JP2014169745A - Transmission mechanism of gear pair with intersecting axes and wheel steering device - Google Patents

Transmission mechanism of gear pair with intersecting axes and wheel steering device Download PDF

Info

Publication number
JP2014169745A
JP2014169745A JP2013041733A JP2013041733A JP2014169745A JP 2014169745 A JP2014169745 A JP 2014169745A JP 2013041733 A JP2013041733 A JP 2013041733A JP 2013041733 A JP2013041733 A JP 2013041733A JP 2014169745 A JP2014169745 A JP 2014169745A
Authority
JP
Japan
Prior art keywords
pinion
tooth
face gear
tooth surface
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013041733A
Other languages
Japanese (ja)
Other versions
JP6119309B2 (en
Inventor
Koji Kumagai
幸司 熊谷
Kunihiko Morikawa
邦彦 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013041733A priority Critical patent/JP6119309B2/en
Publication of JP2014169745A publication Critical patent/JP2014169745A/en
Application granted granted Critical
Publication of JP6119309B2 publication Critical patent/JP6119309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Gear Transmission (AREA)
  • Gears, Cams (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain an engaging part between a pinion and a face gear that are engaged to each other when they rotate in a direction of high transmission torque by a tooth form having a small pressure angle and decrease an engagement reaction force.SOLUTION: A tooth surface 24a (tooth surfaces 24a_1, 24a_2) near an inner end 24i of a pinion 24 engaged with face gear tooth surfaces 23in_p, 23in_r in an area B of (a) when an inner ring is steered under a high steering torque becomes large is formed as asymmetrical shape in respect to a central plane Z in a direction of tooth thickness as shown at (c). That is, a tooth surface 24a_1 of the tooth surface 24a engaged with the applied tooth surface 23in_p when an inner ring of the face gear 23 is increased in cutting is formed into a shape in which a pressure angle becomes small. In order to solve a decrease in tooth thickness of the pinion tooth 24a accompanied with this state, an opposite tooth surface 24a_2 of the pinion tooth 24a is formed to have such a shape as one in which the pressure angle becomes large in turn.

Description

本発明は、車輪転舵装置などに有用な交差軸歯車伝動機構、および、これを左右操舵輪に個々に用いて構成した車輪転舵装置に関し、特に、回転方向により伝達トルクの大きさが異なる箇所に用いた場合における交差軸歯車伝動機構の伝動効率を向上させる技術に関するものである。   TECHNICAL FIELD The present invention relates to a cross-shaft gear transmission mechanism useful for a wheel steering device and the like, and a wheel steering device configured by using it individually for left and right steering wheels, and in particular, the magnitude of transmission torque differs depending on the rotational direction. The present invention relates to a technique for improving the transmission efficiency of a cross shaft gear transmission mechanism when used in a place.

交差軸歯車伝動機構としては従来、例えば特許文献1に記載のようなものが提案されている。
この提案技術は、車両のステアリング装置に用いるよう構成した交差軸歯車伝動機構に係わり、キングピン軸線上に非円形歯車を同軸に配置し、これに交差関係に配置されて噛合させた入力ギヤへステアリングホイールの回転を入力することにより車輪を転舵するものである。
As the cross shaft gear transmission mechanism, for example, one as described in Patent Document 1 has been proposed.
This proposed technique is related to a cross shaft gear transmission mechanism configured to be used in a vehicle steering device, and a non-circular gear is coaxially disposed on a kingpin axis, and is steered to an input gear that is disposed in a cross relationship and meshed therewith. The wheel is steered by inputting the rotation of the wheel.

車輪の転舵を司る非円形歯車は、左右操舵輪(内外輪)間に舵角差を与えることができて、車両操縦パターンの多様化が可能である。
また、入力ギヤを介してステアリングホイールの回転を非円形歯車に伝達することで、車輪を転舵するための回転運動方向を変えることができ、この点においても車両操縦パターンの多様化が可能である。
The non-circular gear that controls the steering of the wheels can give a steering angle difference between the left and right steered wheels (inner and outer wheels), and the vehicle steering pattern can be diversified.
In addition, by transmitting the rotation of the steering wheel to the non-circular gear via the input gear, the rotational movement direction for turning the wheel can be changed, and in this respect also, the vehicle operation pattern can be diversified. is there.

特開2010−179665号公報JP 2010-179665 A

しかし、上記した従来の交差軸歯車伝動機構にあっては、非円形歯車と入力ギヤとを一ユニットに構成してコンパクト化するために非円形歯車として不等速フェースギヤを用いようとすると、入力ギヤの歯厚形成歯面のうち、該当車輪が内輪となる場合の車輪転舵時(内輪転舵時)に動力伝達を担う歯面の圧力角が大きくなる。   However, in the conventional crossed shaft gear transmission mechanism described above, if the non-circular gear and the input gear are configured as a single unit to be compact, an inconstant speed face gear is used as the non-circular gear. Of the tooth thickness forming tooth surfaces of the input gear, the pressure angle of the tooth surface that bears power transmission increases during wheel turning (when turning the inner wheel) when the corresponding wheel is an inner wheel.

かように圧力角が大きくなると、入力ギヤから非円形歯車の軸線方向へ向かうラジアル荷重が増して、フリクションの増大により交差軸歯車伝動機構の伝動効率、つまりステアリング効率が低下する。
内輪転舵時は、内輪の切り増しであることから他の場合よりも大きな転舵力が必要であるため、上記の問題が一層顕著になる。
そして上記伝動効率(ステアリング効率)の低下は、操舵フィーリングの悪化や、パワーステアリングの動力損失の増大を招き、特に車輪を個々の電動モータ(インホイールモータ)により駆動される電気自動車においては看過できない問題である。
As the pressure angle increases, the radial load from the input gear in the axial direction of the non-circular gear increases, and the transmission efficiency of the cross-shaft gear transmission mechanism, that is, the steering efficiency decreases due to the increase in friction.
At the time of inner wheel turning, since the inner wheel is increased, a larger turning force is required than in other cases, so the above problem becomes more remarkable.
The reduction in transmission efficiency (steering efficiency) leads to a deterioration in steering feeling and an increase in power loss of the power steering, especially in an electric vehicle in which wheels are driven by individual electric motors (in-wheel motors). It is a problem that cannot be done.

本発明は、車輪転舵装置用に限られないが、例えば車輪転舵装置として用いた場合において、車輪が内輪となるときの車輪転舵時(内輪転舵時)、つまり大きな転舵力が必要な内輪切り増し時に動力伝達を担う歯面の圧力角を小さなものとなし、これにより前記のラジアル荷重(フリクション)を低減して、伝動効率(ステアリング効率)の低下に係わる前記の問題を解消し得るようにした交差軸歯車伝動機構を提案することを目的とする。   Although the present invention is not limited to a wheel steering device, for example, when used as a wheel steering device, when the wheel is turned into an inner wheel (at the time of inner wheel steering), that is, a large steering force is generated. Reduces the radial angle (friction) and eliminates the above-mentioned problems related to reduced transmission efficiency (steering efficiency) by reducing the pressure angle of the tooth surface that is responsible for power transmission when the inner ring is increased. It is an object of the present invention to propose a cross shaft gear transmission mechanism that can be used.

この目的のため、本発明による交差軸歯車伝動機構は、これを以下のごとくに構成する。
先ず本発明の前提となる交差軸歯車伝動機構を説明するに、これは、
ピニオンと、該ピニオンに対し軸交角を持つよう配置されたフェースギヤとを相互に噛合させて構成し、回転方向によって伝達トルクの大きさが異なる箇所で実用するものである。
For this purpose, the cross shaft gear transmission according to the present invention is constructed as follows.
First, to explain the cross shaft gear transmission mechanism which is the premise of the present invention,
A pinion and a face gear arranged so as to have an axis crossing angle with the pinion are configured to mesh with each other, and are practically used in places where the magnitude of transmission torque differs depending on the rotation direction.

本発明は、かかる交差軸歯車伝動機構において、
前記フェースギヤと噛合する前記ピニオンの歯を、歯厚形成歯面のうち、前記伝達トルクが大きい方向への回転時に動力伝達を担う歯面の圧力角が、前記伝達トルクが小さい方向への回転時に動力伝達を担う歯面の圧力角よりも小さくなるよう形成した点に特徴づけられる。
The present invention, in such a cross shaft gear transmission mechanism,
When the tooth of the pinion that meshes with the face gear is rotated in the direction in which the pressure angle of the tooth surface, which bears power transmission when rotating in the direction in which the transmission torque is large, of the tooth thickness forming tooth surface, the transmission torque is small. It is characterized in that it is formed to be smaller than the pressure angle of the tooth surface that is sometimes responsible for power transmission.

かかる本発明の交差軸歯車伝動機構にあっては、ピニオン歯を造形する歯厚形成歯面の圧力角間に上記の差を持たせて、伝達トルクが大きい方向への回転時に動力伝達を担う歯面の圧力角が、伝達トルクが小さい方向への回転時に動力伝達を担う歯面の圧力角よりも小さな構成としたため、
伝達トルクが大きい方向への回転時に動力伝達を担う歯面からフェースギヤに向かうラジアル荷重が低減され、これに伴うフリクションの低減によって、交差軸歯車伝動機構の伝動効率を高めることができる。
In the crossed shaft gear transmission mechanism of the present invention, the tooth having the above difference between the pressure angles of the tooth thickness forming tooth surface forming the pinion teeth, and the tooth that bears the power transmission when rotating in the direction in which the transmission torque is large. Because the pressure angle of the surface is smaller than the pressure angle of the tooth surface that bears power transmission when rotating in the direction where the transmission torque is small,
The radial load from the tooth surface that bears power transmission to the face gear during rotation in the direction in which the transmission torque is large is reduced, and the reduction of the friction caused by this reduces the transmission efficiency of the cross shaft gear transmission mechanism.

