JP2014169824A - Feedwater heating system - Google Patents

Feedwater heating system Download PDF

Info

Publication number
JP2014169824A
JP2014169824A JP2013041627A JP2013041627A JP2014169824A JP 2014169824 A JP2014169824 A JP 2014169824A JP 2013041627 A JP2013041627 A JP 2013041627A JP 2013041627 A JP2013041627 A JP 2013041627A JP 2014169824 A JP2014169824 A JP 2014169824A
Authority
JP
Japan
Prior art keywords
water
water supply
heat
steam
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013041627A
Other languages
Japanese (ja)
Other versions
JP6083509B2 (en
Inventor
Kazuyuki Otani
和之 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2013041627A priority Critical patent/JP6083509B2/en
Publication of JP2014169824A publication Critical patent/JP2014169824A/en
Application granted granted Critical
Publication of JP6083509B2 publication Critical patent/JP6083509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce power consumption by driving a compressor by using a steam engine, in a feedwater heating system applying a heat pump.SOLUTION: A heat pump 4 pumps up heat from a heat source fluid passing through an evaporator 16, and heats water passing through a condenser 14. Feedwater to a water supply tank 3 through a water supply passage 9 is successively passed through a waste heat recovery heat exchanger 22, a subcooler 17 and the condenser 14. The waste heat recovery heat exchanger 22 is an indirect heat exchanger between the feedwater to the water supply tank 3 through the water supply passage 9 and the heat source fluid after passing through the evaporator 16. The subcooler 17 is an indirect heat exchanger between the feedwater to the water supply tank 3 through the water supply passage 9 and a refrigerant from the condenser 14 to an expansion valve 15. The water in the water supply tank 3 is supplied to a boiler 2, and the steam from the boiler 2 is supplied to a steam engine 8 to drive a compressor 13.

Description

本発明は、ヒートポンプを用いた給水加温システムに関するものである。   The present invention relates to a feed water heating system using a heat pump.

従来、下記特許文献1に開示されるように、ボイラ(24)の給水タンク(23)への給水を、ヒートポンプ(12)を用いて加温できるシステムが知られている。また、出願人は、この従来技術に比べてヒートポンプの効率をさらに向上した給水加温システムを提案し、既に特許出願を済ませている(特願2012−79191)。   Conventionally, as disclosed in Patent Document 1 below, a system capable of heating water supplied to a water supply tank (23) of a boiler (24) using a heat pump (12) is known. In addition, the applicant has proposed a feed water warming system in which the efficiency of the heat pump is further improved as compared with this prior art, and has already filed a patent application (Japanese Patent Application No. 2012-79191).

この出願中の給水加温システムは、ヒートポンプと給水タンクとを備え、給水路を介した給水タンクへの給水は、廃熱回収熱交換器、過冷却器および凝縮器を順に通される。廃熱回収熱交換器は、給水路を介した給水タンクへの給水と、蒸発器を通過後の熱源流体との間接熱交換器であり、過冷却器は、給水路を介した給水タンクへの給水と、凝縮器から膨張弁への冷媒との間接熱交換器である。給水路を介した給水タンクへの給水中、ヒートポンプを運転すると共に、ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、凝縮器への通水量を調整するのが好ましい。   The water supply warming system in this application includes a heat pump and a water supply tank, and water supplied to the water supply tank via the water supply path is sequentially passed through a waste heat recovery heat exchanger, a supercooler, and a condenser. The waste heat recovery heat exchanger is an indirect heat exchanger between the water supply to the water supply tank via the water supply channel and the heat source fluid after passing through the evaporator, and the supercooler to the water supply tank via the water supply channel Indirect heat exchanger between the water supply and the refrigerant from the condenser to the expansion valve. It is preferable to adjust the amount of water flow to the condenser so that the heat pump is operated during water supply to the water supply tank via the water supply path, and the outlet water temperature of the condenser of the heat pump is maintained at the set temperature.

特開2010−25431号公報(図2、図3)JP 2010-25431 A (FIGS. 2 and 3)

本発明が解決しようとする課題は、ヒートポンプを用いた給水加温システムにおいて、蒸気エンジンを用いて圧縮機を駆動することで、消費電力の削減を図ることにある。   The problem to be solved by the present invention is to reduce power consumption by driving a compressor using a steam engine in a feed water heating system using a heat pump.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器に通される熱源流体から熱をくみ上げ、前記凝縮器に通される水を加温するヒートポンプと、廃熱回収熱交換器、過冷却器および前記凝縮器を順に通されて給水路により給水可能な給水タンクと、この給水タンクからの給水を加熱して蒸気にするボイラと、このボイラからの蒸気を用いて動力を起こす蒸気エンジンとを備え、前記廃熱回収熱交換器は、前記給水路を介した前記給水タンクへの給水と、前記蒸発器を通過後の熱源流体との間接熱交換器であり、前記過冷却器は、前記給水路を介した前記給水タンクへの給水と、前記凝縮器から前記膨張弁への冷媒との間接熱交換器であり、前記蒸気エンジンにより前記圧縮機を駆動することを特徴とする給水加温システムである。   The present invention has been made to solve the above problems, and the invention according to claim 1 is characterized in that a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate a refrigerant, and the evaporation. Heat is pumped from the heat source fluid that is passed through the condenser, and the heat pump that heats the water that is passed through the condenser, the waste heat recovery heat exchanger, the supercooler, and the condenser are passed through the water supply passage in order. A water supply tank, a boiler that heats the water supplied from the water supply tank to steam, and a steam engine that uses the steam from the boiler to generate power, and the waste heat recovery heat exchanger includes the water supply An indirect heat exchanger for supplying water to the water supply tank via a channel and a heat source fluid after passing through the evaporator, the supercooler supplying water to the water tank via the water supply channel, Between the refrigerant from the condenser to the expansion valve A heat exchanger, a water heating system, characterized by driving the compressor by the steam engine.

請求項1に記載の発明によれば、給水路を介した給水タンクへの給水は、廃熱回収熱交換器、過冷却器および凝縮器を順に通される一方、ヒートポンプの熱源流体は、蒸発器および廃熱回収熱交換器を順に通される。蒸発器を通過後の熱源流体の熱や、凝縮器を通過後の冷媒の熱を用いて、凝縮器への給水を予熱しておくことで、ヒートポンプの効率を向上することができる。また、ヒートポンプの圧縮機は、蒸気エンジンにより駆動されるので、消費電力の削減を図ることができる。   According to the first aspect of the present invention, water supplied to the water supply tank via the water supply passage is sequentially passed through the waste heat recovery heat exchanger, the subcooler, and the condenser, while the heat source fluid of the heat pump is evaporated. Through the heat exchanger and the waste heat recovery heat exchanger. The efficiency of the heat pump can be improved by preheating the feed water to the condenser using the heat of the heat source fluid after passing through the evaporator and the heat of the refrigerant after passing through the condenser. Moreover, since the compressor of the heat pump is driven by a steam engine, it is possible to reduce power consumption.

請求項2に記載の発明は、前記蒸気エンジンで使用後の蒸気は、次の(a)〜(c)の内、いずれかに用いられることを特徴とする請求項1に記載の給水加温システムである。
(a)前記蒸気エンジンで使用後の蒸気は、前記給水路または前記給水タンク内に噴き込まれるか、前記給水路または前記給水タンク内の水と間接熱交換して、前記給水路または前記給水タンク内の水を加温する。
(b)前記蒸気エンジンで使用後の蒸気は、前記蒸発器より上流側において、熱源流体に噴き込まれるか、熱源流体と間接熱交換して、熱源流体を加温する。
(c)前記蒸気エンジンで使用後の蒸気は、そのまままたは昇圧されて、蒸気使用設備へ供給される。
Invention of Claim 2 uses the steam after use with the said steam engine in any one of following (a)-(c), The feed water heating of Claim 1 characterized by the above-mentioned. System.
(A) Steam after use in the steam engine is injected into the water supply channel or the water supply tank, or indirectly exchanges heat with water in the water supply channel or the water supply tank, so that the water supply channel or the water supply water is supplied. Warm the water in the tank.
(B) The steam after use in the steam engine is injected into the heat source fluid or indirectly heat-exchanged with the heat source fluid on the upstream side of the evaporator to heat the heat source fluid.
(C) The steam after use in the steam engine is supplied to the steam using facility as it is or after being pressurized.

