JP2014172057A - Powder padding method - Google Patents

Powder padding method Download PDF

Info

Publication number
JP2014172057A
JP2014172057A JP2013044915A JP2013044915A JP2014172057A JP 2014172057 A JP2014172057 A JP 2014172057A JP 2013044915 A JP2013044915 A JP 2013044915A JP 2013044915 A JP2013044915 A JP 2013044915A JP 2014172057 A JP2014172057 A JP 2014172057A
Authority
JP
Japan
Prior art keywords
tip
base material
torch
metal base
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013044915A
Other languages
Japanese (ja)
Inventor
Shinnosuke Yamada
慎之介 山田
Hirotaka Namikawa
裕隆 南川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2013044915A priority Critical patent/JP2014172057A/en
Publication of JP2014172057A publication Critical patent/JP2014172057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder padding method, being low like 10% or less in the dilution ratio of a weld bead, capable of using even metallic powder composed of a hard-to-work material and a hard-to-weld material, capable of quickening a weld speed, and also easy in padding on a surface of a metal base material of a vertical attitude.SOLUTION: In the powder padding method, a torch 1 is arranged in a horizontal attitude having the axial direction orthogonal to a surface on the surface of a metal base material W1 set in a vertical attitude, and a plasma arc pa is emitted from a central part of a tip 11 positioned on the tip of the torch 1, and the metallic powder mp to be padded on the upper side in the tip part vicinity of the plasma arc pa is supplied from a discharge hole 9 opening in an upper part of a tip surface 12 of the tip 11, and confronting downward advance weld is executed by moving any one of the metal base material W1 or the torch 1 along the vertical direction.

Description

本発明は、金属母材の表面に対し、該表面における各種の特性を高めるための金属粉末を肉盛溶接する粉末肉盛溶接方法に関する。   The present invention relates to a powder overlay welding method for overlay welding a metal powder for enhancing various properties on a surface of a metal base material.

例えば、ごみ焼却炉用のボイラ管の外周面に対し、高耐食性の肉盛層を形成するため、軸方向を垂直姿勢としたプラズマトーチの先端面の中央部からプラズマアークを、水平姿勢とした上記ボイラ管の外周面に垂直にして放射し、該アークの内側へ上記トーチの先端面の周辺側に開口する放出孔から金属粉末を供給すると共に、上記トーチの先端面の最外周辺側の吹き出し口から上記アークの周囲に不活性なシールドガスを円筒状に吹き付けるようして、粉末肉盛溶接を行う高耐食ボイラ肉盛管の製造方法が提案されている(例えば、特許文献1参照)。
尚 上記粉末肉盛溶接方法は、一般に、PTA法(Plasma Transferred Arc Welding)と称されている。
For example, in order to form a highly corrosion-resistant build-up layer on the outer peripheral surface of a boiler tube for a waste incinerator, the plasma arc is set to a horizontal posture from the center of the front end surface of the plasma torch with the axial direction vertical. Radiating perpendicularly to the outer peripheral surface of the boiler tube, supplying metal powder from the discharge hole that opens to the peripheral side of the tip surface of the torch to the inside of the arc, and at the outermost peripheral side of the tip surface of the torch There has been proposed a manufacturing method of a highly corrosion-resistant boiler overlay that performs powder overlay welding by blowing an inert shielding gas in a cylindrical shape around the arc from the blowout opening (see, for example, Patent Document 1). .
The powder overlay welding method is generally referred to as a PTA method (Plasma Transferred Arc Welding).

前記特許文献1などで用いられる粉末肉盛溶接方法は、金属粉末から金属母材の表面に肉盛りされた肉盛層(溶接ビード)における前記母材の成分による合金成分の希釈率が約10%以下と比較的低く、且つ難加工材料や難溶接材料からなる金属粉末でも容易に肉盛溶接できる利点を有している。しかし、かかる粉末肉盛溶接方法では、溶接ワイヤを用いるMIG溶接などに比べて溶接速度が遅いため、生産性が劣ると共に、肉盛り用の金属粉末を安定供給するために、溶接条件が下向溶接法に限定されている、という問題点があった。   In the powder overlay welding method used in Patent Document 1 or the like, the dilution ratio of the alloy component by the component of the base material in the build-up layer (weld bead) built up from the metal powder on the surface of the metal base material is about 10. % Or less, and it has the advantage that it can be easily welded even with metal powder made of difficult-to-process materials or difficult-to-weld materials. However, in such a powder overlay welding method, the welding speed is slower than MIG welding using a welding wire, so that the productivity is inferior, and the welding conditions are lowered in order to stably supply the metal powder for overlaying. There was a problem that it was limited to the welding method.

一方、ごみ焼却炉用水冷壁の金属パネルを垂直姿勢で保持し、該金属パネルの表面に対し、該表面での腐蝕減肉を補足するため、シールドガス雰囲気中で溶接ワイヤを高速度で供給しつつ立向下進させてMIG溶接する立向下進肉盛溶接方法も提案されている(例えば、特許文献2参照)。
前記特許文献2に記載されたMIG溶接による立向下進肉盛溶接方法は、前記粉末肉盛溶接方法に比べて溶接速度が速いため生産性が高く、垂直姿勢の金属母材の表面への肉盛溶接も容易に行える利点を有するが、難加工材料や難溶接材料からなる肉盛溶接には不向きである、という問題点があった。
On the other hand, the metal panel of the water-cooled wall for the refuse incinerator is held in a vertical position, and the welding wire is supplied at a high speed in a shield gas atmosphere to supplement the thickness of the metal panel against corrosion reduction on the surface. On the other hand, there has also been proposed a vertically descending overlay welding method in which MIG welding is performed while vertically descending (see, for example, Patent Document 2).
The vertical downward overlay welding method by MIG welding described in Patent Document 2 has high productivity because the welding speed is faster than the powder overlay welding method, and the metal base material in a vertical posture is applied to the surface. Although there is an advantage that overlay welding can be easily performed, there is a problem that it is not suitable for overlay welding made of difficult-to-process materials or difficult-to-weld materials.

特開2008−179865号公報(第1〜13頁、図1)JP 2008-179865 A (pages 1 to 13, FIG. 1) 特開2000−84565号公報(第1〜7頁、図1〜5)JP 2000-84565 A (pages 1-7, FIGS. 1-5)

本発明は、背景技術で説明した問題点を解決し、溶接ビードの希釈率(溶接ビード全体の断面積に対する金属母材内部での溶け込み部の断面積の比)が低く、難加工材料や難溶接材料からなる金属粉末も使用できる共に、溶接速度を速くでき、且つ垂直姿勢の金属母材の表面への肉盛溶接も容易に行える粉末肉盛溶接方法を提供する、ことを課題とする。
尚、上記希釈率が低いとは、金属母材の表面よりも突出する溶接ビードにおける余盛の高さが高いこと、および、金属母材内部への溶け込みが浅いことである。
The present invention solves the problems described in the background art, and the dilution rate of the weld bead (ratio of the cross-sectional area of the penetration portion inside the metal base material with respect to the cross-sectional area of the entire weld bead) is low. It is an object of the present invention to provide a powder overlay welding method that can use metal powder made of a welding material, can increase the welding speed, and can easily perform overlay welding on the surface of a metal base material in a vertical posture.
In addition, the said dilution rate is low that the height of the surplus in the welding bead which protrudes from the surface of a metal base material is high, and the penetration to the inside of a metal base material is shallow.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、発明者らによる鋭意研究および調査の結果、立向下進肉溶接によって粉末肉盛溶接を行うと共に、ほぼ水平方向に沿って放射されるプラズマアークの内側に供給すべき金属粉末の供給経路を該アークの上方(下進方向の後方)からの経路とする、ことに着想して成されたものである。
即ち、本発明の粉末肉盛溶接方法(請求項1)は、垂直姿勢あるいは垂直に近い姿勢とした金属母材の表面に対し、軸方向が該表面に直交するか、あるいは直交に近い水平姿勢でトーチを配置し、該トーチの先端に位置するチップの中心部からプラズマアークを放射し、且つ該プラズマアークの先端部付近の上側に肉盛すべき金属粉末を上記チップの先端面の上部に開口する放出孔から供給すると共に、上記金属母材あるいは上記トーチの何れか一方を垂直方向あるいは垂直に近い方向に沿って移動させて立向下進溶接を行う、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention, as a result of intensive studies and investigations by the inventors, performs powder overlay welding by vertical downward welding, and the inside of a plasma arc radiated along a substantially horizontal direction. The supply path of the metal powder to be supplied to is formed from the top of the arc (backward in the downward direction).
That is, the powder overlay welding method of the present invention (Claim 1) is a horizontal posture in which the axial direction is perpendicular to or close to the surface with respect to the surface of the metal base material in a vertical posture or a nearly vertical posture. The torch is disposed at the top of the tip of the tip, and a plasma arc is radiated from the center of the tip located at the tip of the torch. While supplying from the opening | release discharge | release hole which opens, either one of the said metal base material or the said torch is moved along the perpendicular | vertical direction or the direction close | similar to perpendicular | vertical, and vertical downward welding is performed, It is characterized by the above-mentioned.