本発明の第1実施例になる交差軸歯車伝動機構を車輪転舵機構として具えた車両のインホイールモータ駆動車輪を、そのサスペンション装置および転舵システムと共に、車両後方から見て示す正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view showing an in-wheel motor-driven wheel of a vehicle provided with a cross shaft gear transmission mechanism as a wheel steering mechanism according to a first embodiment of the present invention, as viewed from the rear of the vehicle, along with its suspension device and steering system. . 図1における車輪転舵機構を具えた車両のインホイールモータ駆動車輪を車両上方から見て示す平面図である。FIG. 2 is a plan view showing an in-wheel motor drive wheel of a vehicle provided with the wheel steering mechanism in FIG. 1 as viewed from above the vehicle. 図1における車輪転舵機構を車両上方から見て示す拡大平面図である。FIG. 2 is an enlarged plan view showing the wheel turning mechanism in FIG. 1 as viewed from above the vehicle. 図3のIV−IV線上で断面とし、矢の方向に見て示す転舵装置の拡大縦断側面図である。FIG. 4 is an enlarged longitudinal side view of the steered device that is shown in cross-section on the line IV-IV in FIG. 3 and viewed in the direction of the arrow. 図1〜4において転舵機構として用いた第1実施例の交差軸歯車伝動機構内における歯車組を上方から見て示す平面図である。FIG. 5 is a plan view showing a gear set in the cross shaft gear transmission mechanism of the first embodiment used as a steering mechanism in FIGS. 図5の外輪転舵時噛み合い歯面領域におけるフェースギヤの歯形をフェースギヤ内周側から見て示す歯形説明図である。FIG. 6 is a tooth profile explanatory diagram showing the tooth profile of the face gear in the meshing tooth surface region during outer wheel turning of FIG. 5 as viewed from the inner peripheral side of the face gear. 図5の内輪転舵時噛み合い歯面領域におけるフェースギヤの歯形をフェースギヤ内周側から見て示す歯形説明図である。FIG. 6 is a tooth profile explanatory diagram showing the tooth profile of the face gear in the meshing tooth surface region at the time of inner wheel turning shown in FIG. 5 when viewed from the inner peripheral side of the face gear. 図5におけるピニオンの基本的な軸直角断面歯形を示す歯形説明図である。FIG. 6 is a tooth profile explanatory diagram showing a basic axial perpendicular cross-sectional tooth profile of the pinion in FIG. 5; 不等速フェースギヤを用いた転舵機構により要求されるステアリングギヤ比の変化特性を示す特性線図である。It is a characteristic diagram which shows the change characteristic of the steering gear ratio requested | required by the steering mechanism using an inconstant speed face gear. 不等速フェースギヤを用いて構成した転舵機構内におけるピニオンおよびフェースギヤの噛み合い状態を示し、 (a)は、外輪転舵時におけるピニオンおよびフェースギヤの噛合状態説明図、 (b)は、内輪転舵時におけるピニオンおよびフェースギヤの噛合状態説明図である。The meshing state of the pinion and the face gear in the steering mechanism configured using an inconstant speed face gear is shown. (A) is an explanatory diagram of the meshing state of the pinion and the face gear at the time of outer wheel steering, (b) is FIG. 4 is an explanatory diagram of a meshing state of a pinion and a face gear at the time of inner wheel turning. 本発明の第1実施例になる差動歯車伝動機構(転舵機構)内におけるピニオンおよびフェースギヤの歯形を示す歯形説明図である。FIG. 2 is an explanatory diagram of tooth profiles showing tooth shapes of a pinion and a face gear in the differential gear transmission mechanism (steering mechanism) according to the first embodiment of the present invention. 転舵機構として用いた本発明の第2実施例になる交差軸歯車伝動機構を示す図で、 (a)は、この交差軸歯車伝動機構(転舵機構)内における歯車組を上方から見て示す図5と同様な平面図、 (b)は、ピニオンのフェースギヤ外周側端における歯形を示す歯形説明図、 (c)は、ピニオンのフェースギヤ内周側端における歯形を示す歯形説明図、 (d)は、(b)に示したピニオンのフェースギヤ外周側端における歯形と、(c)に示したフェースギヤ内周側端における歯形とを比較のため相互に重ね合わせて示す歯形比較図である。It is a figure which shows the cross-shaft gear transmission mechanism used as a turning mechanism which becomes 2nd Example of this invention, (a) is a gear group in this cross-shaft gear transmission mechanism (steering mechanism) seen from upper direction. FIG. 5 is a plan view similar to FIG. 5, (b) is a tooth profile explanatory view showing the tooth profile at the outer peripheral side end of the pinion, (c) is a tooth profile explanatory diagram showing the tooth profile at the inner peripheral end of the pinion face gear, (d) is a tooth profile comparison diagram in which the tooth profile at the outer peripheral side end of the pinion shown in (b) and the tooth profile at the inner peripheral end of the face gear shown in (c) are superimposed on each other for comparison. It is. 転舵機構として用いた本発明の第3実施例になる交差軸歯車伝動機構を示す図で、 (a)は、この交差軸歯車伝動機構(転舵機構)内における歯車組を上方から見て示す図5と同様な平面図、 (b)は、ピニオンのフェースギヤ外周側端における歯形を示す歯形説明図、 (c)は、ピニオンのフェースギヤ内周側端における歯形を示す歯形説明図、 (d)は、(b)に示したピニオンのフェースギヤ外周側端における歯形と、(c)に示したフェースギヤ内周側端における歯形とを比較のため相互に重ね合わせて示す歯形比較図である。It is a figure which shows the cross-shaft gear transmission mechanism used as a steering mechanism which becomes 3rd Example of this invention, (a) is a gear set in this cross-shaft gear transmission mechanism (steering mechanism) seen from upper direction. FIG. 5 is a plan view similar to FIG. 5, (b) is a tooth profile explanatory view showing the tooth profile at the outer peripheral side end of the pinion, (c) is a tooth profile explanatory diagram showing the tooth profile at the inner peripheral end of the pinion face gear, (d) is a tooth profile comparison diagram in which the tooth profile at the outer peripheral side end of the pinion shown in (b) and the tooth profile at the inner peripheral end of the face gear shown in (c) are superimposed on each other for comparison. It is.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<第1実施例の構成>
図1,2は、本発明の第1実施例になる交差軸歯車伝動機構を、アッカーマン式ステアリングの転舵機構として用いた車両のインホイールモータ駆動車輪1を、そのサスペンション装置および転舵システムと共に示す。
図1は、インホイールモータ駆動車輪1を車両後方から見て示す正面図、図2は、インホイールモータ駆動車輪1を車両上方から見て示す平面図である。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
<Configuration of the first embodiment>
1 and 2 show an in-wheel motor-driven wheel 1 of a vehicle in which the cross shaft gear transmission mechanism according to the first embodiment of the present invention is used as a turning mechanism for an Ackermann type steering, together with its suspension device and a turning system. Show.
FIG. 1 is a front view showing the in-wheel motor drive wheel 1 as seen from the rear of the vehicle, and FIG. 2 is a plan view showing the in-wheel motor drive wheel 1 as seen from above the vehicle.

車輪1は、個々のインホイールモータ駆動ユニット2を一体化して具え、このユニット2により個別に駆動される。
そのためインホイールモータ駆動ユニット2はユニットケース3内に、図1,2では図示していないが電動モータおよび減速機を内蔵し、減速機の入力軸に電動モータを結合し、減速機の出力軸にホイールハブ4を結合する。
The wheel 1 includes individual in-wheel motor drive units 2 and is driven individually by the unit 2.
Therefore, the in-wheel motor drive unit 2 incorporates an electric motor and a speed reducer (not shown in FIGS. 1 and 2) in the unit case 3, and connects the electric motor to the input shaft of the speed reducer and outputs the output shaft of the speed reducer. Connect the wheel hub 4 to

ホイールハブ4には車輪1を結合すると共にブレーキディスク5を結合し、これにより電動モータからの動力を減速機による減速下で車輪1へ伝達することで車両を走行可能にし、ブレーキディスク5を、インホイールモータ駆動ユニット2に取着したブレーキキャリパ13(図2参照)により軸線方向両側から挟圧することで車両を制動可能にする。   The wheel hub 4 is connected to the wheel 1 and the brake disc 5, thereby allowing the vehicle to travel by transmitting the power from the electric motor to the wheel 1 under deceleration by the speed reducer. The brake caliper 13 (see FIG. 2) attached to the in-wheel motor drive unit 2 is clamped from both sides in the axial direction so that the vehicle can be braked.