請求項2に記載の発明によれば、蒸気エンジンで使用後の蒸気を用いて、(a)給水タンクへの給水または給水タンク内の貯留水を加温したり、(b)蒸発器への熱源流体を加温したり、(c)蒸気使用設備への蒸気を確保したりすることができる。   According to invention of Claim 2, using the steam after use with a steam engine, (a) heating the water supply to a water supply tank or the stored water in a water supply tank, or (b) supplying to an evaporator The heat source fluid can be heated, or (c) steam to the steam using facility can be secured.

請求項3に記載の発明は、前記給水路を介した前記給水タンクへの給水中、前記ヒートポンプを運転すると共に、前記ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、前記凝縮器への通水量を調整することを特徴とする請求項1または請求項2に記載の給水加温システムである。   According to a third aspect of the present invention, the water is supplied to the water supply tank via the water supply channel, the heat pump is operated, and the outlet side water temperature of the condenser of the heat pump is maintained at a set temperature. The feed water warming system according to claim 1 or 2, wherein the amount of water passing through the vessel is adjusted.

請求項3に記載の発明によれば、給水路を介した給水タンクへの給水中、凝縮器の出口側水温を設定温度に維持するように、凝縮器への通水量(給水路を介した給水タンクへの給水流量)を調整することで、給水源の水温や熱源流体の温度に拘わらず、所望温度の温水を得ることができる。さらに、凝縮器の出口側水温を設定温度に維持するために、ヒートポンプを制御するのではなく、凝縮器への通水量を制御するので、ヒートポンプを高効率な高負荷で運転したり、給水タンクの水位などに応じて負荷調整したりできる。   According to the third aspect of the present invention, the amount of water flow to the condenser (via the water supply channel) is maintained so that the water temperature on the outlet side of the condenser is maintained at the set temperature during the water supply to the water supply tank via the water supply channel. Regardless of the water temperature of the water supply source or the temperature of the heat source fluid, hot water having a desired temperature can be obtained by adjusting the water supply flow rate to the water supply tank. In addition, in order to maintain the outlet water temperature of the condenser at the set temperature, the heat pump is not controlled, but the amount of water flow to the condenser is controlled, so that the heat pump can be operated with a high efficiency and high load, The load can be adjusted according to the water level.

請求項4に記載の発明は、前記給水タンクの水位に基づき、前記蒸気エンジンへの給蒸を制御することを特徴とする請求項1〜3のいずれか1項に記載の給水加温システムである。   Invention of Claim 4 is a feed water heating system of any one of Claims 1-3 which controls the steam supply to the said steam engine based on the water level of the said water supply tank. is there.

請求項4に記載の発明によれば、給水タンクの水位に基づいて、蒸気エンジンへの給蒸を制御してヒートポンプの出力を変更することができる。   According to the fourth aspect of the present invention, the output of the heat pump can be changed by controlling the steam supply to the steam engine based on the water level of the water supply tank.

さらに、請求項5に記載の発明は、前記給水路を介した前記給水タンクへの給水中、給水流量を所定に保持した状態で、前記ヒートポンプの凝縮器出口側の水温または圧縮機出口側の冷媒圧力もしくは冷媒温度に基づき、前記蒸気エンジンへの給蒸を制御することを特徴とする請求項1または請求項2に記載の給水加温システムである。   Further, the invention according to claim 5 is the water temperature on the condenser outlet side or the compressor outlet side of the heat pump in a state where the water supply flow rate is kept at a predetermined level during the water supply to the water supply tank via the water supply channel. The feed water warming system according to claim 1 or 2, wherein steam supply to the steam engine is controlled based on a refrigerant pressure or a refrigerant temperature.

請求項5に記載の発明によれば、給水路を介した給水タンクへの給水中、ヒートポンプの凝縮器出口側の水温に基づき、蒸気エンジンへの給蒸を制御してヒートポンプの出力を調整することで、所望温度の温水を得ることができる。また、圧縮機出口側の冷媒圧力もしくは冷媒温度に基づき制御しても、凝縮器における冷媒温度を所望に維持して、結果として所望温度の温水を得ることができる。   According to the fifth aspect of the present invention, the water supply to the water supply tank through the water supply channel, the steam supply to the steam engine is controlled based on the water temperature on the condenser outlet side of the heat pump, and the output of the heat pump is adjusted. Thus, hot water having a desired temperature can be obtained. Moreover, even if it controls based on the refrigerant | coolant pressure or refrigerant | coolant temperature by the side of a compressor, the refrigerant | coolant temperature in a condenser can be maintained as desired, and hot water of desired temperature can be obtained as a result.

本発明によれば、ヒートポンプを用いた給水加温システムにおいて、蒸気エンジンを用いて圧縮機を駆動することで、消費電力の削減を図ることができる。   According to the present invention, in a feed water warming system using a heat pump, power consumption can be reduced by driving a compressor using a steam engine.

本発明の給水加温システムの一実施例を示す概略図である。It is the schematic which shows one Example of the feed water heating system of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の給水加温システム1の一実施例を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of a feed water warming system 1 of the present invention.

本実施例の給水加温システム1は、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムであり、ボイラ2への給水を貯留する給水タンク3と、この給水タンク3への給水を貯留する補給水タンク5と、この補給水タンク5から給水タンク3への給水を加温するヒートポンプ4と、このヒートポンプ4の熱源としての熱源水(たとえば廃温水)を貯留する熱源水タンク6とを備える。   The feed water warming system 1 of the present embodiment is a system that can heat the feed water to the feed water tank 3 of the boiler 2 with the heat pump 4. The feed water tank 3 that stores the feed water to the boiler 2, and the feed water tank 3 A replenishment water tank 5 for storing water supply, a heat pump 4 for heating water supplied from the replenishment water tank 5 to the water supply tank 3, and a heat source water tank for storing heat source water (for example, waste hot water) as a heat source of the heat pump 4. 6.

ボイラ2は、蒸気ボイラであり、給水タンク3からの給水を加熱して蒸気にする。ボイラ2は、典型的には、蒸気の圧力を所望に維持するように、燃焼量を調整される。また、ボイラ2は、缶体内の水位を所望に維持するように、給水タンク3からボイラ2への給水路またはボイラ2の内部に設けたポンプ7が制御される。ボイラ2からの蒸気は、各種の蒸気使用設備へ送られるが、蒸気使用設備からのドレン(蒸気の凝縮水)を給水タンク3へ戻してもよい。詳細は後述するが、この種の蒸気使用設備の一つとして、ヒートポンプ4を駆動するための蒸気エンジン(スチームモータ)8がある。   The boiler 2 is a steam boiler, and heats the feed water from the feed water tank 3 into steam. The boiler 2 is typically adjusted in combustion quantity so as to maintain the desired steam pressure. Moreover, the pump 7 provided in the inside of the water supply path from the water supply tank 3 to the boiler 2, or the boiler 2 is controlled so that the boiler 2 may maintain the water level in a can body as desired. The steam from the boiler 2 is sent to various steam-using facilities, but drain (condensed water of steam) from the steam-using facility may be returned to the feed water tank 3. Although details will be described later, there is a steam engine (steam motor) 8 for driving the heat pump 4 as one of the steam use facilities of this type.

