JP2014170614A - Electrode for electrochemical element and electrochemical element - Google Patents

Electrode for electrochemical element and electrochemical element Download PDF

Info

Publication number
JP2014170614A
JP2014170614A JP2011144036A JP2011144036A JP2014170614A JP 2014170614 A JP2014170614 A JP 2014170614A JP 2011144036 A JP2011144036 A JP 2011144036A JP 2011144036 A JP2011144036 A JP 2011144036A JP 2014170614 A JP2014170614 A JP 2014170614A
Authority
JP
Japan
Prior art keywords
electrode plate
electrode
main body
thickness
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011144036A
Other languages
Japanese (ja)
Inventor
Shin Haraguchi
心 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011144036A priority Critical patent/JP2014170614A/en
Priority to PCT/JP2012/004127 priority patent/WO2013001792A1/en
Publication of JP2014170614A publication Critical patent/JP2014170614A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for electrochemical element capable of joining a collector and an electrode lead with high weld strength.SOLUTION: The electrode for electrochemical element includes: an electrode main body 1 which has a collector 1a formed with an active material layer 1b over a principal plane; an electrode lead 2 which is disposed on a principal plane of the electrode main body 1; and a fusion part 3 which is formed by fusing an end face of the electrode main body 1 and an end face of the electrode lead 2. The fusion part 3 is formed so that the dimension thereof in a thickness direction of the electrode main body 1 is larger than the sum of thickness of the electrode main body 1 and the electrode lead 2.

Description

本発明は、電極板本体の端部と電極リードの端部を溶融接合した電気化学素子用電極板および電気化学素子に関するものである。   The present invention relates to an electrode plate for an electrochemical element and an electrochemical element in which an end of an electrode plate main body and an end of an electrode lead are melt-bonded.

近年、携帯用電子機器の小型化、軽量化が進み、それらの電子機器の電源として小型軽量で高出力な二次電池は、電気化学素子の中で特に需要が高まっている。その中でも、リチウムイオン二次電池やニッケル水素蓄電池は、高いエネルギー密度を有し、耐振動性や耐衝撃性も高いことから、開発が盛んに進んでいる。   2. Description of the Related Art In recent years, portable electronic devices have been reduced in size and weight, and the demand for small, lightweight, and high-power secondary batteries as power sources for these electronic devices is particularly high among electrochemical devices. Among them, lithium ion secondary batteries and nickel metal hydride storage batteries are actively developed because of their high energy density and high vibration resistance and impact resistance.

電気化学素子用電極板の一例として二次電池の電極板を用いた場合は、金属箔からなる集電体の両主面に活物質が塗布されており、適当な間隔を隔てて活物質の未塗工部分も設けられている。そして、集電体の両主面の活物質の未塗工部分には、短冊状の金属片からなる電極リードが接続されており、電極リードにより集電体は封口板等の外部端子と接続される。   When an electrode plate for a secondary battery is used as an example of an electrode plate for an electrochemical element, the active material is applied to both main surfaces of a current collector made of metal foil, and the active material is separated at an appropriate interval. An uncoated part is also provided. And the electrode lead which consists of a strip-shaped metal piece is connected to the uncoated part of the active material of both the main surfaces of a collector, and a collector is connected with external terminals, such as a sealing board, by an electrode lead Is done.

これは、活物質層を介して集電体主面と電極リードとを接続した場合には十分な導通を確保できないためである。ここで、活物質の未塗工部分は、活物質を塗布しないようにしたり、塗工された活物質を取り除くことによって形成される(例えば、特許文献1、特許文献2参照)。   This is because sufficient electrical continuity cannot be secured when the current collector main surface and the electrode lead are connected via the active material layer. Here, the uncoated part of the active material is formed by not applying the active material or by removing the coated active material (see, for example, Patent Document 1 and Patent Document 2).

また、電気化学素子用電極板本体の端面と、電極リードの端面を接続するようにプラズマ溶接等を行い、電極板本体と電極リードとを接続する手法が提案されている(例えば、特許文献3参照)。   Further, a technique has been proposed in which plasma welding or the like is performed so as to connect the end face of the electrode plate body for an electrochemical element and the end face of the electrode lead to connect the electrode plate body and the electrode lead (for example, Patent Document 3). reference).

特開平5−13064号公報Japanese Patent Laid-Open No. 5-13064 特開平1−265452号公報Japanese Patent Laid-Open No. 1-265552 特開2010−157484号公報JP 2010-157484 A

しかしながら、上記のように、集電体の主面と電極リードとを活物質層を介さずに接続するためには、電極リードの幅よりも広い幅の未塗工部分を集電体の主面に形成する必要がある。そのため、集電体の主面の比較的広い面積に、活物質層の未塗工部分が形成されるため、高容量化を図る上での障害となっている。   However, as described above, in order to connect the main surface of the current collector and the electrode lead without an active material layer interposed therebetween, an uncoated portion having a width wider than the width of the electrode lead is used as the main surface of the current collector. It is necessary to form on the surface. For this reason, an uncoated portion of the active material layer is formed in a relatively wide area of the main surface of the current collector, which is an obstacle to increasing the capacity.

さらに、近年、活物質層の形成を従来の塗工法によるのではなく、ケイ素やゲルマニウムあるいはスズを含む活物質を集電体に蒸着して活物質層を形成する方法が注目を集めている。活物質を集電体に蒸着することにより、活物質層に含ませるバインダを低減または排除することが可能となる。また、活物質層と集電体が一体的に形成されるため、活物質層と集電体の導電性も高まり、活物質層に含ませる導電材も低減または排除することができる。このため、電極の厚みを小さくしながら高容量化を図ることができる。   Further, in recent years, attention has been drawn to a method of forming an active material layer by depositing an active material containing silicon, germanium, or tin on a current collector, instead of forming the active material layer by a conventional coating method. By depositing the active material on the current collector, the binder to be included in the active material layer can be reduced or eliminated. In addition, since the active material layer and the current collector are integrally formed, the conductivity of the active material layer and the current collector is increased, and the conductive material included in the active material layer can be reduced or eliminated. For this reason, it is possible to increase the capacity while reducing the thickness of the electrode.