車輪1を車体に懸架するに当たっては、インホイールモータ駆動ユニット2のケース4を介して、以下のサスペンション装置により車輪1を懸架する。
サスペンション装置は図1に明示するごとく、ユニットケース4の上方において車幅方向へ延在する上側サスペンションアームであるアッパーアーム6と、ユニットケース4の下方において車幅方向へ延在する下側サスペンションアームであるロアアーム7と、サードリンク8と、ショックアブソーバ9(サスペンションスプリングを含む)とで概ね構成する。
When the wheel 1 is suspended from the vehicle body, the wheel 1 is suspended by the following suspension device via the case 4 of the in-wheel motor drive unit 2.
As clearly shown in FIG. 1, the suspension device is an upper arm 6 that is an upper suspension arm extending in the vehicle width direction above the unit case 4, and a lower suspension arm that extends in the vehicle width direction below the unit case 4. The lower arm 7, the third link 8, and the shock absorber 9 (including the suspension spring) are generally configured.

アッパーアーム6およびロアアーム7はそれぞれ、図1の左側(車幅方向内側)の基端6a,7aにおいて、車体に対し上下方向揺動可能に支持する。
アッパーアーム6の反対側(車幅方向外側)における遊端6bは、サードリンク8の上端に上下方向揺動可能に枢支し、サードリンク8の下端は、ショックアブソーバ9のピストンロッド9aに揺動可能に枢支する。
なおショックアブソーバ9は、インシュレータ10を介してシリンダ9bを車体に取り付ける。
The upper arm 6 and the lower arm 7 are respectively supported at the base ends 6a and 7a on the left side (vehicle width direction inner side) in FIG.
The free end 6b on the opposite side of the upper arm 6 (the vehicle width direction outer side) is pivotally supported by the upper end of the third link 8 so as to be swingable in the vertical direction, and the lower end of the third link 8 is swung to the piston rod 9a of the shock absorber 9. Pivot to move.
The shock absorber 9 attaches the cylinder 9b to the vehicle body via the insulator 10.

そして、インホイールモータ駆動ユニットケース4には、その上側面から上方へ延在する上側固定座11を突設すると共に、下側面から下方へ延在する下側固定座12を突設する。
上側固定座11の上端を、サードリンク8の上端近傍において、車輪1の転舵軸線であるキングピン軸線Kpの周りに揺動し得るよう取り付け、下側固定座12の下端を、ロアアーム7の車幅方向外側における遊端7bにおいて、上記キングピン軸線Kpの周りに揺動し得るよう取り付ける。
The in-wheel motor drive unit case 4 is provided with an upper fixed seat 11 extending upward from the upper side surface and a lower fixed seat 12 extending downward from the lower side surface.
The upper end of the upper fixed seat 11 is attached so that it can swing around the kingpin axis Kp that is the turning axis of the wheel 1 in the vicinity of the upper end of the third link 8, and the lower end of the lower fixed seat 12 is attached to the vehicle of the lower arm 7. The free end 7b on the outer side in the width direction is attached so as to be able to swing around the kingpin axis Kp.

上記のサスペンション装置により車体に懸架された車輪1は、インホイールモータ駆動ユニット2と共に、上下方向へバウンド、リバウンド可能であると共に、この間ショックアブソーバ9により上下振動を減衰され得る。
そして車輪1およびインホイールモータ駆動ユニット2は、キングピン軸線Kpの周りに転舵可能なステアリングナックルの用をなし、車両の操向を行うことができる。
The wheel 1 suspended on the vehicle body by the suspension device can be bounced and rebounded in the vertical direction together with the in-wheel motor drive unit 2, and the vertical vibration can be attenuated by the shock absorber 9 during this time.
The wheel 1 and the in-wheel motor drive unit 2 can use a steering knuckle that can be steered around the kingpin axis Kp, and can steer the vehicle.

<車輪転舵装置>
車輪1およびインホイールモータ駆動ユニット2をキングピン軸線(Kp)周りに転舵させるための転舵機構21を、図1,2に示すごとくサードリンク8に取着して設けるが、キングピン軸線Kp上に配置して、インホイールモータ駆動車輪1よりも上方の箇所に配設する。
この転舵機構21は図3,4に明示するような構成とし、図3は、転舵機構21を上方から見て示す平面図、図4は、図3のIV−IV線上で断面とし、矢の方向見て示す詳細断面図である。
<Wheel steering device>
A steering mechanism 21 for turning the wheel 1 and the in-wheel motor drive unit 2 around the kingpin axis (Kp) is attached to the third link 8 as shown in FIGS. And disposed above the in-wheel motor drive wheel 1.
This steering mechanism 21 is configured as clearly shown in FIGS. 3 and 4, FIG. 3 is a plan view showing the steering mechanism 21 as viewed from above, and FIG. 4 is a cross-section on the line IV-IV in FIG. It is a detailed sectional view showing the direction of the arrow.

これら図3,4に基づき転舵機構21を詳述するに、22は筐体を示し、この筐体22内に円環状のフェースギヤ23およびこれに噛合するピニオンギヤ24を交差軸関係に配置して収納する。
フェースギヤ23は図5に示すような不等速フェースギヤとし、図4のごとく上側固定座11の上端からキングピン軸線Kpを提供するよう突設した転舵軸25にキー26で(またはスプラインで)軸線方向変位可能に係着し、この転舵軸25と共にキングピン軸線Kpの周りに回転自在となす。
The steering mechanism 21 will be described in detail with reference to FIGS. 3 and 4. Reference numeral 22 denotes a casing, and an annular face gear 23 and a pinion gear 24 meshing with the annular face gear 23 are arranged in a cross-axis relationship in the casing 22. And store.
The face gear 23 is a non-constant speed face gear as shown in FIG. 5, and a key 26 (or a spline) is used on a steered shaft 25 protruding from the upper end of the upper fixed seat 11 so as to provide a kingpin axis Kp as shown in FIG. ) Engageably displaceable in the axial direction, and can rotate around the kingpin axis Kp together with the steered shaft 25.

ピニオンギヤ24は図5に示すごとく、キングピン軸線Kp(フェースギヤ23)に対し90度の軸交角を持つよう、しかしキングピン軸線Kpから若干オフセットさせて、図4に示すごとく筐体22内に回転自在に横架した入力軸27上に一体回転可能に固着し、その固着位置は図5に示すごとく、ピニオンギヤ24がフェースギヤ23に噛合する位置とする。
入力軸27は図示しなかったが、運転者が車両の操向に当たって操作するステアリングホイールに機械的に連結し、ステアリングホイールからの回転が入力軸27に回転として入力されるものとする。
かくしてステアリングホイールからの操舵力は、入力軸27からピニオンギヤ24および円環状フェースギヤ23を経て転舵軸25に達し、上側固定座11を介してインホイールモータ駆動ユニット2および車輪1をキングピン軸線Kpの周りに転舵することができる。
As shown in FIG. 5, the pinion gear 24 has an angle of 90 degrees with respect to the kingpin axis Kp (face gear 23), but is slightly offset from the kingpin axis Kp so that it can rotate into the housing 22 as shown in FIG. As shown in FIG. 5, the fixed position is set to a position where the pinion gear 24 meshes with the face gear 23.
Although the input shaft 27 is not shown in the figure, it is assumed that the driver is mechanically coupled to a steering wheel that is operated when steering the vehicle, and rotation from the steering wheel is input to the input shaft 27 as rotation.
Thus, the steering force from the steering wheel reaches the turning shaft 25 from the input shaft 27 via the pinion gear 24 and the annular face gear 23, and connects the in-wheel motor drive unit 2 and the wheel 1 via the upper fixed seat 11 to the kingpin axis Kp. Can be steered around.

図4に示すごとく、転舵軸25にキー26で軸線方向変位可能に係着したフェースギヤ23は、転舵軸25に巻装したコイルバネ28によりピニオンギヤ24に向け附勢し、これによりこれらフェースギヤ23およびピニオンギヤ24間の噛合部におけるバックラッシュを減ずる。
而して、噛み合い反力によるピニオンギヤ24からフェースギヤ23へのラジアル荷重でフェースギヤ23がコイルバネ28に抗して図4の下方に押動されるとき、フェースギヤ23をスラストベアリング29を介して筐体22で支持する。
As shown in FIG. 4, the face gear 23 engaged with the steered shaft 25 so as to be axially displaceable by the key 26 is urged toward the pinion gear 24 by the coil spring 28 wound around the steered shaft 25. Backlash at the meshing portion between the gear 23 and the pinion gear 24 is reduced.
Thus, when the face gear 23 is pushed downward in FIG. 4 against the coil spring 28 by the radial load from the pinion gear 24 to the face gear 23 due to the meshing reaction force, the face gear 23 is moved through the thrust bearing 29. It is supported by the housing 22.

ピニオンギヤ24および不等速フェースギヤ23を、図5〜11に基づき以下に詳述する。
図5は、車輪1が非転舵中立状態(車両直進状態)である時におけるピニオンギヤ24および不等速フェースギヤ23の噛み合い状態を、キングピン軸線Kpの上方から見て示す説明図である。
図5において、Aは、車輪1が外輪となる車輪転舵時(外輪転舵時)にピニオン24が噛合するフェースギヤ23の噛み合い歯面領域(外輪転舵時噛み合い歯面領域)であり、またBは、車輪1が内輪となる車輪転舵時(内輪転舵時)にピニオン24が噛合するフェースギヤ23の噛み合い歯面領域(内輪転舵時噛み合い歯面領域)である。
The pinion gear 24 and the inconstant speed face gear 23 will be described in detail below with reference to FIGS.
FIG. 5 is an explanatory diagram showing the meshed state of the pinion gear 24 and the inconstant speed face gear 23 when the wheel 1 is in a non-steering neutral state (straight vehicle traveling state) as viewed from above the kingpin axis Kp.
In FIG. 5, A is a meshing tooth surface region of the face gear 23 (meshing tooth surface region at the time of outer wheel steering) that the pinion 24 meshes with when the wheel 1 is turned as an outer wheel (outer wheel steering). B is a meshing tooth surface region (meshing tooth surface region at the time of inner wheel steering) of the face gear 23 with which the pinion 24 meshes when the wheel 1 is turned as an inner wheel (when the inner wheel is steered).