給水タンク3は、補給水タンク5から、ヒートポンプ4を介して給水路9により給水可能であると共に、ヒートポンプ4を介さずに補給水路10により給水可能である。給水路9に設けた給水ポンプ11と、補給水路10に設けた補給水ポンプ12との作動を制御することで、給水路9と補給水路10との内、いずれか一方または双方を介して、補給水タンク5から給水タンク3へ給水可能である。   The water supply tank 3 can supply water from the make-up water tank 5 through the heat pump 4 through the water supply passage 9 and can be supplied through the make-up water passage 10 without going through the heat pump 4. By controlling the operation of the water supply pump 11 provided in the water supply channel 9 and the makeup water pump 12 provided in the makeup water channel 10, via either one or both of the water supply channel 9 and the makeup water channel 10, Water can be supplied from the makeup water tank 5 to the water supply tank 3.

給水ポンプ11は、本実施例では、インバータにより回転数を制御可能とされる。給水ポンプ11の回転数を変更することで、給水路9を介した給水タンク3への給水流量を調整することができる。一方、補給水ポンプ12は、本実施例では、オンオフ制御される。   In this embodiment, the feed water pump 11 can control the rotation speed by an inverter. By changing the rotation speed of the water supply pump 11, the water supply flow rate to the water supply tank 3 through the water supply path 9 can be adjusted. On the other hand, the makeup water pump 12 is on / off controlled in this embodiment.

補給水タンク5は、給水タンク3への給水を貯留する。補給水タンク5への給水として、本実施例では軟水が用いられる。すなわち、軟水器(図示省略)にて水中の硬度分を除去された軟水は、補給水タンク5に供給され貯留される。補給水タンク5の水位に基づき軟水器からの給水を制御することで、補給水タンク5の水位は所望に維持される。   The makeup water tank 5 stores water supplied to the water supply tank 3. In this embodiment, soft water is used as the water supply to the makeup water tank 5. That is, the soft water from which the water hardness has been removed by the water softener (not shown) is supplied to the makeup water tank 5 and stored. By controlling the water supply from the water softener based on the water level of the makeup water tank 5, the water level of the makeup water tank 5 is maintained as desired.

ヒートポンプ4は、蒸気圧縮式のヒートポンプであり、圧縮機13、凝縮器14、膨張弁15および蒸発器16が順次環状に接続されて構成される。そして、圧縮機13は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器14は、圧縮機13からのガス冷媒を凝縮液化する。さらに、膨張弁15は、凝縮器14からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器16は、膨張弁15からの冷媒の蒸発を図る。   The heat pump 4 is a vapor compression heat pump, and is configured by sequentially connecting a compressor 13, a condenser 14, an expansion valve 15, and an evaporator 16 in an annular shape. The compressor 13 compresses the gas refrigerant to a high temperature and a high pressure. The condenser 14 condenses and liquefies the gas refrigerant from the compressor 13. Further, the expansion valve 15 allows the liquid refrigerant from the condenser 14 to pass through, thereby reducing the pressure and temperature of the refrigerant. The evaporator 16 then evaporates the refrigerant from the expansion valve 15.

従って、ヒートポンプ4は、蒸発器16において、冷媒が外部から熱を奪って気化する一方、凝縮器14において、冷媒が外部へ放熱して凝縮することになる。これを利用して、本実施例では、ヒートポンプ4は、蒸発器16において、熱源水から熱をくみ上げ、凝縮器14において、給水路9の水を加温する。   Therefore, in the heat pump 4, in the evaporator 16, the refrigerant takes heat from the outside and vaporizes, while in the condenser 14, the refrigerant dissipates heat to the outside and condenses. Using this, in this embodiment, the heat pump 4 draws heat from the heat source water in the evaporator 16, and heats the water in the water supply passage 9 in the condenser 14.

ヒートポンプ4は、さらに、凝縮器14と膨張弁15との間に、過冷却器17を備えるのが好ましい。過冷却器17は、凝縮器14から膨張弁15への冷媒と、凝縮器14への給水との間接熱交換器である。過冷却器17により、凝縮器14への給水で、凝縮器14から膨張弁15への冷媒を過冷却することができると共に、凝縮器14から膨張弁15への冷媒で、凝縮器14への給水を加温することができる。ヒートポンプ4の冷媒は、好適には、凝縮器14において潜熱を放出し、過冷却器17において顕熱を放出する。   It is preferable that the heat pump 4 further includes a supercooler 17 between the condenser 14 and the expansion valve 15. The supercooler 17 is an indirect heat exchanger between the refrigerant from the condenser 14 to the expansion valve 15 and the feed water to the condenser 14. The subcooler 17 can supercool the refrigerant from the condenser 14 to the expansion valve 15 by supplying water to the condenser 14, and can supply the refrigerant to the condenser 14 by the refrigerant from the condenser 14 to the expansion valve 15. The water supply can be heated. The refrigerant of the heat pump 4 preferably releases latent heat in the condenser 14 and releases sensible heat in the subcooler 17.

つまり、凝縮器14において、ガス冷媒は凝縮して液冷媒となり、その液冷媒が過冷却器17に供給されて、過冷却器17において、液冷媒はさらに冷却(過冷却)される。冷媒の凝縮用と過冷却用とで熱交換器を分けることで、熱交換器の設計が容易となり、熱交換器を簡易な構造で小型化でき、コスト削減を図ることができる。また、汎用の熱交換器の利用も可能となる。   That is, in the condenser 14, the gas refrigerant is condensed into a liquid refrigerant, and the liquid refrigerant is supplied to the subcooler 17, and the liquid refrigerant is further cooled (supercooled) in the subcooler 17. By separating heat exchangers for refrigerant condensation and supercooling, the heat exchanger can be easily designed, the heat exchanger can be reduced in size with a simple structure, and costs can be reduced. In addition, a general-purpose heat exchanger can be used.

その他、ヒートポンプ4には、圧縮機13の入口側にアキュムレータを設置したり、圧縮機13の出口側に油分離器を設置したり、凝縮器14の出口側(凝縮器14と過冷却器17との間)に受液器を設置したりしてもよい。   In addition, in the heat pump 4, an accumulator is installed on the inlet side of the compressor 13, an oil separator is installed on the outlet side of the compressor 13, or the outlet side of the condenser 14 (the condenser 14 and the subcooler 17 A receiver may be installed between the two).

ヒートポンプ4の圧縮機13は、蒸気エンジン8により駆動される。本実施例では、ヒートポンプ4の圧縮機13は、蒸気エンジン8のみで駆動されるが、場合により、蒸気エンジン8に加えて電気モータでも駆動可能とされてもよい。その場合、蒸気エンジン8と電気モータとの駆動割合を適宜に調整すればよい。   The compressor 13 of the heat pump 4 is driven by the steam engine 8. In the present embodiment, the compressor 13 of the heat pump 4 is driven only by the steam engine 8, but in some cases, it may be driven by an electric motor in addition to the steam engine 8. In that case, what is necessary is just to adjust the drive ratio of the steam engine 8 and an electric motor suitably.

蒸気エンジン8は、蒸気を用いて動力を起こす装置である。蒸気エンジン8には、給蒸路18を介して蒸気が供給され、排蒸路19を介して蒸気が排出される。蒸気エンジン8への蒸気として、ボイラ2からの蒸気を用いることができる。   The steam engine 8 is a device that generates power using steam. Steam is supplied to the steam engine 8 via a steam supply path 18, and the steam is discharged via a steam exhaust path 19. Steam from the boiler 2 can be used as steam to the steam engine 8.