ところが、蒸着により集電体上に活物質層を形成する場合には、集電体の主面上に露出部を形成することは困難となる。塗工法であれば、例えば長尺帯状の集電体を長手方向に
送りながらダイコーダを使用して活物質を含む塗料を塗布するときに、間欠的に塗料を塗布することにより集電体の主面に露出部を形成することができる。また、形成された活物質層を部分的に取り除いて、集電体の主面に露出部を形成することも比較的容易である。
However, when the active material layer is formed on the current collector by vapor deposition, it is difficult to form the exposed portion on the main surface of the current collector. In the case of a coating method, for example, when applying a paint containing an active material using a die coder while feeding a long strip-shaped current collector in the longitudinal direction, the main body of the current collector is applied intermittently by applying the paint. An exposed portion can be formed on the surface. In addition, it is relatively easy to partially remove the formed active material layer to form an exposed portion on the main surface of the current collector.

これに対し、蒸着により活物質を形成する場合には、部分的に活物質層を形成しないようにしたり、形成された活物質層を部分的に取り除いたりすることは、非常に手間がかかる作業であるため、実質的には不可能である。   On the other hand, when forming an active material by vapor deposition, it is a very time-consuming work to partially prevent the active material layer from being formed or to partially remove the formed active material layer. Therefore, it is practically impossible.

このため、これらの不都合を解決する手段として上記特許文献3に示されているような電極板本体の端面と電極リードの端面を接続することが考えられる。   For this reason, it is conceivable to connect the end face of the electrode plate body and the end face of the electrode lead as shown in Patent Document 3 as means for solving these disadvantages.

しかしながら、特許文献3に示されているような、電極板本体と電極リードの厚さの和よりも小さい溶融部を形成した場合には、溶融部の大きさが小さいため、溶接強度が小さなものとなる。このため、溶接後に溶融部の破断が発生しやすくなるという課題を有していた。   However, when a molten part smaller than the sum of the thicknesses of the electrode plate body and the electrode lead as shown in Patent Document 3 is formed, the size of the molten part is small, so that the welding strength is small. It becomes. For this reason, it had the subject that the fracture | rupture of a fusion | melting part will generate | occur | produce easily after welding.

本発明は、上記従来の課題を解決するもので、帯状の金属体からなる集電体の主面に活物質層を形成した電極板本体と、前記電極板本体の主面上に配置した電極リードと、前記電極板本体の端面と前記電極リードの端面をそれぞれ溶融することにより形成した溶融部とを備えた電気化学素子用電極板において、上記溶融部の前記電極板本体の厚み方向の大きさを、前記電極板本体と前記電極リードの厚さの和以上になるように形成することで、電極板本体の破断強度以上の高い溶接強度を確保する電気化学素子用電極板および電気化学素子を提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, and an electrode plate body in which an active material layer is formed on the main surface of a current collector made of a band-shaped metal body, and an electrode disposed on the main surface of the electrode plate main body In an electrode plate for an electrochemical device comprising a lead, and an end surface of the electrode plate main body and a melting portion formed by melting each end surface of the electrode lead, the size of the melting portion in the thickness direction of the electrode plate main body The electrode plate for an electrochemical element and an electrochemical element that ensure a high welding strength that is higher than the breaking strength of the electrode plate body by forming the thickness to be equal to or greater than the sum of the thickness of the electrode plate body and the electrode lead Is intended to provide.

上記の課題を解決するために本発明の電気化学素子用電極板は、帯状の金属体からなる集電体の主面に活物質層を形成した電極板本体と、前記電極板本体の主面上に配置した電極リードと、前記電極板本体の端面と前記電極リードの端面をそれぞれ溶融することにより形成した溶融部とを備えた電気化学素子用電極板において、上記溶融部の前記電極板本体の厚み方向の大きさを、前記電極板本体と前記電極リードの厚さの和以上になるように形成したことを特徴とするものである。   In order to solve the above problems, an electrode plate for an electrochemical element of the present invention includes an electrode plate body in which an active material layer is formed on the main surface of a current collector made of a band-shaped metal body, and the main surface of the electrode plate main body. An electrode plate for an electrochemical device, comprising: an electrode lead disposed above; and an end surface of the electrode plate main body and a melting portion formed by melting each end surface of the electrode lead. The size in the thickness direction is formed so as to be equal to or greater than the sum of the thicknesses of the electrode plate body and the electrode lead.

本発明の電気化学素子用電極板および電気化学素子では、電極リードと電極板本体の厚さの和以上の大きさの溶融部を形成することで、電極板本体の破断強度以上の高い溶接強度を確保することが可能となる。また、溶融部を大きく形成することにより、エネルギー線の照射の数を減らしても、高い溶接強度を確保でき、低エネルギー消費量で高い溶接強度を確保することが可能となる。   In the electrode plate for an electrochemical element and the electrochemical element of the present invention, a high weld strength higher than the breaking strength of the electrode plate body is formed by forming a melted portion having a size equal to or larger than the sum of the thicknesses of the electrode lead and the electrode plate body. Can be secured. Further, by forming the melted portion large, high welding strength can be ensured even when the number of irradiations of energy rays is reduced, and high welding strength can be ensured with low energy consumption.