図6は、不等速フェースギヤ23の外輪転舵時噛み合い歯面領域Aをフェースギヤ23の内周側から見て、フェースギヤ23の外輪転舵時噛み合い歯面23out_p,23out_rを示す拡大部分詳細図であり、また図7は、不等速フェースギヤ23の内輪転舵時噛み合い歯面領域Bをフェースギヤ23の内周側から見て、フェースギヤ23の内輪転舵時噛み合い歯面23in_p,23in_rを示す拡大部分詳細図である。   FIG. 6 shows an enlarged portion showing meshing tooth surfaces 23out_p and 23out_r of the outer gear wheel when turning the outer ring when the meshing tooth surface area A of the non-constant speed gear 23 is turned from the inner peripheral side of the face gear 23. FIG. 7 is a detailed view, and FIG. 7 shows the meshing tooth surface region B of the infinite speed face gear 23 at the time of inner ring steering when viewed from the inner peripheral side of the face gear 23, and the meshing tooth surface 23in_p of the face gear 23 at the time of inner ring steering. , 23in_r. FIG.

そして図6に短線ハッチングを付して示す歯面23out_pは、外輪切り増し時使用歯面であり、また図6に点々ハッチングを付して示す歯面23out_rは、外輪切り戻し時使用歯面であり、
図7に点々ハッチングを付して示す歯面23in_pは、内輪切り増し時使用歯面であり、また図7に短線ハッチングを付して示す歯面23in_rは内輪切り戻し時使用歯面である。
The tooth surface 23out_p shown with short line hatching in FIG. 6 is the tooth surface used when the outer ring is increased, and the tooth surface 23out_r shown with dotted hatching in FIG. 6 is the tooth surface used when the outer ring is cut back. Yes,
The tooth surface 23in_p shown with dotted hatching in FIG. 7 is the tooth surface used when the inner ring is increased, and the tooth surface 23in_r shown with short line hatching in FIG. 7 is the tooth surface used when the inner ring is turned back.

上記のようなフェースギヤ23の歯面23out_p,23out_r,23in_p,23in_rと噛み合うピニオン24は、平行軸ギヤ組で使用されると同様なインボリュート歯車とし、通常のものはピニオン軸線方向のどの軸直角断面でも同じ形状である。
図8は、ピニオン24の軸直角断面での歯24aの歯面形状を示し、通常は歯厚形成歯面24a_1,24a_2が図8に示すごとく、歯厚方向中央面Zに関し左右対称な同形状である。
The pinion 24 that meshes with the tooth surfaces 23out_p, 23out_r, 23in_p, and 23in_r of the face gear 23 as described above is an involute gear similar to that used in the parallel shaft gear set. But it is the same shape.
FIG. 8 shows the tooth surface shape of the tooth 24a in a cross section perpendicular to the axis of the pinion 24. Normally, the tooth thickness forming tooth surfaces 24a_1 and 24a_2 are symmetrical with respect to the center surface Z in the tooth thickness direction as shown in FIG. It is.

ところで不等速フェースギヤ23は、図6,7の比較から明らかなように、歯面23out_p,23out_r,23in_p,23in_rの形状や、フェースギヤ中心Kpから当該歯面までの距離を様々に変えることで、図9のような内輪転舵時および外輪転舵時のステアリングギヤ比特性を実現して、左右操舵輪のうち内輪の転舵角と外輪の転舵角との間に差を与え得るよう構成する。
そのため、内輪転舵時においてピニオン24およびフェースギヤ23の噛合部における圧力角が大きく、ピニオン24の回転により一歯分だけ噛み合いが進むときの回転角度が大きい。
By the way, as is apparent from the comparison between FIGS. 6 and 7, the inconstant speed face gear 23 changes the shape of the tooth surface 23out_p, 23out_r, 23in_p, 23in_r and the distance from the face gear center Kp to the tooth surface in various ways. Thus, the steering gear ratio characteristic at the time of inner wheel turning and outer wheel turning as shown in FIG. 9 can be realized, and a difference can be given between the turning angle of the inner wheel and the turning angle of the outer wheel among the left and right steering wheels. Configure as follows.
For this reason, the pressure angle at the meshing portion of the pinion 24 and the face gear 23 is large at the time of inner ring steering, and the rotation angle when the meshing advances by one tooth by the rotation of the pinion 24 is large.

図10(a),(b)にそれぞれ、外輪転舵時と内輪転舵時におけるピニオン24と不等速フェースギヤ23との噛み合い状態を模式的に示す。
図10のベクトル図に示すようにラジアル荷重が接線力のTanαに比例することから、トルク伝達に必要な或る接線力に対して、圧力角αが大きいほど、大きなラジアル荷重(フェースギヤ軸方向荷重)が発生し、これがフェースギヤ23の軸線方向に作用する。
FIGS. 10 (a) and 10 (b) schematically show the meshed state of the pinion 24 and the inconstant speed face gear 23 during outer wheel turning and inner wheel turning, respectively.
Since the radial load is proportional to Tan α of the tangential force as shown in the vector diagram of FIG. 10, the larger the pressure angle α is, the larger the radial load (in the face gear axial direction) with respect to a certain tangential force required for torque transmission. Load), which acts in the axial direction of the face gear 23.

ところでラジアル荷重はトルク伝達に無関係な方向の荷重であるし、このラジアル荷重が大きいほど、その荷重を受け止めるスラストベアリング29(図4参照)などのフリクションが大きくなるため、転舵機構21の効率ηが悪化する。
転舵機構21の効率ηは、出力トルク(フェースギヤ回転トルク)をTout、出力軸フリクションをTof、入力トルク(ピニオン回転トルク)をTin、入力軸フリクションをTifとすると、
η = (Tout-Tof)/(Tin+Tif)
の式で表される。
スラストベアリング29(図4参照)のフリクションは上記の出力軸フリクションをTofに含まれ、このフリクションがラジアル荷重の増大で大きくなると、転舵機構21の効率ηは上式から明らかな通り低下する。
By the way, the radial load is a load in a direction irrelevant to the torque transmission, and the larger the radial load, the larger the friction of the thrust bearing 29 (see FIG. 4) that receives the load. Gets worse.
The efficiency η of the steering mechanism 21 is Tout as output torque (face gear rotation torque), Tof as output shaft friction, Tin as input torque (pinion rotation torque), and Tif as input shaft friction.
η = (Tout-Tof) / (Tin + Tif)
It is expressed by the following formula.
The friction of the thrust bearing 29 (see FIG. 4) includes the output shaft friction described above in Tof. When this friction increases due to an increase in radial load, the efficiency η of the steering mechanism 21 decreases as is apparent from the above equation.

また、一般的な自動車においては操舵輪が内輪となる場合の転舵時(内輪切り増し転舵時)ほど、車輪転舵に必要な転舵トルクが大きくなるため、内輪切り増し転舵時に効率ηの悪化が一層顕著になる。
このように転舵機構21の効率ηが悪化すると、操舵フィーリングが悪化したり、パワーステアリングのアシスト力要求値が大きくなって、これを実現する大型のアシストモータが必要になるという問題を生ずる。
Moreover, in general automobiles, the steering torque required for wheel steering increases as the steering wheel turns when the steered wheel is an inner wheel (when the inner wheel is increased and turned). The deterioration of η becomes even more remarkable.
Thus, when the efficiency η of the steering mechanism 21 is deteriorated, the steering feeling is deteriorated, or the required assist force value of the power steering is increased, which causes a problem that a large assist motor for realizing this is required. .

上記の観点から、転舵機構21の効率ηが顕著に悪化する内輪切り増し転舵時は、この効率悪化を回避するために上記したラジアル荷重の軽減が不可欠である。
そのため本実施例においては、図10(b)に示す内輪転舵時に不等速フェースギヤ23と噛み合うピニオン24の歯24a(歯面24a_1,24a_2)を、この図に示すごとく歯厚方向中央面Zに関し左右対称な形状にするのではなく、図11につき以下に説明するごとく左右非対称な形状に形成する。
From the above viewpoint, at the time of turning the inner ring while turning the inner ring where the efficiency η of the steering mechanism 21 is significantly deteriorated, it is indispensable to reduce the above-described radial load in order to avoid this deterioration in efficiency.
Therefore, in this embodiment, the teeth 24a (tooth surfaces 24a_1, 24a_2) of the pinion 24 that mesh with the non-constant speed face gear 23 at the time of inner ring turning shown in FIG. Rather than a symmetrical shape with respect to Z, it is formed in a laterally asymmetric shape as described below with reference to FIG.

先ず、フェースギヤ23の内輪切り増し時使用歯面23in_pに噛合するピニオン歯24aの歯面24a_1を、図11に破線で示す一般的な形状、つまり図10(b)に示す形状から、図11に実線で示すように、図10(b)の圧力角αが小さくなるような形状へと変形させる。
かかるピニオン歯面24a_1の変形は、ピニオン歯24aを歯厚減少させて、ピニオン歯24aの強度不足を伴う。
First, the tooth surface 24a_1 of the pinion tooth 24a meshing with the tooth surface 23in_p used when the inner ring of the face gear 23 is increased is changed from the general shape shown by the broken line in FIG. 11, that is, from the shape shown in FIG. As shown by a solid line in FIG. 10, the pressure angle α in FIG.
Such deformation of the pinion tooth surface 24a_1 is accompanied by insufficient strength of the pinion teeth 24a by reducing the thickness of the pinion teeth 24a.

そこで本実施例においては、かかるピニオン歯24aの強度不足を回避するため、ピニオン歯24aの反対側歯面24a_2を、図11に破線で示す一般的な形状、つまり図10(b)に示す形状から、図11に実線で示すように、圧力角が逆に大きくなるような形状へと変形させる。   Therefore, in this embodiment, in order to avoid insufficient strength of the pinion teeth 24a, the opposite tooth surface 24a_2 of the pinion teeth 24a has a general shape shown by a broken line in FIG. 11, that is, a shape shown in FIG. 10 (b). Then, as shown by a solid line in FIG. 11, the pressure angle is deformed to a large shape.

なお、ピニオン歯面24a_1,24a_2の上記変形に合わせて、これらに噛合するフェースギヤ23の内輪切り増し時使用歯面23in_pおよび内輪切り戻し時使用歯面23in_rの形状もそれぞれ、図11に破線で示す一般的な形状から実線図示の形状へと変形させることになるのは言うまでもない。   In accordance with the above-described deformation of the pinion tooth surfaces 24a_1 and 24a_2, the shapes of the tooth surface 23in_p used when the inner ring is increased and the tooth surface 23in_r used when the inner ring is turned back are also shown by broken lines in FIG. Needless to say, the shape is changed from the general shape shown to the shape shown by the solid line.

<第1実施例の効果>
上記した第1実施例の転舵機構21によれば、内輪を外輪よりも大きく転舵するアッカーマン式ステアリング故に操舵力が大きくなる内輪切り増し転舵時にフェースギヤ23の内輪切り増し時使用歯面23in_pと噛み合うピニオン歯24aの歯面24a_1を圧力角αが小さくなるよう変形させたため、
圧力角αの減少分だけピニオン24からフェースギヤ23へのラジアル荷重を小さくすることができる。
<Effects of the first embodiment>
According to the steering mechanism 21 of the first embodiment described above, the tooth surface used when the inner ring of the face gear 23 is increased at the time of turning, the inner ring is increased and the inner ring is increased because of the Ackermann type steering that steers the inner ring larger than the outer ring. Since the tooth surface 24a_1 of the pinion tooth 24a meshing with 23in_p is deformed so that the pressure angle α becomes small,
The radial load from the pinion 24 to the face gear 23 can be reduced by the decrease in the pressure angle α.

よって、操舵力が大きくなる内輪切り増し転舵時においても、ピニオン24からフェースギヤ23へのラジアル荷重が大きくなることがなく、スラストベアリング29などのフリクションを小さく保ち得て、転舵機構21の伝動効率(ステアリング効率)を高めることができる。
従って、操舵力が大きくなる内輪切り増し転舵時の操舵フィーリングの悪化や、パワーステアリングの大きなエネルギーロスに関する問題を回避することができる。
Therefore, even when turning the inner ring with increased steering force, the radial load from the pinion 24 to the face gear 23 does not increase, and the friction of the thrust bearing 29 and the like can be kept small. The transmission efficiency (steering efficiency) can be increased.
Accordingly, it is possible to avoid problems related to deterioration in steering feeling during turning of the inner wheel where the steering force is increased and a large energy loss in power steering.

また本実施例では、上記の作用・効果を達成するために行ったピニオン歯面24a_1の変形が、ピニオン歯24aを歯厚減少により強度低下させるが、ピニオン歯24aの反対側歯面24a_2を圧力角が大きくなるよう変形させたため、ピニオン歯24aの歯厚減少を回避し得て、ピニオン歯24aの強度低下を生ずることがない。
なお、ピニオン歯面24a_2の上記した変形は圧力角の増大をもたらすが、このピニオン歯面24a_2と、フェースギヤ23の内輪切り戻し時使用歯面23in_rとの噛合により行われる内輪切り戻し転舵時は、もともと操舵力が小さいために圧力角の増大によっても、前記したラジアル荷重が問題となるようなことはない。
Further, in this example, the deformation of the pinion tooth surface 24a_1 performed to achieve the above action / effect reduces the strength of the pinion tooth 24a by reducing the thickness of the pinion tooth 24a, but the pressure on the opposite tooth surface 24a_2 of the pinion tooth 24a Since the corners are deformed to increase, it is possible to avoid a reduction in the thickness of the pinion teeth 24a, and the strength of the pinion teeth 24a does not decrease.
The above-described deformation of the pinion tooth surface 24a_2 results in an increase in the pressure angle, but during the inner ring switchback turning performed by the engagement of the pinion tooth surface 24a_2 and the tooth surface 23in_r used when the face gear 23 is switched back to the inner ring Since the steering force is originally small, the aforementioned radial load does not become a problem even if the pressure angle increases.

<第2実施例>
図12は、本発明の第2実施例になる交差軸歯車伝動機構を用いた転舵機構21の要部を示す。
図12(a)は、転舵機構21の内部歯車組を示す図5と同様な図面で、本実施例においては、フェースギヤ23の外周方向に位置したピニオン24のフェースギヤ外周側端24oにあって、フェースギヤ23の外輪切り増し時使用歯面23out_pおよび外輪切り戻し時使用歯面23out_rと噛み合うピニオン歯24aを図12(b)に太い実線で示すごとくに形成し、フェースギヤ23の内周方向に位置したピニオン24のフェースギヤ内周側端24iにあって、フェースギヤ23の内輪切り増し時使用歯面23in_pおよび内輪切り戻し時使用歯面23in_rと噛み合うピニオン歯24aを図12(c)に細い実線で示すごとくに形成する。
<Second embodiment>
FIG. 12 shows a main part of the steering mechanism 21 using the cross shaft gear transmission mechanism according to the second embodiment of the present invention.
FIG. 12 (a) is a drawing similar to FIG. 5 showing the internal gear set of the steering mechanism 21, and in this embodiment, the pinion 24 located on the outer peripheral side edge 24o of the pinion 24 located in the outer peripheral direction of the face gear 23. The pinion teeth 24a that mesh with the tooth surface 23out_p when the outer ring of the face gear 23 is increased and the tooth surface 23out_r when the outer ring is turned back are formed as shown by the thick solid line in FIG. FIG. 12 (c) shows the pinion teeth 24a at the inner peripheral side edge 24i of the pinion 24 located in the circumferential direction and meshing with the tooth surface 23in_p when the inner ring of the face gear 23 is increased and the tooth surface 23in_r when the inner ring is turned back. ) As shown by the thin solid line.

ピニオン24のフェースギヤ外周側端24oおよびフェースギヤ内周側端24iにおけるピニオン歯24aを比較のため重ね合わせて示した図12(d)から明らかな通り、
フェースギヤ23の外輪切り増し時使用歯面23out_pおよび外輪切り戻し時使用歯面23out_rと噛み合う、ピニオン24のフェースギヤ外周側端24oにおけるピニオン歯24aを、歯面24a_1の圧力角および歯面24a_2の圧力角間における圧力角差が最小となるよう形成し、
フェースギヤ23の内輪切り増し時使用歯面23in_pおよび内輪切り戻し時使用歯面23in_rと噛み合う、ピニオン24のフェースギヤ内周側端24iにおけるピニオン歯24aを、歯面24a_1の圧力角および歯面24a_2の圧力角間における圧力角差が最大(第1実施例と同じ)となるよう形成し、
上記の圧力角差が、ピニオン24のフェースギヤ内周側端24iからフェースギヤ外周側端24oに向かうにつれ徐々に小さくなるよう、ピニオン24の歯24aを形成する。
As clearly shown in FIG. 12 (d), the pinion teeth 24a at the face gear outer peripheral side end 24o and the face gear inner peripheral side end 24i of the pinion 24 are overlapped for comparison.
The pinion teeth 24a at the face gear outer peripheral end 24o of the pinion 24 meshing with the tooth surface 23out_p used when the outer ring of the face gear 23 is increased and the tooth surface 23out_r used when the outer ring is turned back are connected to the pressure angle of the tooth surface 24a_1 and the tooth surface 24a_2. Form the pressure angle difference between the pressure angles to be minimal,
The pinion tooth 24a at the face gear inner peripheral end 24i of the pinion 24 that meshes with the tooth surface 23in_p used when the inner ring of the face gear 23 is increased and the tooth surface 23in_r used when the inner ring is turned back is replaced with the pressure angle of the tooth surface 24a_1 and the tooth surface 24a_2. The pressure angle difference between the pressure angles is maximized (same as in the first embodiment),
The teeth 24a of the pinion 24 are formed so that the pressure angle difference is gradually reduced from the face gear inner peripheral end 24i of the pinion 24 toward the face gear outer peripheral end 24o.

つまりピニオン歯24aは、歯面24a_1および24a_2のうち、一方の歯面の圧力角が外端24oに向かうにつれて小さくなり、他方の歯面の圧力角が外端24oに向かうにつれて大きくなるよう形成する。
転舵機構21のピニオン24を上記のように形成する以外、車輪転舵装置は前記した第1実施例と同じである。
That is, the pinion tooth 24a is formed such that, among the tooth surfaces 24a_1 and 24a_2, the pressure angle of one tooth surface decreases as it goes toward the outer end 24o, and the pressure angle of the other tooth surface increases as it goes toward the outer end 24o. .
The wheel turning device is the same as that of the first embodiment except that the pinion 24 of the turning mechanism 21 is formed as described above.

<第2実施例の効果>
上記した第2実施例の効果を以下に説明する。
前記した第1実施例のように、ピニオン24の内輪切り増し転舵時に使用する歯面24a_1を圧力角が小さくなるよう形成すると、それに伴って不等速フェースギヤ23では図5に点々ハッチングを付して示した外輪切り戻し時使用歯面23out_rおよび内輪切り増し時使用歯面23in_pの圧力角が小さくなる。
<Effect of the second embodiment>
The effects of the second embodiment will be described below.
As in the first embodiment described above, when the tooth surface 24a_1 used for turning the inner ring of the pinion 24 is steered so as to reduce the pressure angle, the inconstant speed face gear 23 is hatched in FIG. The pressure angles of the tooth surface 23out_r used when the outer ring is cut back and the tooth surface 23in_p used when the inner ring is increased are reduced.

外輪転舵時噛み合い歯面領域Aを示す図6と、内輪転舵時噛み合い歯面領域Bを示す図7との比較から明らかなように、外輪転舵時噛み合い歯面領域Aの方が内輪転舵時噛み合い歯面領域Bよりも圧力角が小さく、いわゆる歯車の切り下げという現象が発生しやすくなる。
また図6から判るように、不等速フェースギヤ23の外輪転舵時噛み合い歯面領域Aにおける歯面23out_p,23out_rは、フェースギヤ内周側端ほど圧力角が小さくなり、切り下げを発生しやすい。
ここで切り下げとは、歯面が噛み合った後、相手方歯先が当該歯面に切り込む現象であり、切り下げが起きる場合には、トルク伝達のための有効歯面が存在しなくなる。
As is apparent from a comparison between FIG. 6 showing the meshing tooth surface area A during outer ring steering and FIG. 7 showing the meshing tooth surface area B during inner ring steering, the meshing tooth surface area A during outer wheel steering is more inner. The pressure angle is smaller than that of the meshing tooth surface region B at the time of wheel steering, and a phenomenon of so-called gear down is likely to occur.
Further, as can be seen from FIG. 6, the tooth surfaces 23out_p and 23out_r in the meshing tooth surface region A of the inconstant speed face gear 23 at the time of turning the outer ring have a smaller pressure angle toward the inner peripheral side end of the face gear and are likely to be cut down. .
Here, the term “cut down” refers to a phenomenon in which after the tooth surfaces mesh with each other, the counterpart tooth tip cuts into the tooth surfaces. When the cut down occurs, there is no effective tooth surface for torque transmission.

図7に示すように、点々ハッチングを付した内輪切り増し時使用歯面23in_pはもともと圧力角が大きいため、内輪切り増し時使用歯面23in_pの圧力角差と内輪切り戻し時使用歯面23in_rの圧力角との間に第1実施例のような圧力角差を設定しても、切り下げの問題は生じ難い。
しかし図6のように、点々ハッチングを付した外輪切り戻し時使用歯面23out_rは切り下げが生じ易く、有効歯面が小さくなってしまうのを避けられない。
このように有効歯面が小さくなると、フェースギヤ23の歯が強度不足になるという問題を生ずる。
As shown in Fig. 7, because the tooth angle 23in_p used when the inner ring is increased with a large number of hatches has a large pressure angle, the pressure angle difference between the tooth surface 23in_p when the inner ring is increased and the tooth surface 23in_r used when the inner ring is turned back Even if a pressure angle difference as in the first embodiment is set between the pressure angle and the pressure angle, the problem of devaluation is unlikely to occur.
However, as shown in FIG. 6, the tooth surface 23out_r that is used when the outer ring is cut back with hatching is easily cut down and the effective tooth surface is inevitably reduced.
When the effective tooth surface becomes small in this way, there arises a problem that the teeth of the face gear 23 become insufficient in strength.

ところで本実施例においては、図12につき前述した通り、ピニオン24の内端24iにおけるピニオン歯24aの歯面24a_1,24a_2間の圧力角差を前記第1実施例と同じ大きさとし、この圧力角差がピニオン24の外端24oに向かうにつれて徐々に小さくなるようピニオン24の歯24aを形成したため、
フェースギヤ23の外輪切り増し時使用歯面23out_pおよび外輪切り戻し時使用歯面23out_rと噛み合う、ピニオン24の外端24oにおいて懸念される前記切り下げの問題を回避し得て、トルク伝達のための有効歯面が存在しなくなるという問題を解消することができる。
Incidentally, in this embodiment, as described above with reference to FIG. 12, the pressure angle difference between the tooth surfaces 24a_1 and 24a_2 of the pinion teeth 24a at the inner end 24i of the pinion 24 is the same as that in the first embodiment, and this pressure angle difference Since the teeth 24a of the pinion 24 are formed so as to gradually become smaller toward the outer end 24o of the pinion 24,
Effective for torque transmission by avoiding the above-mentioned problem of lowering at the outer end 24o of the pinion 24 that meshes with the tooth surface 23out_p used when the outer ring of the face gear 23 is increased and the tooth surface 23out_r used when the outer ring is turned back. The problem that the tooth surface does not exist can be solved.

しかるに、フェースギヤ23の内輪切り増し時使用歯面23in_pおよび内輪切り戻し時使用歯面23in_rと噛み合う、ピニオン24の内端24iにおけるピニオン歯24aの歯面24a_1,24a_2間の圧力角差が前記第1実施例と同じ大きさとなるようピニオン24の歯24aを形成したため、第1実施例の作用・効果はそのまま達成可能である。   However, the pressure angle difference between the tooth surfaces 24a_1 and 24a_2 of the pinion tooth 24a at the inner end 24i of the pinion 24 that meshes with the tooth surface 23in_p when the inner ring is increased and the tooth surface 23in_r when the inner ring is turned back is increased. Since the teeth 24a of the pinion 24 are formed to have the same size as that of the first embodiment, the operation and effect of the first embodiment can be achieved as they are.

<第3実施例>
図13は、第2実施例と同様な効果、つまりピニオン24の外端24oにおいて懸念される前記切り下げの問題を回避するという効果を、別の対策により達成するようにした、本発明の第3実施例になる交差軸歯車伝動機構を用いた転舵機構21の要部を示す。
図13(a)は、転舵機構21の内部歯車組を示す図5と同様な図面で、本実施例においては、フェースギヤ23の外周方向に位置したピニオン24のフェースギヤ外周側端24oにあって、フェースギヤ23の外輪切り増し時使用歯面23out_pおよび外輪切り戻し時使用歯面23out_rと噛み合うピニオン歯24aを図13(b)に太い実線で示すごとくに形成し、フェースギヤ23の内周方向に位置したピニオン24のフェースギヤ内周側端24iにあって、フェースギヤ23の内輪切り増し時使用歯面23in_pおよび内輪切り戻し時使用歯面23in_rと噛み合うピニオン歯24aを図13(c)に細い実線で示すごとくに形成する。
<Third embodiment>
FIG. 13 shows a third embodiment of the present invention in which the same effect as that of the second embodiment, that is, the effect of avoiding the above-described devaluation problem at the outer end 24o of the pinion 24 is achieved by another countermeasure. The principal part of the steering mechanism 21 using the cross shaft gear transmission mechanism which becomes an Example is shown.
FIG. 13 (a) is a drawing similar to FIG. 5 showing the internal gear set of the steered mechanism 21, and in this embodiment, the pinion 24 located on the outer peripheral side 24o of the pinion 24 located in the outer peripheral direction of the face gear 23. The pinion teeth 24a that mesh with the tooth surface 23out_p when the outer ring of the face gear 23 is increased and the tooth surface 23out_r when the outer ring is turned back are formed as shown by a thick solid line in FIG. FIG. 13 (c) shows the pinion teeth 24a at the inner peripheral side edge 24i of the face gear of the pinion 24 located in the circumferential direction and meshing with the tooth surface 23in_p used when the inner ring of the face gear 23 is increased and the tooth surface 23in_r used when the inner ring is turned back. ) As shown by the thin solid line.

ピニオン24のフェースギヤ外周側端24oおよびフェースギヤ内周側端24iにおけるピニオン歯24aを比較のため重ね合わせて示した図13(d)から明らかな通り、
フェースギヤ23の内輪切り増し時使用歯面23in_pおよび内輪切り戻し時使用歯面23in_rと噛み合う、ピニオン24のフェースギヤ内周側端24iにおけるピニオン歯24aを、歯面24a_1の圧力角および歯面24a_2の圧力角がそれぞれ、第1実施例におけると同じになるよう形成し、
フェースギヤ23の外輪切り増し時使用歯面23out_pおよび外輪切り戻し時使用歯面23out_rと噛み合う、ピニオン24の外端24oにおけるピニオン歯24aを、歯面24a_1の圧力角および歯面24a_2の圧力角がそれぞれ、ピニオン24の内端24iにおけるピニオン歯24aの歯面24a_1の圧力角および歯面24a_2の圧力角よりも大きくなるよう形成し、
歯面24a_1の圧力角および歯面24a_2の圧力角がそれぞれ、ピニオン24の内端24iから外端24oに向かうにつれ徐々に大きくなるよう、ピニオン24の歯24aを形成する。
As clearly shown in FIG. 13 (d), the pinion teeth 24a on the face gear outer peripheral side end 24o and the face gear inner peripheral side end 24i of the pinion 24 are overlapped for comparison.
The pinion tooth 24a at the face gear inner peripheral end 24i of the pinion 24 that meshes with the tooth surface 23in_p used when the inner ring of the face gear 23 is increased and the tooth surface 23in_r used when the inner ring is turned back is replaced with the pressure angle of the tooth surface 24a_1 and the tooth surface 24a_2. The pressure angles are respectively the same as in the first embodiment,
The pinion tooth 24a at the outer end 24o of the pinion 24 meshed with the tooth surface 23out_p used when the outer ring of the face gear 23 is increased and the tooth surface 23out_r used when the outer ring is cut back, the pressure angle of the tooth surface 24a_1 and the pressure angle of the tooth surface 24a_2 are Respectively, it is formed to be larger than the pressure angle of the tooth surface 24a_1 of the pinion tooth 24a and the pressure angle of the tooth surface 24a_2 at the inner end 24i of the pinion 24,
The teeth 24a of the pinion 24 are formed such that the pressure angle of the tooth surface 24a_1 and the pressure angle of the tooth surface 24a_2 gradually increase from the inner end 24i of the pinion 24 toward the outer end 24o.

つまりピニオン歯24aは、歯面24a_1および24a_2の圧力角がともに外端24oに向かうにつれて大きくなるよう形成する。
ピニオン歯面24a_1および24a_2の圧力角をかようにピニオン軸線方向に連続変化させるに際しては、ピニオン24の外端24oほど転位係数が大きくなるように諸元を設定するだけでよいため、つまりピニオン24の製造時に転位係数をピニオン軸線方向に変えるだけでよい。
That is, the pinion teeth 24a are formed so that the pressure angles of the tooth surfaces 24a_1 and 24a_2 both increase toward the outer end 24o.
When continuously changing the pressure angle of the pinion tooth surfaces 24a_1 and 24a_2 in the pinion axis direction, it is only necessary to set the parameters so that the dislocation coefficient increases toward the outer end 24o of the pinion 24, that is, the pinion 24 It is only necessary to change the dislocation coefficient in the direction of the pinion axis at the time of manufacture.

そして上記転位係数の変化に際しては、ピニオン製作時に、カッターをピニオン24の軸線方向へ移動させてピニオン歯面を創成しながら、同時にピニオン24の半径方向にもカッターを移動させるだけのため、ピニオン24の製作が容易であり、コスト上も大いに有利である。
転舵機構21のピニオン24を上記のように形成する以外、車輪転舵装置は前記した第1実施例と同じである。
And when changing the above dislocation coefficient, the pinion 24 only moves the cutter in the radial direction of the pinion 24 at the same time while creating the pinion tooth surface by moving the cutter in the axial direction of the pinion 24 at the time of producing the pinion. Is easy to manufacture and is very advantageous in terms of cost.
The wheel turning device is the same as that of the first embodiment except that the pinion 24 of the turning mechanism 21 is formed as described above.

<第3実施例の効果>
上記した第3実施例の効果を以下に説明する。
本実施例においては、図13につき前述した通り、ピニオン24の内端24iにおけるピニオン歯24aの歯面24a_1,24a_2の圧力角を前記第1実施例と同じように設定し、これらピニオン歯面24a_1,24a_2の圧力角がともに、ピニオン24の外端24oに向かうにつれて徐々に大きくなるようピニオン24の歯24aを形成したため、
フェースギヤ23の外輪切り増し時使用歯面23out_pおよび外輪切り戻し時使用歯面23out_rと噛み合う、ピニオン24の外端24oにおいて懸念される前記切り下げの問題を回避し得て、トルク伝達のための有効歯面が存在しなくなるという問題を解消することができる。
<Effect of the third embodiment>
The effects of the third embodiment will be described below.
In this embodiment, as described above with reference to FIG. 13, the pressure angles of the tooth surfaces 24a_1 and 24a_2 of the pinion teeth 24a at the inner end 24i of the pinion 24 are set in the same manner as in the first embodiment, and these pinion tooth surfaces 24a_1 , 24a_2 because the teeth 24a of the pinion 24 are formed so that both pressure angles gradually increase toward the outer end 24o of the pinion 24,
Effective for torque transmission by avoiding the above-mentioned problem of lowering at the outer end 24o of the pinion 24 that meshes with the tooth surface 23out_p used when the outer ring of the face gear 23 is increased and the tooth surface 23out_r used when the outer ring is turned back. The problem that the tooth surface does not exist can be solved.

しかも、本実施例のごとくピニオン歯面24a_1および24a_2の圧力角をともにピニオン軸線方向に連続変化させるに際しては、ピニオン製作時に、カッターをピニオン24の軸線方向へ移動させてピニオン歯面を創成しながら、同時にピニオン24の半径方向にもカッターを移動させるだけでよいため、ピニオン24の製作が容易であり、コスト上も有利であることから、容易に且つ安価に第2実施例と同様な効果を得ることができる。   Moreover, when the pressure angles of both the pinion tooth surfaces 24a_1 and 24a_2 are continuously changed in the pinion axial direction as in this embodiment, the pinion tooth surface is created by moving the cutter in the axial direction of the pinion 24 during the production of the pinion. At the same time, since it is only necessary to move the cutter in the radial direction of the pinion 24, it is easy to manufacture the pinion 24 and it is advantageous in terms of cost, so the same effect as the second embodiment can be obtained easily and inexpensively. Can be obtained.

なお、フェースギヤ23の内輪切り増し時使用歯面23in_pおよび内輪切り戻し時使用歯面23in_rと噛み合う、ピニオン24の内端24iにおけるピニオン歯24aの歯面24a_1,24a_2の圧力角が前記第1実施例と同じ大きさとなるようピニオン24の歯24aを形成したため、第1実施例の作用・効果はそのまま達成可能である。   Note that the pressure angle of the tooth surfaces 24a_1 and 24a_2 of the pinion teeth 24a at the inner end 24i of the pinion 24 that meshes with the tooth surface 23in_p used when the inner ring of the face gear 23 is increased and the tooth surface 23in_r used when the inner ring is turned back is the first embodiment. Since the teeth 24a of the pinion 24 are formed to have the same size as the example, the operation and effect of the first embodiment can be achieved as they are.

<その他の実施例>
なお、上記第1〜3実施例のいずれにおいても、本発明の交差軸歯車伝動機構をインホイールモータ駆動車輪1の転舵機構21として用いる場合につき説明したが、本発明の交差軸歯車伝動機構は用途をこれに限られるものでなく、回転方向によって伝達トルクの大きさが異なる箇所で、交差軸伝動が必要な箇所であれば、如何なる用途にも実用可能である。
<Other examples>
In any of the first to third embodiments, the case where the cross shaft gear transmission mechanism of the present invention is used as the steering mechanism 21 of the in-wheel motor drive wheel 1 has been described. However, the cross shaft gear transmission mechanism of the present invention is also described. The application is not limited to this, and the present invention can be applied to any application as long as the transmission torque differs depending on the rotation direction and the cross-axis transmission is required.

1 インホイールモータ駆動車輪
2 インホイールモータ駆動ユニット
2a 電動モータ
2b 減速機
3 ユニットケース
4 ホイールハブ
5 ブレーキディスク
6 アッパーアーム
7 ロアアーム
8 サードリンク
9 ショックアブソーバ
10 インシュレータ
13 ブレーキキャリパ
Kp キングピン軸線
21 転舵機構
22 筐体
23 不等速フェースギヤ
23in_p 内輪切り増し時使用歯面
23in_r 内輪切り戻し時使用歯面
23out_p 外輪切り増し時使用歯面
23out_r 外輪切り戻し時使用歯面
24 ピニオン
24a ピニオン歯
24a_1,24a_2 ピニオン歯面
25 転舵軸
26 キー
27 入力軸
28 コイルバネ
29 スラストベアリング
1 In-wheel motor drive wheel
2 In-wheel motor drive unit
2a Electric motor
2b reducer
3 Unit case
4 Wheel hub
5 Brake disc
6 Upper arm
7 Lower arm
8 Third link
9 Shock absorber
10 Insulator
13 Brake caliper
Kp Kingpin axis
21 Steering mechanism
22 Enclosure
23 Constant speed face gear
23in_p Tooth surface used when the inner ring is increased
23in_r Tooth surface used when inner ring is cut back
23out_p Tooth surface used when adding outer ring
23out_r Tooth surface used when outer ring is cut back
24 pinion
24a pinion teeth
24a_1,24a_2 Pinion tooth surface
25 Steering shaft
26 keys
27 Input shaft
28 Coil spring
29 Thrust bearing

Claims (5)

ピニオンと、該ピニオンに対し軸交角を持つよう配置されたフェースギヤとを相互に噛合させて構成し、回転方向によって伝達トルクの大きさが異なる箇所で実用する交差軸歯車伝動機構において、
前記フェースギヤと噛合する前記ピニオンの歯を、歯厚形成歯面のうち、前記伝達トルクが大きい方向への回転時に動力伝達を担う歯面の圧力角が、前記伝達トルクが小さい方向への回転時に動力伝達を担う歯面の圧力角よりも小さくなるよう形成したことを特徴とする交差軸歯車伝動機構。
In the cross shaft gear transmission mechanism that is configured by meshing a pinion and a face gear arranged so as to have an axis crossing angle with respect to the pinion, and that is practically used in places where the magnitude of the transmission torque differs depending on the rotation direction,
When the tooth of the pinion that meshes with the face gear is rotated in the direction in which the pressure angle of the tooth surface, which bears power transmission when rotating in the direction in which the transmission torque is large, of the tooth thickness forming tooth surface, the transmission torque is small. A cross-shaft gear transmission mechanism characterized in that it is formed to be smaller than the pressure angle of the tooth surface sometimes responsible for power transmission.
請求項1に記載された交差軸歯車伝動機構において、
前記フェースギヤを不等速フェースギヤとし、前記ピニオン歯の歯厚形成歯面間における圧力角の差がフェースギヤ内周側で大きく、外周側ほど小さくなるよう、該ピニオン歯を形成したことを特徴とする交差軸歯車伝動機構。
In the cross shaft gear transmission mechanism according to claim 1,
The face gear is an inconstant speed face gear, and the pinion teeth are formed such that the difference in pressure angle between the tooth thickness forming tooth surfaces of the pinion teeth is large on the inner peripheral side of the face gear and smaller on the outer peripheral side. Characteristic cross-shaft gear transmission.
請求項1に記載された交差軸歯車伝動機構において、
前記フェースギヤを不等速フェースギヤとし、前記ピニオン歯の歯厚形成歯面における圧力角がともに、フェースギヤ内周側に比べてフェースギヤ外周側ほど大きくなるよう、該ピニオン歯を形成したことを特徴とする交差軸歯車伝動機構。
In the cross shaft gear transmission mechanism according to claim 1,
The face gear is an inconstant speed face gear, and the pinion teeth are formed so that the pressure angle at the tooth thickness forming tooth surface of the pinion teeth is larger toward the outer peripheral side of the face gear than at the inner peripheral side of the face gear. Cross shaft gear transmission mechanism characterized by
請求項3に記載された交差軸歯車伝動機構において、
フェースギヤ外周側ほど前記ピニオン歯の転位係数を大きくすることにより、前記ピニオン歯の歯厚形成歯面における圧力角がともに、フェースギヤ内周側に比べてフェースギヤ外周側ほど大きくなるよう、該ピニオン歯を形成したことを特徴とする交差軸歯車伝動機構。
In the cross shaft gear transmission mechanism according to claim 3,
By increasing the dislocation coefficient of the pinion teeth toward the outer peripheral side of the face gear, the pressure angle at the tooth thickness forming tooth surface of the pinion teeth is increased toward the outer peripheral side of the face gear compared to the inner peripheral side of the face gear. A cross shaft gear transmission mechanism characterized in that pinion teeth are formed.
請求項1〜4のいずれか1項に記載された交差軸歯車伝動機構を、アッカーマン式ステアリング機構により転舵される左右操舵輪の個々の転舵機構として用い、
これら左右操舵輪に係わる交差軸歯車伝動機構がそれぞれ、前記ピニオンにステアリングホイールの回転を入力され、前記フェースギヤにより前記左右操舵輪を転舵するよう、且つこれら左右操舵輪が内輪となって切り増しされる場合に前記圧力角の小さな歯面が低打力の伝達を担うよう、該交差軸歯車伝動機構をそれぞれ配置して車両に搭載したことを特徴とする車輪転舵装置。
The cross shaft gear transmission mechanism described in any one of claims 1 to 4 is used as an individual steering mechanism of left and right steering wheels to be steered by an Ackermann type steering mechanism,
The cross-shaft gear transmission mechanisms related to these left and right steering wheels are turned so that the rotation of the steering wheel is input to the pinion and the left and right steering wheels are steered by the face gear, and the left and right steering wheels are turned into inner wheels. A wheel steering apparatus characterized in that the cross-shaft gear transmission mechanism is disposed and mounted on a vehicle so that the tooth surface having a small pressure angle bears transmission of a low striking force when increased.
JP2013041733A 2013-03-04 2013-03-04 Cross shaft gear transmission mechanism and wheel steering device using the same Active JP6119309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041733A JP6119309B2 (en) 2013-03-04 2013-03-04 Cross shaft gear transmission mechanism and wheel steering device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041733A JP6119309B2 (en) 2013-03-04 2013-03-04 Cross shaft gear transmission mechanism and wheel steering device using the same

Publications (2)

Publication Number Publication Date
JP2014169745A true JP2014169745A (en) 2014-09-18
JP6119309B2 JP6119309B2 (en) 2017-04-26

Family

ID=51692270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041733A Active JP6119309B2 (en) 2013-03-04 2013-03-04 Cross shaft gear transmission mechanism and wheel steering device using the same

Country Status (1)

Country Link
JP (1) JP6119309B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051591A1 (en) * 2015-09-24 2017-03-30 アイシン精機株式会社 Gear transmission device
JP2017198291A (en) * 2016-04-27 2017-11-02 アイシン精機株式会社 Gear reducer
DE102019220342A1 (en) 2018-12-27 2020-07-02 Toyota Jidosha Kabushiki Kaisha STEERING DEVICE AND VEHICLE WHEEL MOUNTING MODULE WITH THE SAME

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514724A (en) * 1998-05-12 2002-05-21 ザ・ボード・オブ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・イリノイ Hybrid gear drive
JP2007022159A (en) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd Steering device
JP2008525727A (en) * 2004-12-23 2008-07-17 ゾナ ベーエルヴェー プレチジオンズシュミーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Gear combination consisting of crown gear and pinion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514724A (en) * 1998-05-12 2002-05-21 ザ・ボード・オブ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・イリノイ Hybrid gear drive
JP2008525727A (en) * 2004-12-23 2008-07-17 ゾナ ベーエルヴェー プレチジオンズシュミーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Gear combination consisting of crown gear and pinion
JP2007022159A (en) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd Steering device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051591A1 (en) * 2015-09-24 2017-03-30 アイシン精機株式会社 Gear transmission device
CN108138911A (en) * 2015-09-24 2018-06-08 爱信精机株式会社 Gear assembly
US20180238422A1 (en) * 2015-09-24 2018-08-23 Aisin Seiki Kabushiki Kaisha Gear transmission device
EP3354931A4 (en) * 2015-09-24 2018-12-05 Aisin Seiki Kabushiki Kaisha Gear transmission device
US10598253B2 (en) 2015-09-24 2020-03-24 Aisin Seiki Kabushiki Kaisha Gear transmission device
JP2017198291A (en) * 2016-04-27 2017-11-02 アイシン精機株式会社 Gear reducer
DE102019220342A1 (en) 2018-12-27 2020-07-02 Toyota Jidosha Kabushiki Kaisha STEERING DEVICE AND VEHICLE WHEEL MOUNTING MODULE WITH THE SAME
JP2020104696A (en) * 2018-12-27 2020-07-09 トヨタ自動車株式会社 Steering device and vehicle wheel arrangement module having the same
JP7147552B2 (en) 2018-12-27 2022-10-05 トヨタ自動車株式会社 Vehicle wheel arrangement module
US11584427B2 (en) 2018-12-27 2023-02-21 Toyota Jidosha Kabushiki Kaisha Steering device and vehicle wheel mounting module including the same

Also Published As

Publication number Publication date
JP6119309B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2013073308A1 (en) Steering device for wheel
JP4853070B2 (en) Steer-by-wire system
WO2007026801A1 (en) Steering device and movement converting device used therefor
JP6119309B2 (en) Cross shaft gear transmission mechanism and wheel steering device using the same
CN104149841A (en) Abnormal sound prevention structure for worm wheel bearing seat of electric power steering column
JP2009168142A (en) Transmission with planetary gearing mechanism
CN102152808A (en) Front and rear axle steering system for numerical control mechanical transmission
JP4604977B2 (en) Drive wheel structure for vehicle
JP2010144762A (en) Driving force distributing device
JP2018197006A (en) Steering device for vehicle
JP3170438U (en) Worm reducer and electric power steering device
JP2016141343A (en) Steering device
KR101854108B1 (en) Steering apparatus for vehicles
JP2009113730A (en) Vehicular rear wheel steering device
JP7143748B2 (en) Vehicle driving device with steering function
JP6958271B2 (en) Steering device and intermediate shaft
JP6087119B2 (en) Car steering device
JP7067047B2 (en) Steering device
JP4941722B2 (en) Vehicle steering system
KR100723725B1 (en) Motor Driven Steering System Equipped with Zerol Bevel Gear
CN105946969B (en) A kind of balancing rocker arm formula chassis vehicle steering mechanism
JP2012121408A (en) Electric power steering system
JP2021063558A (en) Driving device for vehicle
JP5157226B2 (en) Vehicle steering system
JP2011225056A (en) Steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6119309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151