蒸気エンジン8への給蒸路18には、給蒸弁20が設けられている。給蒸弁20の開閉を切り替えて、蒸気エンジン8ひいてはヒートポンプ4(圧縮機13)の作動の有無を切り替えることができる。また、給蒸弁20の開度を調整することで、蒸気エンジン8ひいてはヒートポンプ4(圧縮機13)の出力を調整することができる。なお、ボイラ2から蒸気エンジン8への給蒸路18には、所望により、蒸気ヘッダを設けたり、減圧弁を設けたりしてもよいことは言うまでもない。また、蒸気エンジン8への給蒸制御は、場合により、排蒸路19に設けた弁により行ってもよい。   A steam supply valve 20 is provided in the steam supply path 18 to the steam engine 8. By switching the opening and closing of the steam supply valve 20, it is possible to switch the operation of the steam engine 8 and thus the heat pump 4 (compressor 13). Further, by adjusting the opening of the steam supply valve 20, the output of the steam engine 8 and thus the heat pump 4 (compressor 13) can be adjusted. Needless to say, the steam supply path 18 from the boiler 2 to the steam engine 8 may be provided with a steam header or a pressure reducing valve as desired. In addition, the steam supply control to the steam engine 8 may be performed by a valve provided in the exhaust steam passage 19 depending on circumstances.

蒸気エンジン8で使用後の蒸気は、排蒸路19を介して導出され、たとえば、次のとおり用いることができる。   The steam after use in the steam engine 8 is led out through the exhaust steam path 19 and can be used as follows, for example.

(A)実線Aに示すように、給水路9の内、凝縮器14より下流において、給水路9内に蒸気エンジン8からの蒸気を噴き込むか、給水路9の水と蒸気エンジン8からの蒸気とを間接熱交換して、給水路9を介した給水タンク3への給水を加温する。   (A) As shown by the solid line A, the steam from the steam engine 8 is injected into the water supply channel 9 downstream of the condenser 14 in the water supply channel 9, or the water from the water supply channel 9 and the steam engine 8 The steam is indirectly heat-exchanged to heat the water supplied to the water supply tank 3 via the water supply passage 9.

(B)二点鎖線Bに示すように、給水タンク3内に蒸気エンジン8からの蒸気を噴き込むか、給水タンク3内の水と蒸気エンジン8からの蒸気とを間接熱交換して、給水タンク3内の貯留水を加温する。   (B) As shown by a two-dot chain line B, water from the steam engine 8 is injected into the water supply tank 3 or water in the water supply tank 3 and steam from the steam engine 8 are indirectly heat-exchanged to supply water. The stored water in the tank 3 is heated.

(C)二点鎖線Cに示すように、熱源水タンク6内に蒸気エンジン8からの蒸気を噴き込むか、熱源水タンク6内の熱源水と蒸気エンジン8からの蒸気とを間接熱交換して、熱源水タンク6内の熱源水を加温する。但し、このような熱源水の加温は、熱源水タンク6ではなく、熱源水タンク6から蒸発器16への熱源供給路21において行ってもよい。つまり、熱源供給路21の内、蒸発器16より上流において、熱源供給路21内に蒸気エンジン8からの蒸気を噴き込むか、熱源供給路21の熱源水と蒸気エンジン8からの蒸気とを間接熱交換して、熱源供給路21を介した蒸発器16への熱源水を加温してもよい。   (C) As indicated by a two-dot chain line C, the steam from the steam engine 8 is injected into the heat source water tank 6 or the heat source water in the heat source water tank 6 and the steam from the steam engine 8 are indirectly heat-exchanged. Then, the heat source water in the heat source water tank 6 is heated. However, such heating of the heat source water may be performed not in the heat source water tank 6 but in the heat source supply path 21 from the heat source water tank 6 to the evaporator 16. That is, the steam from the steam engine 8 is injected into the heat source supply path 21 upstream of the evaporator 16 in the heat source supply path 21, or the heat source water in the heat source supply path 21 and the steam from the steam engine 8 are indirectly connected. The heat source water to the evaporator 16 via the heat source supply path 21 may be heated by heat exchange.

(D)二点鎖線Dに示すように、蒸気エンジン8で使用後の蒸気を、排蒸路19を介してそのまま蒸気使用設備へ供給するか、蒸気エゼクタなどにより昇圧して蒸気使用設備へ供給する。この際、蒸気ヘッダを介してもよいことは勿論である。   (D) As shown by a two-dot chain line D, the steam after use in the steam engine 8 is supplied to the steam using equipment as it is via the exhaust steam passage 19, or is boosted by a steam ejector and supplied to the steam using equipment. To do. In this case, it goes without saying that a steam header may be used.

給水加温システム1は、さらに、廃熱回収熱交換器22を備えるのが好ましい。この廃熱回収熱交換器22は、過冷却器17への給水と、蒸発器16を通過後の熱源水との間接熱交換器である。従って、給水路9の水は、廃熱回収熱交換器22、過冷却器17および凝縮器14へと順に通されることになる。一方、熱源水タンク6の熱源水は、熱源供給路21を介して、蒸発器16を通された後、廃熱回収熱交換器22に通される。   It is preferable that the feed water heating system 1 further includes a waste heat recovery heat exchanger 22. The waste heat recovery heat exchanger 22 is an indirect heat exchanger for supplying water to the subcooler 17 and heat source water after passing through the evaporator 16. Accordingly, the water in the water supply channel 9 is passed through the waste heat recovery heat exchanger 22, the subcooler 17, and the condenser 14 in order. On the other hand, the heat source water in the heat source water tank 6 is passed through the evaporator 16 via the heat source supply path 21 and then passed to the waste heat recovery heat exchanger 22.

熱源水タンク6は、ヒートポンプ4の熱源としての熱源水を貯留する。熱源水とは、たとえば廃温水(工場などから排出される温水)である。なお、熱源水タンク6には、熱源水の供給路23が設けられると共に、所定以上の水をあふれさせるオーバーフロー路24が設けられている。   The heat source water tank 6 stores heat source water as a heat source of the heat pump 4. The heat source water is, for example, waste hot water (hot water discharged from a factory or the like). The heat source water tank 6 is provided with a heat source water supply path 23 and an overflow path 24 that overflows a predetermined amount or more of water.

熱源水タンク6の熱源水は、熱源供給路21を介して、ヒートポンプ4の蒸発器16を通された後、廃熱回収熱交換器22を通される。熱源供給路21には、蒸発器16より上流側に熱源供給ポンプ25が設けられており、この熱源供給ポンプ25を作動させることで、熱源水タンク6からの熱源水を、蒸発器16と廃熱回収熱交換器22とに順に通すことができる。   The heat source water in the heat source water tank 6 is passed through the evaporator 16 of the heat pump 4 through the heat source supply path 21 and then passed through the waste heat recovery heat exchanger 22. The heat source supply path 21 is provided with a heat source supply pump 25 on the upstream side of the evaporator 16. By operating the heat source supply pump 25, the heat source water from the heat source water tank 6 is discarded with the evaporator 16. The heat recovery heat exchanger 22 can be passed through in order.

蒸発器16を先に通した後に廃熱回収熱交換器22に熱源水を通すことで、廃熱回収熱交換器22を先に通した後に蒸発器16に熱源水を通す場合と比較して、蒸発器16における冷媒の蒸発温度(つまり蒸発圧力)を高めることができ、圧縮機13の圧力比を小さくすることができ、省エネルギーを図ることができる。   By passing the heat source water through the waste heat recovery heat exchanger 22 after passing the evaporator 16 first, compared with the case where the heat source water is passed through the evaporator 16 after passing the waste heat recovery heat exchanger 22 first. Further, the evaporation temperature (that is, the evaporation pressure) of the refrigerant in the evaporator 16 can be increased, the pressure ratio of the compressor 13 can be reduced, and energy saving can be achieved.