本発明の第1の実施形態における電気化学素子用電極板の斜視図The perspective view of the electrode plate for electrochemical elements in the 1st Embodiment of this invention 本発明の他の実施形態における電気化学素子用電極板の斜視図The perspective view of the electrode plate for electrochemical elements in other embodiment of this invention. 本発明の第2の実施形態における電気化学素子用電極板の斜視図The perspective view of the electrode plate for electrochemical elements in the 2nd Embodiment of this invention 本発明の第3の実施形態における電気化学素子用電極板の斜視図The perspective view of the electrode plate for electrochemical elements in the 3rd Embodiment of this invention 本発明の第4の実施形態における電気化学素子の断面図Sectional drawing of the electrochemical element in the 4th Embodiment of this invention

本発明の第1の発明においては、帯状の金属体からなる集電体の主面に活物質層を形成した電極板本体と、前記電極板本体の主面上に配置した電極リードと、前記電極板本体の端面と前記電極リードの端面をそれぞれ溶融することにより形成した溶融部とを備えた電
気化学素子用電極板において、上記溶融部の前記電極板本体の厚み方向の大きさを、前記電極板本体と前記電極リードの厚さの和以上になるように形成した電気化学素子用電極板であって、溶融部の形成は、例えば溶加材を使用したプラズマ溶接により行われる。溶融部の電極板本体の厚み方向の大きさを電極板本体と電極リードの厚さの和以上とすることにより、高い溶接強度を確保でき、電極板本体の破断強度以上の溶接強度を有することが可能となる。また、溶融部を大きく形成することで、エネルギー線の照射の数を減らしても、高い溶接強度を確保でき、低エネルギー消費量で高い溶接強度を確保することが可能となる。
In the first invention of the present invention, an electrode plate body in which an active material layer is formed on the main surface of a current collector made of a band-shaped metal body, an electrode lead disposed on the main surface of the electrode plate body, In an electrode plate for an electrochemical element comprising an end surface of an electrode plate main body and a melting portion formed by melting each end surface of the electrode lead, the size of the melting plate in the thickness direction of the electrode plate main body is The electrode plate for an electrochemical element formed so as to have a thickness equal to or greater than the sum of the thickness of the electrode plate main body and the electrode lead, and the melted portion is formed by, for example, plasma welding using a filler material. By making the size in the thickness direction of the electrode plate main body of the melted portion equal to or greater than the sum of the thickness of the electrode plate main body and the electrode lead, high weld strength can be ensured and the weld strength must be greater than the breaking strength of the electrode plate main body Is possible. Further, by forming the melted portion large, high welding strength can be ensured even when the number of irradiations of energy rays is reduced, and high welding strength can be ensured with low energy consumption.

本発明の第2の発明においては、前記溶融部の前記電極板本体の厚み方向の大きさを、電極板本体の厚さと電極リードの厚さとセパレータの厚さの和以下になるように形成することにより、溶接部がセパレータから突出することはなく、電気化学素子用電極板の巻回時におけるセパレータの破断や変形を抑制することが可能となる。   In the second aspect of the present invention, the size of the melting portion in the thickness direction of the electrode plate body is formed to be equal to or less than the sum of the thickness of the electrode plate body, the thickness of the electrode lead, and the thickness of the separator. By this, a welding part does not protrude from a separator, and it becomes possible to suppress the fracture | rupture and deformation | transformation of a separator at the time of winding of the electrode plate for electrochemical elements.

本発明の第3の発明においては、前記溶融部を、電極板本体と電極リードの積層体の端面に2つ以上形成することにより、溶接強度をさらに大きくすることが可能となる。   In the third aspect of the present invention, it is possible to further increase the welding strength by forming two or more melting portions on the end surface of the laminate of the electrode plate body and the electrode lead.

本発明の第4の発明においては、第1の発明から第3の発明のいずれか1つに記載の電気化学素子用電極板を正極板または/および負極板として用い、前記正極板と前記負極板とをセパレータに介して巻回または積層してなる電極群を備えた電気化学素子とすることにより、高い溶接強度を確保でき、電極板本体の破断強度以上の溶接強度を有することが可能となる。以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施形態における電気化学素子用電極板の斜視図である。
According to a fourth aspect of the present invention, the electrode plate for an electrochemical element according to any one of the first to third aspects is used as a positive electrode plate and / or a negative electrode plate, and the positive electrode plate and the negative electrode are used. By making an electrochemical element having an electrode group formed by winding or laminating a plate with a separator interposed therebetween, high welding strength can be secured, and it is possible to have a welding strength greater than the breaking strength of the electrode plate body. Become. Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(Embodiment 1)
FIG. 1 is a perspective view of an electrode plate for an electrochemical element according to the first embodiment of the present invention.

図示例の電気化学素子用電極板は、リチウムイオン二次電池に代表される非水電解質二次電池に使用されるものであり、金属箔からなる集電体1aの両主面に全面的に活物質層1bを形成して構成された電極板本体1と、電極板本体1の主面上に配置した非水電解質二次電池の外部端子と接続するための電極リード2を含んでいる。電極板本体1は、集電体1aの両主面に活物質層1bが形成されているが、集電体1aの端面には活物質層1bは形成されておらず、集電体1aが露出されている。   The electrode plate for an electrochemical element in the illustrated example is used for a non-aqueous electrolyte secondary battery typified by a lithium ion secondary battery, and is entirely formed on both main surfaces of a current collector 1a made of a metal foil. An electrode plate main body 1 formed by forming an active material layer 1b and an electrode lead 2 for connecting to an external terminal of a nonaqueous electrolyte secondary battery disposed on the main surface of the electrode plate main body 1 are included. In the electrode plate body 1, active material layers 1b are formed on both main surfaces of the current collector 1a. However, the active material layer 1b is not formed on the end surface of the current collector 1a. Exposed.

次に、集電体1aおよび活物質層1bについて説明する。   Next, the current collector 1a and the active material layer 1b will be described.

