電位は+30mVであった。圧力損失は、10分後で20.0kPa/μm、240分後では20.1kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 6]
A polyketone porous membrane was produced under the same conditions as in Example 1 except that the immersion time was 3 hours.
The thus obtained polyketone porous membrane has an average pore diameter of 110 nm, a thickness of 105 μm, a porosity of 81%, a gas permeability resistance of 39 seconds / 100 ml, a tensile strength of 3.6 MPa, and an elongation of 16. 4%. The anion exchange capacity was 1.20 meq / g, and the zeta potential was +30 mV. The pressure loss was 20.0 kPa / μm after 10 minutes and 20.1 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例7]
酢酸1%を含む10重量%N,N−ジメチルアミノ−1,3−プロパンジアミンのジメチルホルムアミド溶液を用いた以外は、実施例1と同じ条件でポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は110nmであり、厚みは95μm、空隙率は78%、透気抵抗度は40秒/100ml、引張強度は3.4MPa、伸度は10.3%であった。また、陰イオン交換容量は2.24ミリ当量/g、ゼータ電位は+58mVであった。圧力損失は、10分後で19.9kPa/μm、240分後では18.9kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 7]
A polyketone porous membrane was prepared under the same conditions as in Example 1 except that a dimethylformamide solution of 10% by weight N, N-dimethylamino-1,3-propanediamine containing 1% acetic acid was used.
The polyketone porous membrane thus obtained has an average pore diameter of 110 nm, a thickness of 95 μm, a porosity of 78%, an air permeability resistance of 40 seconds / 100 ml, a tensile strength of 3.4 MPa, and an elongation of 10. 3%. The anion exchange capacity was 2.24 meq / g, and the zeta potential was +58 mV. The pressure loss was 19.9 kPa / μm after 10 minutes and 18.9 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例8]
120℃の10重量%N,N−ジメチルアミノ−1,3−プロパンジアミン/酢酸懸濁液に5分間浸漬させた以外は、実施例1と同じ条件でポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は100nmであり、厚みは97μm、空隙率は77%、透気抵抗度は40秒/100ml、引張強度は3.2MPa、伸度は4.9%であった。また、陰イオン交換容量は6.72ミリ当量/g、ゼータ電位は+68mVであった。圧力損失は、10分後で20.0kPa/μm、240分後では17.8kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 8]
A polyketone porous membrane was produced under the same conditions as in Example 1 except that the suspension was immersed in a 10 wt% N, N-dimethylamino-1,3-propanediamine / acetic acid suspension at 120 ° C. for 5 minutes.
The polyketone porous membrane thus obtained has an average pore diameter of 100 nm, a thickness of 97 μm, a porosity of 77%, a gas permeability resistance of 40 seconds / 100 ml, a tensile strength of 3.2 MPa, and an elongation of 4. It was 9%. The anion exchange capacity was 6.72 meq / g, and the zeta potential was +68 mV. The pressure loss was 20.0 kPa / μm after 10 minutes and 17.8 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例9]
実施例1と同様にして得られた未反応のポリケトン多孔膜をドライアイスで冷やしながら200kGyの電子線を数秒間照射して、ラジカル化ポリケトン多孔膜を作製した。窒素バブリングによって溶存酸素を除去した1重量%メタクリル酸3−(ジメチルアミノ)プロピル水溶液に、上記ラジカル化ポリケトン多孔膜を窒素雰囲気下、40℃で1時間浸漬させた。次いで、水、メタノール、アセトンの順でよく洗浄した後60℃で乾燥して、ジメチルアミノ基含有ポリケトン多孔膜を得た。
このようにして得られたポリケトン多孔膜の平均孔径は100nmであり、厚みは103μm、空隙率は80%、透気抵抗度は40秒/100ml、引張強度は4.0MPa、伸度は20.2%であった。また、陰イオン交換容量は0.06ミリ当量/g、ゼータ電位は+15mVであった。圧力損失は、10分後で20.1kPa/μm、240分後では20.2kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 9]
An unreacted polyketone porous membrane obtained in the same manner as in Example 1 was irradiated with an electron beam of 200 kGy for several seconds while being cooled with dry ice to produce a radicalized polyketone porous membrane. The radicalized polyketone porous membrane was immersed in a 1 wt% 3- (dimethylamino) propyl methacrylate aqueous solution from which dissolved oxygen was removed by nitrogen bubbling at 40 ° C. for 1 hour in a nitrogen atmosphere. Next, after thoroughly washing with water, methanol, and acetone in that order, it was dried at 60 ° C. to obtain a dimethylamino group-containing polyketone porous membrane.
The polyketone porous membrane thus obtained has an average pore diameter of 100 nm, a thickness of 103 μm, a porosity of 80%, a gas permeability resistance of 40 seconds / 100 ml, a tensile strength of 4.0 MPa, and an elongation of 20. 2%. The anion exchange capacity was 0.06 meq / g, and the zeta potential was +15 mV. The pressure loss was 20.1 kPa / μm after 10 minutes and 20.2 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例10]
40℃で5時間浸漬した以外は、実施例1と同じ条件でポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は95nmであり、厚みは102μm、空隙率は78%、透気抵抗度は44秒/100ml、引張強度は4.0MPa、伸度は20.3%であった。また、陰イオン交換容量は0.54ミリ当量/g、ゼータ電位は+25mVであった。圧力損失は、10分後で20.5kPa/μm、240分後では21.5kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 10]
A polyketone porous film was prepared under the same conditions as in Example 1 except that the film was immersed at 40 ° C. for 5 hours.
The polyketone porous membrane thus obtained has an average pore size of 95 nm, a thickness of 102 μm, a porosity of 78%, an air permeability resistance of 44 seconds / 100 ml, a tensile strength of 4.0 MPa, and an elongation of 20. 3%. The anion exchange capacity was 0.54 meq / g and the zeta potential was +25 mV. The pressure loss was 20.5 kPa / μm after 10 minutes and 21.5 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例11]
実施例1と同様にして得られた未反応のポリケトン多孔膜をドライアイスで冷やしながら200kGyの電子線を数秒間照射して、ラジカル化ポリケトン多孔膜を作製した。窒素バブリングによって溶存酸素を除去した5重量%メタクリル酸3−(ジメチルアミノ)プロピル水溶液に、上記ラジカル化ポリケトン多孔膜を窒素雰囲気下、60℃で3時間浸漬させた。次いで、水、メタノール、アセトンの順でよく洗浄した後60℃で乾燥して、ジメチルアミノ基含有ポリケトン多孔膜を得た。
このようにして得られたポリケトン多孔膜の平均孔径は95nmであり、厚みは105μm、空隙率は77%、透気抵抗度は50秒/100ml、引張強度は4.0MPa、伸度は17.8%であった。また、陰イオン交換容量は1.06ミリ当量/g、ゼータ電位は+40mVであった。圧力損失は、10分後で21.0kPa/μm、240分後では22.5kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 11]
An unreacted polyketone porous membrane obtained in the same manner as in Example 1 was irradiated with an electron beam of 200 kGy for several seconds while being cooled with dry ice to produce a radicalized polyketone porous membrane. The radicalized polyketone porous membrane was immersed in a 5% by weight 3- (dimethylamino) propyl methacrylate aqueous solution from which dissolved oxygen was removed by nitrogen bubbling at 60 ° C. for 3 hours in a nitrogen atmosphere. Next, after thoroughly washing with water, methanol, and acetone in that order, it was dried at 60 ° C. to obtain a dimethylamino group-containing polyketone porous membrane.
The polyketone porous membrane thus obtained has an average pore diameter of 95 nm, a thickness of 105 μm, a porosity of 77%, a gas permeability resistance of 50 seconds / 100 ml, a tensile strength of 4.0 MPa, and an elongation of 17. It was 8%. The anion exchange capacity was 1.06 meq / g and the zeta potential was +40 mV. The pressure loss was 21.0 kPa / μm after 10 minutes and 22.5 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例12]
実施例1と同様にして得られた未反応のポリケトン多孔膜をドライアイスで冷やしながら200kGyの電子線を数秒間照射して、ラジカル化ポリケトン多孔膜を作製した。窒素バブリングによって溶存酸素を除去した1重量%N−(3−ジメチルアミノプロピル)メタクリルアミド水溶液に、上記ラジカル化ポリケトン多孔膜を窒素雰囲気下、40℃で3時間浸漬させた。次いで、水、メタノール、アセトンの順でよく洗浄した後60℃で乾燥して、ジメチルアミノ基含有ポリケトン多孔膜を得た。
このようにして得られたポリケトン多孔膜の平均孔径は100nmであり、厚みは103μm、空隙率は80%、透気抵抗度は40秒/100ml、引張強度は4.0MPa、伸度は19.8%であった。また、陰イオン交換容量は0.26ミリ当量/g、ゼータ電位は+25mVであった。圧力損失は、10分後で20.1kPa/μm、240分後では20.0kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 12]
An unreacted polyketone porous membrane obtained in the same manner as in Example 1 was irradiated with an electron beam of 200 kGy for several seconds while being cooled with dry ice to produce a radicalized polyketone porous membrane. The radicalized polyketone porous membrane was immersed in a 1 wt% N- (3-dimethylaminopropyl) methacrylamide aqueous solution from which dissolved oxygen was removed by nitrogen bubbling at 40 ° C. for 3 hours in a nitrogen atmosphere. Next, after thoroughly washing with water, methanol, and acetone in that order, it was dried at 60 ° C. to obtain a dimethylamino group-containing polyketone porous membrane.
The polyketone porous membrane thus obtained has an average pore diameter of 100 nm, a thickness of 103 μm, a porosity of 80%, a gas permeability resistance of 40 seconds / 100 ml, a tensile strength of 4.0 MPa, and an elongation of 19. It was 8%. The anion exchange capacity was 0.26 meq / g and the zeta potential was +25 mV. The pressure loss was 20.1 kPa / μm after 10 minutes and 20.0 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例13]
実施例1と同じ条件で作製したポリケトンドープをアプリケータを用いて、平均繊維径16μmのポリエチレンテレフタレート繊維からなる、目付14.7g/mの不織布の片面に塗布した。このポリケトンドープ/不織布複合体を、実施例1と同じ条件で凝固、洗浄、および乾燥して、ポリエステル不織布複合ポリケトン多孔膜を得た。このポリケトン多孔膜の全質量に対するポリケトン質量割合は20質量%であった。
この複合膜を実施例5と同条件で処理して、N,N−ジメチルアミノ基を有するポリエステル不織布複合ポリケトン多孔膜を得た。
このようにして得られたポリケトン多孔膜の平均孔径は90nmであり、厚みは190μm、空隙率は79%、透気抵抗度は50秒/100ml、引張強度は25.3MPa、伸度は18.2%であった。また、陰イオン交換容量は0.21ミリ当量/g、ゼータ電位は+15mVであった。圧力損失は、10分後で21.0kPa/μm、240分後では20.9kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 13]
The polyketone dope produced on the same conditions as Example 1 was apply | coated to the single side | surface of the nonwoven fabric of 14.7 g / m < 2 > of fabric weight which consists of a polyethylene terephthalate fiber with an average fiber diameter of 16 micrometers using the applicator. This polyketone dope / nonwoven fabric composite was coagulated, washed and dried under the same conditions as in Example 1 to obtain a polyester nonwoven fabric composite polyketone porous membrane. The polyketone mass ratio with respect to the total mass of the polyketone porous membrane was 20 mass%.
This composite membrane was treated under the same conditions as in Example 5 to obtain a polyester nonwoven fabric composite polyketone porous membrane having N, N-dimethylamino groups.
The average pore diameter of the polyketone porous membrane thus obtained is 90 nm, the thickness is 190 μm, the porosity is 79%, the air resistance is 50 seconds / 100 ml, the tensile strength is 25.3 MPa, and the elongation is 18. 2%. The anion exchange capacity was 0.21 meq / g, and the zeta potential was +15 mV. The pressure loss was 21.0 kPa / μm after 10 minutes and 20.9 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[実施例14]
エチレンと一酸化炭素が完全交互共重合した極限粘度3.4dl/gのポリケトンを、ポリマー濃度10.7wt%で63wt%レゾルシン水溶液に添加し、80℃で2時間攪拌したところ、ポリケトンは溶解して均一透明なドープが得られた。
得られたドープをアプリケータでガラス板に塗布した。これを50wt%のメタノール水溶液中に10分間浸漬して凝固させた後、水で洗浄し、さらに80℃の温水中に30分間浸漬した。これを2−プロパノールで溶媒置換した後、枠固定して80℃で乾燥を行った。
このポリケトン多孔膜を、0.1重量%ポリエチレンイミン水溶液に10分間浸漬させた後、取り出して、100℃で2分間加熱した。これを15分間流水で洗浄した後、100℃で乾燥させた。
このようにして得られたポリケトン多孔膜の平均孔径は98nmであり、厚みは102μm、空隙率は80%、透気抵抗度は42秒/100ml、引張強度は4.1MPa、伸度は19.3%であった。陰イオン交換容量は0.3ミリ当量/g、ゼータ電位は+24mVであった。圧力損失は10分後で20.1kPa/μm、240分後では20.1kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Example 14]
When a polyketone having an intrinsic viscosity of 3.4 dl / g in which ethylene and carbon monoxide are completely alternately copolymerized is added to a 63 wt% resorcin solution at a polymer concentration of 10.7 wt% and stirred at 80 ° C for 2 hours, the polyketone dissolves. And a uniform transparent dope was obtained.
The obtained dope was applied to a glass plate with an applicator. This was immersed in a 50 wt% aqueous methanol solution for 10 minutes to solidify, washed with water, and further immersed in warm water at 80 ° C. for 30 minutes. This was subjected to solvent substitution with 2-propanol, fixed in a frame, and dried at 80 ° C.
This polyketone porous membrane was immersed in a 0.1 wt% polyethyleneimine aqueous solution for 10 minutes, then taken out and heated at 100 ° C. for 2 minutes. This was washed with running water for 15 minutes and then dried at 100 ° C.
The polyketone porous membrane thus obtained has an average pore diameter of 98 nm, a thickness of 102 μm, a porosity of 80%, a gas permeability resistance of 42 seconds / 100 ml, a tensile strength of 4.1 MPa, and an elongation of 19. 3%. The anion exchange capacity was 0.3 meq / g, and the zeta potential was +24 mV. The pressure loss was 20.1 kPa / μm after 10 minutes and 20.1 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

[比較例1]
エチレンと一酸化炭素が完全交互共重合した極限粘度3.4dl/gのポリケトンを、ポリマー濃度10.7wt%で63wt%レゾルシン水溶液に添加し、80℃で2時間攪拌したところ、ポリケトンは溶解して均一透明なドープが得られた。
得られたドープをアプリケータでガラス板に塗布した。これを50wt%のメタノール水溶液中に10分間浸漬して凝固させた後、水で洗浄し、さらに80℃の温水中に30分間浸漬した。これを2−プロパノールで溶媒置換した後、枠固定して80℃で乾燥を行った。
このようにして得られたポリケトン多孔膜の平均孔径は100nmであり、厚みは104μm、空隙率は82%、透気抵抗度は40秒/100ml、引張強度は4.0MPa、伸度は20.1%であった。また、陰イオン交換容量は0.00ミリ当量/g、ゼータ電位は−5mVであった。圧力損失は、10分後で20.0kPa/μm、240分後では20.0kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は2.1%(粒子径:30nm)、10.3%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であり、孔径より小さな粒子に対する捕捉性能が悪かった。
[Comparative Example 1]
When a polyketone having an intrinsic viscosity of 3.4 dl / g in which ethylene and carbon monoxide are completely alternately copolymerized is added to a 63 wt% resorcin solution at a polymer concentration of 10.7 wt% and stirred at 80 ° C for 2 hours, the polyketone dissolves. And a uniform transparent dope was obtained.
The obtained dope was applied to a glass plate with an applicator. This was immersed in a 50 wt% aqueous methanol solution for 10 minutes to solidify, washed with water, and further immersed in warm water at 80 ° C. for 30 minutes. This was subjected to solvent substitution with 2-propanol, fixed in a frame, and dried at 80 ° C.
The polyketone porous membrane thus obtained has an average pore diameter of 100 nm, a thickness of 104 μm, a porosity of 82%, a gas permeability resistance of 40 seconds / 100 ml, a tensile strength of 4.0 MPa, and an elongation of 20. 1%. The anion exchange capacity was 0.00 meq / g, and the zeta potential was −5 mV. The pressure loss was 20.0 kPa / μm after 10 minutes and 20.0 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 2.1% (particle size: 30 nm), 10.3% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm), and the trapping performance for particles smaller than the pore diameter was poor.

[比較例2]
エチレンと一酸化炭素が完全交互共重合した極限粘度3.4dl/gのポリケトンを、ポリマー濃度10.7wt%で68wt%レゾルシン水溶液に添加し、80℃で2時間攪拌したところ、ポリケトンは溶解して均一透明なドープが得られた。
得られたドープをアプリケータでガラス板に塗布した。これを50wt%のメタノール水溶液中に10分間浸漬して凝固させた後、水で洗浄し、さらに80℃の温水中に30分間浸漬した。これを2−プロパノールで溶媒置換した後、枠固定して80℃で乾燥を行った。
このようにして得られたポリケトン多孔膜の平均孔径は500nmであり、厚みは110μm、空隙率は83%、透気抵抗度は10秒/100ml、引張強度は3.9MPa、伸度は18.1%であった。また、陰イオン交換容量は0.00ミリ当量/g、ゼータ電位は−5mVであった。圧力損失は、10分後で15.0kPa/μm、240分後では15.0kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は1.1%(粒子径:30nm)、2.3%(粒子径:50nm)、2.8%(粒子径:100nm)、5.1%(粒子径:150nm)、10.3%(粒子径:200nm)であり、孔径より小さな粒子に対する捕捉性能が悪かった。
[Comparative Example 2]
When a polyketone having an intrinsic viscosity of 3.4 dl / g in which ethylene and carbon monoxide are completely alternately copolymerized is added to a 68 wt% resorcin solution at a polymer concentration of 10.7 wt% and stirred at 80 ° C. for 2 hours, the polyketone dissolves. And a uniform transparent dope was obtained.
The obtained dope was applied to a glass plate with an applicator. This was immersed in a 50 wt% aqueous methanol solution for 10 minutes to solidify, washed with water, and further immersed in warm water at 80 ° C. for 30 minutes. This was subjected to solvent substitution with 2-propanol, fixed in a frame, and dried at 80 ° C.
The thus obtained polyketone porous membrane has an average pore diameter of 500 nm, a thickness of 110 μm, a porosity of 83%, an air resistance of 10 seconds / 100 ml, a tensile strength of 3.9 MPa, and an elongation of 18. 1%. The anion exchange capacity was 0.00 meq / g, and the zeta potential was −5 mV. The pressure loss was 15.0 kPa / μm after 10 minutes and 15.0 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 1.1% (particle size: 30 nm), 2.3% (particle size: 50 nm), 2.8% (particle size: 100 nm), 5.1% (particle size: 150 nm) and 10.3% (particle size: 200 nm), and the trapping performance for particles smaller than the pore size was poor.

[比較例3]
エチレンジアミンの代わりにN,N−ジメチルアミノ−1,3−プロパンジアミンを用いて浸漬時間を1分にした以外は、実施例1と同じ条件でポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は120nmであり、厚みは98μm、空隙率は82%、透気抵抗度は38秒/100ml、引張強度は3.8MPa、伸度は19.8%であった。また、陰イオン交換容量0.012ミリ当量/g、ゼータ電位は+1.0mVであった。圧力損失は、10分後で20.5kPa/μm、240分後では20.5kPa/μmであった。アニオン性ポリスチレンラテックスの粒子捕捉率は2.2%(粒子径:30nm)、9.8%(粒子径:50nm)、91.2%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であり、孔径より小さな粒子に対する捕捉性能が悪かった。
[Comparative Example 3]
A polyketone porous membrane was produced under the same conditions as in Example 1 except that N, N-dimethylamino-1,3-propanediamine was used instead of ethylenediamine and the immersion time was 1 minute.
The polyketone porous membrane thus obtained has an average pore diameter of 120 nm, a thickness of 98 μm, a porosity of 82%, a gas permeability resistance of 38 seconds / 100 ml, a tensile strength of 3.8 MPa, and an elongation of 19. It was 8%. The anion exchange capacity was 0.012 meq / g, and the zeta potential was +1.0 mV. The pressure loss was 20.5 kPa / μm after 10 minutes and 20.5 kPa / μm after 240 minutes. The particle capture rate of the anionic polystyrene latex is 2.2% (particle size: 30 nm), 9.8% (particle size: 50 nm), 91.2% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm), and the trapping performance for particles smaller than the pore diameter was poor.

[比較例4]
浸漬時間を30分にした以外は、実施例8と同じ条件でポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は100nmであり、厚みは102μm、空隙率は80%、透気抵抗度は40秒/100ml、引張強度は2.9MPa、伸度は2.1%であった。また、陰イオン交換容量は11.20ミリ当量/g、ゼータ電位は+58〜+83mVであり、バラつきがみられた。圧力損失及びアニオン性ポリスチレンラテックスの粒子捕捉率は、測定中に破膜が生じたため、評価不可能であった。
[Comparative Example 4]
A polyketone porous membrane was produced under the same conditions as in Example 8 except that the immersion time was 30 minutes.
The polyketone porous membrane thus obtained has an average pore diameter of 100 nm, a thickness of 102 μm, a porosity of 80%, a gas permeability resistance of 40 seconds / 100 ml, a tensile strength of 2.9 MPa, and an elongation of 2. 1%. The anion exchange capacity was 11.20 meq / g, and the zeta potential was +58 to +83 mV, showing variations. The pressure loss and the particle capture rate of the anionic polystyrene latex could not be evaluated because a film breakage occurred during the measurement.

[比較例5]
10重量%N−[3−(ジメチルアミノ)プロピル)メタクリル酸水溶液を用いた以外は、実施例12と同じ条件でポリケトン多孔膜を作製した。
このようにして得られたポリケトン多孔膜の平均孔径は105nmであり、厚みは103μm、空隙率は72%、透気抵抗度は70秒/100mlと膜構造の変化が見られた。一方、引張強度は4.0MPa、伸度は19.8%であった。また、陰イオン交換容量は10.8ミリ当量/g、ゼータ電位は+81mVであり、バラつきがみられた。圧力損失は、10分後で27.5kPa/μm、240分後では34.0kPa/μmであり、初期の圧力損失が高くなり、時間とともにさらに悪化することが分かった。アニオン性ポリスチレンラテックスの粒子捕捉率は99.9%(粒子径:30nm)、99.9%(粒子径:50nm)、99.9%(粒子径:100nm)、99.9%(粒子径:150nm)、99.9%(粒子径:200nm)であった。
[Comparative Example 5]
A polyketone porous membrane was produced under the same conditions as in Example 12 except that a 10 wt% N- [3- (dimethylamino) propyl) methacrylic acid aqueous solution was used.
The polyketone porous membrane thus obtained had an average pore size of 105 nm, a thickness of 103 μm, a porosity of 72%, and a gas permeability resistance of 70 seconds / 100 ml. On the other hand, the tensile strength was 4.0 MPa and the elongation was 19.8%. Further, the anion exchange capacity was 10.8 meq / g, the zeta potential was +81 mV, and variation was observed. The pressure loss was 27.5 kPa / μm after 10 minutes and 34.0 kPa / μm after 240 minutes. It was found that the initial pressure loss increased and became worse with time. The particle capture rate of the anionic polystyrene latex is 99.9% (particle size: 30 nm), 99.9% (particle size: 50 nm), 99.9% (particle size: 100 nm), 99.9% (particle size: 150 nm) and 99.9% (particle diameter: 200 nm).

Figure 2014173013
Figure 2014173013

本発明のポリケトン多孔膜は、ポリケトン由来の高い耐熱性と耐薬品性を有し、かつ、アニオン性微粒子やゲル及びアニオンに対して優れた吸着性能をもつため、フィルター濾材として有用である。また、カチオン性の粒子に対しては、吸着による寿命低下を抑制することができ、分画フィルター濾材としても有用である。該フィルター濾材は、水処理用、メンブレンバイオリアクタ用、工業用液体濾過用、脱気用、気体除塵用、ケミカルフィルター用、及び医療用のろ過フィルターとして有用である。   The polyketone porous membrane of the present invention is useful as a filter medium because it has high heat resistance and chemical resistance derived from polyketone and has excellent adsorption performance for anionic fine particles, gels and anions. Moreover, with respect to cationic particles, the lifetime reduction due to adsorption can be suppressed, and it is also useful as a fraction filter material. The filter medium is useful as a filter for water treatment, membrane bioreactor, industrial liquid filtration, deaeration, gas dust removal, chemical filter, and medical use.

Claims (6)

下記化学式(1):
Figure 2014173013
で表される1−オキソトリメチレン繰り返し単位を含むポリケトンからなるポリケトン多孔膜であって、該多孔膜の空隙率が5〜90%であり、かつ、該多孔膜のゼータ電位が+5mV〜+80mVであることを特徴とするポリケトン多孔膜。
The following chemical formula (1):
Figure 2014173013
A polyketone porous membrane comprising a polyketone containing a 1-oxotrimethylene repeating unit represented by: wherein the porosity of the porous membrane is 5 to 90%, and the zeta potential of the porous membrane is +5 mV to +80 mV A polyketone porous membrane characterized by being.
1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩からなる群から選ばれる1つ以上の官能基を含み、かつ、陰イオン交換容量が0.01〜10ミリ当量/gである、請求項1に記載のポリケトン多孔膜。   It contains one or more functional groups selected from the group consisting of primary amino groups, secondary amino groups, tertiary amino groups, and quaternary ammonium salts, and has an anion exchange capacity of 0.01 to 10 meq / The polyketone porous membrane according to claim 1, which is g. 請求項1又は2に記載のポリケトン多孔膜を有する濾過用フィルター。   A filter for filtration comprising the polyketone porous membrane according to claim 1. 粒子又はゲル吸着除去用フィルターである、請求項3に記載の濾過用フィルター。   The filter for filtration according to claim 3, which is a filter for removing particles or gels. イオン吸着用フィルターである、請求項3に記載の濾過用フィルター。   The filter for filtration according to claim 3, which is an ion adsorption filter. 粒子分画用フィルターである、請求項3に記載の濾過用フィルター。   The filter for filtration according to claim 3, which is a filter for particle fractionation.
JP2013047313A 2013-03-08 2013-03-08 Cationic polyketone porous membrane Active JP6110694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047313A JP6110694B2 (en) 2013-03-08 2013-03-08 Cationic polyketone porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013047313A JP6110694B2 (en) 2013-03-08 2013-03-08 Cationic polyketone porous membrane

Publications (2)

Publication Number Publication Date
JP2014173013A true JP2014173013A (en) 2014-09-22
JP6110694B2 JP6110694B2 (en) 2017-04-05

Family

ID=51694595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047313A Active JP6110694B2 (en) 2013-03-08 2013-03-08 Cationic polyketone porous membrane

Country Status (1)

Country Link
JP (1) JP6110694B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136650A1 (en) * 2015-02-23 2016-09-01 栗田工業株式会社 Removal device of fine particles in water and ultrapure water production/supply system
WO2016157635A1 (en) * 2015-03-27 2016-10-06 帝人株式会社 Composite film manufacturing method
WO2017164362A1 (en) * 2016-03-25 2017-09-28 栗田工業株式会社 Wet cleaning device and wet cleaning method
KR20180123663A (en) 2016-03-25 2018-11-19 쿠리타 고교 가부시키가이샤 Ultrapure water production system
JP2019523904A (en) * 2016-05-27 2019-08-29 インテグリス・インコーポレーテッド Coated porous polymer membrane
WO2019187580A1 (en) * 2018-03-30 2019-10-03 栗田工業株式会社 Fine particle removing membrane, fine particle removing device, and fine particle removing method
JP2019214021A (en) * 2018-06-13 2019-12-19 旭化成株式会社 Hollow fiber membrane
WO2020203718A1 (en) * 2019-03-29 2020-10-08 旭化成メディカル株式会社 Method for purifying protein
WO2021024899A1 (en) * 2019-08-08 2021-02-11 株式会社フジミインコーポレーテッド Method for filtering polishing-additive-containing liquid, polishing-additive-containing liquid, polishing composition, method for producing polishing composition, and filter
KR20210141462A (en) 2019-03-29 2021-11-23 쿠리타 고교 가부시키가이샤 Particle removal device and particle removal method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480402A (en) * 1987-09-22 1989-03-27 Mitsubishi Rayon Co Heat resistant, ion-exchange porous membrane and its production
JPH05507654A (en) * 1991-05-15 1993-11-04 ポール・コーポレーション Microporous membranes, their manufacture and use
JP2002348401A (en) * 2001-05-23 2002-12-04 Asahi Kasei Corp Polyketone porous material
JP2003154238A (en) * 2001-11-20 2003-05-27 Toray Ind Inc Composite semipermeable membrane and method for manufacturing the same
JP2005014412A (en) * 2003-06-26 2005-01-20 Mitsubishi Heavy Ind Ltd Hopper device of folder gluer
JP2005144330A (en) * 2003-11-14 2005-06-09 Asahi Kasei Fibers Corp Porous body
JP2010053108A (en) * 2008-08-29 2010-03-11 Asahi Kasei Corp Method for separating biogenic substance by using ultrafiltration membrane having electric charge, and module and apparatus therefor
WO2010033027A2 (en) * 2008-09-19 2010-03-25 Rijksuniversiteit Groningen Polymeric amines and biomedical uses thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480402A (en) * 1987-09-22 1989-03-27 Mitsubishi Rayon Co Heat resistant, ion-exchange porous membrane and its production
JPH05507654A (en) * 1991-05-15 1993-11-04 ポール・コーポレーション Microporous membranes, their manufacture and use
JP2002348401A (en) * 2001-05-23 2002-12-04 Asahi Kasei Corp Polyketone porous material
JP2003154238A (en) * 2001-11-20 2003-05-27 Toray Ind Inc Composite semipermeable membrane and method for manufacturing the same
JP2005014412A (en) * 2003-06-26 2005-01-20 Mitsubishi Heavy Ind Ltd Hopper device of folder gluer
JP2005144330A (en) * 2003-11-14 2005-06-09 Asahi Kasei Fibers Corp Porous body
JP2010053108A (en) * 2008-08-29 2010-03-11 Asahi Kasei Corp Method for separating biogenic substance by using ultrafiltration membrane having electric charge, and module and apparatus therefor
WO2010033027A2 (en) * 2008-09-19 2010-03-25 Rijksuniversiteit Groningen Polymeric amines and biomedical uses thereof

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136650A1 (en) * 2015-02-23 2016-09-01 栗田工業株式会社 Removal device of fine particles in water and ultrapure water production/supply system
JP2016155052A (en) * 2015-02-23 2016-09-01 栗田工業株式会社 Device for removing fine particle in water, and system for producing and supplying ultrapure water
US20180044205A1 (en) * 2015-02-23 2018-02-15 Kurita Water Industries Ltd. Device for removing microparticles contained in water and ultrapure-water prouction and supply system
WO2016157635A1 (en) * 2015-03-27 2016-10-06 帝人株式会社 Composite film manufacturing method
JP6072368B1 (en) * 2015-03-27 2017-02-01 帝人株式会社 Method for producing composite membrane
KR20220052375A (en) * 2015-03-27 2022-04-27 데이진 가부시키가이샤 Composite film manufacturing method and composite film manufacturing apparatus
KR102452099B1 (en) * 2015-03-27 2022-10-11 데이진 가부시키가이샤 Composite film manufacturing method and composite film manufacturing apparatus
TWI734759B (en) * 2016-03-25 2021-08-01 日商栗田工業股份有限公司 Wet cleaning device and wet cleaning method
KR102393133B1 (en) * 2016-03-25 2022-04-29 쿠리타 고교 가부시키가이샤 Wet cleaning apparatus and wet cleaning method
CN109041579A (en) * 2016-03-25 2018-12-18 栗田工业株式会社 Wet-type washing apparatus and washing drying method
US20190111391A1 (en) * 2016-03-25 2019-04-18 Kurita Water Industries Ltd. Wet cleaning apparatus and wet cleaning method
WO2017164362A1 (en) * 2016-03-25 2017-09-28 栗田工業株式会社 Wet cleaning device and wet cleaning method
JP2017175075A (en) * 2016-03-25 2017-09-28 栗田工業株式会社 Wet cleaning apparatus and wet cleaning method
KR102287709B1 (en) 2016-03-25 2021-08-06 쿠리타 고교 가부시키가이샤 Ultrapure Water Manufacturing System
KR20180123663A (en) 2016-03-25 2018-11-19 쿠리타 고교 가부시키가이샤 Ultrapure water production system
CN109041579B (en) * 2016-03-25 2023-09-01 栗田工业株式会社 Wet cleaning device and wet cleaning method
KR20180125945A (en) 2016-03-25 2018-11-26 쿠리타 고교 가부시키가이샤 Wet cleaning device and wet cleaning method
TWI728078B (en) * 2016-03-25 2021-05-21 日商栗田工業股份有限公司 Ultrapure water manufacturing system
US11731085B2 (en) 2016-05-27 2023-08-22 Entegris, Inc. Coated porous polymeric membranes
US11285443B2 (en) 2016-05-27 2022-03-29 Entegris, Inc. Coated porous polymeric membranes
JP2019523904A (en) * 2016-05-27 2019-08-29 インテグリス・インコーポレーテッド Coated porous polymer membrane
JP2019177329A (en) * 2018-03-30 2019-10-17 栗田工業株式会社 Fine particle removal membrane, fine particle removal device and fine particle removal method
WO2019187580A1 (en) * 2018-03-30 2019-10-03 栗田工業株式会社 Fine particle removing membrane, fine particle removing device, and fine particle removing method
JP7106937B2 (en) 2018-03-30 2022-07-27 栗田工業株式会社 PARTICLE REMOVAL MEMBRANE, PARTICLE REMOVAL DEVICE, AND PARTICLE REMOVAL METHOD
JP2019214021A (en) * 2018-06-13 2019-12-19 旭化成株式会社 Hollow fiber membrane
KR20210141462A (en) 2019-03-29 2021-11-23 쿠리타 고교 가부시키가이샤 Particle removal device and particle removal method
JPWO2020203718A1 (en) * 2019-03-29 2021-11-11 旭化成メディカル株式会社 Protein purification method
JP7273142B2 (en) 2019-03-29 2023-05-12 旭化成メディカル株式会社 Protein purification method
WO2020203718A1 (en) * 2019-03-29 2020-10-08 旭化成メディカル株式会社 Method for purifying protein
WO2021024899A1 (en) * 2019-08-08 2021-02-11 株式会社フジミインコーポレーテッド Method for filtering polishing-additive-containing liquid, polishing-additive-containing liquid, polishing composition, method for producing polishing composition, and filter
JP7424768B2 (en) 2019-08-08 2024-01-30 株式会社フジミインコーポレーテッド Filtration method for polishing additive-containing liquid, polishing additive-containing liquid, polishing composition, method for producing polishing composition, and filter

Also Published As

Publication number Publication date
JP6110694B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6110694B2 (en) Cationic polyketone porous membrane
KR101967262B1 (en) Composite semipermeable membrane
JP6481366B2 (en) Composite semipermeable membrane
JP6402627B2 (en) Composite semipermeable membrane
JP6210925B2 (en) Polyketone porous membrane
US20160303517A1 (en) Dendrimer particles and related mixed matrix filtration membranes, compositions, methods, and systems
CN104010717A (en) Membrane, Water Treatment System, And Method Of Making
JP7010216B2 (en) Composite semipermeable membrane and its manufacturing method
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
WO2021134060A1 (en) High-flux water permeable membranes
Yang et al. Ionic cross-linked poly (acrylonitrile-co-acrylic acid)/polyacrylonitrile thin film nanofibrous composite membrane with high ultrafiltration performance
Jang et al. Fouling control through the hydrophilic surface modification of poly (vinylidene fluoride) membranes
KR20150079213A (en) Reverse-osmosis membrane having excellent pressure-resistant and method for manufacturing thereof
JP6226535B2 (en) Anionic polyketone porous membrane
Gao et al. High-flux loose nanofiltration membrane with anti-dye fouling ability based on TA@ ZIF-8 for efficient dye/salt separation
JP2020121264A (en) Composite semipermeable membrane
JP6702181B2 (en) Composite semipermeable membrane
CN112295423B (en) Porous membrane and filter element
WO2017125300A1 (en) Processes for removing boron containing compounds from aqueous systems
JP2012143750A (en) Method for producing composite semi-permeable membrane
Palencia et al. Membrane technology and chemistry
JPWO2017057378A1 (en) Composite semipermeable membrane
JP2019214021A (en) Hollow fiber membrane
JP2020082034A (en) Composite semipermeable membrane
JP2014151272A (en) Porous polymer membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170310

R150 Certificate of patent or registration of utility model

Ref document number: 6110694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350