給水路9には、凝縮器14の出口側に、出湯温度センサ26が設けられる。出湯温度センサ26は、凝縮器14を通過後の水温を検出する。出湯温度センサ26の検出温度に基づき、給水ポンプ11が制御される。ここでは、給水ポンプ11は、出湯温度センサ26の検出温度を設定温度(出湯温度設定値)に維持するようにインバータ制御される。つまり、給水路9を介した給水タンク3への給水は、出湯温度センサ26の検出温度を設定温度に維持するように、流量が調整される。   In the water supply passage 9, a hot water temperature sensor 26 is provided on the outlet side of the condenser 14. The tapping temperature sensor 26 detects the water temperature after passing through the condenser 14. Based on the temperature detected by the hot water temperature sensor 26, the feed water pump 11 is controlled. Here, the feed water pump 11 is inverter-controlled so that the temperature detected by the tapping temperature sensor 26 is maintained at a set temperature (tapping temperature setting value). That is, the flow rate of the water supplied to the water supply tank 3 through the water supply passage 9 is adjusted so that the temperature detected by the hot water temperature sensor 26 is maintained at the set temperature.

給水タンク3には、水位検出器27が設けられる。この水位検出器27は、その構成を特に問わず、たとえば、電極式水位検出器または静電容量式水位検出器を用いることができる。   A water level detector 27 is provided in the water supply tank 3. The water level detector 27 is not particularly limited in configuration, and for example, an electrode type water level detector or a capacitance type water level detector can be used.

熱源水タンク6には、熱源水の有無を確認するために、水位検出器28が設けられる。この水位検出器28は、その構成を特に問わないが、本実施例では電極式水位検出器とされる。この場合、熱源水タンク6には、低水位検出電極棒29が差し込まれており、熱源水の水位が設定を下回っていないかを監視する。   The heat source water tank 6 is provided with a water level detector 28 for confirming the presence or absence of the heat source water. The configuration of the water level detector 28 is not particularly limited. In the present embodiment, the water level detector 28 is an electrode type water level detector. In this case, the low water level detection electrode rod 29 is inserted into the heat source water tank 6 to monitor whether the water level of the heat source water is lower than the setting.

熱源水タンク6には、熱源水の温度を検出する熱源温度センサ30が設けられる。但し、熱源温度センサ30は、熱源水タンク6から蒸発器16への熱源供給路21に設けてもよい。   The heat source water tank 6 is provided with a heat source temperature sensor 30 that detects the temperature of the heat source water. However, the heat source temperature sensor 30 may be provided in the heat source supply path 21 from the heat source water tank 6 to the evaporator 16.

次に、本実施例の給水加温システム1の制御(運転方法)について説明する。以下に説明する一連の制御は、図示しない制御器を用いて自動でなされる。   Next, control (operation method) of the feed water heating system 1 of the present embodiment will be described. A series of control described below is automatically performed using a controller (not shown).

給水タンク3には、給水路9を介して給水可能であると共に補給水路10を介しても給水可能であるが、通常は、給水路9を介した給水が優先されるように制御されるのが好ましい。たとえば、給水タンク3の水位を設定範囲に維持するように、給水路9を介した給水を制御するが、それでは給水タンク3の水位が設定範囲を維持できない場合には、補給水路10を介しても給水タンク3へ給水するのが好ましい。このような制御は、給水タンク3に設けた水位検出器27の検出信号に基づき、給水ポンプ11と補給水ポンプ12とを制御することで行うことができる。   Although it is possible to supply water to the water supply tank 3 via the water supply channel 9 and also to supply water via the replenishment water channel 10, the water supply via the water supply channel 9 is normally controlled so that priority is given. Is preferred. For example, the water supply through the water supply channel 9 is controlled so as to maintain the water level of the water supply tank 3 within the set range. However, if the water level of the water supply tank 3 cannot maintain the set range, the water supply through the supply water channel 10 is controlled. It is preferable to supply water to the water supply tank 3. Such control can be performed by controlling the feed water pump 11 and the makeup water pump 12 based on the detection signal of the water level detector 27 provided in the feed water tank 3.

給水路9を介した給水中、ヒートポンプ4を運転すると共に、熱源供給ポンプ25を作動させる。ヒートポンプ4は、その圧縮機13の作動の有無により、運転と停止が切り替えられる。また、ヒートポンプ4は、給水タンク3の水位に基づき出力を制御されるのがよい。   During the water supply through the water supply path 9, the heat pump 4 is operated and the heat source supply pump 25 is operated. The heat pump 4 is switched between operation and stop depending on whether or not the compressor 13 is activated. The output of the heat pump 4 is preferably controlled based on the water level of the water supply tank 3.

ヒートポンプ4の発停や出力の制御は、前述したように、給蒸弁20による蒸気エンジン8への給蒸を制御することで行われる。給水タンク3内の水位が低いほど、蒸気エンジン8ひいてはヒートポンプ4の出力を上げるように、給蒸弁20の開度を調整するのがよい。この際、蒸気エンジン8の出力は、段階的に切り替えてもよいし、連続的に調整してもよい。たとえば、ヒートポンプ4は、高負荷運転(典型的には全負荷運転=100%出力)、低負荷運転(たとえば50%出力)および停止(0%出力)の三位置で制御される。   As described above, the start and stop of the heat pump 4 and the control of the output are performed by controlling the steam supply to the steam engine 8 by the steam supply valve 20. It is preferable to adjust the opening of the steam supply valve 20 such that the lower the water level in the water supply tank 3 is, the higher the output of the steam engine 8 and hence the heat pump 4 is. At this time, the output of the steam engine 8 may be switched in stages or may be adjusted continuously. For example, the heat pump 4 is controlled at three positions: high load operation (typically full load operation = 100% output), low load operation (for example, 50% output), and stop (0% output).

給水路9を介した給水中、給水ポンプ11は、出湯温度センサ26の検出温度を設定温度に維持するように、回転数をインバータ制御される。その結果、ヒートポンプ4の出力が大きいほど多い流量で、給水路9を介して給水タンク3へ給水可能となる。   During the water supply through the water supply path 9, the water supply pump 11 is inverter-controlled for the rotation speed so as to maintain the temperature detected by the tapping temperature sensor 26 at the set temperature. As a result, it is possible to supply water to the water supply tank 3 through the water supply passage 9 at a larger flow rate as the output of the heat pump 4 is larger.

ヒートポンプ4を運転して、補給水タンク5から給水路9を介して給水タンク3へ給水する際、補給水タンク5からの給水は、廃熱回収熱交換器22、過冷却器17および凝縮器14により徐々に加温されて、設定温度で給水タンク3へ供給される。給水タンク3とヒートポンプ4(凝縮器14)との間で水を循環させる場合と比較して、補給水タンク5から給水タンク3への一回の通過(ワンススルー)で給水を加温するので、ヒートポンプ4を通過する前後の給水の温度差を確保して、ヒートポンプ4の成績係数(COP)の向上を図ることができる。また、各熱交換器をコンパクトに構成することもできる。   When the heat pump 4 is operated and water is supplied from the make-up water tank 5 to the water supply tank 3 through the water supply path 9, the water supplied from the make-up water tank 5 is used as the waste heat recovery heat exchanger 22, the supercooler 17, and the condenser. 14 is gradually heated and supplied to the water supply tank 3 at a set temperature. Compared with the case where water is circulated between the water supply tank 3 and the heat pump 4 (condenser 14), the water supply is heated by a single pass (once through) from the makeup water tank 5 to the water supply tank 3. The temperature difference of the feed water before and after passing through the heat pump 4 can be secured, and the coefficient of performance (COP) of the heat pump 4 can be improved. Moreover, each heat exchanger can also be comprised compactly.