正極については、例えば、正極集電体には、厚み5〜50μmのアルミニウムまたはアルミニウム合金製の箔を用いることができる。正極活物質層は、正極集電体の表面に正極合材塗料を塗布し、乾燥した後、圧延して形成される。正極合剤塗料は、正極活物質、導電材および結着材を分散媒中にプラネタリーミキサ等の分散機により混合分散させることにより調製される。   As for the positive electrode, for example, a foil made of aluminum or aluminum alloy having a thickness of 5 to 50 μm can be used for the positive electrode current collector. The positive electrode active material layer is formed by applying a positive electrode mixture paint on the surface of the positive electrode current collector, drying, and rolling. The positive electrode mixture paint is prepared by mixing and dispersing a positive electrode active material, a conductive material, and a binder in a dispersion medium using a dispersing machine such as a planetary mixer.

正極活物質としては、コバルト酸リチウムおよびその変性体、ニッケル酸リチウムおよびその変性体、並びにマンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   Examples of the positive electrode active material include lithium cobaltate and its modified products, lithium nickelate and its modified products, and composite oxides such as lithium manganate and its modified products.

また、負極については、例えば、厚み5〜50μmの銅箔等を負極集電体として用いることができる。負極活物質層は、負極集電体の表面に負極合材塗料を塗布し、乾燥した後、圧延して形成される。負極合剤塗料は、負極活物質、導電材および結着材を分散媒中にプラネタリーミキサ等の分散機により混合分散させることにより調製される。
負極活物質としては、黒鉛などの炭素材料、合金系材料などを挙げることができ、合金材
料としては、ケイ素酸化物、ケイ素、ケイ素合金、スズ酸化物、スズ、スズ合金などを用いることができる。
Moreover, about a negative electrode, 5-50 micrometers thick copper foil etc. can be used as a negative electrode electrical power collector, for example. The negative electrode active material layer is formed by applying a negative electrode mixture paint on the surface of the negative electrode current collector, drying, and rolling. The negative electrode mixture paint is prepared by mixing and dispersing a negative electrode active material, a conductive material, and a binder in a dispersion medium using a dispersing machine such as a planetary mixer.
Examples of the negative electrode active material include carbon materials such as graphite, alloy-based materials, and the like, and examples of the alloy material include silicon oxide, silicon, silicon alloy, tin oxide, tin, and tin alloy. .

以上のような塗布法の他に、集電体の表面に活物質の薄膜を形成することにより、活物質層を形成してもよい。この薄膜を形成する手法として、蒸着法、スパッタリング法、およびCVD法などを使用することができる。
これらの手法により形成される活物質の厚みは、概ね5〜30μmの範囲が好ましい。
In addition to the coating method as described above, an active material layer may be formed by forming a thin film of an active material on the surface of the current collector. As a method for forming this thin film, an evaporation method, a sputtering method, a CVD method, or the like can be used.
The thickness of the active material formed by these methods is preferably in the range of approximately 5 to 30 μm.

溶融部3は、電極板本体1の長手方向端面と電極リード2の端面をそれぞれ溶融して形成する。溶融部3の電極板本体1の厚み方向の大きさは、電極板本体1と電極リード2の厚さの和以上になるように設定している。   The melting portion 3 is formed by melting the longitudinal end surface of the electrode plate body 1 and the end surface of the electrode lead 2. The size of the melting plate 3 in the thickness direction of the electrode plate body 1 is set to be equal to or greater than the sum of the thicknesses of the electrode plate body 1 and the electrode lead 2.

以上のように構成された電気化学素子用電極板は、溶融部の電極板本体の厚み方向の大きさを電極板本体と電極リードの厚さの和以上とすることにより、高い溶接強度を確保でき、電極板本体の破断強度以上の溶接強度を有することが可能となる。   The electrode plate for an electrochemical element configured as described above ensures high welding strength by making the size of the melt plate in the thickness direction of the electrode plate main body equal to or greater than the sum of the thickness of the electrode plate main body and the electrode lead. It is possible to have a welding strength higher than the breaking strength of the electrode plate body.

なお、本実施の形態では溶融部3を、電極板本体1の長手方向端面に形成したが、図2で示すように電極板本体1の短手方向端面に形成してもよい。
(実施の形態2)
図3は、本発明の第2の実施形態における電気化学素子用電極板の斜視図である。実施の形態1と同様の構成については、説明を割愛する。
In the present embodiment, the melted portion 3 is formed on the end surface in the longitudinal direction of the electrode plate body 1, but may be formed on the end surface in the short direction of the electrode plate body 1 as shown in FIG. 2.
(Embodiment 2)
FIG. 3 is a perspective view of an electrode plate for an electrochemical element according to the second embodiment of the present invention. The description of the same configuration as that in Embodiment 1 is omitted.

図3に示すように、電極板本体1の主面上に電極リード2が配置され、電極リード2の上にセパレータ4が配置される。   As shown in FIG. 3, the electrode lead 2 is disposed on the main surface of the electrode plate body 1, and the separator 4 is disposed on the electrode lead 2.

セパレータ4は、樹脂からなる微多孔膜フイルムであってもよく、金属酸化物などのフィラーからなるセパレータであってもよく、微多孔膜フイルムとセパレータとの積層体であってもよい。また、セパレータの厚みは、概ね5〜50μmの範囲が好ましい。   The separator 4 may be a microporous film film made of a resin, a separator made of a filler such as a metal oxide, or a laminate of a microporous film film and a separator. Further, the thickness of the separator is preferably in the range of approximately 5 to 50 μm.

溶融部3は、電極板本体1の長手方向端面と電極リード2の端面とをそれぞれ溶融して形成する。   The melting part 3 is formed by melting the end face of the electrode plate body 1 in the longitudinal direction and the end face of the electrode lead 2.

溶融部3の電極板本体1の厚み方向の大きさは、電極板本体1と電極リード2の厚さの和以上でかつ、電極板本体1の厚さと電極リード2の厚さとセパレータ4の厚さの和以下になるように設定している。   The size in the thickness direction of the electrode plate body 1 of the melting part 3 is equal to or greater than the sum of the thicknesses of the electrode plate body 1 and the electrode lead 2, and the thickness of the electrode plate body 1, the thickness of the electrode lead 2, and the thickness of the separator 4. It is set to be less than the sum of the values.

以上のように構成された電気化学素子用電極板は、溶融部3の電極板本体1の厚み方向の大きさを、電極板本体1と電極リード2の厚さの和以上でかつ、電極板本体1の厚さと電極リード2の厚さとセパレータ4の厚さの和以下になるようにすることにより、高い溶接強度を確保でき、電極板本体の破断強度以上の溶接強度を有することが可能となる。   The electrode plate for an electrochemical element configured as described above has a size in the thickness direction of the electrode plate body 1 of the melting portion 3 that is equal to or greater than the sum of the thicknesses of the electrode plate body 1 and the electrode lead 2. By making the thickness less than the sum of the thickness of the main body 1, the thickness of the electrode lead 2 and the thickness of the separator 4, a high welding strength can be secured and a welding strength higher than the breaking strength of the electrode plate main body can be obtained. Become.

また、溶融部3がセパレータ4から突出することはなく、電気化学素子用電極板の巻回時におけるセパレータ4の破断や変形を抑制することが可能となる
(実施の形態3)
図4は、本発明の第3の実施形態における電気化学素子用電極板の斜視図である。実施の形態1と同様の構成については、説明を割愛する。
Further, the melted portion 3 does not protrude from the separator 4, and it is possible to suppress breakage and deformation of the separator 4 when the electrode plate for electrochemical devices is wound (Embodiment 3).
FIG. 4 is a perspective view of an electrode plate for an electrochemical element according to the third embodiment of the present invention. The description of the same configuration as that in Embodiment 1 is omitted.

本実施の形態は、電極板本体1の端面と電極リード2の端面をそれぞれ溶融して形成した溶融部3を2つ形成したものである。ここで、溶融部3は、電極板本体1の厚み方向の大きさは、電極板本体1と電極リード2の厚さの和以上になるように設定している。
以上のように構成された電気化学素子用電極板は、溶融部3を2つ設け、溶接強度をさらに大きくすることが可能となる。また、本実施の形態では溶融部3を2つとしたが、2つ以上でもよい。
(実施の形態4)
図5は、本発明の第4の実施形態における電気化学素子である二次電池10の断面図である。これは、実施の形態1から実施の形態3に記載の電気化学素子用電極板を正極板または/および負極板として用い、前記正極板と前記負極板とをセパレータに介して巻回または積層してなる電極群を備えた二次電池10である。
In the present embodiment, two melted portions 3 are formed by melting the end face of the electrode plate body 1 and the end face of the electrode lead 2. Here, the melting part 3 is set so that the size of the electrode plate body 1 in the thickness direction is equal to or greater than the sum of the thicknesses of the electrode plate body 1 and the electrode lead 2.
The electrode plate for an electrochemical element configured as described above can be provided with two melting portions 3 to further increase the welding strength. In the present embodiment, two melting parts 3 are used, but two or more melting parts may be used.
(Embodiment 4)
FIG. 5 is a cross-sectional view of a secondary battery 10 which is an electrochemical element according to the fourth embodiment of the present invention. In this method, the electrode plate for an electrochemical element described in the first to third embodiments is used as a positive electrode plate and / or a negative electrode plate, and the positive electrode plate and the negative electrode plate are wound or laminated via a separator. The secondary battery 10 includes the electrode group.

二次電池10は、実施の形態1から実施の形態3に記載の電気化学素子用電極板を正極板11または/および負極板12に用い、正極板11と負極板12とをセパレータ4を間に介在させて、渦巻状に巻回した電極群14を含んでいる。電極群14は、上下に絶縁板15aおよび15bを配置した状態で、外装体である有底円筒形の電池ケース16の内部に収納される。電極群14の上部より導出した正極リード11aは、電池ケース16の開口部を封口する封口体18に接続される。一方、電極群14の下部より導出した負極リード12aは、電池ケース16の底部に接続される。また、電池ケース16には、所定量の非水電解液が注液される。電解液は、電極群14を電池ケース16に収納した後に注液される。電解液の注液が終了すると、電池ケース16の開口部に、封口ガスケット17を周縁に取り付けた封口体18を挿入し、電池ケース16の開口部を内方向に折り曲げるようにかしめ封口して、二次電池10が構成される。   The secondary battery 10 uses the electrochemical element electrode plate described in the first to third embodiments for the positive electrode plate 11 and / or the negative electrode plate 12, and the positive electrode plate 11 and the negative electrode plate 12 are interposed between the separators 4. And an electrode group 14 wound in a spiral shape. The electrode group 14 is housed inside a bottomed cylindrical battery case 16 that is an exterior body with the insulating plates 15a and 15b arranged on the top and bottom. The positive electrode lead 11 a led out from the upper part of the electrode group 14 is connected to a sealing body 18 that seals the opening of the battery case 16. On the other hand, the negative electrode lead 12 a led out from the lower part of the electrode group 14 is connected to the bottom of the battery case 16. In addition, a predetermined amount of non-aqueous electrolyte is injected into the battery case 16. The electrolytic solution is injected after the electrode group 14 is stored in the battery case 16. When the injection of the electrolyte is completed, a sealing body 18 having a sealing gasket 17 attached to the periphery is inserted into the opening of the battery case 16, and the opening of the battery case 16 is caulked and sealed so as to be bent inward. A secondary battery 10 is configured.

本発明は、二次電池に適用でき、以下の具体的な実施例に記載のリチウムイオン二次電池に適用してもよく、ニッケル水素蓄電池などに適用してもよい。また、本発明は、二次電池と同様の集電構造を有するコンデンサなどの電気化学素子に適用してもよい。   The present invention can be applied to a secondary battery, and may be applied to a lithium ion secondary battery described in the following specific examples, or may be applied to a nickel hydride storage battery or the like. Further, the present invention may be applied to an electrochemical element such as a capacitor having a current collecting structure similar to that of a secondary battery.

以下、本発明をリチウムイオン二次電池用電極板に適応した具体的実施例を説明する。本発明は、これらの実施例に限定されるものではない。   Hereinafter, specific examples in which the present invention is applied to an electrode plate for a lithium ion secondary battery will be described. The present invention is not limited to these examples.

また、正極板11と負極板12とをセパレータ4に介して巻回した場合を記載したが、正極板11と負極板12とをセパレータ4に介して積層してもよい。
(実施例1)
以下のようにして、図1示したのと同じ構造のリチウムイオン二次電池用電極板を作製した。
Moreover, although the case where the positive electrode plate 11 and the negative electrode plate 12 were wound via the separator 4 was described, the positive electrode plate 11 and the negative electrode plate 12 may be laminated via the separator 4.
Example 1
A lithium ion secondary battery electrode plate having the same structure as that shown in FIG. 1 was produced as follows.

厚さ40μmの銅箔からなる集電体1aの両主面に、厚み20μmで珪素の酸化物からなる活物質層1bを真空蒸着した。活物質層1bが両主面に蒸着された集電体1aを、長さ30mm、幅10mmの帯状に裁断して、厚み80μmの電極板本体1を作製した。そして、厚みが0.1mm、長さ40mm、幅3mmの銅からなる電極リード2を、電極板本体1の長手方向に直行するように活物質層1bを介して配置した。   An active material layer 1b having a thickness of 20 μm and made of silicon oxide was vacuum-deposited on both main surfaces of a current collector 1a made of a copper foil having a thickness of 40 μm. The current collector 1a having the active material layer 1b deposited on both main surfaces was cut into a strip having a length of 30 mm and a width of 10 mm to produce an electrode plate body 1 having a thickness of 80 μm. Then, an electrode lead 2 made of copper having a thickness of 0.1 mm, a length of 40 mm, and a width of 3 mm was disposed via the active material layer 1 b so as to be orthogonal to the longitudinal direction of the electrode plate body 1.

次に、電極板本体1の長手方向端部と電極リード2の端部に電極板本体1と電極リード2の厚さの和以上の溶融部3を形成した。
(実施例2)
以下のようにして、図3に示したのと同じ構造のリチウムイオン二次電池用電極板を作製した。電極板本体1および電極リード2は、実施例1と同じである。
電極板本体1の主面上に電極リード2が配置され、電極リード2の上にセパレータ4が配置される。
Next, a melted portion 3 having a thickness equal to or greater than the sum of the thicknesses of the electrode plate main body 1 and the electrode lead 2 was formed at the end in the longitudinal direction of the electrode plate main body 1 and the end of the electrode lead 2.
(Example 2)
The electrode plate for a lithium ion secondary battery having the same structure as that shown in FIG. 3 was produced as follows. The electrode plate body 1 and the electrode lead 2 are the same as those in the first embodiment.
An electrode lead 2 is disposed on the main surface of the electrode plate body 1, and a separator 4 is disposed on the electrode lead 2.

溶融部3は、電極板本体1の長手方向端面と電極リード2の端面とをそれぞれ溶融して形成する。溶融部3は、電極板本体1の厚さ(80μm)と電極リード2の厚さ(100
μm)とセパレータ4の厚さ(30μm)の和以下になるように形成した。
(実施例3)
以下のようにして、図4に示したのと同じ構造のリチウムイオン二次電池用電極板を作製した。電極板本体1および電極リード2は、実施例1と同じである。
そして、電極リード2を電極板本体1の長手方向に直行するように活物質層1bを介して配置した。
The melting part 3 is formed by melting the end face of the electrode plate body 1 in the longitudinal direction and the end face of the electrode lead 2. The melting part 3 includes the thickness of the electrode plate body 1 (80 μm) and the thickness of the electrode lead 2 (100
μm) and the thickness of the separator 4 (30 μm).
(Example 3)
A lithium ion secondary battery electrode plate having the same structure as that shown in FIG. 4 was produced as follows. The electrode plate body 1 and the electrode lead 2 are the same as those in the first embodiment.
And the electrode lead 2 was arrange | positioned through the active material layer 1b so that it might orthogonally cross in the longitudinal direction of the electrode plate main body 1. FIG.

次に、電極板本体1の端面の長手方向端部と電極リード2の端部に、電極板本体1と電極リード2の厚さの和以上の溶融部3を2個形成した。
(比較例1)
実施例1と同様に電極板本体1および電極リード2を作成した。そして、電極リード2を電極板本体1の長手方向に直行するように活物質層1bを介して配置した。
Next, two melted portions 3 having a thickness equal to or greater than the sum of the thicknesses of the electrode plate main body 1 and the electrode lead 2 were formed at the end of the end surface of the electrode plate main body 1 in the longitudinal direction and the end of the electrode lead 2.
(Comparative Example 1)
An electrode plate body 1 and an electrode lead 2 were prepared in the same manner as in Example 1. And the electrode lead 2 was arrange | positioned through the active material layer 1b so that it might orthogonally cross in the longitudinal direction of the electrode plate main body 1. FIG.

次に、電極板本体1の長手方向端部と電極リード2の端部に、電極板本体1と電極リード2の和よりも小さい溶融部3を形成した。   Next, a melted portion 3 smaller than the sum of the electrode plate main body 1 and the electrode lead 2 was formed at the longitudinal end of the electrode plate main body 1 and the end of the electrode lead 2.

以下、リチウムイオン二次電池用電極板、および電極板本体の評価方法と結果について述べる。   Hereinafter, the evaluation method and result of the electrode plate for lithium ion secondary batteries and the electrode plate body will be described.

上述のように作製した実施例1〜3および比較例1のリチウムイオン二次電池用電極板を各50個準備し、電極板本体と電極リードとの接続部についての評価を行った。   50 electrode plates for lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1 prepared as described above were prepared, and the connection between the electrode plate body and the electrode lead was evaluated.

作製した各実施例および比較例から5個ずつ抜き取り、溶接部における引張強度を測定した。具体的には、引っ張り試験機の一方に電極板本体を保持させ、引っ張り試験機の他方に電極リードを保持させた状態で、一定の速度で引っ張り試験機の軸方向、詳細には電極板本体と電極リードとが互いに離れる方向に引っ張り、接続部が破壊したときの荷重を引張強度とした。   Five pieces were extracted from each of the produced examples and comparative examples, and the tensile strength at the weld was measured. Specifically, the electrode plate body is held on one side of the tensile tester, and the electrode lead is held on the other side of the tensile tester. And the electrode lead were pulled away from each other, and the load when the connecting portion was broken was defined as tensile strength.

さらに、引張試験後、視認により各実施例および比較例の溶融部、破壊部を観察した。また、実施例1〜3および比較例1の電極板本体を巻回し、溶融部の近傍におけるセパレータの破断や変形の有無を観察した。   Furthermore, after the tensile test, the melted part and the fracture part of each example and comparative example were visually observed. Moreover, the electrode plate main body of Examples 1-3 and the comparative example 1 was wound, and the presence or absence of the fracture | rupture or deformation | transformation of the separator in the vicinity of the fusion | melting part was observed.

上記の評価結果を(表1)に示す。   The evaluation results are shown in (Table 1).


表1の引張強度の測定結果について、実施例1〜3のいずれにおいても引張強度は0.5Nであった。一方、比較例1では、0.2N以下で破壊した。   About the measurement result of the tensile strength of Table 1, tensile strength was 0.5 N in any of Examples 1-3. On the other hand, in the comparative example 1, it destroyed at 0.2 N or less.

次に、引張試験後の破壊部分を観察した結果について、実施例1〜3のいずれにおいても破壊部分は溶融部ではなく、集電体部分で破壊していたことが観察できた。一方、比較例1においては、集電体は破壊されておらず、溶融部で破壊されていることが観察できた。つまり、実施例1〜3の引張強度は、電極板本体自体の引張強度に依存しており、溶融部の引張強度は、電極板本体自体の引張強度よりも高い溶接強度を有していると推察できる。また、実施例2における溶融部の大きさは、実施例1の溶融部の大きさと比較して50%程度の大きさであり、さらに、溶融部の数も1個であったが、引張強度は実施例1、および実施例3と同等の値であった。   Next, with respect to the result of observing the fractured portion after the tensile test, it was observed that in all of Examples 1 to 3, the fractured portion was broken not at the melted portion but at the current collector portion. On the other hand, in Comparative Example 1, it was observed that the current collector was not destroyed and was destroyed at the melted portion. That is, the tensile strength of Examples 1 to 3 depends on the tensile strength of the electrode plate body itself, and the tensile strength of the melted portion has a welding strength higher than the tensile strength of the electrode plate body itself. I can guess. Further, the size of the melted part in Example 2 was about 50% of the size of the melted part in Example 1, and the number of melted parts was one. Was the same value as in Example 1 and Example 3.

次に、巻回後におけるセパレータの状態を観察した結果について、実施例1のいずれにおいても、溶融部近傍においてセパレータが破断、変形していることが観察できた。一方、実施例2〜3、および比較例1においては、セパレータの破断、変形は確認できなかった。   Next, as a result of observing the state of the separator after winding, in any of the examples 1, it was observed that the separator was broken and deformed in the vicinity of the melting portion. On the other hand, in Examples 2-3 and Comparative Example 1, no breakage or deformation of the separator could be confirmed.

以上のことから、本発明の実施例1〜3に関して、従来例と比較して溶接強度の改善効果を確認することができた。特に、実施例2〜3に関しては、高い溶接強度を有するとともに、セパレータの破断も確認できなかったことから、短絡抑制効果も高いと推察できる。   In connection with Examples 1-3 of this invention from the above, the improvement effect of welding strength was able to be confirmed compared with the prior art example. In particular, regarding Examples 2 to 3, it has a high welding strength, and since the breakage of the separator could not be confirmed, it can be inferred that the short-circuit suppressing effect is also high.

本発明の構成は、大電流放電に適した集電構造を有する電気化学素子に有用で、例えば、高出力を必要とする電動工具や電気自動車などの駆動用電源、大容量のバックアップ用電源、蓄電用電源等に有用である。   The configuration of the present invention is useful for an electrochemical device having a current collecting structure suitable for large current discharge, for example, a driving power source for a power tool or an electric vehicle that requires high output, a large-capacity backup power source, It is useful as a power source for power storage.

1 電極板本体
1a 集電体
1b 活物質層
2 電極リード
3 溶融部
4 セパレータ
10 二次電池
11 正極板
11a 正極リード
12 負極板
12a 負極リード
14 電極群
15a、15b 絶縁板
16 電池ケース
17 封口ガスケット
18 封口体
DESCRIPTION OF SYMBOLS 1 Electrode plate main body 1a Current collector 1b Active material layer 2 Electrode lead 3 Melting part 4 Separator 10 Secondary battery 11 Positive electrode plate 11a Positive electrode lead 12 Negative electrode plate 12a Negative electrode lead 14 Electrode group 15a, 15b Insulating plate 16 Battery case 17 Sealing gasket 18 Sealing body

Claims (4)

帯状の金属体からなる集電体の主面に活物質層を形成した電極板本体と、前記電極板本体の主面上に配置した電極リードと、前記電極板本体の端面と前記電極リードの端面をそれぞれ溶融することにより形成した溶融部とを備えた電気化学素子用電極板において、上記溶融部の前記電極板本体の厚み方向の大きさを、前記電極板本体と前記電極リードの厚さの和以上になるように形成した電気化学素子用電極板。 An electrode plate main body having an active material layer formed on a main surface of a current collector made of a band-shaped metal body, an electrode lead disposed on the main surface of the electrode plate main body, an end surface of the electrode plate main body, and an electrode lead In the electrode plate for an electrochemical element provided with a melted portion formed by melting each end face, the size of the melted portion in the thickness direction of the electrode plate main body is set to the thickness of the electrode plate main body and the electrode lead. Electrode element electrode plate formed to be equal to or greater than 前記溶融部の前記電極板本体の厚み方向の大きさは、電極板本体の厚さと電極リードの厚さとセパレータの厚さの和以下になるように形成された請求項1に記載の電気化学素子用電極板。 2. The electrochemical device according to claim 1, wherein the size of the melted portion in the thickness direction of the electrode plate main body is equal to or less than the sum of the thickness of the electrode plate main body, the thickness of the electrode lead, and the thickness of the separator. Electrode plate. 前記溶融部を、電極体本体と電極リードの積層体の端面に少なくとも2つ以上設けた請求項1に記載の電気化学素子用電極板。 2. The electrode plate for an electrochemical element according to claim 1, wherein at least two melting portions are provided on an end face of a laminate of an electrode body main body and an electrode lead. 請求項1から請求項3のいずれか1つに記載の電気化学素子用電極板を正極板または/および負極板として用い、前記正極板と前記負極板とをセパレータに介して巻回または積層してなる電極群を電解液とともに外装体に封入してなる電気化学素子。 The electrode plate for electrochemical devices according to any one of claims 1 to 3 is used as a positive electrode plate and / or a negative electrode plate, and the positive electrode plate and the negative electrode plate are wound or laminated via a separator. An electrochemical element formed by enclosing an electrode group together with an electrolytic solution in an exterior body.
JP2011144036A 2011-06-29 2011-06-29 Electrode for electrochemical element and electrochemical element Withdrawn JP2014170614A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011144036A JP2014170614A (en) 2011-06-29 2011-06-29 Electrode for electrochemical element and electrochemical element
PCT/JP2012/004127 WO2013001792A1 (en) 2011-06-29 2012-06-26 Electrode plate for electrochemical element, method for manufacturing electrode plate for electrochemical element, and electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144036A JP2014170614A (en) 2011-06-29 2011-06-29 Electrode for electrochemical element and electrochemical element

Publications (1)

Publication Number Publication Date
JP2014170614A true JP2014170614A (en) 2014-09-18

Family

ID=47423712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144036A Withdrawn JP2014170614A (en) 2011-06-29 2011-06-29 Electrode for electrochemical element and electrochemical element

Country Status (2)

Country Link
JP (1) JP2014170614A (en)
WO (1) WO2013001792A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138655A (en) * 1994-11-11 1996-05-31 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for battery
JP3547952B2 (en) * 1997-09-30 2004-07-28 三洋電機株式会社 Lithium secondary battery
JP3874586B2 (en) * 2000-03-10 2007-01-31 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2002289166A (en) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd Manufacturing method of battery
US8530084B2 (en) * 2008-06-25 2013-09-10 Panasonic Corporation Electrode structure for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2011029026A (en) * 2009-07-27 2011-02-10 Panasonic Corp Negative electrode, method of manufacturing the same, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
WO2013001792A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
US10833372B2 (en) Rectangular secondary battery
US11121439B2 (en) Secondary battery
KR101465172B1 (en) Secondary battery of pouch type having sealing margin for improving durability
US20130177787A1 (en) Current collector and nonaqueous secondary battery
JP6582443B2 (en) Secondary battery and manufacturing method thereof
WO2012057335A1 (en) Rectangular secondary battery
JP5591566B2 (en) battery
WO2013065523A1 (en) Cell assembly, and rectangular secondary cell for use in cell assembly
JP2008016368A (en) Film armored battery and battery pack
US11855304B2 (en) Secondary battery
JP2010232164A (en) Method of manufacturing square-shaped secondary battery
JP2010016043A (en) Electric storage device
WO2021073470A1 (en) Secondary battery, electrode member thereof, battery module and related apparatus
US9034500B2 (en) Laminated electrode-type battery, manufacturing method therefor, vehicle, and device
JP2015088605A (en) Method of manufacturing power storage device and power storage device
JP6275853B2 (en) Secondary battery with low resistance electrode tab
JP5678270B2 (en) Power generation element and secondary battery
JPWO2014141554A1 (en) Secondary battery
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
WO2020130001A1 (en) Electrode plate for secondary batteries, and secondary battery using same
US20140038013A1 (en) Method for manufacturing a connecting contact for an electrode of an electrochemical store, method for manufacturing an electrochemical store, and electrochemical store
JP2019016493A (en) Electrode body sub-unit, electrode unit, multilayer electrode body and power storage element
WO2014163184A1 (en) Secondary battery collector structure and method for forming secondary battery collector structure
JP7479104B1 (en) Electrode sheet and secondary battery
JP2014170614A (en) Electrode for electrochemical element and electrochemical element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007