これによれば、垂直姿勢あるいは垂直に近い姿勢とした金属母材の表面に対し、トーチ(溶接トーチ)をその軸心が直交あるいは直交に近い水平姿勢で配置し、該トーチの先端に位置するチップの中心部からプラズマアークを放射すると共に、該アークの先端部付近の上側に肉盛すべき金属粉末が上記チップの先端面の上部に開口する放出孔から供給される。その結果、上記金属粉末は、重力作用を受けつつ上記プラズマアークの先端の中心部付近である前記金属母材の表面近傍の溶融池に効率良く投入されので、10%以下の比較的低い希釈率で健全な溶接ビードを形成する立向下進溶接による肉盛り溶接を、比較的速い速度で施すことができる。しかも、上記金属母材あるいは上記トーチの何れか一方を垂直方向あるいは垂直に近い方向に沿って移動するので、該金属母材の表面に対し、垂直方向に沿って形状および厚みがほぼ一定の健全な溶接ビードを安定して形成することが可能となる。   According to this, a torch (welding torch) is arranged in a horizontal posture whose axis is perpendicular or nearly perpendicular to the surface of a metal base material in a vertical posture or a posture close to vertical, and is positioned at the tip of the torch. A plasma arc is emitted from the center of the tip, and metal powder to be deposited on the upper side in the vicinity of the tip of the arc is supplied from an emission hole opened at the top of the tip of the tip. As a result, the metal powder is efficiently charged into the molten pool near the surface of the metal base material, which is near the center of the tip of the plasma arc, while receiving a gravitational action, so a relatively low dilution rate of 10% or less. Therefore, overlay welding by vertical downward welding that forms a sound weld bead can be performed at a relatively high speed. In addition, since either the metal base material or the torch moves along the vertical direction or a direction close to the vertical direction, the shape and thickness of the metal base material along the vertical direction are substantially constant. It becomes possible to form a stable weld bead stably.

尚、前記金属母材は、例えば、ボイラ管、該ボイラ管を複数本離隔して有する水冷壁パネルなどを構成するための鋼材であり、例えば、クロムモリブデン鋼(低合金鋼)からなり、より詳しくは、ボイラ・熱交換器用合金鋼管(JIS:G3462、鋼種記号:STB340,STBA22,STBA24)や、ボイラおよび圧力容器用クロムモリブデン鋼鋼板(JIS:G4109、鋼種記号:SCMV2,SCMV3)が例示される。
また、前記金属母材には、平坦な表面を有する平板のほか、鋼管などの湾曲した表面(曲面)を有するものも含まれる。但し、湾曲した表面でも、その半径が大きい場合には、前記トーチの先端付近に隣接する局部的な表面部分は、擬似的な平坦な表面とみなして前記溶接を施すことも可能である。
更に、前記金属粉末は、金属母材の表面に所要の特性を付与するために、前記立向下進溶接によって肉盛溶接され、例えば、耐熱性を付与する場合には、Ni基やステンレス鋼の合金粉末が、耐摩耗性を付与する場合には、Co基の合金粉末が適用される。該金属粉末は、Arなどのキャリアガスによって搬送される。
また、上記Ni基の合金には、C−276(Ni−16%Cr−16%Mo−4%W−5%Fe)やインコネル625(Ni−22%Cr−10%Mo)が含まれ、上記ステンレス鋼には、SUS316やSUS310などが含まれる。
更に、上記Co基の合金には、ステライトNo,6(Co−28%Cr−4.5%W−1%C−1%Si)、No,12(Co−29%Cr−8.5%W−1.4%C−1%Si)、およびNo,21(Co−27%Cr−0.25%C−5.5%Mo−1.5%Si)が含まれる。
また、前記チップの先端面に開口する金属粉末の放出口は、単数または複数であり、その形状は、円形、長円形、楕円形、または円弧形の湾曲形状を含む。
更に、前記チップは、トーチの粉末ノズルと別体で且つ該トーチの先端部にネジ込みなどで取り付ける形態のほか、上記ノズルの先端部に一体に設けた形態としても良い。
加えて、前記プラズマアークおよびキャリアガスによって供給される金属粉末の流れは、前記チップの先端面における周辺側から円筒形状に放射されるArなどのシールドガスによって、外部との間が遮蔽状態とされる。
The metal base material is, for example, a steel material for constituting a boiler tube, a water-cooled wall panel having a plurality of the boiler tubes separated from each other, and is made of, for example, chrome molybdenum steel (low alloy steel). Specifically, alloy steel pipes for boilers and heat exchangers (JIS: G3462, steel type symbols: STB340, STBA22, STBA24) and chrome molybdenum steel plates for boilers and pressure vessels (JIS: G4109, steel type symbols: SCMV2, SCMV3) are exemplified. The
The metal base material includes not only a flat plate having a flat surface but also a curved surface (curved surface) such as a steel pipe. However, even in the case of a curved surface, when the radius is large, the local surface portion adjacent to the vicinity of the tip of the torch can be regarded as a pseudo flat surface and subjected to the welding.
Further, the metal powder is overlay welded by the vertical downward welding in order to impart the required characteristics to the surface of the metal base material. For example, in the case of imparting heat resistance, Ni base or stainless steel When the alloy powder gives wear resistance, a Co-based alloy powder is applied. The metal powder is conveyed by a carrier gas such as Ar.
The Ni-based alloy includes C-276 (Ni-16% Cr-16% Mo-4% W-5% Fe) and Inconel 625 (Ni-22% Cr-10% Mo), Examples of the stainless steel include SUS316 and SUS310.
Further, the Co-based alloys include Stellite No. 6 (Co-28% Cr-4.5% W-1% C-1% Si), No. 12 (Co-29% Cr-8.5%). W-1.4% C-1% Si), and No, 21 (Co-27% Cr-0.25% C-5.5% Mo-1.5% Si).
In addition, the metal powder discharge port may be singular or plural, and the shape may include a circular, oval, elliptical, or arcuate curved shape.
Further, the tip may be separately provided from the powder nozzle of the torch and attached to the tip of the torch by screwing or the like, or may be provided integrally with the tip of the nozzle.
In addition, the flow of the metal powder supplied by the plasma arc and the carrier gas is shielded from the outside by a shielding gas such as Ar radiated in a cylindrical shape from the peripheral side of the tip end surface of the chip. The

また、本発明には、軸方向が直交に近い水平姿勢で配置される前記トーチは、垂直姿勢とした前記金属母材の平坦な表面に対し、該トーチの軸心が水平線に対し下側あるいは上側に10度以内の範囲で傾斜している、粉末肉盛溶接方法(請求項2)も含まれる。
これによれば、垂直姿勢とされた前記金属母材の平坦な表面に対し、トーチの軸心を水平線の下側あるいは上側に10度以内で傾斜させた姿勢で前記立向下進溶接が行われるので、トーチの軸心を水平線と平行で且つ上記金属母材の平坦な表面と直交する姿勢による場合と同様の粉末肉盛溶接を行うことが可能となる。特に、トーチの軸心を水平線に対して下側に10度以内で傾斜した姿勢では、上記トーチの軸方向が斜め上向きとなり、重力の作用によって、金属母材の表面付近における上記アークにより形成される溶融池に金属粉末が効率良く投入し易くなるので、一層低い希釈率の溶接ビードを形成することが可能となる。
尚、前記トーチの軸心が水平線に対し下側あるいは上側に10度を超えて傾斜すると、相当量の金属粉末が金属簿材の平坦な表面に溶着しにくくなるので、係る範囲を除いたものである。
Further, in the present invention, the torch arranged in a horizontal posture in which the axial direction is nearly orthogonal to the flat surface of the metal base material in a vertical posture, the axial center of the torch is below the horizontal line or A powder build-up welding method (Claim 2) that is inclined upward within a range of 10 degrees is also included.
According to this, the vertical downward welding is performed in a posture in which the axial center of the torch is inclined to the lower side or the upper side of the horizontal line within 10 degrees with respect to the flat surface of the metal base material in the vertical posture. Therefore, it is possible to perform powder overlay welding similar to the case where the axial center of the torch is parallel to the horizontal line and is orthogonal to the flat surface of the metal base material. In particular, in a posture in which the axial center of the torch is inclined to the lower side within 10 degrees with respect to the horizontal line, the axial direction of the torch is obliquely upward, and is formed by the arc near the surface of the metal base material due to the action of gravity. Therefore, it is possible to form a weld bead having a lower dilution ratio because the metal powder can be efficiently put into the molten pool.
In addition, if the axis of the torch tilts more than 10 degrees below or above the horizontal line, a considerable amount of metal powder is difficult to weld to the flat surface of the metal book, so this range is excluded. It is.

更に、本発明には、垂直に近い姿勢とした前記金属母材の平坦な表面は、軸方向を水平姿勢とした前記トーチに対し、側面視において、該トーチよりも当該金属母材の上方の表面部分が垂直線から遠ざかる方向に10度以内で傾いている、粉末肉盛溶接方法(請求項3)も含まれる。
これによれば、軸方向を水平姿勢とした前記トーチに対し、前記金属母材の平坦な表面を該トーチよりも上方の表面部分が垂直線から10度以内の範囲で遠ざかる方向に傾斜させた姿勢で前記立向下進溶接が行われる。その結果、重力の作用も相まって、前記金属粉末を一層低い希釈率による溶接ビードに形成することが可能となる。
尚、水平姿勢のトーチに対し、金属母材の平坦な表面を該トーチよりも上方の表面部分が垂直線から10度超で遠ざかる方向に傾斜させると、相当量の金属粉末が金属簿材の平坦な表面に溶着し難くなるので、係る範囲を除いたものである。
Further, according to the present invention, the flat surface of the metal base material in a posture close to vertical is higher than the torch in a side view with respect to the torch in the horizontal direction in the axial direction. A powder build-up welding method (Claim 3) in which the surface portion is tilted within 10 degrees in a direction away from the vertical line is also included.
According to this, with respect to the torch in which the axial direction is horizontal, the flat surface of the metal base material is inclined in a direction in which the surface portion above the torch is away from the vertical line within 10 degrees. The vertical downward welding is performed in the posture. As a result, combined with the action of gravity, the metal powder can be formed into a weld bead with a lower dilution rate.
When the flat surface of the metal base material is inclined in a direction in which the surface portion above the torch is more than 10 degrees away from the vertical line with respect to the horizontal posture torch, a considerable amount of metal powder is formed on the metal book material. Since it becomes difficult to weld to a flat surface, this range is excluded.

また、本発明には、前記チップは、前記金属母材の表面に対向する先端面の中心部に前記プラズマアークを放射する放射孔を有すると共に、該放射孔よりも上方の上記先端面の周辺側に肉盛すべき金属粉末を供給する単数または複数の放出孔を有している、粉末肉盛溶接方法(請求項4)も含まれる。
これによれば、チップの先端面から放射されたプラズマアークよりも上方に肉盛すべき金属粉末が供給されるので、該粉末が重力の作用を受けても、上記チップが対向する金属母材の表面付近に位置する上記アークによる溶融池に効率良く投入される。その結果、比較的低い希釈率による溶接ビードを前記金属母材の垂直方向に沿って連続且つ安定して形成することができる。
尚、前記チップの円形の(丸い)先端面の上部において、金属粉末が放出される放出孔の中心は、上記先端面の中心を通過する垂直線から左右に60度ずつの範囲内(全体の範囲の角度:120度以下)、望ましくは垂直線から左右に30度ずつの範囲内(同上:60度以下)、より望ましくは垂直線から左右に45度ずつの範囲内(同上:90度以下)に複数または単数で開口している。但し、左右に20度ずつの範囲内(同上:40度以下)では、放出孔が加工しにくなる難点がある。
また、金属粉末の放出孔は、円形の場合には、その直径を1.0mm以上とし、長円形や円弧形状の場合には、それらの幅を1.0mm以上とすることで、肉盛りすべき金属粉末の流動性を確保することが可能となる。一方、プラズマアークの放射孔の直径は、上記放出孔のよりも大径である。
Further, according to the present invention, the tip has a radiation hole for radiating the plasma arc at the center of the tip surface facing the surface of the metal base material, and the periphery of the tip surface above the radiation hole. A powder build-up welding method (Claim 4) having one or a plurality of discharge holes for supplying metal powder to be built up on the side is also included.
According to this, since the metal powder to be built up is supplied above the plasma arc radiated from the tip surface of the tip, even if the powder is subjected to the action of gravity, the metal base material facing the tip Is efficiently put into the molten pool by the arc located in the vicinity of the surface. As a result, a weld bead having a relatively low dilution rate can be formed continuously and stably along the vertical direction of the metal base material.
In addition, in the upper part of the circular (round) tip surface of the chip, the center of the discharge hole from which the metal powder is discharged is within a range of 60 degrees to the left and right from the vertical line passing through the center of the tip surface (the whole Range angle: 120 degrees or less), desirably within 30 degrees from left to right from vertical line (same as above: 60 degrees or less), more desirably within 45 degrees from left to right from vertical line (same as above: 90 degrees or less) ) Are opened in plural or singular. However, within the range of 20 degrees to the left and right (same as above: 40 degrees or less), there is a difficulty that the discharge hole becomes difficult to process.
Further, the metal powder discharge holes are piled up by setting the diameter to 1.0 mm or more in the case of a circle, and to 1.0 mm or more in the case of an oval or arc shape. It is possible to ensure the fluidity of the power metal powder. On the other hand, the diameter of the plasma arc radiation hole is larger than that of the discharge hole.

加えて、本発明には、前記トーチによる溶接速度は、5〜120cm/分の範囲にある、粉末肉盛溶接方法(請求項5)も含まれる。
これによれば、金属母材の表面付近に形成される溶融池に対し、適正量の金属粉末を供給できるので、形状が良好で且つ止端部に欠陥のない溶接ビードを上記金属母材の表面に沿って、比較的速い速度で確実に形成することができる。
尚、前記溶接速度が5cm/分未満になると、金属母材の表面に形成される溶融池が垂れて溶接ビードを形成しにくくなり、一方、前記溶接速度が120cm/分超になると、上記溶融池に対する金属粉末の供給量が過少となり、溶接ビードの止端部に欠陥が生じ得るので、これらを除いた前記範囲としたものである。
また、前記金属粉末は、1.0L/分以上のキャリアガスにより前記チップの先端面から供給するのが望ましい。
更に、前記金属粉末の平均粒径は、送給性の観点から約63〜250μmが推奨され、その供給量は、例えば、約3〜200g/分の範囲が推奨される。
In addition, the present invention includes a powder overlay welding method (Claim 5) in which the welding speed by the torch is in the range of 5 to 120 cm / min.
According to this, since an appropriate amount of metal powder can be supplied to the molten pool formed near the surface of the metal base material, a weld bead having a good shape and having no defects at the toe is formed. It can be reliably formed along the surface at a relatively fast rate.
When the welding speed is less than 5 cm / min, the molten pool formed on the surface of the metal base material hangs down and it is difficult to form a weld bead. On the other hand, when the welding speed exceeds 120 cm / min, the melting Since the supply amount of the metal powder to the pond becomes too small and a defect may occur at the toe portion of the weld bead, the above-described range is excluded.
The metal powder is preferably supplied from the tip surface of the chip with a carrier gas of 1.0 L / min or more.
Furthermore, the average particle size of the metal powder is recommended to be about 63 to 250 μm from the viewpoint of feedability, and the supply amount is recommended to be in the range of about 3 to 200 g / min, for example.

本発明による一形態の粉末肉盛溶接方法の概略を示す垂直断面図。The vertical sectional view showing the outline of the powder overlay welding method of one form by the present invention. (A)〜(C)は、上記溶接方法に用いるトーチに取り付けるチップの先端面の相互に異なるパターンを示す部分図。(A)-(C) are the fragmentary views which show the mutually different pattern of the front end surface of the chip | tip attached to the torch used for the said welding method. 上記溶接方法の変形形態の概略を示す垂直断面図。The vertical sectional view showing the outline of the modification of the above-mentioned welding method. 異なる形態の粉末肉盛溶接方法の概略を示す垂直断面図。The vertical sectional view which shows the outline of the powder overlay welding method of a different form. 溶接ビードにおける希釈率を図解する概略断面図。The schematic sectional drawing which illustrates the dilution rate in a weld bead. 比較例の方法に用いた溶接チップの先端面を示す部分図。The fragmentary figure which shows the front end surface of the welding tip used for the method of the comparative example. 形状が良好な溶接ビードを示す模式的図面。Schematic drawing showing a weld bead having a good shape. 形状不良の溶接ビードを示す模式的図面。Schematic drawing which shows the weld bead of a shape defect.

以下において、本発明を実施するための形態について説明する。
図1は、本発明による粉末肉盛溶接方法の一形態の概略を示す垂直断面図であり、図示のように、予め、垂直姿勢とされた金属母材W1の表面付近に対し、軸心が直交するように水平姿勢として溶接トーチ(トーチ)1を配置する。
上記トーチ1は、図1に示すように、全体的に円柱形状を呈し、外周側に位置し且つ先端側が先細形状とされた円筒状のシールドキャップ2、該キャップ2の内側に同軸心で配置された円筒状の粉末ノズル5、該ノズル5の中心部を貫通する中空部7の中心部に配置された先尖形状のタングステン電極6、および上記ノズル5の先端側にネジ結合されたチップ11を備えている。
尚、上記キャップ2、粉末ノズル5、およびチップ11は、何れも耐熱性の金属素材からなる。また、上記チップ11は、粉末ノズル5の先端部に一体化にされた形態であっても良い。
上記シールドキャップ2と粉末ノズル5との間には、リング形状のガス送給路3が位置し、その先端にリング形状で開口する放出孔4から、金属母材W1の表面側に向かって、Arガスなどのシールドガスsgが円筒形状に放出される。
Hereinafter, modes for carrying out the present invention will be described.
FIG. 1 is a vertical sectional view showing an outline of one embodiment of the powder overlay welding method according to the present invention. As shown in the drawing, the axial center is in the vicinity of the surface of the metal base material W1 in a vertical posture in advance. A welding torch (torch) 1 is arranged in a horizontal posture so as to be orthogonal to each other.
As shown in FIG. 1, the torch 1 has a generally cylindrical shape, a cylindrical shield cap 2 that is positioned on the outer peripheral side and has a tapered tip, and is coaxially disposed inside the cap 2. The cylindrical powder nozzle 5, the pointed tungsten electrode 6 disposed at the center of the hollow portion 7 passing through the center of the nozzle 5, and the tip 11 screwed to the tip side of the nozzle 5. It has.
The cap 2, the powder nozzle 5, and the chip 11 are all made of a heat-resistant metal material. The chip 11 may be integrated with the tip of the powder nozzle 5.
Between the shield cap 2 and the powder nozzle 5, a ring-shaped gas supply path 3 is located, and from the discharge hole 4 opened in a ring shape at the tip thereof toward the surface side of the metal base material W1, A shielding gas sg such as Ar gas is released in a cylindrical shape.

また、前記粉末ノズル5の先端側の内部には、冷却水が循環するリング状の中空部5aが形成され、該ノズル5と隣接するチップ11とを冷却可能としている。
更に、前記粉末ノズル5およびチップ11の軸方向に沿っており、且つ前記中空部7の先端側に縮径して開口するプラズマアークpaの放射孔8よりも上側の位置には、粉末流路10が水平で且つ先端側では中心寄りに傾斜して貫通している。上記チップ11の先端面12に開口する上記粉末流路10の放出孔9も、当該先端面12において上記放射孔8よりも上側の位置に開口している。上記粉末流路10には、Arガスなどのキャリアガスと共に、肉盛りすべき金属粉末mpが送給され、放出孔9から金属母材W1の表面付近に送給される。
図1に示すように、金属母材W1とタングステン電極6の間とは、メインアーク電源15を介して電気的に導通可能されており、上記粉末ノズル5の先端部とタングステン電極6との間は、パイロットアーク電源16および高周波発生装置17を介して電気的に導通可能されている。
In addition, a ring-shaped hollow portion 5a through which cooling water circulates is formed inside the powder nozzle 5 on the tip side, so that the nozzle 5 and the adjacent chip 11 can be cooled.
Further, a powder flow path is provided at a position along the axial direction of the powder nozzle 5 and the tip 11 and above the radiation hole 8 of the plasma arc pa that is reduced in diameter and opened toward the distal end side of the hollow portion 7. 10 is horizontal and on the tip side, it is inclined toward the center and penetrates. The discharge hole 9 of the powder channel 10 that opens to the tip surface 12 of the chip 11 also opens at a position above the radiation hole 8 on the tip surface 12. A metal powder mp to be built up is fed into the powder flow path 10 together with a carrier gas such as Ar gas, and is fed from the discharge hole 9 to the vicinity of the surface of the metal base material W1.
As shown in FIG. 1, the metal base material W <b> 1 and the tungsten electrode 6 can be electrically connected via a main arc power source 15, and between the tip of the powder nozzle 5 and the tungsten electrode 6. Is electrically conductive through a pilot arc power supply 16 and a high frequency generator 17.

図2(A)に示すように、チップ11の先端面12に開口する金属粉末mpおよびキャリアガスの放出孔9は、内径(直径)が1.0mm以上であり、上記先端面12の中心部に開口するプラズマアークpaの放射孔8よりも上側の周辺部において、一対(2個)が左右対称に開口している。係る一対の放出孔9の中心は、先端面12の中心を通過する仮想の垂直線から左右に45度ずつの範囲内(全体の範囲の角度θ1:90度以下)に位置することが、金属粉末mpを用いた立向下進溶接による肉盛溶接の効率上の観点から最も推奨される。
また、図2(B)に示すように、前記放出孔9は、チップ11の先端面12における放射孔8の開口位置よりも上側の周辺部において、3個を左右対称に開口しても良い。この場合、図示で左右に位置する放出孔9の中心は、先端面12の中心を通過する仮想の垂直線から左右に60度ずつの範囲内(全体の範囲の角度θ2:120度以下)に位置するようにすることが望ましい。
更に、図2(C)に示すように、チップ11の先端面12における放射孔8の開口位置の真上付近の周辺部に、円弧状にカーブした1個の円弧孔9aを開口させた形態としても良い。該円弧孔9aの幅は、1.0mm以上に設定される。
As shown in FIG. 2A, the metal powder mp and the carrier gas discharge hole 9 opening on the tip surface 12 of the chip 11 have an inner diameter (diameter) of 1.0 mm or more, and the central portion of the tip surface 12. A pair (two pieces) are opened symmetrically in the peripheral part above the radiation hole 8 of the plasma arc pa opened in the left and right directions. The center of the pair of discharge holes 9 is located within a range of 45 degrees to the left and right from an imaginary vertical line that passes through the center of the tip surface 12 (the total range angle θ1: 90 degrees or less). Most recommended from the standpoint of efficiency of overlay welding by vertical downward welding using powder mp.
Further, as shown in FIG. 2B, three of the discharge holes 9 may be opened symmetrically in the peripheral portion above the opening position of the radiation hole 8 on the tip surface 12 of the chip 11. . In this case, the center of the discharge hole 9 positioned on the left and right in the drawing is within a range of 60 degrees to the left and right from the virtual vertical line passing through the center of the tip surface 12 (the angle θ2 of the entire range is 120 degrees or less). It is desirable to be positioned.
Further, as shown in FIG. 2 (C), one arc hole 9a that is curved in an arc shape is opened at the periphery of the tip surface 12 of the tip 11 in the vicinity of the position immediately above the opening position of the radiation hole 8. It is also good. The width of the arc hole 9a is set to 1.0 mm or more.

以下において、図1によって、本発明の粉末肉盛溶接方法を説明する。
前記図2(A)〜(C)で示した複数あるいは単数の放射孔9(9a)を先端面12に有するチップ11を含むトーチ1を、図1に示すように、垂直姿勢とされた金属母材W1の平坦な表面付近に対し、その軸方向が直交するように水平姿勢で配置する。この際、チップ11の外側に位置するリング形状の前記放出孔4からは、予め、Arガスなどの不活性ガスからなるシールドガスsgが円筒状に放出されている。
次に、前記パイロットアーク電源16の投入に続いてメインアーク電源15を投入すると、予め、トーチ1の中心部を貫通する中空部7内を放出孔8側に送給されているArガスなどのプラズマガスのうち、放射孔8よりも外側のプラズマガス雰囲気中において、タングステン電極6の先端から金属母材W1の表面に向かって、側面視で細長い紡錘形状のプラズマアークpaが放射される。
Hereinafter, the powder overlay welding method of the present invention will be described with reference to FIG.
The torch 1 including the tip 11 having the plurality of or single radiation holes 9 (9a) shown in FIGS. 2 (A) to 2 (C) in the distal end surface 12 is set in a vertical posture as shown in FIG. It arrange | positions with a horizontal attitude | position so that the axial direction may orthogonally cross with respect to the flat surface vicinity of the base material W1. At this time, a shield gas sg made of an inert gas such as Ar gas is discharged in a cylindrical shape from the ring-shaped discharge hole 4 located outside the chip 11.
Next, when the main arc power source 15 is turned on after the pilot arc power source 16 is turned on, the inside of the hollow portion 7 penetrating the center portion of the torch 1 is previously supplied with Ar gas or the like fed to the discharge hole 8 side. Of the plasma gas, in a plasma gas atmosphere outside the radiation hole 8, an elongated spindle-shaped plasma arc pa is radiated from the front end of the tungsten electrode 6 toward the surface of the metal base material W1.

かかる状態で、図1中の破線で示すように、粉末ノズル5内の粉末流路10を、Arガスなどのキャリアガスによって送給された金属粉末mpを、チップ11の先端面12に開口する前記放射孔9(9a)から、上記プラズマアークpaの上方から該アークpaの先端部の上側を経てそ中心付近に送り込む。この際、連続供給される金属粉末mp群は、重力の作用を受けている。その結果、前記金属母材W1の平坦な表面には、上記プラズマアークpaの高熱による溶融池が形成され、該溶融池内に金属粉末mpが連続して効率良く投入され、連続して溶融される。   In this state, as shown by the broken line in FIG. 1, the metal powder mp fed by the carrier gas such as Ar gas is opened in the tip surface 12 of the chip 11 through the powder flow path 10 in the powder nozzle 5. From the above-mentioned radiation hole 9 (9a), the plasma arc pa is sent from above to the vicinity of its center through the upper side of the tip of the arc pa. At this time, the continuously supplied metal powder mp group is subjected to the action of gravity. As a result, a molten pool due to the high temperature of the plasma arc pa is formed on the flat surface of the metal base material W1, and the metal powder mp is continuously and efficiently charged into the molten pool and continuously melted. .

前記の状態を保ちつつ、図1中の白抜きの矢印で示すように、トーチ1を比較的速い速度により下側に移動(下進)させることによって、上記金属粉末mp群の投入および溶融が、金属母材W1の平坦な表面の垂直方向に沿って連続して生じるので、金属母材W1の平坦な表面には、該表面よりも余盛が高く突出した(即ち、希釈率が10%以下と低い)健全な溶接ビードBが形成される。この際、トーチ1を溶接方向(下向き方向)と交差する幅方向にジグザグ状などに連続して振る所謂ウィービングを行うと、比較的幅広の溶接ビードBが得られる。
その結果、健全な溶接ビードBを金属母材W1の表面の垂直方向に沿って連続して形成することができる。更に、前記トーチ1を図1の前側または後側にずらして、更に上記のような立向下進溶接による粉末肉盛溶接を連続して行うと、金属母材W1の表面全体を上記溶接ビードBの肉盛により覆うことができる。従って、金属母材W1の表面全体に対し、金属粉末mgの特性に基づく耐食性や耐摩耗性などの特性を付与でき、該金属母材W1の表面を改質することができる。
尚、水平姿勢とした前記トーチ1を位置固定した状態で、金属母材W1を垂直方向に沿って上昇するように移動させる形態の立向下進溶接を行っても良い。
While maintaining the above state, the metal powder mp group is charged and melted by moving (downward) the torch 1 at a relatively high speed as indicated by the white arrow in FIG. Since the metal base material W1 is continuously generated along the vertical direction of the flat surface of the metal base material W1, the flat surface of the metal base material W1 protrudes higher than the surface (that is, the dilution rate is 10%). A sound weld bead B is formed which is low and below. At this time, when so-called weaving is performed in which the torch 1 is continuously swung in a zigzag shape in the width direction intersecting the welding direction (downward direction), a relatively wide weld bead B is obtained.
As a result, a sound weld bead B can be continuously formed along the vertical direction of the surface of the metal base material W1. Further, when the torch 1 is shifted to the front side or the rear side in FIG. 1 and the powder overlay welding by the vertical downward welding as described above is continuously performed, the entire surface of the metal base material W1 is moved to the weld bead. It can be covered with the overlay of B. Therefore, characteristics such as corrosion resistance and wear resistance based on the characteristics of the metal powder mg can be imparted to the entire surface of the metal base material W1, and the surface of the metal base material W1 can be modified.
Note that vertical downward welding may be performed in such a manner that the metal base material W1 is moved along the vertical direction in a state where the position of the torch 1 in a horizontal posture is fixed.

また、図3に示すような形態の粉末肉盛溶接方法も本発明に含まれる。
図3に示すように、垂直姿勢とされた金属母材W1の平坦な表面付近に対し、トーチ1の軸心を水平線に対し下側に10度以内の傾斜角度θ3を付けて、該トーチ1を斜め上向きに配置する。換言すると、金属母材W1の表面は、軸心を水平姿勢としたトーチ1に対し、側面視でトーチ1の軸心よりも上側の該金属母材W1の表面部分を垂直線から遠ざかる方向に10度以内の傾斜角度θ3で傾斜させても上記と同様になる。
前記同様に、チップ11の放出孔4からは、予め、シールドガスsgが円筒形状に放出され、且つチップ11の先端面12の放射孔8からはプラズマアークpaが紡錘形状に放射されている。かかる状態で、前記同様に、該チップ11の先端面12において、図示のように、放射孔8よりも上側に位置する放出孔9(9a)からキャリアガスと共に金属粉末mgを、重力の作用を含めて上記プラズマアークpaの上方から該アークpaの先端部の上側の経路を経てその中心付近に送り込む。
Moreover, the powder overlay welding method of a form as shown in FIG. 3 is also contained in this invention.
As shown in FIG. 3, with respect to the vicinity of the flat surface of the metal base material W1 in a vertical posture, the axis of the torch 1 is provided with an inclination angle θ3 within 10 degrees below the horizontal line, and the torch 1 Is placed diagonally upward. In other words, the surface of the metal base material W1 is in a direction in which the surface portion of the metal base material W1 above the axis of the torch 1 in a side view is away from the vertical line with respect to the torch 1 having the horizontal axis. Even if it is inclined at an inclination angle θ3 within 10 degrees, it is the same as described above.
Similarly to the above, the shield gas sg is emitted in a cylindrical shape from the discharge hole 4 of the tip 11 in advance, and the plasma arc pa is emitted in a spindle shape from the radiation hole 8 of the tip surface 12 of the tip 11. In this state, similarly to the above, on the tip surface 12 of the chip 11, as shown in the figure, the metal powder mg together with the carrier gas from the discharge hole 9 (9a) located above the radiation hole 8 is subjected to the action of gravity. In addition, the plasma arc is fed from the upper part of the plasma arc pa to the vicinity of the center through the path above the tip of the arc pa.

その結果、図3に示すように、前記同様に希釈率が10%以下と低く且つ健全な溶接ビードBを、金属母材W1の平坦な表面に、垂直方向に沿って連続して形成できる。この際、前記ウィービングを行っても良い。更に、前期同様の溶接トーチ1を図3の前側また後側にずらして、前記同様の立向下進溶接を連続して行うことで、金属母材W1の表面全体を前記同様の健全な溶接ビードBにより覆うことができる。
尚、前記トーチ1の軸心を水平姿勢とし、更に、垂直線から後(奥)側に10度の範囲内で傾斜した金属母材W1の平坦な表面に対し、前記肉盛溶接を行っても良い。
尚また、軸心を水平姿勢として前記トーチ1を位置固定し、更に、垂直線から後(奥)側に10度の範囲内で傾斜した金属母材W1をその平面方向に沿って移動させつつ、該母材W1の表面に対し前記肉盛溶接を行っても良い。
尚更に、前記のように傾斜した姿勢でトーチ1を位置固定し、金属母材W1を垂直方向に沿って上昇するように移動させる形態の立向下進溶接を行っても良い。
As a result, as shown in FIG. 3, the weld bead B having a low dilution rate of 10% or less and a healthy weld bead B can be continuously formed along the vertical direction on the flat surface of the metal base material W1. At this time, the weaving may be performed. Further, the same welding torch 1 as in the previous period is shifted to the front side or the rear side in FIG. 3, and the same vertical downward welding is continuously performed, so that the entire surface of the metal base material W1 is soundly welded as described above. Can be covered with bead B.
Note that the axial center of the torch 1 is set in a horizontal posture, and the overlay welding is performed on the flat surface of the metal base material W1 inclined within a range of 10 degrees from the vertical line to the rear (back) side. Also good.
Further, the torch 1 is fixed in position with the axis as the horizontal posture, and further, the metal base material W1 inclined within a range of 10 degrees from the vertical line to the rear (back) side is moved along the plane direction. The overlay welding may be performed on the surface of the base material W1.
Still further, the vertical downward welding may be performed in such a manner that the torch 1 is fixed in a position inclined as described above and the metal base material W1 is moved so as to rise along the vertical direction.

更に、図4に示すような形態の粉末肉盛溶接方法も本発明に含まれる。
図4中の太い矢印で示すように、例えば、大径の鋼管である金属母材W2をその円周方向で且つ上向きに回転させ、該金属母材W2の外周面である表面に対し、その径方向で且つ水平線に沿って、軸心が合致するようにトーチ1を配置する。
前記同様に、トーチ1の先端側の放出孔4からは、予め、シールドガスsgが円筒形状に放出され、且つチップ11の先端面12の放射孔8からはプラズマアークpaが紡錘形状に放射されている。かかる状態で、前記同様に、チップ11の先端面12において、図示のように、放射孔8よりも上側に位置する放出孔9(9a)からキャリアガスと共に金属粉末mgが、重力の作用を含めて上記プラズマアークpaの上側から該アークpaの先端部の中心付近に送り込まれる。
Furthermore, a powder overlay welding method having a form as shown in FIG. 4 is also included in the present invention.
As shown by a thick arrow in FIG. 4, for example, a metal base material W2 that is a large-diameter steel pipe is rotated in the circumferential direction and upward, with respect to the surface that is the outer peripheral surface of the metal base material W2. The torch 1 is arranged in the radial direction and along the horizontal line so that the axes are aligned.
Similarly to the above, the shield gas sg is emitted in a cylindrical shape from the discharge hole 4 on the tip side of the torch 1 in advance, and the plasma arc pa is radiated in a spindle shape from the radiation hole 8 on the tip surface 12 of the tip 11. ing. In this state, the metal powder mg together with the carrier gas from the discharge hole 9 (9a) located above the radiation hole 8 on the tip surface 12 of the chip 11 includes the action of gravity in the same manner as described above. Then, it is fed from the upper side of the plasma arc pa to the vicinity of the center of the tip of the arc pa.

その結果、図4に示すように、前記同様に希釈率が10%以下と低く且つ健全な溶接ビードBを、金属母材W2の湾曲した表面に、垂直方向で且つ円周方向に沿って連続して形成することができる。この際、前記ウィービングを行っても良い。更に、鋼管からなる金属母材W2を円周方向に沿って回転しつつ、軸方向に沿っても徐々に移動させることによって、溶接ビードBを金属母材W2の外周面である表面に沿って螺旋状に巻き付けて被覆することができる。
尚、前記同様に円周方向で且つ上向きに回転する金属母材W2の外周面(表面)に対し、その径方向および水平線と平行とされ、しかも軸心を上記金属母材W2の径方向よりも若干上側(上向き)に位置させてトーチ1を配置して、前記同様の肉盛溶接を行うようにしても良い。
尚また、前記同様に円周方向で且つ上向きに回転する金属母材W2の外周面(表面)に対し、その径方向と水平線とに対し、軸心が下側または上側に10度以内の範囲で傾斜した姿勢でトーチ1を配置して、前記肉盛溶接を行っても良い。
As a result, as shown in FIG. 4, the weld bead B having a dilution rate as low as 10% or less as described above is continuously applied to the curved surface of the metal base material W2 in the vertical direction and along the circumferential direction. Can be formed. At this time, the weaving may be performed. Further, by rotating the metal base material W2 made of a steel pipe along the circumferential direction and gradually moving it along the axial direction, the weld bead B is moved along the surface that is the outer peripheral surface of the metal base material W2. It can be wound and coated in a spiral.
In addition, the radial direction and the horizontal line are parallel to the outer peripheral surface (surface) of the metal base material W2 that rotates in the circumferential direction and in the same manner as described above, and the axial center is from the radial direction of the metal base material W2. Alternatively, the torch 1 may be arranged slightly above (upward) to perform overlay welding similar to the above.
Further, in the same manner as described above, with respect to the outer peripheral surface (surface) of the metal base material W2 rotating in the circumferential direction and upward, the axis is within 10 degrees below or above the radial direction and the horizontal line. The build-up welding may be performed by arranging the torch 1 in an inclined posture.

以上のような本発明の粉末肉盛溶接方法によれば、垂直姿勢あるいは垂直に近い姿勢とした金属母材W1,W2の表面に対し、トーチ1をその軸心が直交あるいは直交に近い水平姿勢で配置し、該トーチ1の先端に取り付けたチップ11の中心部からプラズマアークpaを放射すると共に、該アークpaの先端部付近の上方に肉盛すべき金属粉末mpが上記チップ11の先端面12の上部に開口する放出孔9(9a)から供給される。その結果、上記金属粉末mpは、重力作用を受けつつ上記プラズマアークpaの先端の中心部付近であり且つ前記金属母材W1,W2の表面の溶融池に効率良く投入されるので、比較的低い希釈率の健全な溶接ビードBを形成する立向下進溶接による粉末肉盛り溶接を、比較的速い溶接速度で施すことができる。
しかも、前記金属母材W1,W2あるいはトーチ1の何れか一方が垂直方向、円周方向、あるいは垂直に近い方向に沿って移動するので、該金属母材W1,W2の表面に対し、垂直方向または円周方向に沿って形状および厚みがほぼ一定に安定した健全な溶接ビードBを安定して形成することができる。
According to the powder overlay welding method of the present invention as described above, the horizontal position of the torch 1 is orthogonal or close to orthogonal to the surface of the metal base materials W1 and W2 in a vertical attitude or a nearly vertical attitude. And a plasma arc pa is emitted from the center of the tip 11 attached to the tip of the torch 1, and the metal powder mp to be built up near the tip of the arc pa is the tip of the tip 11. 12 is supplied from a discharge hole 9 (9a) that opens to the top of 12. As a result, the metal powder mp is relatively low because it is placed in the vicinity of the center of the tip of the plasma arc pa while being subjected to the gravitational action and is efficiently put into the molten pool on the surfaces of the metal base materials W1 and W2. Powder build-up welding by vertical downward welding to form a weld bead B having a healthy dilution rate can be performed at a relatively high welding speed.
In addition, since any one of the metal base materials W1, W2 or the torch 1 moves along the vertical direction, the circumferential direction, or the direction close to the vertical direction, the vertical direction with respect to the surface of the metal base materials W1, W2 Alternatively, it is possible to stably form a sound weld bead B whose shape and thickness are almost constant and stable along the circumferential direction.

以下において、本発明の具体的な実施例を、比較例と併せて説明する。
予め、ボイラ用クロムモリブデン鋼(JIS G 4109)からなり、厚みや縦・横の寸法が共通する複数枚の鋼板を用意して、平坦な表面を有する金属母材W1とし、これらの母材W1を垂直姿勢で拘束した。係る垂直姿勢とされた金属母材W1に対して、前記図1と同様に、該母材W1の平坦な表面に対し、5〜10cmの距離を置いて、軸心が直交するように前記トーチ1を水平姿勢で且つ下降(下進)可能にして個別に配置した。
In the following, specific examples of the present invention will be described together with comparative examples.
A plurality of steel plates made of chromium molybdenum steel for boilers (JIS G 4109) and having the same thickness and vertical and horizontal dimensions are prepared in advance as a metal base material W1 having a flat surface, and these base materials W1 Was restrained in a vertical posture. With respect to the metal base material W1 in such a vertical posture, the torch is placed at a distance of 5 to 10 cm with respect to the flat surface of the base material W1 in the same manner as in FIG. 1 was placed in a horizontal posture and allowed to move down (downward).

次いで、SUS316からなり、平均粒径が約150μmの金属粉末mpを、約2〜2.5L/分のArガス(キャリアガス)と共に、約6〜80g/分の供給量により、垂直姿勢の前記金属母材W1の一部に対しては、前記図2(A)で示した前記トーチ1ごとのチップ11の先端面12に開口する左右一対の放出孔9から、互いに共通の条件で横向きに発生させたプラズマアークpaの先端側に上側から供給して、立向下進溶接を行って実施例とした。   Next, the metal powder mp consisting of SUS316 and having an average particle size of about 150 μm is supplied in a vertical posture by supplying about 6 to 80 g / min together with Ar gas (carrier gas) of about 2 to 2.5 L / min. With respect to a part of the metal base material W1, the pair of left and right discharge holes 9 opened in the tip surface 12 of the tip 11 for each torch 1 shown in FIG. It supplied to the front end side of the generated plasma arc pa from the upper side, and the vertical downward welding was performed, and it was set as the Example.

一方、残りの垂直姿勢の金属母材W1に対しては、図5に示すように、チップ11zの先端面12の中心部に位置する放射孔8の下側に開口する一対の放出孔9から、上記と同じ金属粉末mpを上記と同じ条件により、上記同様の条件で下向きに発生させたプラズマアークpaの先端側に、その周辺側から供給して立向下進溶接を行って比較例とした。即ち、上記チップ11zは、図2(A)で示した前記チップ11とは上下逆にしたものである。
上記実施例および比較例の立向下進溶接をそれぞれ同じ長さで行い、表1に示すように、トーチ1の移動速度(溶接速度)別および溶接電流別により区分した。
尚、表1中の(注)で示す溶接条件(ウィービング幅およびウィービング周波数)は、全て共通にして上記の各溶接を行った。
On the other hand, with respect to the remaining metal base material W1 in the vertical position, as shown in FIG. 5, from a pair of discharge holes 9 that open below the radiation holes 8 located at the center of the tip surface 12 of the tip 11z. The same metal powder mp as described above was supplied from the peripheral side to the tip side of the plasma arc pa generated downward under the same conditions as described above, and the vertical downward welding was performed. did. That is, the chip 11z is upside down with respect to the chip 11 shown in FIG.
The vertical downward welding of the above examples and comparative examples was performed with the same length, and as shown in Table 1, the torch 1 was classified according to the moving speed (welding speed) and the welding current.
In addition, the welding conditions (weaving width and weaving frequency) indicated by (Note) in Table 1 were all common and the above-described welding was performed.

Figure 2014172057
Figure 2014172057

表1によれば、立向下進溶接で且つ溶接速度が8〜100cm/分の広い範囲であった本発明による実施例1〜8では、溶接速度と金属母材W1の表面付近に形成される溶融池への金属粉末mpの単位面積当たりの投入量とが適切な関係であったので、希釈率が低く(余盛が高く)形状が良好、あるいは、ほぼ良好で健全な溶接ビードBが得られた。即ち、実施例1〜8によよれば、溶接速度が比較的遅い場合はもちろん、100cm/分と比較的速い場合であっても、何れも良好で健全な溶接ビードBを得ることができた。
一方、立向下進溶接で且つ前記チップ11zを用いた比較例1〜8のうち、比較例3,4,7,8では、溶接速度が30cm/以上と溶接速度が速すぎたため、前記溶融池への金属粉末mpの単位面積当たりの投入量が不足したことによって、希釈率が高く(余盛が低く)形状不良の溶接ビードBが得られた。
According to Table 1, in Examples 1 to 8 according to the present invention in which the welding is vertical downward welding and the welding speed is in a wide range of 8 to 100 cm / min, the welding speed and the surface of the metal base material W1 are formed. Since the amount of metal powder mp charged into the molten pool per unit area was in an appropriate relationship, the weld bead B having a low dilution ratio (high surplus) and a good shape or a substantially good and sound weld bead B was obtained. Obtained. That is, according to Examples 1-8, not only when the welding speed was relatively slow, but also when the welding speed was relatively high at 100 cm / min, it was possible to obtain a good and healthy weld bead B. .
On the other hand, in Comparative Examples 3, 4, 7, and 8 among Comparative Examples 1 to 8 using vertical tip welding and the tip 11z, the welding speed was 30 cm / or more and the welding speed was too high. Due to the insufficient amount of metal powder mp per unit area into the pond, a weld bead B having a poor dilution and a high dilution rate (low surplus) was obtained.

尚、前記希釈率は、図6で模式的に示すように、金属母材W1の表面に形成される溶接ビードBにおいて、該表面よりも母材W1側に位置する溶け込み部b1の断面積Yを、該溶け込み深さdと上記表面よりも外側に突出する余盛b2の断面積Xとの合計値で割った割合値である。即ち、該希釈率の割合(%)が低い程、余盛bが高くなり、あるいは、溶け込みが浅くなって、形状が良好で且つ健全な溶接ビードBとなる。
更に、前記希釈率は、溶け込み部b1の断面積Yが小さいほど低くなるが、該断面積Yが小さ過ぎると剥離が生じ易くなるリスクがある。
前記実施例3による形状が良好な溶接ビードBの一例を図7に示すと共に、前記比較例3による形状が不良な溶接ビードBの一例を図8に示した。
以上のような実施例1〜8の立向下進溶接により、本発明の効果が確認できた。
As shown schematically in FIG. 6, the dilution rate is the cross-sectional area Y of the penetration portion b1 located on the base material W1 side of the surface of the weld bead B formed on the surface of the metal base material W1. Is divided by the total value of the penetration depth d and the cross-sectional area X of the surplus b2 protruding outward from the surface. That is, as the ratio (%) of the dilution rate is lower, the extra b becomes higher or the penetration becomes shallower, and the weld bead B having a good shape and soundness is obtained.
Furthermore, the dilution rate decreases as the cross-sectional area Y of the melted portion b1 decreases. However, if the cross-sectional area Y is too small, there is a risk that peeling easily occurs.
An example of a weld bead B having a good shape according to Example 3 is shown in FIG. 7, and an example of a weld bead B having a poor shape according to Comparative Example 3 is shown in FIG.
The effect of this invention has been confirmed by the vertical downward welding of Examples 1-8 as described above.

本発明は、以上のような実施の形態や実施例に限定されるものではない。
例えば、金属母材には、パイプ部分と平板部分とが交互に隣接して配設されたボイラの水冷壁や、熱交換器の熱交換壁なども含まれる。
また、金属母材は、鋼材に限らず、Ni基やTi基などの合金からなるものでも良く、前記金属粉末は、Co基やNi基などの合金からなるものでも良い。
更に、前記チップ11の先端面12に円形で開口する放出孔9は、比較的大径の1個、あるいは比較的小径の4個以上とし、且つ前記角度θ1または角度θ2の範囲において形成することも可能である。
加えて、前記チップ11の先端面12に円弧形状で開口する放出孔9aは、例えば、長円形や楕円形とし、且つ単数で形成するほか、複数個を併設しても良い。
The present invention is not limited to the above embodiments and examples.
For example, the metal base material includes a water cooling wall of a boiler in which pipe portions and flat plate portions are alternately adjacently disposed, a heat exchange wall of a heat exchanger, and the like.
Further, the metal base material is not limited to a steel material, and may be made of an alloy such as Ni base or Ti base, and the metal powder may be made of an alloy such as Co base or Ni base.
Further, the discharge hole 9 opening in a circular shape on the tip surface 12 of the tip 11 is formed with one relatively large diameter, or four or more relatively small diameters, and is formed in the range of the angle θ1 or the angle θ2. Is also possible.
In addition, the discharge hole 9a opening in the arc shape on the tip surface 12 of the chip 11 may be, for example, an oval or an ellipse, and may be formed as a single unit, or a plurality thereof.

本発明によれば、溶接ビードの希釈率が低く、難加工材料や難溶接材料からなる金属粉末も使用できる共に、溶接速度を高くでき、且つ垂直姿勢の金属母材の表面への肉盛溶接も容易に行える粉末肉盛溶接方法を確実に提供できる。   According to the present invention, the welding bead dilution ratio is low, metal powder made of difficult-to-process materials and difficult-to-weld materials can be used, welding speed can be increased, and overlay welding to the surface of a metal base material in a vertical posture It is possible to reliably provide a powder overlay welding method that can be easily performed.

1……………トーチ
8……………放射孔
9,9a……放出孔
11…………チップ
12…………先端面
W1,W2…金属母材
pa…………プラズマアーク
mp…………金属粉末
1 ......... Torch 8 ............... Radiation hole 9, 9a ... Release hole 11 ......... Tip 12 ......... Tip surface W1, W2 ... Metal base material pa ............ Plasma arc mp ………… Metal powder

Claims (5)

垂直姿勢あるいは垂直に近い姿勢とした金属母材の表面に対し、軸方向が該表面に直交するか、あるいは直交に近い水平姿勢でトーチを配置し、
上記トーチの先端に位置するチップの中心部からプラズマアークを放射し、且つ該プラズマアークの先端部付近の上側に肉盛すべき金属粉末を上記チップの先端面の上部に開口する放出孔から供給すると共に、
上記金属母材あるいは上記トーチの何れか一方を垂直方向あるいは垂直に近い方向に沿って移動させて立向下進溶接を行う、
ことを特徴とする粉末肉盛溶接方法。
With respect to the surface of the metal base material in a vertical posture or a posture close to vertical, the axial direction is orthogonal to the surface, or the torch is arranged in a horizontal posture close to orthogonal,
A plasma arc is radiated from the center of the tip located at the tip of the torch, and metal powder to be deposited on the upper side in the vicinity of the tip of the plasma arc is supplied from an emission hole opened above the tip of the tip. As well as
Vertically downward welding is performed by moving either the metal base material or the torch along the vertical direction or a direction close to vertical.
A powder overlay welding method characterized by that.
軸方向が直交に近い水平姿勢で配置される前記トーチは、垂直姿勢とした前記金属母材の平坦な表面に対し、該トーチの軸心が水平線に対し下側または上側に10度以内での範囲で傾斜している、
ことを特徴とする請求項1に記載の粉末肉盛溶接方法。
The torch that is disposed in a horizontal posture in which the axial direction is close to orthogonal is at a position within 10 degrees below or above the horizontal line with respect to the flat surface of the metal base material in a vertical posture. Inclined in range,
The powder overlay welding method according to claim 1, wherein:
垂直に近い姿勢とした前記金属母材の平坦な表面は、軸方向を水平姿勢とした前記トーチに対し、側面視において、該トーチよりも上記金属母材の上方の表面部分が垂直線から遠ざかる方向に10度以内で傾いている、
ことを特徴とする請求項1に記載の粉末肉盛溶接方法。
The flat surface of the metal base material in a posture close to the vertical position has a surface portion above the metal base material away from the vertical line from the torch in a side view with respect to the torch in a horizontal posture in the axial direction. Tilted within 10 degrees in the direction,
The powder overlay welding method according to claim 1, wherein:
前記チップは、前記金属母材の表面に対向する先端面の中心部に前記プラズマアークを放射する放射孔を有すると共に、該放射孔よりも上方の上記先端面の周辺側に肉盛すべき金属粉末を供給する単数または複数の放出孔を有している、
ことを特徴とする請求項1乃至3の何れか一項に記載の粉末肉盛溶接方法。
The tip has a radiation hole for radiating the plasma arc at the center of the tip surface facing the surface of the metal base material, and is a metal to be deposited on the peripheral side of the tip surface above the radiation hole. Having one or more discharge holes for feeding powder,
The powder overlay welding method according to any one of claims 1 to 3, wherein
前記トーチによる溶接速度は、5〜120cm/分の範囲にある、
ことを特徴とする請求項1乃至4の何れか一項に記載の粉末肉盛溶接方法。
The welding speed by the torch is in the range of 5 to 120 cm / min.
The powder overlay welding method according to any one of claims 1 to 4, wherein
JP2013044915A 2013-03-07 2013-03-07 Powder padding method Pending JP2014172057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044915A JP2014172057A (en) 2013-03-07 2013-03-07 Powder padding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013044915A JP2014172057A (en) 2013-03-07 2013-03-07 Powder padding method

Publications (1)

Publication Number Publication Date
JP2014172057A true JP2014172057A (en) 2014-09-22

Family

ID=51693890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044915A Pending JP2014172057A (en) 2013-03-07 2013-03-07 Powder padding method

Country Status (1)

Country Link
JP (1) JP2014172057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024077A (en) * 2015-07-24 2017-02-02 大同特殊鋼株式会社 Padding welding method of water-cooled wall panel
CN111972050A (en) * 2018-02-27 2020-11-20 欧瑞康美科股份公司,沃伦 Plasma nozzle for thermal spray gun and methods of making and using the same
JP7525888B2 (en) 2020-10-27 2024-07-31 大阪富士工業株式会社 How to manufacture boiler tubes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527417A (en) * 1978-08-16 1980-02-27 Mitsubishi Heavy Ind Ltd Vertical downward build-up welding method
JPS6092080A (en) * 1983-10-26 1985-05-23 Daido Steel Co Ltd Powder build up welding
JPH01306064A (en) * 1988-05-31 1989-12-11 Mazda Motor Corp Manufacture of sliding member
JPH05154690A (en) * 1991-12-04 1993-06-22 Nippon Steel Corp Titanium cutter and its manufacture
JPH06249057A (en) * 1993-02-24 1994-09-06 Mazda Motor Corp Manufacture of cylinder block
JPH07100655A (en) * 1993-09-30 1995-04-18 Kobe Steel Ltd Method and device for powder clading by welding on non horizontal surface
JPH11320103A (en) * 1998-05-21 1999-11-24 Mitsubishi Materials Corp Torch for plasma build up welding
JP2002003978A (en) * 2000-06-22 2002-01-09 Ebara Corp Wear resistant titanium alloy and sliding material
JP2002066745A (en) * 2000-08-30 2002-03-05 Hitachi Ltd Welding method of gas turbine rotor blade

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527417A (en) * 1978-08-16 1980-02-27 Mitsubishi Heavy Ind Ltd Vertical downward build-up welding method
JPS6092080A (en) * 1983-10-26 1985-05-23 Daido Steel Co Ltd Powder build up welding
JPH01306064A (en) * 1988-05-31 1989-12-11 Mazda Motor Corp Manufacture of sliding member
JPH05154690A (en) * 1991-12-04 1993-06-22 Nippon Steel Corp Titanium cutter and its manufacture
JPH06249057A (en) * 1993-02-24 1994-09-06 Mazda Motor Corp Manufacture of cylinder block
JPH07100655A (en) * 1993-09-30 1995-04-18 Kobe Steel Ltd Method and device for powder clading by welding on non horizontal surface
JPH11320103A (en) * 1998-05-21 1999-11-24 Mitsubishi Materials Corp Torch for plasma build up welding
JP2002003978A (en) * 2000-06-22 2002-01-09 Ebara Corp Wear resistant titanium alloy and sliding material
JP2002066745A (en) * 2000-08-30 2002-03-05 Hitachi Ltd Welding method of gas turbine rotor blade

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024077A (en) * 2015-07-24 2017-02-02 大同特殊鋼株式会社 Padding welding method of water-cooled wall panel
CN111972050A (en) * 2018-02-27 2020-11-20 欧瑞康美科股份公司,沃伦 Plasma nozzle for thermal spray gun and methods of making and using the same
JP7525888B2 (en) 2020-10-27 2024-07-31 大阪富士工業株式会社 How to manufacture boiler tubes

Similar Documents

Publication Publication Date Title
CN202498295U (en) Local gas protection dragging cover used in titanium alloy welding
JP5318749B2 (en) Stainless steel pipe welding apparatus and welding method
CN101422853A (en) Local air protection cage during fusion welding titanium alloy
JP5467693B2 (en) Narrowing nozzle and TIG welding torch using the same
JPWO2013157036A1 (en) Narrowing nozzle and TIG welding torch using the same
Xiong et al. Arc plasma, droplet, and forming behaviors in bypass wire arc-directed energy deposition
US4621183A (en) Powder surface welding method
JP2014172057A (en) Powder padding method
CN112894087B (en) Tube plate nickel-based alloy double-tungsten-electrode single-hot-wire automatic tungsten electrode argon arc welding surfacing process
CN101085489A (en) Cold air type argon-arc welding gun
CN201195224Y (en) Manual direct current argon tungsten-arc welding air cooling type welding gun
Srinivasan et al. Effect of surface tension metal transfer on fume formation rate during flux-cored arc welding of HSLA steel
CN103962754A (en) Three-element mixed protective gas for aluminum alloy MIG (Metal-Inert Gas Welding) welding and welding method
JP4516472B2 (en) Plasma torch
CN105195866B (en) A kind of full-automatic root bead method of the pipe end of composite bimetal pipe
JPH031110B2 (en)
CN106825877A (en) stainless steel square tube welding process
CN103203569A (en) Active agent for low-alloy steel consumable electrode gas-shielded welding and consumable electrode gas-shielding welding method for rotating composition of active agent and welding stick
JPH0675792B2 (en) Plasma arc welding method
JP2017024077A (en) Padding welding method of water-cooled wall panel
CN205571753U (en) Be used for TIG welded filler metal
JP2015083315A (en) Mig arc brazing wire, mig arc brazing method and mig arc brazing joint body
KR20170097213A (en) Welding apparatus, welding method and turbine blade
JPH10225771A (en) Shield structure of welding torch
CN110340498A (en) Hollow ring tungsten electrode GTA array silk filling increasing material manufacturing method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170519