また、ヒートポンプ4の運転中、つまり給水路9を介した給水タンク3への給水中、熱源水タンク6の水温を熱源温度センサ30で監視して、その温度に基づきヒートポンプ4の出力を調整してもよい。ヒートポンプ4の熱源としての熱源水の温度が高温なほど、ヒートポンプ4の出力を下げることができる。熱源水の温度を考慮してヒートポンプ4の出力を調整することで、熱源水の温度変化に拘わらず、給水路9を介した給水タンク3への給水流量を安定させることができる。   Further, during operation of the heat pump 4, that is, water supply to the water supply tank 3 via the water supply passage 9, the water temperature of the heat source water tank 6 is monitored by the heat source temperature sensor 30, and the output of the heat pump 4 is adjusted based on the temperature. May be. The higher the temperature of the heat source water as the heat source of the heat pump 4, the lower the output of the heat pump 4. By adjusting the output of the heat pump 4 in consideration of the temperature of the heat source water, the water supply flow rate to the water supply tank 3 through the water supply path 9 can be stabilized regardless of the temperature change of the heat source water.

さらに、ヒートポンプ4の運転中、熱源水タンク6の水位が下がり、低水位検出電極棒29が水位を検知しなくなると、ヒートポンプ4の運転を停止すると共に、熱源供給ポンプ25を停止して蒸発器16への熱源水の供給を停止するのがよい。これにより、ヒートポンプ4を無駄に運転するのが防止される。また、同様に、ヒートポンプ4の運転中(つまり給水路9を介した給水タンク3への給水制御中)、万一、給水路9を通る給水の量が設定を下回ると、ヒートポンプ4の運転を停止すると共に、熱源供給ポンプ25を停止して蒸発器16への熱源水の供給を停止するのがよい。   Further, when the water level of the heat source water tank 6 falls during the operation of the heat pump 4 and the low water level detection electrode rod 29 does not detect the water level, the operation of the heat pump 4 is stopped, and the heat source supply pump 25 is stopped and the evaporator It is preferable to stop the supply of heat source water to 16. This prevents the heat pump 4 from being wasted. Similarly, during operation of the heat pump 4 (that is, during water supply control to the water supply tank 3 via the water supply channel 9), if the amount of water supplied through the water supply channel 9 falls below the setting, the operation of the heat pump 4 is stopped. While stopping, it is preferable to stop the heat source supply pump 25 to stop the supply of the heat source water to the evaporator 16.

さて、以上の実施例では、給水路9を介した給水タンク3への給水中、ヒートポンプ4を運転すると共に、出湯温度センサ26の検出温度を設定温度に維持するように、給水ポンプ11をインバータ制御して、給水路9を介した給水タンク3への給水流量を調整した。また、その際、好ましくは、給水タンク3の水位に基づいて、蒸気エンジン8への給蒸量を調整して、蒸気エンジン8による圧縮機13の負荷を調整した。但し、このような制御に代えて、次のような制御を行ってもよい。   In the above embodiment, the water pump 11 is connected to the inverter so that the heat pump 4 is operated during the water supply to the water supply tank 3 through the water supply passage 9 and the temperature detected by the tapping temperature sensor 26 is maintained at the set temperature. The feed water flow rate to the feed water tank 3 via the feed water channel 9 was adjusted. At that time, preferably, the steam supply amount to the steam engine 8 is adjusted based on the water level of the water supply tank 3, and the load of the compressor 13 by the steam engine 8 is adjusted. However, instead of such control, the following control may be performed.

すなわち、給水路9を介した給水タンク3への給水中、給水ポンプ11による給水路9を介した給水タンク3への給水流量を所定の一定流量に保持した状態で、ヒートポンプ4の凝縮器14出口側の水温または圧縮機13出口側の冷媒圧力もしくは冷媒温度に基づき、蒸気エンジン8への給蒸量を調整してもよい。具体的には、出湯温度センサ26の検出温度を設定温度に維持するように、給蒸弁20を制御するか、圧縮機13の出口側に設けた圧力センサ31または温度センサの検出温度を設定温度に維持するように、給蒸弁20を制御すればよい。凝縮器14出口側の水温に基づく制御は、直接的に所望温度の温水を得る制御となる。また、圧縮機13出口側の冷媒圧力または冷媒温度に基づく制御は、凝縮器14における冷媒の飽和温度を所望に維持し、間接的に所望温度の温水を得る制御となる。   That is, the condenser 14 of the heat pump 4 in a state where the water supply flow rate to the water supply tank 3 through the water supply channel 9 and the water supply flow rate to the water supply tank 3 through the water supply channel 9 by the water supply pump 11 are kept at a predetermined constant flow rate. The steam supply amount to the steam engine 8 may be adjusted based on the water temperature on the outlet side or the refrigerant pressure or refrigerant temperature on the outlet side of the compressor 13. Specifically, the steam supply valve 20 is controlled or the detection temperature of the pressure sensor 31 or the temperature sensor provided on the outlet side of the compressor 13 is set so that the detection temperature of the tapping temperature sensor 26 is maintained at the set temperature. What is necessary is just to control the steam supply valve 20 so that it may maintain at temperature. Control based on the water temperature on the outlet side of the condenser 14 is control for directly obtaining hot water having a desired temperature. Further, the control based on the refrigerant pressure or the refrigerant temperature on the outlet side of the compressor 13 is a control for maintaining a desired saturation temperature of the refrigerant in the condenser 14 and indirectly obtaining hot water at a desired temperature.

本発明の給水加温システム1は、前記実施例の構成に限らず、適宜変更可能である。たとえば、前記実施例では、給水路9を介した給水タンク3への給水流量を調整するために、給水ポンプ11をインバータ制御したが、給水ポンプ11をオンオフ制御しつつ、給水路9に設けたバルブの開度を調整してもよい。つまり、出湯温度センサ26の検出温度などに基づき給水路9を介した給水の流量を調整可能であれば、その流量調整方法は適宜に変更可能である。   The feed water warming system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the above-described embodiment, the feed water pump 11 is inverter-controlled in order to adjust the feed water flow rate to the feed water tank 3 through the feed water channel 9, but the feed water pump 11 is provided on the feed water channel 9 while being on / off controlled. The opening degree of the valve may be adjusted. That is, if the flow rate of the water supply through the water supply channel 9 can be adjusted based on the temperature detected by the hot water temperature sensor 26, the flow rate adjustment method can be changed as appropriate.

また、ヒートポンプ4は、単段に限らず複数段とすることもできる。ヒートポンプ4を複数段にする場合、隣接する段のヒートポンプ同士は、間接熱交換器を用いて接続されてもよいし、直接熱交換器(中間冷却器)を用いて接続されてもよい。後者の場合、下段ヒートポンプの圧縮機からの冷媒と上段ヒートポンプの膨張弁からの冷媒とを受けて、両冷媒を直接に接触させて熱交換する中間冷却器を備え、この中間冷却器が下段ヒートポンプの凝縮器であると共に上段ヒートポンプの蒸発器とされる。このように、複数段(多段)のヒートポンプには、一元多段のヒートポンプの他、複数元(多元)のヒートポンプ、あるいはそれらの組合せのヒートポンプが含まれる。   Further, the heat pump 4 is not limited to a single stage, and may be a plurality of stages. When the heat pump 4 has a plurality of stages, adjacent stage heat pumps may be connected using an indirect heat exchanger, or may be connected using a direct heat exchanger (intercooler). In the latter case, an intermediate cooler that receives the refrigerant from the compressor of the lower heat pump and the refrigerant from the expansion valve of the upper heat pump and directly exchanges heat between the two refrigerants is provided. And the evaporator of the upper heat pump. As described above, the multi-stage (multi-stage) heat pump includes a single-stage multi-stage heat pump, a multi-element (multi-element) heat pump, or a combination thereof.

