JP2014169995A - Measurement system of physical quantity and construction method of analytic model - Google Patents

Measurement system of physical quantity and construction method of analytic model Download PDF

Info

Publication number
JP2014169995A
JP2014169995A JP2014015949A JP2014015949A JP2014169995A JP 2014169995 A JP2014169995 A JP 2014169995A JP 2014015949 A JP2014015949 A JP 2014015949A JP 2014015949 A JP2014015949 A JP 2014015949A JP 2014169995 A JP2014169995 A JP 2014169995A
Authority
JP
Japan
Prior art keywords
physical quantity
liquid
gas
equation
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014015949A
Other languages
Japanese (ja)
Other versions
JP6307291B2 (en
Inventor
Yoshiyuki Kondo
喜之 近藤
Ling Cheng
凌 程
Koichi Tanimoto
浩一 谷本
Kengo Shimamura
健吾 嶋村
Ryoichi Kawakami
亮一 川上
Harusuke Uchiumi
晴輔 内海
Takashi Ueno
隆司 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014015949A priority Critical patent/JP6307291B2/en
Publication of JP2014169995A publication Critical patent/JP2014169995A/en
Application granted granted Critical
Publication of JP6307291B2 publication Critical patent/JP6307291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measuring Volume Flow (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement system of a physical quantity capable of highly accurately constructing an analytic model of a gas-liquid two-phase flow in a tube bundle.SOLUTION: In a case of constructing a basic equation to be an analytic model for analyzing a gas-liquid two-phase flow circulating through a tube bundle 5, a measurement system of a physical quantity measures a physical quantity used in the basic equation. The basic equation contains a constructive equation with a physical quantity to be each element of the analytic model as a function, and includes a physical quantity measurement unit 10 measuring a physical quantity, and an operation unit 20 acquiring correlation interpolating the physical quantity measured by the constructive equation with a physical quantity as a function and incorporating the acquired correlation in the constructive equation as a coefficient.

Description

本発明は、管群内の気液二相流の解析モデルを構築するために用いられる物理量の計測システム及び解析モデルの構築方法に関するものである。   The present invention relates to a physical quantity measurement system and an analysis model construction method used for constructing an analysis model of a gas-liquid two-phase flow in a tube group.

従来、複数の管体が配置された流通部に流れる二相流のボイド率を測定する二相流励振力評価装置が知られている(例えば、特許文献1参照)。この二相流励振力評価装置は、管体の一つの表面を導通する材質で形成し、管体を振動させた状態で、管体の変位または応力を測定すると共に、管体の表面の所定位置における電位と基準電位との電位差に基づいて、管体近傍に流れる二相流のボイド率を測定している。   2. Description of the Related Art Conventionally, there is known a two-phase flow excitation force evaluation device that measures a void ratio of a two-phase flow that flows in a flow section where a plurality of pipes are arranged (see, for example, Patent Document 1). This two-phase flow excitation force evaluation device is formed of a conductive material on one surface of a tubular body, measures the displacement or stress of the tubular body in a state where the tubular body is vibrated, and determines the predetermined surface of the tubular body. Based on the potential difference between the potential at the position and the reference potential, the void fraction of the two-phase flow flowing in the vicinity of the tube is measured.

特開2010−271074号公報JP 2010-271074 A

ところで、管群内における気液二相流の挙動を模擬すべく、解析モデルを構築することが試みられている。気液二相流の解析モデルは、管群内における各要素となる物理量を関数とする構成式を、適宜組み込むことで構築される。しかしながら、構成式は、物理量の実態の挙動を模擬しているとは限らない。このため、構成式の精度を向上させることが難しく、構成式が組み込まれる解析モデルを精度良く構築することが困難となる。   By the way, in order to simulate the behavior of the gas-liquid two-phase flow in the tube group, it has been attempted to construct an analysis model. An analysis model of a gas-liquid two-phase flow is constructed by appropriately incorporating constitutive equations having functions of physical quantities serving as elements in the tube group. However, the constitutive equation does not always simulate the actual behavior of physical quantities. For this reason, it is difficult to improve the accuracy of the constitutive equation, and it is difficult to accurately construct an analysis model in which the constitutive equation is incorporated.

そこで、本発明は、管群内の気液二相流の解析モデルを精度良く構築することができる物理量の計測システム及び解析モデルの構築方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a physical quantity measurement system and an analysis model construction method capable of accurately constructing an analysis model of a gas-liquid two-phase flow in a tube group.

本発明の物理量の計測システムは、管群内を流通する気液二相流を解析するための解析モデルとなる基礎方程式を構築するにあたり、前記基礎方程式で用いられる物理量を計測する物理量の計測システムであって、前記基礎方程式は、前記解析モデルの各要素となる前記物理量を関数とする構成式を含み、前記物理量を計測する物理量計測部と、前記物理量を関数とする前記構成式が、計測した前記物理量を補間する相関関係を求め、求めた前記相関関係を係数として、前記構成式に組み込む演算部と、を備えることを特徴とする。   The physical quantity measurement system according to the present invention is a physical quantity measurement system that measures a physical quantity used in the basic equation when constructing a basic equation serving as an analysis model for analyzing a gas-liquid two-phase flow flowing in a tube group. The basic equation includes a constitutive expression having the physical quantity as a function as each element of the analysis model as a function, and a physical quantity measuring unit for measuring the physical quantity and the constitutive expression having the physical quantity as a function are measured. And calculating a correlation for interpolating the physical quantity, and incorporating the calculated correlation as a coefficient into the constitutive equation.

また、本発明の他の解析モデルの構築方法は、管群内を流通する気液二相流を解析するための解析モデルとなる基礎方程式を構築する解析モデルの構築方法であって、前記基礎方程式は、前記解析モデルの各要素となる前記物理量を関数とする構成式を含み、前記基礎方程式で用いられる物理量を計測する物理量計測工程と、前記物理量を関数とする前記構成式が、計測した前記物理量を補間する相関関係を求め、求めた相関関係を係数として算出する係数算出工程と、算出した係数を前記構成式に組み込んで、前記基礎方程式を構築する解析モデル構築工程と、を備えることを特徴とする。   Further, another analytical model construction method of the present invention is an analytical model construction method for constructing a basic equation serving as an analytical model for analyzing a gas-liquid two-phase flow flowing in a tube group, wherein The equation includes a constitutive equation having a function of the physical quantity serving as each element of the analysis model, and a physical quantity measuring step for measuring a physical quantity used in the basic equation, and the constitutive equation having the physical quantity as a function are measured. A coefficient calculating step of calculating a correlation for interpolating the physical quantity, calculating the calculated correlation as a coefficient, and an analysis model building step of building the basic equation by incorporating the calculated coefficient into the constitutive equation It is characterized by.

この構成によれば、物理量を関数とする構成式と、計測した物理量とを補間する相関関係を求め、求めた相関関係に関する係数を構成式に組み込むことができる。このため、構成式は、実態の物理量の挙動を精度良く模擬することが可能となり、構成式が組み込まれる気液二相流を解析する解析モデルを、精度良く構築することができる。   According to this configuration, it is possible to obtain a correlation that interpolates between a constitutive equation that uses a physical quantity as a function and a measured physical quantity, and to incorporate a coefficient related to the obtained correlation into the constitutive expression. Therefore, the constitutive equation can accurately simulate the behavior of the actual physical quantity, and an analysis model for analyzing the gas-liquid two-phase flow in which the constitutive equation is incorporated can be constructed with high accuracy.

この場合、前記構成式は、前記管群の空間内の気相中における空間ボイド率の構成式であり、関数となる前記物理量として、管の外周面に形成される液膜の液膜厚さと、前記管群の空間内の気相中に含まれる液滴または液膜の割合とを含み、前記物理量計測部は、管の外周面に形成される前記液膜厚さを計測する液膜計測部と、前記管群の空間内の気相中に含まれる液滴または液膜の割合を計測する割合計測部と、を有し、前記演算部は、前記空間ボイド率の前記構成式が、計測した前記液膜厚さと前記液滴または前記液膜の割合とを補間する相関関係を求め、求めた前記相関関係を係数として、前記構成式に組み込むことが好ましい。   In this case, the constitutive equation is a constitutive equation of the space void ratio in the gas phase in the space of the tube group, and as the physical quantity as a function, the liquid film thickness of the liquid film formed on the outer peripheral surface of the tube And a ratio of the liquid droplets or liquid film contained in the gas phase in the space of the tube group, and the physical quantity measuring unit measures the liquid film thickness formed on the outer peripheral surface of the tube And a ratio measuring unit that measures a ratio of a droplet or a liquid film contained in a gas phase in the space of the tube group, and the arithmetic unit is configured such that the constitutive equation of the space void ratio is It is preferable that a correlation for interpolating the measured liquid film thickness and the ratio of the droplets or the liquid film is obtained, and the obtained correlation is incorporated as a coefficient into the constitutive equation.

この構成によれば、空間ボイド率の構成式を精度良く構築することができ、この構成式が組み込まれる解析モデルを、精度良く構築することが可能となる。   According to this configuration, a constitutive equation for the spatial void ratio can be constructed with high accuracy, and an analysis model in which this constitutive equation is incorporated can be constructed with high accuracy.

この場合、前記構成式は、気相と液相との界面における抗力である気液界面抗力の構成式であり、関数となる前記物理量として、前記管群の空間内における気液界面速度を含み、前記物理量計測部は、前記管群の空間内における気相と液相との界面速度である気液界面速度を計測する気液界面速度計測部を、を有し、前記演算部は、前記気液界面抗力の前記構成式が、計測した前記気液界面速度を補間する相関関係を求め、求めた前記相関関係を係数として、前記構成式に組み込むことが好ましい。   In this case, the constitutive equation is a constitutive equation of the gas-liquid interface drag that is the drag at the interface between the gas phase and the liquid phase, and includes the gas-liquid interface velocity in the space of the tube group as the physical quantity as a function. The physical quantity measurement unit includes a gas-liquid interface velocity measurement unit that measures a gas-liquid interface velocity that is an interface velocity between a gas phase and a liquid phase in the space of the tube group, and the calculation unit includes the It is preferable that the constitutive equation of the gas-liquid interface drag obtains a correlation for interpolating the measured gas-liquid interface velocity and incorporates the obtained correlation into the constitutive equation as a coefficient.

この構成によれば、気液界面抗力の構成式を精度良く構築することができ、この構成式が組み込まれる解析モデルを、精度良く構築することが可能となる。   According to this configuration, a constitutive equation for the gas-liquid interface drag can be constructed with high accuracy, and an analysis model in which this constitutive equation is incorporated can be constructed with high accuracy.

この場合、前記構成式は、前記管群の空間内の気相中に含まれる液滴の気液界面積の構成式であり、関数となる前記物理量として、前記液滴の液滴径を含み、前記物理量計測部は、前記管群の空間内の気相中に含まれる前記液滴を捕捉する液滴捕捉部を有し、前記演算部は、前記液滴の気液界面積の構成式が、捕捉した前記液滴の前記液滴径を補間する相関関係を求め、求めた前記相関関係を係数として、前記構成式に組み込むことが好ましい。   In this case, the constitutive equation is a constitutive equation of the gas-liquid interface area of the droplets contained in the gas phase in the space of the tube group, and includes the droplet diameter of the droplets as the physical quantity as a function. The physical quantity measuring unit has a droplet trapping unit that traps the droplets contained in the gas phase in the space of the tube group, and the arithmetic unit is a constitutive equation for the gas-liquid interface area of the droplets However, it is preferable that a correlation for interpolating the droplet diameter of the captured droplet is obtained, and the obtained correlation is incorporated as a coefficient in the constitutive equation.

この構成によれば、液滴の気液界面積の構成式を精度良く構築することができ、この構成式が組み込まれる解析モデルを、精度良く構築することが可能となる。   According to this configuration, the constitutive equation of the gas-liquid interface area of the droplet can be constructed with high accuracy, and an analysis model in which this constitutive equation is incorporated can be constructed with high accuracy.

この場合、前記構成式は、前記管群の空間内の気相中に含まれる液膜の気液界面積の構成式であり、関数となる前記物理量として、管の外周面に形成される液膜の液膜厚さを含み、前記物理量計測部は、管の外周面に形成される前記液膜厚さを計測する液膜計測部を有し、前記演算部は、前記液膜の気液界面積の構成式が、計測した前記液膜厚さを補間する相関関係を求め、求めた前記相関関係を係数として、前記構成式に組み込むことが好ましい。   In this case, the constitutive equation is a constitutive equation of the gas-liquid interface area of the liquid film contained in the gas phase in the space of the tube group, and the liquid formed on the outer peripheral surface of the tube as the physical quantity as a function. The physical quantity measuring unit includes a liquid film measuring unit that measures the liquid film thickness formed on the outer peripheral surface of the pipe, and the arithmetic unit is a gas-liquid liquid of the liquid film. It is preferable that the constitutive equation for the interfacial area obtains a correlation for interpolating the measured liquid film thickness and incorporates the obtained correlation into the constitutive equation as a coefficient.

この構成によれば、液膜の気液界面積の構成式を精度良く構築することができ、この構成式が組み込まれる解析モデルを、精度良く構築することが可能となる。   According to this configuration, the constitutive equation of the gas-liquid interface area of the liquid film can be constructed with high accuracy, and an analysis model in which this constitutive equation is incorporated can be constructed with high accuracy.

この場合、前記構成式は、前記管群の空間内における気相の流速と液相の流速との構成式であり、関数となる前記物理量として、前記管群の空間内の気相中における空間ボイド率と、前記管群の空間内における差圧とを含み、前記物理量計測部は、対向する一対の管の外周面にそれぞれ形成され、対向して配置される一対の電極と、前記管群内を流通する前記気液二相流の上流側と下流側との差圧を計測する差圧計測部と、を有し、前記演算部は、一対の前記電極間の電気特性に基づいて前記空間ボイド率を導出し、導出した前記空間ボイド率と、前記差圧計測部により計測した前記差圧とを、前記構成式に与えて、前記気相の流速と前記液相の流速とを算出することが好ましい。   In this case, the constitutive equation is a constitutive equation of a gas phase flow velocity and a liquid phase flow velocity in the space of the tube group, and the physical quantity as a function is a space in the gas phase in the space of the tube group. The physical quantity measuring unit includes a void ratio and a differential pressure in the space of the tube group, and the physical quantity measuring unit is formed on each of the outer peripheral surfaces of the pair of opposed tubes, and the pair of electrodes disposed opposite to each other, and the tube group A differential pressure measuring unit that measures the differential pressure between the upstream side and the downstream side of the gas-liquid two-phase flow that circulates inside, and the arithmetic unit is based on the electrical characteristics between a pair of the electrodes Deriving the space void rate, and giving the derived space void rate and the differential pressure measured by the differential pressure measuring unit to the constitutive equation to calculate the flow velocity of the gas phase and the flow velocity of the liquid phase It is preferable to do.

この構成によれば、一対の電極を用いて電気特性を計測することで、管群の空間内における空間ボイド率を導出することができる。ここで、空間ボイド率は、電気特性と相関関係があり、演算部は、空間ボイド率と電気特性との相関式に基づき、計測した電気特性から、空間ボイド率を算出(換算)している。また、導出した空間ボイド率と、差圧計測部により計測した差圧とに基づいて、所定の構成式から、気相の流速と液相の流速とを算出することができる。このため、算出した気相の流速と液相の流速とから、気相流量と液相流量とを導出することができる。これにより、一対の電極を管群内に配置することで、気相流量と液相流量とを同時に計測することが可能となり、算出に要する時間を短縮することができ、計算効率の向上を図ることができる。なお、電気特性としては、電気抵抗(コンダクタンス)または静電容量(キャパシタンス)があり、一対の電極間の電気抵抗に基づいて空間ボイド率を換算してもよいし、一対の電極間の静電容量に基づいて空間ボイド率を換算してもよい。   According to this configuration, the space void ratio in the space of the tube group can be derived by measuring electrical characteristics using a pair of electrodes. Here, the spatial void ratio has a correlation with the electrical characteristics, and the calculation unit calculates (converts) the spatial void ratio from the measured electrical characteristics based on the correlation equation between the spatial void ratio and the electrical characteristics. . Moreover, based on the derived space void ratio and the differential pressure measured by the differential pressure measuring unit, the gas phase flow rate and the liquid phase flow rate can be calculated from a predetermined constitutive equation. Therefore, the gas phase flow rate and the liquid phase flow rate can be derived from the calculated gas phase flow rate and liquid phase flow rate. Thereby, by arranging a pair of electrodes in the tube group, it is possible to simultaneously measure the gas phase flow rate and the liquid phase flow rate, shorten the time required for calculation, and improve calculation efficiency. be able to. The electrical characteristics include electrical resistance (conductance) or capacitance (capacitance). The space void ratio may be converted based on the electrical resistance between the pair of electrodes, or the electrostatic capacitance between the pair of electrodes. The space void ratio may be converted based on the capacity.

図1は、実施例1に係る物理量の計測システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a physical quantity measurement system according to the first embodiment. 図2は、実施例1に係る物理量の計測システムの制御ブロックの説明図である。FIG. 2 is an explanatory diagram of a control block of the physical quantity measurement system according to the first embodiment. 図3は、液膜センサの説明図である。FIG. 3 is an explanatory diagram of a liquid film sensor. 図4は、計測される物理量の一例を示す説明図である。FIG. 4 is an explanatory diagram illustrating an example of a measured physical quantity. 図5は、計測される物理量の一例を示す説明図である。FIG. 5 is an explanatory diagram illustrating an example of a measured physical quantity. 図6は、実施例1に係る解析モデルの構築方法に関するフローチャートである。FIG. 6 is a flowchart regarding a method for constructing an analysis model according to the first embodiment. 図7は、実施例2に係る物理量の計測システムの概略構成図である。FIG. 7 is a schematic configuration diagram of a physical quantity measurement system according to the second embodiment. 図8は、施例2に係る物理量の計測システムの管に配置される電極の模式図である。FIG. 8 is a schematic diagram of electrodes arranged in a tube of the physical quantity measurement system according to the second embodiment.

以下に、本発明に係る実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、実施例1に係る物理量の計測システムの概略構成図である。図2は、実施例1に係る物理量の計測システムの制御ブロックの説明図である。図1に示すように、物理量の計測システム1は、管群5内において流通する気液二相流の解析モデルとなる基礎方程式を構築するために、基礎方程式で用いられる物理量を計測するためのシステムである。ここで、計測システム1の説明に先立ち、図1を参照して、計測システム1が配置される管群5について説明する。   FIG. 1 is a schematic configuration diagram of a physical quantity measurement system according to the first embodiment. FIG. 2 is an explanatory diagram of a control block of the physical quantity measurement system according to the first embodiment. As shown in FIG. 1, the physical quantity measurement system 1 is used to measure a physical quantity used in a basic equation in order to construct a basic equation serving as an analysis model of a gas-liquid two-phase flow flowing in a tube group 5. System. Here, prior to the description of the measurement system 1, the tube group 5 in which the measurement system 1 is arranged will be described with reference to FIG.

図1に示すように、計測システム1は、管群5内に設けられている。この管群5は、複数の管8により構成され、例えば、加圧水型原子炉の圧力発生器の内部に設けられる伝熱管群を模擬している。複数の管8は、それぞれ同径に形成されており、軸方向が平行となるように配置されると共に、千鳥状の配置(いわゆる、三角配置)となっている。管群5が配置される空間Dには、環状噴霧流となる気液二相流が、空間Dの一方側(図示下方側)から他方側(図示上方側)へ向けて流れている。なお、環状噴霧流とは、液相よりも気相の割合が大きく、空間Dにおいて気相が連続する一方で、液相が液滴L1または液膜L2となって存在する状態である。   As shown in FIG. 1, the measurement system 1 is provided in the tube group 5. This tube group 5 is composed of a plurality of tubes 8 and simulates, for example, a heat transfer tube group provided inside a pressure generator of a pressurized water reactor. The plurality of tubes 8 are formed to have the same diameter, are arranged so that their axial directions are parallel, and have a staggered arrangement (so-called triangular arrangement). In the space D in which the tube group 5 is arranged, a gas-liquid two-phase flow that is an annular spray flow flows from one side (the lower side in the figure) to the other side (the upper side in the figure) of the space D. The annular spray flow is a state in which the ratio of the gas phase is larger than that of the liquid phase and the gas phase continues in the space D while the liquid phase exists as droplets L1 or liquid films L2.

環状噴霧流となる気液二相流が、管群5が配置された空間Dを流通すると、液相は、その一部が空間Dに形成される液滴L1となり、その他の一部が管8の外周面に形成される液膜L2となる。   When the gas-liquid two-phase flow, which is an annular spray flow, flows through the space D in which the tube group 5 is arranged, the liquid phase becomes a droplet L1 formed in the space D, and the other part is a tube. 8 is a liquid film L2 formed on the outer peripheral surface.

計測システム1は、高速度カメラ11、液滴捕捉計12、熱線流速計13、液膜センサ(液膜計測部)14、二針式光学プローブ(割合計測部、気液界面速度計測部)15、圧力分布計16、及び差圧計17を含む物理量計測部10と、演算装置(演算部)20と、を備えている。なお、物理量計測部10は、上記した各種計測機器に限定されず、物理量を計測するものであれば、いずれの計測機器を含んでいてもよい。   The measurement system 1 includes a high-speed camera 11, a droplet capture meter 12, a heat ray velocimeter 13, a liquid film sensor (liquid film measurement unit) 14, and a two-needle optical probe (ratio measurement unit, gas-liquid interface velocity measurement unit) 15. , A physical quantity measuring unit 10 including a pressure distribution meter 16 and a differential pressure meter 17, and a computing device (calculating unit) 20. Note that the physical quantity measuring unit 10 is not limited to the various measuring devices described above, and may include any measuring device as long as it measures physical quantities.

高速度カメラ11は、管群5内を流通する気液二相流の流動状態を撮像するものである。図1に示すように、高速度カメラ11は、管群5の空間D内を撮像すべく、図示しないアクリル板等の透明な板材を挟んで、管群5の空間D外に設けられ、空間D外から空間D内を撮像している。高速度カメラ11により撮像された撮影画像は、演算装置20に入力される。このため、演算装置20は、高速度カメラ11により撮像した撮影画像を取得する。撮影画像は、例えば、気液二相流の流動様式を特定するために用いられる。ここで、流動様式とは、気液二相流の流動状態を表す様式であり、例えば、気泡流、スラグ流、チャーン流、環状噴霧流等がある。なお、高速度カメラ11は、演算装置20に接続され、撮影画像を演算装置20に直接的に入力してもよいが、この構成に限定されず、別体の記憶媒体を介して演算装置20に間接的に入力してもよい。   The high-speed camera 11 images the flow state of the gas-liquid two-phase flow that circulates in the tube group 5. As shown in FIG. 1, the high-speed camera 11 is provided outside the space D of the tube group 5 with a transparent plate material such as an acrylic plate (not shown) sandwiched between the space D of the tube group 5 so as to take an image. The space D is imaged from outside D. The captured image captured by the high speed camera 11 is input to the arithmetic device 20. For this reason, the arithmetic unit 20 acquires a captured image captured by the high-speed camera 11. The captured image is used, for example, to specify the flow mode of the gas-liquid two-phase flow. Here, the flow mode is a mode representing a flow state of a gas-liquid two-phase flow, and examples thereof include a bubble flow, a slag flow, a churn flow, and an annular spray flow. Note that the high-speed camera 11 may be connected to the arithmetic device 20 and directly input a captured image to the arithmetic device 20, but is not limited to this configuration, and the arithmetic device 20 via a separate storage medium. May be entered indirectly.

液滴捕捉計12は、管群5内を流通する気液二相流の液滴L1を捕捉するものである。図1に示すように、液滴捕捉計12は、管群5内の所定の管8の内部に設けられている。液滴捕捉計12により捕捉された液滴L1は、別途計測機器を用いて液滴径及び個数(液滴径分布)が計測される。計測された液滴径及び個数は、演算装置20に入力される。このため、演算装置20は、液滴捕捉計12により捕捉した液滴L1の液滴径及び個数を取得する。液滴L1の液滴径は、例えば、液滴L1の気液界面積を算出するための物理量として用いられたり、気液二相流の流動様式を特定するために用いられたりする。なお、液滴捕捉計12は、捕捉した液滴L1から液滴径及び個数を直接計測可能な構成であってもよい。この場合、液滴捕捉計12も、演算装置20に接続され、捕捉した液滴L1の液滴径及び個数を演算装置20に直接的に入力してもよいが、この構成に限定されず、別体の記憶媒体を介して演算装置20に間接的に入力してもよい。   The droplet trapping meter 12 captures a gas-liquid two-phase droplet L1 flowing in the tube group 5. As shown in FIG. 1, the droplet trapping meter 12 is provided inside a predetermined tube 8 in the tube group 5. The droplet L1 captured by the droplet capture meter 12 is measured for the droplet diameter and the number (droplet diameter distribution) using a separate measuring device. The measured droplet diameter and number are input to the arithmetic unit 20. For this reason, the arithmetic unit 20 acquires the droplet diameter and the number of droplets L1 captured by the droplet capture meter 12. The droplet diameter of the droplet L1 is used, for example, as a physical quantity for calculating the gas-liquid interface area of the droplet L1, or used to specify the flow mode of the gas-liquid two-phase flow. The droplet capture meter 12 may be configured to directly measure the droplet diameter and number from the captured droplet L1. In this case, the droplet capturing meter 12 may also be connected to the computing device 20 and directly input the droplet diameter and the number of the captured droplet L1 to the computing device 20, but not limited to this configuration. You may input indirectly to the arithmetic unit 20 via a separate storage medium.

熱線流速計13は、管群5内を流通する気液二相流の気相の流速及び液滴L1の通過頻度を計測するものである。図1に示すように、熱線流速計13は、管群5の空間D内に位置している。熱線流速計13により計測された気相の流速及び液滴L1の通過頻度は、演算装置20に入力される。このため、演算装置20は、熱線流速計13により計測された気相の流速及び液滴L1の通過頻度を取得する。気相の流速は、例えば、気液界面抗力を算出するための物理量として用いられる。また、液滴L1の通過頻度は、例えば、気液二相流の流動様式を特定するために用いられたりする。なお、熱線流速計13も、演算装置20に接続され、気相の流速及び液滴L1の通過頻度を演算装置20に直接的に入力してもよいが、この構成に限定されず、別体の記憶媒体を介して演算装置20に間接的に入力してもよい。   The hot-wire anemometer 13 measures the flow velocity of the gas-liquid two-phase flow flowing through the tube group 5 and the passage frequency of the droplets L1. As shown in FIG. 1, the hot-wire anemometer 13 is located in the space D of the tube group 5. The gas phase flow velocity measured by the hot wire anemometer 13 and the passage frequency of the droplets L1 are input to the arithmetic unit 20. For this reason, the arithmetic unit 20 acquires the flow velocity of the gas phase measured by the hot-wire anemometer 13 and the passing frequency of the droplets L1. The gas phase flow velocity is used as a physical quantity for calculating the gas-liquid interface drag, for example. Moreover, the passage frequency of the droplet L1 is used, for example, to specify the flow mode of the gas-liquid two-phase flow. The hot-wire anemometer 13 is also connected to the computing device 20 and may directly input the gas phase flow velocity and the passage frequency of the droplets L1 to the computing device 20, but is not limited to this configuration. It may be indirectly input to the arithmetic unit 20 via the storage medium.

図3は、液膜センサの説明図である。液膜センサ14は、管群5内の所定の管8の外周面に形成される液膜L2の液膜厚さ及び液膜L2の流速を計測するものである。図3に示すように、液膜センサ14は、絶縁体を用いて管8の一部を構成する絶縁管体25と、絶縁管体25の周方向に所定の間隔を空けて配置される4つの一対の電極26と、を有している。一対の電極26は、軸方向に並べて配置されている。液膜センサ14は、一対の電極26間に電流を流すことで発生する電圧を計測する。液膜センサ14は、計測した電圧に基づいて、予め液膜厚さと電圧との関係を対応付けたデータから、液膜厚さを導出する。そして、液膜センサ14は、絶縁管体25の周方向の4箇所において液膜厚さを計測している。また、液膜センサ14は、計測した電圧に基づいて、液膜L2の流速を計測する。この液膜センサ14は、管8の軸方向に所定の間隔を空けて複数設けられている。複数の液膜センサ14により計測された液膜厚さ及び液膜L2の流速は、演算装置20に入力される。このため、演算装置20は、液膜センサ14により計測された液膜厚さ及び液膜L2の流速を取得する。液膜厚さは、例えば、液膜L2の気液界面積を算出するための物理量として用いられる。また、液膜L2の流速は、気相の流速と液膜L2の流速との相対速度を算出するための物理量として用いられる。なお、液膜センサ14も、演算装置20に接続され、液膜厚さ及び液膜L2の流速を演算装置20に直接的に入力してもよいが、この構成に限定されず、別体の記憶媒体を介して演算装置20に間接的に入力してもよい。   FIG. 3 is an explanatory diagram of a liquid film sensor. The liquid film sensor 14 measures the liquid film thickness of the liquid film L2 formed on the outer peripheral surface of the predetermined pipe 8 in the tube group 5 and the flow velocity of the liquid film L2. As shown in FIG. 3, the liquid film sensor 14 is arranged with a predetermined interval in the circumferential direction of the insulating tube body 25 and an insulating tube body 25 constituting a part of the tube 8 using an insulator. And a pair of electrodes 26. The pair of electrodes 26 are arranged side by side in the axial direction. The liquid film sensor 14 measures a voltage generated by passing a current between the pair of electrodes 26. The liquid film sensor 14 derives the liquid film thickness from data in which the relationship between the liquid film thickness and the voltage is associated in advance based on the measured voltage. The liquid film sensor 14 measures the liquid film thickness at four locations in the circumferential direction of the insulating tube 25. The liquid film sensor 14 measures the flow velocity of the liquid film L2 based on the measured voltage. A plurality of the liquid film sensors 14 are provided at predetermined intervals in the axial direction of the tube 8. The liquid film thickness measured by the plurality of liquid film sensors 14 and the flow velocity of the liquid film L2 are input to the arithmetic unit 20. For this reason, the arithmetic unit 20 acquires the liquid film thickness measured by the liquid film sensor 14 and the flow velocity of the liquid film L2. The liquid film thickness is used as a physical quantity for calculating the gas-liquid interface area of the liquid film L2, for example. The flow rate of the liquid film L2 is used as a physical quantity for calculating the relative velocity between the flow rate of the gas phase and the flow rate of the liquid film L2. The liquid film sensor 14 is also connected to the arithmetic unit 20 and may directly input the liquid film thickness and the flow rate of the liquid film L2 to the arithmetic unit 20, but the present invention is not limited to this configuration. You may input indirectly to the arithmetic unit 20 via a storage medium.

二針式光学プローブ15は、管群5内を流通する気液二相流の気液界面速度、及び気相中に含まれる液滴L1のボイド率を計測するものである。ここで、気液界面速度は、気相と液相との界面における速度であり、液滴L1のボイド率は、気相中に含まれる液滴L1の割合である。図1に示すように、二針式光学プローブ15は、その先端が、管群5の空間D内に位置している。二針式光学プローブ15により計測された気液界面速度及び液滴L1のボイド率は、演算装置20に入力される。このため、演算装置20は、二針式光学プローブ15により計測された気液界面速度及び液滴L1のボイド率を取得する。気液界面速度は、例えば、気液界面抗力を算出するための物理量として用いられる。また、液滴L1のボイド率は、例えば、液滴L1の気液界面積を算出するための物理量として用いられる。なお、二針式光学プローブ15も、演算装置20に接続され、気液界面速度及び液滴L1のボイド率を演算装置20に直接的に入力してもよいが、この構成に限定されず、別体の記憶媒体を介して演算装置20に間接的に入力してもよい。   The two-needle optical probe 15 measures the gas-liquid interface velocity of the gas-liquid two-phase flow that circulates in the tube group 5 and the void fraction of the droplet L1 contained in the gas phase. Here, the gas-liquid interface velocity is the velocity at the interface between the gas phase and the liquid phase, and the void ratio of the droplets L1 is the ratio of the droplets L1 contained in the gas phase. As shown in FIG. 1, the tip of the two-needle optical probe 15 is located in the space D of the tube group 5. The gas-liquid interface velocity and the void ratio of the droplet L1 measured by the two-needle optical probe 15 are input to the arithmetic unit 20. For this reason, the arithmetic unit 20 acquires the gas-liquid interface velocity and the void ratio of the droplet L1 measured by the two-needle optical probe 15. The gas-liquid interface velocity is used as, for example, a physical quantity for calculating the gas-liquid interface drag. The void ratio of the droplet L1 is used as a physical quantity for calculating the gas-liquid interface area of the droplet L1, for example. Note that the two-needle optical probe 15 may also be connected to the computing device 20 and directly input the gas-liquid interface velocity and the void ratio of the droplet L1 to the computing device 20, but is not limited to this configuration. You may input indirectly to the arithmetic unit 20 via a separate storage medium.

圧力分布計16は、管群5内の所定の管8の周方向における圧力分布を計測するものである。図1に示すように、圧力分布計16は、管8の周方向に所定の間隔を空けて4つの圧力計16aが配置されている。このため、圧力分布計16は、管8の周方向の4箇所において圧力を計測することにより、周方向における圧力分布を計測している。圧力分布計16により計測された圧力分布は、演算装置20に入力される。このため、演算装置20は、圧力分布計16により計測された圧力分布を取得する。圧力分布は、気液二相流の解析モデルを構築するための物理量として用いられる。なお、圧力分布計16も、演算装置20に接続され、圧力分布を演算装置20に直接的に入力してもよいが、この構成に限定されず、別体の記憶媒体を介して演算装置20に間接的に入力してもよい。   The pressure distribution meter 16 measures the pressure distribution in the circumferential direction of a predetermined tube 8 in the tube group 5. As shown in FIG. 1, the pressure distribution meter 16 has four pressure gauges 16 a arranged at predetermined intervals in the circumferential direction of the tube 8. For this reason, the pressure distribution meter 16 measures the pressure distribution in the circumferential direction by measuring the pressure at four locations in the circumferential direction of the pipe 8. The pressure distribution measured by the pressure distribution meter 16 is input to the arithmetic unit 20. For this reason, the arithmetic unit 20 acquires the pressure distribution measured by the pressure distribution meter 16. The pressure distribution is used as a physical quantity for constructing a gas-liquid two-phase flow analysis model. The pressure distribution meter 16 may also be connected to the arithmetic device 20 and the pressure distribution may be directly input to the arithmetic device 20, but the present invention is not limited to this configuration, and the arithmetic device 20 is provided via a separate storage medium. May be entered indirectly.

差圧計17は、管群5内を流通する気液二相流の上流側の圧力と下流側の圧力との差圧を計測するものである。図1に示すように、差圧計17は、上流側の圧力計17aと下流側の圧力計17bとが配置されている。差圧計17により計測された差圧は、演算装置20に入力される。このため、演算装置20は、差圧計17により計測された差圧を取得する。差圧は、例えば、気液二相流の解析モデルを構築するための物理量として用いられる。なお、差圧計17も、演算装置20に接続され、差圧を演算装置20に直接的に入力してもよいが、この構成に限定されず、別体の記憶媒体を介して演算装置20に間接的に入力してもよい。   The differential pressure gauge 17 measures the differential pressure between the upstream pressure and the downstream pressure of the gas-liquid two-phase flow flowing through the tube group 5. As shown in FIG. 1, the differential pressure gauge 17 includes an upstream pressure gauge 17a and a downstream pressure gauge 17b. The differential pressure measured by the differential pressure gauge 17 is input to the arithmetic unit 20. For this reason, the arithmetic unit 20 acquires the differential pressure measured by the differential pressure gauge 17. The differential pressure is used, for example, as a physical quantity for constructing a gas-liquid two-phase flow analysis model. The differential pressure gauge 17 may also be connected to the arithmetic device 20 and the differential pressure may be directly input to the arithmetic device 20, but the present invention is not limited to this configuration, and the arithmetic device 20 is connected to the arithmetic device 20 via a separate storage medium. You may enter it indirectly.

上記のように構成された計測システム1において計測された物理量は、気液二相流の解析モデルを構築するために、解析モデルの各要素となる物理量として用いられる。ここで、図4及び図5を参照して、解析モデルを構築するときに用いられる物理量について説明する。図4及び図5は、計測される物理量の一例を示す説明図である。図4及び図5に示すように、物理量としては、液滴L1のボイド率α、液膜厚さtfm、液滴径dsm、差圧ΔP、ピッチP、気相の流速u、液相の流速u、管8の直径d、液滴L1の投影断面積A、気液二相流が流通する流路断面積A、軸方向における液膜L2の形成される部位の濡れ縁長さL、周方向における液膜L2の形成される部位の濡れ縁長さLfilm、平均密度ρ、流路空間Vflow、気相中液滴Vdrop、気相中液膜Vfilm等がある。上記した物理量は、計測システム1の計測結果に基づいて、適宜導出される。 The physical quantity measured by the measurement system 1 configured as described above is used as a physical quantity that is an element of the analysis model in order to construct an analysis model of a gas-liquid two-phase flow. Here, with reference to FIG.4 and FIG.5, the physical quantity used when constructing | assembling an analysis model is demonstrated. 4 and 5 are explanatory diagrams illustrating examples of measured physical quantities. As shown in FIG. 4 and FIG. 5, the physical quantities include the void ratio α d of the droplet L1, the liquid film thickness t fm , the droplet diameter d sm , the differential pressure ΔP, the pitch P t , and the gas phase flow rate u g. , site formed of the flow path cross-sectional area a f, the liquid film L2 in the axial direction of the flow velocity u f of the liquid phase, the diameter d of the tube 8, the projected cross-sectional area a d of the droplets L1, the gas-liquid two-phase flow flows Wetting edge length L t , wetting edge length L film of the portion where the liquid film L2 is formed in the circumferential direction, average density ρ m , flow path space V flow , gas phase droplet V drop , gas phase liquid film V film and the like. The physical quantity described above is appropriately derived based on the measurement result of the measurement system 1.

液滴L1のボイド率αは、気相中に含まれる液滴L1の割合であり、二針式光学プローブ15により計測される。液膜厚さtfmは、管8の外周面に形成される液膜L2の径方向における厚さであり、液膜センサ14により計測される。液滴径dsmは、気相中の液滴L1の径であり、液滴捕捉計12及び高速度カメラ11により計測される。差圧ΔPは、管群5内の気液二相流の上流側と下流側との圧力差であり、差圧計17により計測される。ピッチPは、三角配置となる隣接する管8の中心同士の間の距離であり、管群5の三角配置に基づいて予め規定される物理量である。気相の流速uは、気液二相流の気相の流速であり、熱線流速計13により計測される。液相の流速uは、気液二相流の液相の流速であり、液相が液膜L2である場合、液膜センサ14により計測される。なお、液相が液滴L1である場合、液滴L1の流速を、高速度カメラ11により計測してもよい。 The void ratio α d of the droplet L1 is the ratio of the droplet L1 contained in the gas phase, and is measured by the two-needle optical probe 15. The liquid film thickness t fm is the thickness in the radial direction of the liquid film L2 formed on the outer peripheral surface of the tube 8, and is measured by the liquid film sensor 14. The droplet diameter d sm is the diameter of the droplet L1 in the gas phase, and is measured by the droplet capture meter 12 and the high-speed camera 11. The differential pressure ΔP is a pressure difference between the upstream side and the downstream side of the gas-liquid two-phase flow in the tube group 5, and is measured by the differential pressure gauge 17. The pitch P t is a distance between the centers of adjacent tubes 8 in a triangular arrangement, and is a physical quantity defined in advance based on the triangular arrangement of the tube group 5. Velocity u g in the gas phase is the flow rate of the gas phase of the gas-liquid two-phase flow is measured by hot-wire current meter 13. The liquid phase flow rate uf is the liquid phase flow rate of the gas-liquid two-phase flow, and is measured by the liquid film sensor 14 when the liquid phase is the liquid film L2. When the liquid phase is the droplet L1, the flow velocity of the droplet L1 may be measured by the high speed camera 11.

管8の直径dは、管群5を構成する管8の直径であり、配置される管8に応じて予め規定される物理量である。液滴L1の投影断面積Aは、所定の面内において投影された液滴L1の断面積である。なお、液滴L1の投影断面積Aは、高速度カメラ11により撮像された撮影画像に基づいて求めてもよい。流路断面積Aは、管群5内を流通する気液二相流の流路の断面積であり、予め規定される物理量である。軸方向における液膜L2の濡れ縁長さLは、管8の軸方向に形成される液膜L2の長さであり、管8の軸方向に配置した複数の液膜センサ14により計測される。周方向における液膜L2の濡れ縁長さLfilmは、管8の周方向に形成される液膜L2の長さであり、液膜センサ14により計測される。平均密度ρは、気液二相流の液相の密度であり、予め規定される物理量である。 The diameter d of the tube 8 is the diameter of the tube 8 constituting the tube group 5 and is a physical quantity that is defined in advance according to the tube 8 to be arranged. Projected cross-sectional area A d of the droplets L1 is the cross-sectional area of the droplet L1 projected in a predetermined plane. The projection cross-sectional area A d of the droplets L1 may be determined based on the captured image captured by the high speed camera 11. The channel cross-sectional area Af is a cross-sectional area of a gas-liquid two-phase flow channel flowing through the tube group 5 and is a physical quantity defined in advance. Wetted perimeter L t of the liquid film L2 in the axial direction is the length of the liquid film L2 formed in the axial direction of the tube 8, it is measured by a plurality of liquid film sensor 14 disposed in the axial direction of the tube 8 . The wetting edge length L film of the liquid film L2 in the circumferential direction is the length of the liquid film L2 formed in the circumferential direction of the tube 8, and is measured by the liquid film sensor 14. The average density [rho m is the density of the gas-liquid two-phase flow of liquid, a physical quantity defined in advance.

流路空間Vflowは、三角配置となる隣接する3つの管8によって形成される空間(図4に示す三角形状の点線)であり、管群5の三角配置に基づいて予め規定される物理量である。気相中液滴Vdropは、流路空間Vflowにおける気相中の液滴L1の体積である。気相中液膜Vfilmは、流路空間Vflowにおける気相中の液膜L2の体積である。 The flow path space Vflow is a space (triangular dotted line shown in FIG. 4) formed by three adjacent tubes 8 in a triangular arrangement, and is a physical quantity defined in advance based on the triangular arrangement of the tube group 5. is there. The gas phase droplet V drop is the volume of the droplet L1 in the gas phase in the flow path space V flow . The gas phase liquid film V film is the volume of the liquid film L2 in the gas phase in the flow path space V flow .

解析モデルとなる基礎方程式は、上記の物理量を関数とする構成式を、適宜組み込んで構築される。物理量を関数とする構成式としては、例えば、空間ボイド率αの構成式、気液界面抗力Fの構成式、液滴L1の気液界面積ai_dの構成式、液膜L2の気液界面積ai_fの構成式等がある。なお、構成式は、上記した構成式に限定されず、気相の流速に関するレイノルズ数を関数とする構成式、及び液滴L1の流速に関するレイノルズ数を関数とする構成式等がある。 The basic equation serving as the analysis model is constructed by appropriately incorporating a constitutive equation having the above physical quantity as a function. Examples of the constitutive equation having the physical quantity as a function include a constitutive equation of the spatial void ratio α, a constitutive equation of the gas-liquid interface drag F b , a constitutive equation of the gas-liquid interface area a i_d of the liquid droplet L1, and There are constitutive equations for the interfacial area a i — f . The constitutive equation is not limited to the above constitutive equation, and includes a constitutive equation having a function of the Reynolds number relating to the flow velocity of the gas phase and a constitutive equation having a function of the Reynolds number relating to the flow velocity of the droplet L1.

空間ボイド率αの構成式は、関数となる物理量として、液膜L2の液膜厚さtfmと、液滴L1のボイド率α(空間液滴割合)とを含んでいる。具体的に、空間ボイド率αの構成式は、下記する(1)式で与えられる。なお、(1)式において、ηdropは、液滴L1の液相体積率(液率)であり、ηfilmは、液膜L2の液相体積率(液率)である。 The constitutive equation of the spatial void ratio α includes the liquid film thickness t fm of the liquid film L2 and the void ratio α d (spatial liquid droplet ratio) of the liquid droplet L1 as a physical quantity as a function. Specifically, the constitutive formula of the space void ratio α is given by the following formula (1). In equation (1), η drop is the liquid phase volume ratio (liquid ratio) of the droplet L1, and η film is the liquid phase volume ratio (liquid ratio) of the liquid film L2.

Figure 2014169995
Figure 2014169995

ここで、液滴L1のボイド率αdrop(α)、液滴L1の液率ηdrop、流路空間Vflow及び気相中液滴Vdropの関係は、下記する(2)式で与えられる。 Here, the relationship among the void ratio α dropd ) of the droplet L1, the liquid ratio η drop of the droplet L1, the flow path space V flow, and the gas phase droplet V drop is given by the following equation (2). It is done.

Figure 2014169995
Figure 2014169995

また、液滴L1のボイド率αdrop、見かけの気相の流速j、見かけの液滴の流速j、気相のドリフト速度Vgj、分布定数Cの関係は、下記する(3)式で与えられる。なお、見かけの気相の流速jは、気相の流速uと液相の流速uとにより求められる。また、気相のドリフト速度Vgjは、二針式光学プローブ15により計測される。さらに、分布定数Cは、後述する解析モデルの構築方法において、計測された物理量を補間するために設定される係数となっている。 Further, the relationship between the void ratio α drop of the droplet L1, the apparent gas phase flow rate j g , the apparent droplet flow velocity j d , the gas phase drift velocity V gj , and the distribution constant C 0 is described below (3). It is given by the formula. Incidentally, the flow rate j d of apparent gas phase is determined by the flow velocity u f of the flow rate of the gas phase u g and a liquid phase. Further, the gas phase drift velocity V gj is measured by the two-needle optical probe 15. Further, the distribution constant C 0 is a coefficient set for interpolating the measured physical quantity in the analytical model construction method described later.

Figure 2014169995
Figure 2014169995

同様に、液膜L2のボイド率αfilm、液膜L2の液率ηfilm、流路空間Vflow及び気相中液膜Vfilmの関係は、下記する(4)式で与えられる。 Similarly, the relationship among the void ratio α film of the liquid film L2, the liquid ratio η film of the liquid film L2, the flow path space V flow, and the liquid film V film in the gas phase is given by the following equation (4).

Figure 2014169995
Figure 2014169995

また、液膜L2のボイド率αfilmは、算出される平均液膜厚さ(h/D)に基づいて、単位体積当たりに占める液膜L2の割合から求められる。平均液膜厚さは、下記する(5)式で与えられる。ここで、hは、液膜厚さtfmであり、Reは、液膜L2のレイノルズ数であり、Reは、気相のレイノルズ数である。また、μは、液膜L2の粘性係数であり、μは、気相の粘性係数であり、ρは、液膜L2の密度であり、ρは、気相の密度であり、σは表面張力である。なお、(5)式では、液膜厚さhが、液膜センサ14により計測される。また、係数k、係数a、係数bは、後述する解析モデルの構築方法において、計測された物理量を補間するために設定される係数となっている。その他の物理量については、予め規定される(既知である)物理量となっている。 In addition, the void ratio α film of the liquid film L2 is obtained from the ratio of the liquid film L2 per unit volume based on the calculated average liquid film thickness (h / D). The average liquid film thickness is given by the following equation (5). Here, h is, the liquid film has a thickness of t fm, is Re f, is the Reynolds number of the liquid film L2, Re g is the Reynolds number of the gas phase. Μ f is the viscosity coefficient of the liquid film L 2, μ g is the viscosity coefficient of the gas phase, ρ f is the density of the liquid film L 2, and ρ g is the density of the gas phase, σ is the surface tension. In the equation (5), the liquid film thickness h is measured by the liquid film sensor 14. In addition, the coefficient k, the coefficient a, and the coefficient b are coefficients that are set to interpolate the measured physical quantities in the analysis model construction method described later. Other physical quantities are predetermined (known) physical quantities.

Figure 2014169995
Figure 2014169995

気液界面抗力Fの構成式は、関数となる物理量として、管群5の空間D内における気液界面速度を含んでいる。ここで、気液界面抗力Fは、気相と液相との界面に作用する抗力である。また、気液界面速度は、気相の流速uと液相の流速uとの相対速度により求められる。具体的に、気液界面抗力Fの構成式は、下記する(6)式で与えられる。なお、(6)式において、Cは、気液界面抗力係数であり、後述する解析モデルの構築方法において、計測された物理量を補間するために設定される係数である。 Constitutive of the gas-liquid interface drag F b as a physical quantity is a function, contains a gas-liquid interfacial velocity in the space D of the tube bundle 5. Here, the gas-liquid interface drag F b is the force which acts on the interface between the gas and liquid phases. Further, the gas-liquid interface rate is determined by the relative velocity between the flow velocity u f of the flow rate of the gas phase u g and a liquid phase. Specifically, constitutive equation of the gas-liquid interface drag F b is given by to the following equation (6). In the equation (6), Cb is a gas-liquid interface drag coefficient, and is a coefficient set for interpolating the measured physical quantity in the analysis model construction method described later.

Figure 2014169995
Figure 2014169995

液滴L1の気液界面積ai_dの構成式は、関数となる物理量として、空間ボイド率αと液滴L1の液滴径dsmとを含んでいる。具体的に、液滴L1の気液界面積ai_dの構成式は、下記する(7)式で与えられる。 The constitutive equation of the gas-liquid interfacial area a i_d of the droplet L1 includes the space void ratio α d and the droplet diameter d sm of the droplet L1 as a physical quantity as a function. Specifically, the structural formula of the gas-liquid interface area a i_d of the droplet L1 is given by the following formula (7).

Figure 2014169995
Figure 2014169995

液膜L2の気液界面積ai_fの構成式は、関数となる物理量として、液膜厚さtfmを含んでいる。具体的に、液膜L2の気液界面積ai_fの構成式は、下記する(8)式で与えられる。 The constitutive equation of the gas-liquid interface area a i_f of the liquid film L2 includes the liquid film thickness t fm as a physical quantity serving as a function. Specifically, the structural formula of the gas-liquid interface area a i_f of the liquid film L2 is given by the following formula (8).

Figure 2014169995
Figure 2014169995

このように構成される構成式は、各物理量の挙動を精度良く模擬させるべく、計測した物理量に基づく所定の係数を、構成式に組み込んでいる。次に、図6を参照して、解析モデルの構築方法について説明する。図6は、実施例1に係る解析モデルの構築方法に関するフローチャートである。   The constitutive equation configured in this manner incorporates a predetermined coefficient based on the measured physical quantity into the constitutive expression in order to simulate the behavior of each physical quantity with high accuracy. Next, a method for constructing an analysis model will be described with reference to FIG. FIG. 6 is a flowchart regarding a method for constructing an analysis model according to the first embodiment.

図6に示すように、解析モデルの構築方法では、物理量計測工程S1と、係数算出工程S2と、解析モデル構築工程S3と、を順に行っている。物理量計測工程S1では、計測システム1を使用して、基礎方程式で用いられる物理量を計測する。係数算出工程S2では、演算装置20において、物理量計測工程S1において計測された物理量と、物理量を関数とする構成式との相関関係を求め、求めた相関関係を係数として算出している。係数としては、例えば、上記の気液界面抗力係数Cである。なお、相関関係の求め方としては、例えば、回帰分析、または内挿法等がある。解析モデル構築工程S3では、演算装置20において、算出した係数を構成式に組み込んで、係数が組み込まれた構成式を含む基礎方程式を構築する。これにより、構築された解析モデルである基礎方程式は、実態の気液二相流の流動状態を考慮した基礎方程式とすることができる。 As shown in FIG. 6, in the analysis model construction method, a physical quantity measurement step S1, a coefficient calculation step S2, and an analysis model construction step S3 are performed in order. In the physical quantity measurement step S1, the measurement system 1 is used to measure the physical quantity used in the basic equation. In the coefficient calculation step S2, the arithmetic unit 20 obtains a correlation between the physical quantity measured in the physical quantity measurement step S1 and a constitutive expression using the physical quantity as a function, and calculates the obtained correlation as a coefficient. The coefficient, for example, is the above gas-liquid interface drag coefficient C b. As a method for obtaining the correlation, for example, there is regression analysis or interpolation. In the analysis model construction step S3, the arithmetic device 20 incorporates the calculated coefficient into the constitutive equation, and constructs a basic equation including the constitutive equation in which the coefficient is incorporated. Thereby, the fundamental equation which is the constructed analysis model can be a basic equation in consideration of the actual flow state of the gas-liquid two-phase flow.

以上のように、実施例1の構成によれば、物理量を関数とする構成式と、計測した物理量とを補間する相関関係を求め、求めた相関関係に関する係数を構成式に組み込むことができる。このため、構成式は、実態の物理量の挙動を精度良く模擬することが可能となり、構成式が組み込まれる気液二相流を解析する解析モデルを、精度良く構築することができる。   As described above, according to the configuration of the first embodiment, it is possible to obtain a correlation that interpolates between a constitutive equation having a physical quantity as a function and a measured physical quantity, and to incorporate a coefficient relating to the obtained correlation into the constitutive expression. Therefore, the constitutive equation can accurately simulate the behavior of the actual physical quantity, and an analysis model for analyzing the gas-liquid two-phase flow in which the constitutive equation is incorporated can be constructed with high accuracy.

また、実施例1の構成によれば、空間ボイド率αの構成式を精度良く構築することができ、この構成式が組み込まれる解析モデルを、精度良く構築することが可能となる。   In addition, according to the configuration of the first embodiment, the constitutive equation of the spatial void ratio α can be constructed with high accuracy, and an analysis model in which this constitutive equation is incorporated can be constructed with high accuracy.

また、実施例1の構成によれば、気液界面抗力Fの構成式を精度良く構築することができ、この構成式が組み込まれる解析モデルを、精度良く構築することが可能となる。 Further, according to the configuration of Example 1, the constitutive equation of the gas-liquid interface drag F b can be accurately built, an analysis model that this structure type is incorporated, it is possible to accurately build.

また、実施例1の構成によれば、液滴L1の気液界面積ai_dの構成式を精度良く構築することができ、この構成式が組み込まれる解析モデルを、精度良く構築することが可能となる。 In addition, according to the configuration of the first embodiment, the constitutive equation of the gas-liquid interface area a i_d of the droplet L1 can be constructed with high accuracy, and the analysis model incorporating this constitutive equation can be constructed with high accuracy. It becomes.

また、実施例1の構成によれば、液膜L2の気液界面積ai_fの構成式を精度良く構築することができ、この構成式が組み込まれる解析モデルを、精度良く構築することが可能となる。 Further, according to the configuration of the first embodiment, the constitutive equation of the gas-liquid interface area a i_f of the liquid film L2 can be constructed with high accuracy, and the analysis model in which this constitutive equation is incorporated can be constructed with high accuracy. It becomes.

次に、図7及び図8を参照して、実施例2に係る物理量の計測システム30について説明する。図7は、実施例2に係る物理量の計測システムの概略構成図である。図8は、施例2に係る物理量の計測システムの管に配置される電極の模式図である。なお、実施例2では、重複した記載を避けるべく、実施例1と異なる部分について説明し、実施例1と同様の構成である部分については、同じ符号を付して説明する。実施例2に係る計測システム30は、実施例1の二針式光学プローブ15に代えて、一対の電極31が設けられている。   Next, a physical quantity measurement system 30 according to the second embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a schematic configuration diagram of a physical quantity measurement system according to the second embodiment. FIG. 8 is a schematic diagram of electrodes arranged in a tube of the physical quantity measurement system according to the second embodiment. In the second embodiment, parts that are different from the first embodiment will be described in order to avoid redundant descriptions, and parts that have the same configuration as the first embodiment will be described with the same reference numerals. The measurement system 30 according to the second embodiment is provided with a pair of electrodes 31 instead of the two-needle optical probe 15 of the first embodiment.

ところで、実施例1の二針式光学プローブ15は、管群5内を流通する気液二相流の所定の計測点におけるボイド率α(実施例1では、気相中に含まれる液滴L1のボイド率α)を計測している。ここで、管群5の空間D内における見かけの気相の流速j及び見かけの液相(液滴)の流速jの分布を計測する場合には、空間D内において二針式光学プローブ15を移動させながらボイド率αを計測する必要がある。しかしながら、二針式光学プローブ15を空間D内において移動させながらボイド率αを計測し、計測したボイド率αに基づいて見かけの気相の流速j(以下、気相流速jという)及び見かけの液相の流速j(以下、液相流速jという)の分布を算出しようとすると、算出に要する時間が増大する。このため、実施例2では、一対の電極31を用いて、管群5の空間D内における空間ボイド率αを計測している。 By the way, the two-needle optical probe 15 of the first embodiment has a void ratio α at a predetermined measurement point of the gas-liquid two-phase flow that circulates in the tube group 5 (in the first embodiment, the droplet L1 contained in the gas phase). The void ratio α d ) is measured. Here, in the case of measuring the distribution of the apparent gas phase flow velocity j g and the apparent liquid phase (droplet) flow velocity j d in the space D of the tube group 5, a two-needle optical probe is used in the space D. It is necessary to measure the void ratio α while moving 15. However, the void rate α is measured while moving the two-needle optical probe 15 in the space D, and the apparent gas phase flow rate j g (hereinafter referred to as the gas phase flow rate j g ) and the measured void rate α. If an attempt is made to calculate the distribution of the apparent liquid phase flow velocity j d (hereinafter referred to as the liquid phase flow velocity j d ), the time required for the calculation increases. For this reason, in Example 2, the space void ratio α in the space D of the tube group 5 is measured using a pair of electrodes 31.

図7に示すように、一対の電極31は、対向する一対の管8にそれぞれ設けられており、各管8に対向する外周面にそれぞれ配置されている。また、図8に示すように、各電極31は、管8の軸方向に沿って延在して設けられている。この一対の電極31は、静電容量式のものが用いられており、一対の電極31の間は、絶縁状態となっている。そして、一対の電極31は、演算装置20に接続されており、演算装置20は、一対の電極31間の静電容量を取得する。   As shown in FIG. 7, the pair of electrodes 31 is provided on each of the pair of opposed tubes 8, and is disposed on the outer peripheral surface facing each tube 8. Further, as shown in FIG. 8, each electrode 31 is provided so as to extend along the axial direction of the tube 8. The pair of electrodes 31 is an electrostatic capacitance type, and the pair of electrodes 31 is in an insulated state. The pair of electrodes 31 is connected to the arithmetic device 20, and the arithmetic device 20 acquires the capacitance between the pair of electrodes 31.

演算装置20は、一対の電極31間の静電容量に基づいて、空間ボイド率αを導出する。ここで、空間ボイド率αは、静電容量と相関関係があり、演算装置20は、空間ボイド率αと静電容量との相関式に基づき、計測した静電容量から、空間ボイド率αを算出(換算)している。   The arithmetic unit 20 derives the space void ratio α based on the capacitance between the pair of electrodes 31. Here, the space void ratio α has a correlation with the capacitance, and the arithmetic unit 20 calculates the space void ratio α from the measured capacitance based on the correlation equation between the space void ratio α and the capacitance. Calculated (converted).

次に、算出した空間ボイド率αに基づく、気相の流量と液相の流量との算出について説明する。演算装置20は、気相の流量及び液相の流量を算出する場合、実施例1の差圧計(差圧計測部)17により計測した差圧dP(実施例1のΔP)と、気相の流量と液相の流量との割合に関する情報である空間ボイド率αとに基づいて算出する。具体的に、演算装置20は、差圧dPと、空間ボイド率αとを、下記する(9)式及び(10)式を連立させて解くことにより、見かけの気相流速j及び見かけの液相流速jを求め、求めた気相流速j及び液相流速jから気相の流量と液相の流量とにそれぞれ換算することで、気相の流量及び液相の流量を算出する。 Next, calculation of the gas phase flow rate and the liquid phase flow rate based on the calculated space void ratio α will be described. When calculating the gas phase flow rate and the liquid phase flow rate, the arithmetic unit 20 calculates the differential pressure dP m (ΔP of Example 1) measured by the differential pressure gauge (differential pressure measurement unit) 17 of Example 1 and the gas phase. Is calculated based on the spatial void ratio α, which is information on the ratio between the flow rate of the liquid and the flow rate of the liquid phase. Specifically, the arithmetic unit 20 solves the differential pressure dP m and the space void ratio α by simultaneously solving the following formulas (9) and (10), whereby the apparent gas phase flow rate j g and the apparent gas flow rate j g the seeking phase flow rate j d liquid, by converting each of the flow rate of the gas phase flow and the liquid phase from the gas phase flow rate j g and a liquid phase flow rate j d determined, the flow rate of the gas phase flow and a liquid phase calculate.

Figure 2014169995
Figure 2014169995

ここで、(9)式に含まれる記号及び単位を説明する。単位がNDであるものは、無次元量である。
:見かけの気相流速[m/s]
:見かけの液相流速[m/s]
α:ボイド率(計測値)[ND]
:分布定数
gj:ドリフト速度[m/s]
Here, symbols and units included in the equation (9) will be described. Those whose unit is ND are dimensionless quantities.
j g : Apparent gas phase flow velocity [m / s]
j d : Apparent liquid phase flow velocity [m / s]
α: Void ratio (measured value) [ND]
C 0 : Distribution constant V gj : Drift speed [m / s]

(9)式は、空間ボイド率α、見かけの気相流速j、見かけの液相流速jとの関係を示す。つまり、(9)式は、実施例1の(3)式の液滴L1のボイド率αdropを、空間ボイド率αに置き換えた式となっている。このとき、分布定数C及びドリフト速度Vgjは、気液二相流の流動様式によって適宜定められる。 Equation (9) shows the relationship between the space void ratio α, the apparent gas phase flow rate j g , and the apparent liquid phase flow rate j d . That is, the equation (9) is an equation in which the void ratio α drop of the droplet L1 in the expression (3) of the first embodiment is replaced with the space void ratio α. At this time, the distribution constant C 0 and the drift velocity V gj are appropriately determined depending on the flow mode of the gas-liquid two-phase flow.

Figure 2014169995
Figure 2014169995

次に、(10)式に含まれる記号及び単位を説明する。上述したように、単位がNDであるものは、無次元量である。
dP:差圧(計測値)[Pa]
φ :二相増倍係数[ND]
λ:摩擦係数[ND]、λ=0.3164Re1/4
:等価直径[m]
L:差圧計測区間距離[m]
ρ:液相密度[kg/m
Next, symbols and units included in the expression (10) will be described. As described above, the unit of ND is a dimensionless quantity.
dP m : differential pressure (measured value) [Pa]
φ l 2 : Two-phase multiplication coefficient [ND]
λ: friction coefficient [ND], λ = 0.3164Re1 / 4
D 2 : equivalent diameter [m]
L: Differential pressure measurement section distance [m]
ρ l : Liquid phase density [kg / m 3 ]

(10)式は、差圧dP、見かけの気相流速j、見かけの液相流速jとの関係を示す。なお、二相増倍係数φ は、所定の算出式から求められ、等価直径Dは、例えば、差圧計測区間の等価直径の平均値を用いる。 Equation (10) shows the relationship between the differential pressure dP m , the apparent gas phase flow rate j g , and the apparent liquid phase flow rate j d . Note that the two-phase multiplication coefficient φ l 2 is obtained from a predetermined calculation formula, and the equivalent diameter D 2 is, for example, an average value of equivalent diameters in the differential pressure measurement section.

このように、(9)式及び(10)式を用いて、見かけの気相流速j及び見かけの液相流速jを求める場合、気相流速j及び液相流速jを除く他の物理量が既知となっている。そして、演算装置20は、一対の電極31の計測により空間ボイド率αを取得し、差圧計17の計測により差圧dPを取得すると、(9)式及び(10)式に与えると共に、既知の物理量を(9)式及び(10)式に与える。この後、演算装置20は、(9)式、(10)式を連立させて、気相流速j及び液相流速jについて解くことにより、両者を求める。なお、ボイド率α及び差圧dPは、時間tによって変化する。このため、(9)式、(10)式を連立させて解く場合、空間ボイド率α及び差圧dPは瞬間値を用いるよりも、所定の期間における平均値を用いることが好ましい。 Thus, (9) using the formula and (10), when obtaining the gas-phase flow rate j g and the apparent liquid phase flow rate j d apparent, other except the gas phase flow rate j g and a liquid phase flow rate j d The physical quantity of is known. Then, the arithmetic unit 20 obtains the spatial void ratio α by measuring the pair of electrodes 31 and obtains the differential pressure dP m by measuring the differential pressure gauge 17 and gives it to the equations (9) and (10) and is known. Are given in the equations (9) and (10). Thereafter, computing device 20 (9), (10) by simultaneous equation, by solving for the gas phase flow rate j g and a liquid phase flow rate j d, we obtain both. Note that the void ratio α and the differential pressure dP m vary with time t. Therefore, when solving the equations (9) and (10) simultaneously, it is preferable to use an average value in a predetermined period for the space void ratio α and the differential pressure dP m rather than using an instantaneous value.

演算装置20は、気相流速j及び液相流速jを求めたら、気相流速j及び液相流速jからそれぞれの流量及び気液二相流の全流量を求める。流速から流量への換算は、例えば、体積流量であれば気液二相流が通過する流路の断面積を流速に乗ずればよい。この場合、気液二相流の気相と液相との比率に応じて、気相流速jに乗ずる流路の断面積と液相流速jに乗ずる流路の断面積とを分ければよい。質量流量は、体積流量に流体の密度を乗ずれば求めることができる。 After obtaining the gas phase flow rate j g and the liquid phase flow rate j d , the arithmetic unit 20 obtains the respective flow rates and the total flow rate of the gas-liquid two-phase flow from the gas phase flow rate j g and the liquid phase flow rate j d . The conversion from the flow rate to the flow rate may be performed by multiplying the flow rate by the cross-sectional area of the flow path through which the gas-liquid two-phase flow passes, for example, if the flow rate is volumetric. In this case, according to the ratio between the gas phase and the liquid phase of the gas-liquid two-phase flow, the cross-sectional area of the flow path multiplied by the gas-phase flow velocity j g and the cross-sectional area of the flow path multiplied by the liquid-phase flow velocity j d can be divided. Good. The mass flow rate can be obtained by multiplying the volume flow rate by the density of the fluid.

以上のように、実施例2の構成によれば、一対の電極31を用いて静電容量を計測することで、管群5の空間D内における空間ボイド率αを取得することができる。そして、取得した空間ボイド率αと、差圧計17により計測した差圧dPとに基づいて、(9)式及び(10)式から、気相流速j及び液相流速jを求め、求めた気相流速j及び液相流速jから、気相流量と液相流量とを導出することができる。このため、一対の電極31を管群5内に配置することで、気相流量と液相流量とを同時に計測することが可能となり、算出に要する時間を短縮することができ、計算効率の向上を図ることができる。 As described above, according to the configuration of the second embodiment, the space void ratio α in the space D of the tube group 5 can be acquired by measuring the capacitance using the pair of electrodes 31. Then, based on the acquired space void ratio α and the differential pressure dP m measured by the differential pressure gauge 17, the gas phase flow rate j g and the liquid phase flow rate j d are obtained from the equations (9) and (10), From the obtained gas phase flow rate j g and liquid phase flow rate j d , the gas phase flow rate and the liquid phase flow rate can be derived. For this reason, by arranging the pair of electrodes 31 in the tube group 5, it becomes possible to simultaneously measure the gas phase flow rate and the liquid phase flow rate, thereby shortening the time required for calculation and improving the calculation efficiency. Can be achieved.

なお、実施例2において、一対の電極31は、静電容量式であったが、この構成に限定されず、定電流式を用いてもよい。つまり、演算装置20は、一対の電極31間の電気抵抗に基づいて、空間ボイド率αを導出する。ここで、空間ボイド率αは、電気抵抗と相関関係があり、演算装置20は、空間ボイド率αと電気抵抗との相関式に基づき、計測した電気抵抗から、空間ボイド率αを算出(換算)する。   In the second embodiment, the pair of electrodes 31 is a capacitance type, but is not limited to this configuration, and a constant current type may be used. That is, the arithmetic unit 20 derives the space void ratio α based on the electrical resistance between the pair of electrodes 31. Here, the spatial void ratio α has a correlation with the electrical resistance, and the arithmetic unit 20 calculates (converts) the spatial void ratio α from the measured electrical resistance based on the correlation equation between the spatial void ratio α and the electrical resistance. )

1 計測システム
5 管群
8 管
10 物理量計測部
11 高速度カメラ
12 液滴捕捉計
13 熱線流速計
14 液膜センサ
15 二針式光学プローブ
16 圧力分布計
17 差圧計
20 演算装置
25 絶縁管体
26 電極
30 計測システム(実施例2)
31 電極
D 空間
L1 液滴
L2 液膜
α 空間ボイド率
α 液滴のボイド率
h,tfm 液膜厚さ
sm 液滴径
ΔP 差圧
ピッチ
気相の流速
液相の流速
d 管の直径
液滴の投影断面積
気液二相流が流通する流路断面積
軸方向における液膜の濡れ縁長さ
film 周方向における液膜の濡れ縁長さ
ρ 気相の密度
ρ 液膜の密度
ρ 平均密度
気液界面抗力係数
気液界面抗力
i_d 液滴の気液界面積
i_f 液膜の気液界面積
DESCRIPTION OF SYMBOLS 1 Measurement system 5 Tube group 8 Tube 10 Physical quantity measurement part 11 High speed camera 12 Droplet capture meter 13 Heat ray velocimeter 14 Liquid film sensor 15 Two-needle type optical probe 16 Pressure distribution meter 17 Differential pressure meter 20 Arithmetic unit 25 Insulation tube 26 Electrode 30 measurement system (Example 2)
31 electrode D space L1 droplet L2 liquid film alpha spatial void fraction alpha d droplets void fraction h, t fm liquid film thickness d sm droplet size ΔP differential pressure P t pitch u g vapor flow rate u f liquid phase wetted perimeter of the projected cross-sectional area a f gas-liquid two-phase flow flows flow path cross-sectional area L t axis wetted perimeter of the liquid film in the direction length L film circumferential liquid in the direction the film diameter a d droplet flow rate d tubes ρ g Gas-phase density ρ f Liquid film density ρ m Average density C b Gas-liquid interface drag coefficient F b Gas-liquid interface drag a i_d Liquid-gas interface area a i_f Liquid-gas interface area

Claims (7)

管群内を流通する気液二相流を解析するための解析モデルとなる基礎方程式を構築するにあたり、前記基礎方程式で用いられる物理量を計測する物理量の計測システムであって、
前記基礎方程式は、前記解析モデルの各要素となる前記物理量を関数とする構成式を含み、
前記物理量を計測する物理量計測部と、
前記物理量を関数とする前記構成式が、計測した前記物理量を補間する相関関係を求め、求めた前記相関関係を係数として、前記構成式に組み込む演算部と、を備えることを特徴とする物理量の計測システム。
A physical quantity measurement system for measuring a physical quantity used in the basic equation in constructing a basic equation serving as an analysis model for analyzing a gas-liquid two-phase flow flowing in a tube group,
The basic equation includes a constitutive equation having a function of the physical quantity serving as each element of the analysis model,
A physical quantity measuring unit for measuring the physical quantity;
The constitutive equation that is a function of the physical quantity includes a calculation unit that interpolates the measured physical quantity and includes the calculated correlation as a coefficient to be incorporated into the constitutive equation. Measuring system.
前記構成式は、前記管群の空間内の気相中における空間ボイド率の構成式であり、関数となる前記物理量として、管の外周面に形成される液膜の液膜厚さと、前記管群の空間内の気相中に含まれる液滴または液膜の割合とを含み、
前記物理量計測部は、
管の外周面に形成される前記液膜厚さを計測する液膜計測部と、
前記管群の空間内の気相中に含まれる液滴または液膜の割合を計測する割合計測部と、を有し、
前記演算部は、前記空間ボイド率の前記構成式が、計測した前記液膜厚さと前記液滴または前記液膜の割合とを補間する相関関係を求め、求めた前記相関関係を係数として、前記構成式に組み込むことを特徴とする請求項1に記載の物理量の計測システム。
The constitutive equation is a constitutive equation of the space void ratio in the gas phase in the space of the tube group, and as the physical quantity as a function, the liquid film thickness of the liquid film formed on the outer peripheral surface of the tube, and the tube The proportion of droplets or liquid film contained in the gas phase in the group space,
The physical quantity measuring unit is
A liquid film measuring unit for measuring the liquid film thickness formed on the outer peripheral surface of the pipe;
A ratio measuring unit that measures the ratio of droplets or liquid film contained in the gas phase in the space of the tube group,
The calculation unit obtains a correlation in which the constitutive equation of the space void ratio interpolates the measured liquid film thickness and the ratio of the droplet or the liquid film, and the calculated correlation is used as a coefficient. The physical quantity measuring system according to claim 1, wherein the physical quantity measuring system is incorporated in a structural formula.
前記構成式は、気相と液相との界面における抗力である気液界面抗力の構成式であり、関数となる前記物理量として、前記管群の空間内における気液界面速度を含み、
前記物理量計測部は、
前記管群の空間内における気相と液相との界面速度である気液界面速度を計測する気液界面速度計測部を、を有し、
前記演算部は、前記気液界面抗力の前記構成式が、計測した前記気液界面速度を補間する相関関係を求め、求めた前記相関関係を係数として、前記構成式に組み込むことを特徴とする請求項1または2に記載の物理量の計測システム。
The constitutive formula is a constitutive formula of a gas-liquid interface drag that is a drag at the interface between the gas phase and the liquid phase, and includes the gas-liquid interface velocity in the space of the tube group as the physical quantity as a function,
The physical quantity measuring unit is
A gas-liquid interface velocity measuring unit for measuring a gas-liquid interface velocity which is an interface velocity between a gas phase and a liquid phase in the space of the tube group,
The calculation unit obtains a correlation in which the constitutive equation of the gas-liquid interface drag interpolates the measured gas-liquid interface velocity, and incorporates the obtained correlation into the constitutive equation as a coefficient. The physical quantity measurement system according to claim 1 or 2.
前記構成式は、前記管群の空間内の気相中に含まれる液滴の気液界面積の構成式であり、関数となる前記物理量として、前記液滴の液滴径を含み、
前記物理量計測部は、
前記管群の空間内の気相中に含まれる前記液滴を捕捉する液滴捕捉部を有し、
前記演算部は、前記液滴の気液界面積の構成式が、捕捉した前記液滴の前記液滴径を補間する相関関係を求め、求めた前記相関関係を係数として、前記構成式に組み込むことを特徴とする請求項1から3のいずれか1項に記載の物理量の計測システム。
The constitutive equation is a constitutive equation of the gas-liquid interface area of the droplets contained in the gas phase in the space of the tube group, and includes the droplet diameter of the droplets as the physical quantity as a function,
The physical quantity measuring unit is
A droplet capturing section that captures the droplets contained in the gas phase in the space of the tube group;
The calculation unit obtains a correlation in which the constitutive equation of the gas-liquid interface area of the droplet interpolates the droplet diameter of the captured droplet, and incorporates the obtained correlation into the constitutive equation as a coefficient. The physical quantity measuring system according to any one of claims 1 to 3, wherein
前記構成式は、前記管群の空間内の気相中に含まれる液膜の気液界面積の構成式であり、関数となる前記物理量として、管の外周面に形成される前記液膜の液膜厚さを含み、
前記物理量計測部は、
管の外周面に形成される前記液膜厚さを計測する液膜計測部を有し、
前記演算部は、前記液膜の気液界面積の構成式が、計測した前記液膜厚さを補間する相関関係を求め、求めた前記相関関係を係数として、前記構成式に組み込むことを特徴とする請求項1から4のいずれか1項に記載の物理量の計測システム。
The constitutive equation is a constitutive equation of the gas-liquid interface area of the liquid film contained in the gas phase in the space of the tube group, and the physical quantity as a function of the liquid film formed on the outer peripheral surface of the tube. Including liquid film thickness,
The physical quantity measuring unit is
A liquid film measuring unit for measuring the liquid film thickness formed on the outer peripheral surface of the pipe;
The calculation unit obtains a correlation in which the constitutive equation of the gas-liquid interface area of the liquid film interpolates the measured liquid film thickness, and incorporates the obtained correlation into the constitutive equation as a coefficient. The physical quantity measurement system according to any one of claims 1 to 4.
前記構成式は、前記管群の空間内における気相の流速と液相の流速との構成式であり、関数となる前記物理量として、前記管群の空間内の気相中における空間ボイド率と、前記管群の空間内における差圧とを含み、
前記物理量計測部は、
対向する一対の管の外周面にそれぞれ形成され、対向して配置される一対の電極と、
前記管群内を流通する前記気液二相流の上流側と下流側との差圧を計測する差圧計測部と、を有し、
前記演算部は、一対の前記電極間の電気特性に基づいて前記空間ボイド率を導出し、導出した前記空間ボイド率と、前記差圧計測部により計測した前記差圧とを、前記構成式に与えて、前記気相の流速と前記液相の流速とを算出することを特徴とする請求項1から4のいずれか1項に記載の物理量の計測システム。
The constitutive equation is a constitutive equation of a gas phase flow rate and a liquid phase flow rate in the space of the tube group, and as a physical quantity as a function, a space void ratio in the gas phase in the space of the tube group and And differential pressure within the space of the tube group,
The physical quantity measuring unit is
A pair of electrodes formed on the outer peripheral surfaces of a pair of opposing tubes and disposed opposite to each other;
A differential pressure measuring unit that measures the differential pressure between the upstream side and the downstream side of the gas-liquid two-phase flow that circulates in the tube group, and
The calculation unit derives the spatial void ratio based on the electrical characteristics between the pair of electrodes, and the derived spatial void ratio and the differential pressure measured by the differential pressure measurement unit are expressed in the constitutive equation. The physical quantity measurement system according to claim 1, wherein the flow rate of the gas phase and the flow rate of the liquid phase are calculated.
管群内を流通する気液二相流を解析するための解析モデルとなる基礎方程式を構築する解析モデルの構築方法であって、
前記基礎方程式は、前記解析モデルの各要素となる前記物理量を関数とする構成式を含み、
前記基礎方程式で用いられる物理量を計測する物理量計測工程と、
前記物理量を関数とする前記構成式が、計測した前記物理量を補間する相関関係を求め、求めた相関関係を係数として算出する係数算出工程と、
算出した係数を前記構成式に組み込んで、前記基礎方程式を構築する解析モデル構築工程と、を備えることを特徴とする解析モデルの構築方法。
An analytical model construction method for constructing a basic equation as an analytical model for analyzing a gas-liquid two-phase flow flowing in a tube group,
The basic equation includes a constitutive equation having a function of the physical quantity serving as each element of the analysis model,
A physical quantity measuring step for measuring a physical quantity used in the basic equation;
A coefficient calculating step in which the constitutive equation having the physical quantity as a function calculates a correlation for interpolating the measured physical quantity, and calculates the calculated correlation as a coefficient;
An analytical model construction method comprising: an analytical model construction step of constructing the basic equation by incorporating the calculated coefficient into the constitutive equation.
JP2014015949A 2013-02-06 2014-01-30 Physical quantity measurement system and analysis model construction method Active JP6307291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015949A JP6307291B2 (en) 2013-02-06 2014-01-30 Physical quantity measurement system and analysis model construction method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013021590 2013-02-06
JP2013021590 2013-02-06
JP2014015949A JP6307291B2 (en) 2013-02-06 2014-01-30 Physical quantity measurement system and analysis model construction method

Publications (2)

Publication Number Publication Date
JP2014169995A true JP2014169995A (en) 2014-09-18
JP6307291B2 JP6307291B2 (en) 2018-04-04

Family

ID=51692462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015949A Active JP6307291B2 (en) 2013-02-06 2014-01-30 Physical quantity measurement system and analysis model construction method

Country Status (1)

Country Link
JP (1) JP6307291B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080502A (en) * 2014-10-16 2016-05-16 三菱重工業株式会社 Gas-liquid two-phase flow rate calculation method, and gas-liquid two-phase flow rate calculation system
CN110907456A (en) * 2019-12-09 2020-03-24 湖南科技大学 Method for measuring fluctuation characteristic parameters of gas-liquid interface wave of annular flow of pipeline
JP2022077303A (en) * 2020-11-11 2022-05-23 国立大学法人静岡大学 Simultaneous measuring method for thin liquid film thickness and liquid film speed using optical fiber probe sensor and calibration method for optical fiber probe sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316059A (en) * 2006-04-28 2007-12-06 Yokohama National Univ Heat flow phenomenon simulating method and simulating testing apparatus
JP2010271074A (en) * 2009-05-19 2010-12-02 Mitsubishi Heavy Ind Ltd Two-phase flow exciting force evaluation method and two-phase flow exciting force evaluation device
JP2011128004A (en) * 2009-12-17 2011-06-30 Mitsubishi Heavy Ind Ltd Gas flow velocity meter in gas-liquid two-phase flow

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316059A (en) * 2006-04-28 2007-12-06 Yokohama National Univ Heat flow phenomenon simulating method and simulating testing apparatus
JP2010271074A (en) * 2009-05-19 2010-12-02 Mitsubishi Heavy Ind Ltd Two-phase flow exciting force evaluation method and two-phase flow exciting force evaluation device
JP2011128004A (en) * 2009-12-17 2011-06-30 Mitsubishi Heavy Ind Ltd Gas flow velocity meter in gas-liquid two-phase flow

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080502A (en) * 2014-10-16 2016-05-16 三菱重工業株式会社 Gas-liquid two-phase flow rate calculation method, and gas-liquid two-phase flow rate calculation system
CN110907456A (en) * 2019-12-09 2020-03-24 湖南科技大学 Method for measuring fluctuation characteristic parameters of gas-liquid interface wave of annular flow of pipeline
JP2022077303A (en) * 2020-11-11 2022-05-23 国立大学法人静岡大学 Simultaneous measuring method for thin liquid film thickness and liquid film speed using optical fiber probe sensor and calibration method for optical fiber probe sensor
JP7309137B2 (en) 2020-11-11 2023-07-18 国立大学法人静岡大学 Method for measuring thin liquid film thickness using optical fiber probe sensor and method for calibrating same sensor

Also Published As

Publication number Publication date
JP6307291B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
Bottin et al. Experimental investigation of a developing two-phase bubbly flow in horizontal pipe
Noghrehkar et al. Investigation of two-phase flow regimes in tube bundles under cross-flow conditions
Kumar et al. Film thickness and wave velocity measurements in a vertical duct
Keirsbulck et al. Statistical properties of wall shear stress fluctuations in turbulent channel flows
Dryden Turbulence and diffusion
JP6307291B2 (en) Physical quantity measurement system and analysis model construction method
Muñoz-Cobo et al. Development of conductivity sensors for multi-phase flow local measurements at the Polytechnic University of Valencia (UPV) and University Jaume I of Castellon (UJI)
JP2014115164A (en) Apparatus, method, and computer program for measuring flow rate of gas-liquid two-phase flow
Wang et al. Flow regime identification of steam-water two-phase flow using optical probes, based on local parameters in vertical tube bundles
Abdulkadir et al. Annular liquid film thickness prediction in a vertical 180° return bend
EP2985597B1 (en) Steam wetness measurement device
Zhu et al. Flow regime detection using gamma-ray-based multiphase flowmeter: A machine learning approach
Cai et al. Experimental investigation on spatial phase distributions for various flow patterns and frictional pressure drop characteristics of gas liquid two-phase flow in a horizontal helically coiled rectangular tube
Chen et al. Experimental investigation and identification of the transition boundary of churn and annular flows using multi-range differential pressure and conductivity signals
Lucas et al. Large probe arrays for measuring mean and time dependent local oil volume fraction and local oil velocity component distributions in inclined oil-in-water flows
Chakraborty et al. Model based reconstruction of an axisymmetric moving void using multiple conductivity probes
CN105783982A (en) Electrical resistance tomography-based gas-liquid two-phase flow measuring method and device
Chen et al. Two-phase flow across small sudden expansions and contractions
Moran et al. On the damping in tube arrays subjected to two-phase cross-flow
Tao et al. Two-phase flow characteristics of gas-liquids in microchannels using electrical resistance tomography
Ito et al. Dynamic film thickness between bubbles and wall in a narrow channel
Hoppe et al. Determination of velocity and angular displacement of bubbly flows by means of wire-mesh sensors and correlation analysis
Zhai et al. Measurements on interfacial characteristics and droplet entrainment in horizontal liquid–liquid flows: A comparison of PLIF versus WMS
Safari Pour et al. Visualisation of gas–liquid bubbly flows in a large diameter pipe with 90^ ∘∘ bend
He et al. The research on the interfacial area transport equation in rectangular channels: Interfacial characteristics distribution and bubbles interaction mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6307291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150