また、給水タンク3に、凝縮器14を介して給水路9により給水可能であると共に、凝縮器14を介さずに補給水路10により給水可能であれば、給水路9や補給水路10の具体的構成は、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では、給水路9と補給水路10とは、それぞれ補給水タンク5と給水タンク3とを接続するように並列に設けたが、給水路9と補給水路10との一端部(補給水タンク5側の端部)と他端部(給水タンク3側の端部)の一方または双方は、共通の管路としてもよい。言い換えれば、補給水路10の一端部は、補給水タンク5に接続するのではなく、給水路9から分岐するように設けてもよいし、補給水路10の他端部は、給水タンク3に接続するのではなく、給水タンク3の手前において給水路9に合流するように設けてもよい。補給水路10の一端部を、補給水タンク5に接続するのではなく、給水路9から分岐するように設ける場合、その分岐部より下流において、給水路9に給水ポンプ11を設ける一方、補給水路10に補給水ポンプ12を設ければよいが、分岐部よりも上流側の共通管路にのみポンプを設けて、分岐部より下流の給水路9および/または補給水路10に設けたバルブの開度を調整することで、給水路9や補給水路10を通る流量を調整してもよい。   In addition, if water can be supplied to the water supply tank 3 through the water supply channel 9 via the condenser 14 and water can be supplied through the replenishment water channel 10 without going through the condenser 14, the specifics of the water supply channel 9 and the water supply channel 10 can be specified. The configuration is not limited to the configuration of the above embodiment and can be changed as appropriate. For example, in the above embodiment, the water supply channel 9 and the replenishment water channel 10 are provided in parallel so as to connect the replenishment water tank 5 and the water supply tank 3, respectively, but one end of the water supply channel 9 and the replenishment water channel 10 ( One or both of the end portion on the make-up water tank 5 side and the other end portion (the end portion on the water supply tank 3 side) may be a common conduit. In other words, one end portion of the replenishment water channel 10 may be provided so as to branch from the water supply channel 9 instead of being connected to the replenishment water tank 5, and the other end portion of the replenishment water channel 10 is connected to the water supply tank 3. Instead, it may be provided so as to merge with the water supply channel 9 before the water supply tank 3. When one end of the replenishment water channel 10 is provided so as to branch from the water supply channel 9 instead of being connected to the replenishment water tank 5, the water supply pump 11 is provided in the water supply channel 9 downstream from the branching unit, while the replenishment water channel 10 may be provided with a make-up water pump 12, but a pump is provided only in the common pipe upstream of the branch portion, and the valves provided in the water supply passage 9 and / or the make-up water passage 10 downstream of the branch portion are opened. By adjusting the degree, the flow rate through the water supply channel 9 and the replenishment channel 10 may be adjusted.

また、前記実施例では、給水タンク3への給水を貯留するために補給水タンク5を設置したが、場合により補給水タンク5の設置を省略して、給水源から直接に給水路9および補給水路10に水を通してもよい。   Moreover, in the said Example, although the supplementary water tank 5 was installed in order to store the water supply to the water supply tank 3, installation of the supplementary water tank 5 may be abbreviate | omitted by the case, and the water supply path 9 and the supplement may be directly from a water supply source. Water may be passed through the water channel 10.

また、前記実施例では、給水路9および/または補給水路10を介して、補給水タンク5から給水タンク3へ給水可能としたが、これら給水は、軟水器から直接に行ってもよい。たとえば、図1において、給水路9および補給水路10の基端部をまとめて軟水器に接続し、給水ポンプ11の設置を省略する代わりに給水路9に設けた電動弁(モータバルブ)の開度を調整し、補給水ポンプ12の設置を省略する代わりに補給水路10に設けた電磁弁の開閉を制御すればよい。   Moreover, in the said Example, although the water supply from the supplementary water tank 5 to the water supply tank 3 was enabled via the water supply path 9 and / or the supplementary water path 10, these water supplies may be directly performed from a water softener. For example, in FIG. 1, the base end portions of the water supply channel 9 and the makeup water channel 10 are collectively connected to the water softener, and instead of omitting the installation of the water supply pump 11, an electric valve (motor valve) provided in the water supply channel 9 is opened. Instead of adjusting the degree and omitting the installation of the makeup water pump 12, the opening and closing of the electromagnetic valve provided in the makeup water channel 10 may be controlled.

また、前記実施例では、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムについて説明したが、給水タンク3の貯留水の利用先は、ボイラ2に限らず適宜に変更可能である。そして、場合により、補給水タンク5や補給水路10を省略してもよい。   Moreover, although the said Example demonstrated the system which can heat the water supply to the feed water tank 3 of the boiler 2 with the heat pump 4, the utilization place of the stored water of the feed water tank 3 is not restricted to the boiler 2, and can be changed suitably. is there. In some cases, the replenishment water tank 5 and the replenishment water channel 10 may be omitted.

さらに、前記実施例では、ヒートポンプ4の熱源として熱源水を用いた例について説明したが、ヒートポンプ4の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。但し、熱源流体は、蒸発器16においてヒートポンプ4の冷媒に熱(顕熱)を与えつつ自身は温度低下を伴い、その後、廃熱回収熱交換器22において給水に熱(顕熱)を与えつつ自身は温度低下を伴う流体が好ましい。   Furthermore, although the said Example demonstrated the example which used heat-source water as a heat source of the heat pump 4, as a heat-source fluid of the heat pump 4, not only heat-source water but various fluids, such as air and waste gas, can be used. However, while the heat source fluid gives heat (sensible heat) to the refrigerant of the heat pump 4 in the evaporator 16, the heat source fluid itself falls in temperature, and then gives heat (sensible heat) to the feed water in the waste heat recovery heat exchanger 22. The fluid itself with a temperature drop is preferable.

1 給水加温システム
2 ボイラ
3 給水タンク
4 ヒートポンプ
5 補給水タンク
6 熱源水タンク
8 蒸気エンジン
9 給水路
10 補給水路
11 給水ポンプ
12 補給水ポンプ
13 圧縮機
14 凝縮器
15 膨張弁
16 蒸発器
17 過冷却器
18 給蒸路
19 排蒸路
20 給蒸弁
21 熱源供給路
22 廃熱回収熱交換器
26 出湯温度センサ
27 水位検出器
31 圧力センサ(または温度センサ)
DESCRIPTION OF SYMBOLS 1 Supply water heating system 2 Boiler 3 Supply water tank 4 Heat pump 5 Supply water tank 6 Heat source water tank 8 Steam engine 9 Supply channel 10 Supply water channel 11 Supply water pump 12 Supply water pump 13 Compressor 14 Condenser 15 Expansion valve 16 Evaporator 17 Overflow Cooler 18 Steam supply path 19 Waste steam path 20 Steam supply valve 21 Heat source supply path 22 Waste heat recovery heat exchanger 26 Hot water temperature sensor 27 Water level detector 31 Pressure sensor (or temperature sensor)

Claims (5)

圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器に通される熱源流体から熱をくみ上げ、前記凝縮器に通される水を加温するヒートポンプと、
廃熱回収熱交換器、過冷却器および前記凝縮器を順に通されて給水路により給水可能な給水タンクと、
この給水タンクからの給水を加熱して蒸気にするボイラと、
このボイラからの蒸気を用いて動力を起こす蒸気エンジンとを備え、
前記廃熱回収熱交換器は、前記給水路を介した前記給水タンクへの給水と、前記蒸発器を通過後の熱源流体との間接熱交換器であり、
前記過冷却器は、前記給水路を介した前記給水タンクへの給水と、前記凝縮器から前記膨張弁への冷媒との間接熱交換器であり、
前記蒸気エンジンにより前記圧縮機を駆動する
ことを特徴とする給水加温システム。
A compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate the refrigerant, draw up heat from a heat source fluid that passes through the evaporator, and heat water that passes through the condenser When,
A water supply tank through which a waste heat recovery heat exchanger, a supercooler and the condenser are passed in order and can be supplied by a water supply channel;
A boiler that heats the feed water from this feed tank to steam,
A steam engine that generates power using steam from this boiler,
The waste heat recovery heat exchanger is an indirect heat exchanger between the water supply to the water supply tank via the water supply channel and the heat source fluid after passing through the evaporator,
The supercooler is an indirect heat exchanger between the water supplied to the water supply tank via the water supply passage and the refrigerant from the condenser to the expansion valve,
The compressor is driven by the steam engine.
前記蒸気エンジンで使用後の蒸気は、次の(a)〜(c)の内、いずれかに用いられる
ことを特徴とする請求項1に記載の給水加温システム。
(a)前記蒸気エンジンで使用後の蒸気は、前記給水路または前記給水タンク内に噴き込まれるか、前記給水路または前記給水タンク内の水と間接熱交換して、前記給水路または前記給水タンク内の水を加温する。
(b)前記蒸気エンジンで使用後の蒸気は、前記蒸発器より上流側において、熱源流体に噴き込まれるか、熱源流体と間接熱交換して、熱源流体を加温する。
(c)前記蒸気エンジンで使用後の蒸気は、そのまままたは昇圧されて、蒸気使用設備へ供給される。
The feed water heating system according to claim 1, wherein the steam after use in the steam engine is used in any one of the following (a) to (c).
(A) Steam after use in the steam engine is injected into the water supply channel or the water supply tank, or indirectly exchanges heat with water in the water supply channel or the water supply tank, so that the water supply channel or the water supply water is supplied. Warm the water in the tank.
(B) The steam after use in the steam engine is injected into the heat source fluid or indirectly heat-exchanged with the heat source fluid on the upstream side of the evaporator to heat the heat source fluid.
(C) The steam after use in the steam engine is supplied to the steam using facility as it is or after being pressurized.
前記給水路を介した前記給水タンクへの給水中、前記ヒートポンプを運転すると共に、前記ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、前記凝縮器への通水量を調整する
ことを特徴とする請求項1または請求項2に記載の給水加温システム。
Adjusting the amount of water flow to the condenser so that the water temperature at the outlet side of the condenser of the heat pump is maintained at a set temperature while operating the heat pump during water supply to the water supply tank via the water supply channel. The feed water warming system according to claim 1 or 2, wherein
前記給水タンクの水位に基づき、前記蒸気エンジンへの給蒸を制御する
ことを特徴とする請求項1〜3のいずれか1項に記載の給水加温システム。
The feed water heating system according to any one of claims 1 to 3, wherein steam supply to the steam engine is controlled based on a water level of the feed water tank.
前記給水路を介した前記給水タンクへの給水中、給水流量を所定に保持した状態で、前記ヒートポンプの凝縮器出口側の水温または圧縮機出口側の冷媒圧力もしくは冷媒温度に基づき、前記蒸気エンジンへの給蒸を制御する
ことを特徴とする請求項1または請求項2に記載の給水加温システム。
The steam engine is based on the water temperature on the condenser outlet side of the heat pump or the refrigerant pressure or refrigerant temperature on the compressor outlet side while maintaining a predetermined water supply flow rate while supplying water to the water supply tank via the water supply channel. The feed water warming system according to claim 1, wherein steaming to the water is controlled.
JP2013041627A 2013-03-04 2013-03-04 Water heating system Expired - Fee Related JP6083509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041627A JP6083509B2 (en) 2013-03-04 2013-03-04 Water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041627A JP6083509B2 (en) 2013-03-04 2013-03-04 Water heating system

Publications (2)

Publication Number Publication Date
JP2014169824A true JP2014169824A (en) 2014-09-18
JP6083509B2 JP6083509B2 (en) 2017-02-22

Family

ID=51692327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041627A Expired - Fee Related JP6083509B2 (en) 2013-03-04 2013-03-04 Water heating system

Country Status (1)

Country Link
JP (1) JP6083509B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107339805A (en) * 2017-08-23 2017-11-10 湖南埃瓦新能源科技有限公司 Air energy thermal water installations
JP2021134937A (en) * 2020-02-21 2021-09-13 三浦工業株式会社 Hot water manufacturing device and hot water manufacturing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017448A (en) * 2004-06-02 2006-01-19 Osaka Gas Co Ltd Compression heat pump system and co-generation system
JP2010025431A (en) * 2008-07-18 2010-02-04 Nippon Thermoener Co Ltd Steam generating system
JP2011106693A (en) * 2009-11-13 2011-06-02 Miura Co Ltd Water supply system for boiler
WO2011142415A1 (en) * 2010-05-14 2011-11-17 三浦工業株式会社 Steam system
WO2012132605A1 (en) * 2011-03-31 2012-10-04 三菱重工業株式会社 Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
JP2013210118A (en) * 2012-03-30 2013-10-10 Miura Co Ltd Feed water heating system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017448A (en) * 2004-06-02 2006-01-19 Osaka Gas Co Ltd Compression heat pump system and co-generation system
JP2010025431A (en) * 2008-07-18 2010-02-04 Nippon Thermoener Co Ltd Steam generating system
JP2011106693A (en) * 2009-11-13 2011-06-02 Miura Co Ltd Water supply system for boiler
WO2011142415A1 (en) * 2010-05-14 2011-11-17 三浦工業株式会社 Steam system
WO2012132605A1 (en) * 2011-03-31 2012-10-04 三菱重工業株式会社 Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
JP2013210118A (en) * 2012-03-30 2013-10-10 Miura Co Ltd Feed water heating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107339805A (en) * 2017-08-23 2017-11-10 湖南埃瓦新能源科技有限公司 Air energy thermal water installations
JP2021134937A (en) * 2020-02-21 2021-09-13 三浦工業株式会社 Hot water manufacturing device and hot water manufacturing system
JP7435011B2 (en) 2020-02-21 2024-02-21 三浦工業株式会社 Hot water production equipment and hot water production system

Also Published As

Publication number Publication date
JP6083509B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5263421B1 (en) Water heating system
JP6694582B2 (en) Water supply heating system
JP2014194315A (en) Water supply and heating system
JP6132188B2 (en) Water heating system
JP6065213B2 (en) Water heating system
JP6164565B2 (en) Water heating system
JP6090568B2 (en) Water heating system
JP6066072B2 (en) Water heating system
JP6237109B2 (en) Water heating system
JP5962972B2 (en) Water heating system
JP6066071B2 (en) Water heating system
JP6083509B2 (en) Water heating system
JP2015081708A (en) Water supply heating system
JP6341465B2 (en) Water heating system
JP5962971B2 (en) Water heating system
JP6065212B2 (en) Water heating system
JP6210204B2 (en) Water heating system
JP2016048125A (en) Supply water heating system
JP2013238336A (en) Water supply heating system
JP2015114024A (en) Water supply heating system
JP2014169822A (en) Feedwater heating system
JP2017146034A (en) Feedwater heating system
JP6083508B2 (en) Water heating system
JP6187813B2 (en) Water heating system
JP2013238335A (en) Water supply heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170110

R150 Certificate of patent or registration of utility model

Ref document number: 6083509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees