JP2014169484A - Method for producing platinum powder - Google Patents

Method for producing platinum powder Download PDF

Info

Publication number
JP2014169484A
JP2014169484A JP2013042138A JP2013042138A JP2014169484A JP 2014169484 A JP2014169484 A JP 2014169484A JP 2013042138 A JP2013042138 A JP 2013042138A JP 2013042138 A JP2013042138 A JP 2013042138A JP 2014169484 A JP2014169484 A JP 2014169484A
Authority
JP
Japan
Prior art keywords
platinum
platinum powder
powder
hydrazine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013042138A
Other languages
Japanese (ja)
Other versions
JP6051953B2 (en
Inventor
Yoshiaki Manabe
善昭 真鍋
Yasushi Isshiki
靖志 一色
Hideaki Sato
英明 佐藤
Hidemasa Nagai
秀昌 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013042138A priority Critical patent/JP6051953B2/en
Publication of JP2014169484A publication Critical patent/JP2014169484A/en
Application granted granted Critical
Publication of JP6051953B2 publication Critical patent/JP6051953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing platinum powder substantially free of potassium and chlorine in a very high yield.SOLUTION: A method includes reducing ammonium chloroplatinate as a feedstock to produce platinum powder by a wet process. The method comprises at least: a first step of adding a hydrazine compound as a reducing agent and an ammonia compound as a neutralizing agent to the feedstock to produce Magnus' green salt at 10-60°C; a second step of adding a hydrazine compound to the resultant Magnus' green salt and reducing it to platinum powder at 40-60°C; and a third step of calcining the resultant platinum powder at a calcining temperature of preferably 700-950°C. It is preferable that a mole amount of the ammonia compound added at the first step is 4 to 12 times a mole amount of the platinum including in the ammonium chloroplatinate as the feedstock.

Description

本発明は、湿式法で白金化合物を還元して白金粉を製造する方法に関し、特に、原料としての塩化白金酸アンモニウムを湿式法で還元してナトリウムや塩素の含有量が少ない白金粉を製造する方法に関する。   The present invention relates to a method for producing platinum powder by reducing a platinum compound by a wet method, and in particular, producing platinum powder having a low content of sodium and chlorine by reducing ammonium chloroplatinate as a raw material by a wet method. Regarding the method.

白金は、宝飾材料、半導体材料、電子材料、自動車用触媒などの用途に広く利用されているが、希少金属であるため、自動車の廃触媒や白金を含むスクラップ、銅製錬やニッケル製錬に於ける電解工程で発生する電解スライムからの回収が行われている。かかる白金の回収では一般に粒度の調整が容易な白金粉の形態で回収が行われており、特に白金を電子材料に利用する場合は白金粉の形態での回収が好ましい。   Platinum is widely used in applications such as jewelry materials, semiconductor materials, electronic materials, and automobile catalysts, but because it is a rare metal, it is used in automobile scrap catalysts, platinum-containing scrap, copper smelting and nickel smelting. Recovery from electrolytic slime generated in the electrolysis process is performed. Such platinum recovery is generally performed in the form of platinum powder whose particle size can be easily adjusted. In particular, when platinum is used as an electronic material, recovery in the form of platinum powder is preferable.

白金粉の形態で回収する方法としては、先ず、塩酸酸性の白金溶解液に塩化アンモニウムを添加し、塩化白金酸アンモニウム塩を析出させて回収する沈殿分離法や、有機溶媒を用いて塩化白金酸アンモニウムを回収する溶媒抽出法、あるいはこれらを組み合わせた方法などにより、精製された塩化白金酸アンモニウムとして白金を回収し、次に、回収した塩化白金酸アンモニウムを乾式法又は湿式法により還元して白金粉末を得る方法が従来から使用されている。   As a method for recovering in the form of platinum powder, first, ammonium chloride is added to a hydrochloric acid acidic platinum solution to precipitate and recover ammonium chloride chloroplatinate, or chloroplatinic acid using an organic solvent. Platinum is recovered as a purified ammonium chloroplatinate by a solvent extraction method for recovering ammonium or a combination of these, and then the recovered ammonium chloroplatinate is reduced by a dry method or a wet method to obtain platinum. Methods for obtaining powder are conventionally used.

このうち、湿式法による還元では、従来から塩化白金酸アンモニウムに水を加えて懸濁させた後、ヒドラジン化合物で還元する方法がとられていた。この方法は、還元によって発生する塩酸で酸性となった液から砂状の白金を得るものである。例えば特許文献1には、添加剤としてのアンモニア化合物と還元剤としてのヒドラジン化合物とを混合した溶液を塩化白金酸アンモニウムに直接添加し、50℃以上の高温で還元を行う方法が開示されている。   Among these, in the reduction by a wet method, conventionally, after adding water to ammonium chloroplatinate and suspending it, a method of reducing with a hydrazine compound has been used. In this method, sandy platinum is obtained from a solution acidified with hydrochloric acid generated by reduction. For example, Patent Document 1 discloses a method in which a solution in which an ammonia compound as an additive and a hydrazine compound as a reducing agent are mixed is directly added to ammonium chloroplatinate and reduction is performed at a high temperature of 50 ° C. or higher. .

特開平2−294416号公報JP-A-2-294416

電子材料用の白金粉を作製する場合は、製品となる白金粉に含まれる不純物の含有率を、Naでは100ppmw以下、Clでは100ppmw以下を合格基準値として管理することが一般的に行われている。この点において、特許文献1の方法は白金粉を得る際にナトリウムを含まない添加剤を用いているので好適であるといえる。しかし、特許文献1の方法では、反応槽の内壁や攪拌機の羽根に箔状の白金が析出することがあり、白金粉の収率が悪くなるばかりか反応槽の内壁等に付着した白金の回収作業が大変手間取るため、生産性が低下することが問題になっていた。   When producing platinum powder for electronic materials, it is generally performed to manage the content of impurities contained in the platinum powder as a product as an acceptable standard value for Na at 100 ppmw or less and for Cl at 100 ppmw or less. Yes. In this respect, it can be said that the method of Patent Document 1 is suitable because an additive not containing sodium is used when obtaining platinum powder. However, in the method of Patent Document 1, foil-like platinum may be deposited on the inner wall of the reaction tank or the blades of the stirrer, and not only the yield of platinum powder is deteriorated, but also the recovery of platinum attached to the inner wall of the reaction tank. Since the work is very time consuming, there has been a problem that productivity is lowered.

そこで、上記白金粉の付着の問題を抑えるため、還元反応により生成した塩酸を苛性ソーダを用いて中和し、pHをアルカリ性の範囲にして白金を還元する方法が提案されている。この方法により得られる白金粉は粉状でハンドリング性がよく、また、還元に用いるヒドラジン化合物は理論量程度の添加であっても反応を終結させることができるという利点も有している。   Therefore, in order to suppress the problem of the adhesion of the platinum powder, a method has been proposed in which the hydrochloric acid generated by the reduction reaction is neutralized with caustic soda and the platinum is reduced within the alkaline range. The platinum powder obtained by this method is powdery and has good handling properties, and the hydrazine compound used for the reduction has the advantage that the reaction can be terminated even when added in a theoretical amount.

しかしながら、この方法で得た白金粉にはナトリウムが300〜1000ppmw程度、塩素が100〜1000ppmw程度含まれることを避けることができなかった。これらナトリウム及び塩素はEPMAで観察するとほぼ均一に含まれていることから、反応により生成した食塩が白金粉に混入したものであると考えられる。白金粉からこの食塩を除去する方法としては、温水によるレパルプ洗浄や焙焼が考えられる。   However, it was not possible to avoid that the platinum powder obtained by this method contains about 300 to 1000 ppmw of sodium and about 100 to 1000 ppmw of chlorine. Since these sodium and chlorine are contained almost uniformly when observed with EPMA, it is considered that sodium chloride produced by the reaction is mixed in the platinum powder. As a method for removing the salt from the platinum powder, repulp washing and roasting with warm water can be considered.

しかし、レパルプ洗浄では食塩の除去効果をほとんど期待することができない。また、食塩の沸点は1413℃と高いため、焙焼による揮発除去により脱ナトリウムや脱塩素を行う為には、1400℃以上が必要となる。しかし、1400℃以上で焙焼すると白金粉の焼結が進み塊状となるため、ハンドリング性が悪いものしか得られなかった。   However, the repulp washing can hardly expect the removal effect of salt. Further, since the boiling point of sodium chloride is as high as 1413 ° C., 1400 ° C. or higher is required in order to perform sodium removal and dechlorination by volatilization removal by roasting. However, when roasting at 1400 ° C. or higher, platinum powder was sintered and became agglomerated, so that only those having poor handling properties were obtained.

このように数百〜1000ppmw程度のナトリウムや塩素を含む白金粉からこれらナトリウムや塩素を前述した合格基準値まで良好に取り除く方法は見当たらず、よって、上記苛性ソーダを使用して白金粉を製造する方法は、白金粉の製造方法としては好適であっても白金粉が得られないという難点があった。本発明は、上記した従来の問題に鑑みてなされたものであり、ナトリウムや塩素などの不純物の混入がほとんどない白金粉を、白金粉を得る工程で使用する反応槽の内壁や攪拌羽根などに箔状の白金を析出させることなく極めて高い収率で回収可能な白金粉の製造方法を提供することを目的としている。   Thus, there is no method for successfully removing these sodium and chlorine from the platinum powder containing sodium and chlorine of about several hundred to 1000 ppmw to the above-mentioned acceptable standard value. Therefore, a method for producing platinum powder using the caustic soda. However, there is a problem that platinum powder cannot be obtained even if it is suitable as a method for producing platinum powder. The present invention has been made in view of the above-described conventional problems, and platinum powder that is hardly mixed with impurities such as sodium and chlorine is used for an inner wall of a reaction vessel or a stirring blade that is used in a step of obtaining platinum powder. An object of the present invention is to provide a method for producing platinum powder that can be recovered with extremely high yield without depositing foil-like platinum.

上記の課題を解決するため、本発明に係る白金粉の製造方法は、原料としての塩化白金酸アンモニウムを湿式法で還元して白金粉を製造する方法であって、還元剤としてのヒドラジン化合物及び中和剤としてのアンモニア化合物を前記原料に添加し、10〜60℃でマグヌス塩を生成する第1工程と、得られたマグヌス塩にヒドラジン化合物を添加し、40〜60℃で白金粉まで還元する第2工程と、得られた白金粉を焙焼する第3工程とから少なくともなることを特徴としている。   In order to solve the above-mentioned problems, a method for producing platinum powder according to the present invention is a method for producing platinum powder by reducing ammonium chloroplatinate as a raw material by a wet method, comprising a hydrazine compound as a reducing agent and A first step of adding an ammonia compound as a neutralizing agent to the raw material to produce a magnus salt at 10 to 60 ° C., adding a hydrazine compound to the obtained magnus salt, and reducing to platinum powder at 40 to 60 ° C. The second step is to include at least a third step of roasting the obtained platinum powder.

上記本発明の白金粉の製造方法においては、上記白金粉の焙焼が700〜950℃の焙焼温度で行われることが好ましい。また、上記添加するアンモニア化合物のモル量が、上記原料としての塩化白金酸アンモニウムに含まれる白金のモル量の4〜12倍であることが好ましい。   In the method for producing platinum powder of the present invention, the platinum powder is preferably roasted at a roasting temperature of 700 to 950 ° C. Moreover, it is preferable that the molar amount of the ammonia compound to be added is 4 to 12 times the molar amount of platinum contained in the ammonium chloroplatinate as the raw material.

本発明によれば、ナトリウムや塩素をほとんど含まない白金粉を極めて高い収率で製造することが可能となる。   According to the present invention, it is possible to produce platinum powder containing almost no sodium or chlorine with a very high yield.

以下、本発明の白金粉の製造方法の一具体例について説明する。この一具体例の製造方法は、原料としての塩化白金酸アンモニウムを湿式法で還元して白金粉を製造する方法であり、先ず第1工程において、上記原料としての塩化白金酸アンモニウムに還元剤及び中和剤を添加し、10〜60℃で反応を行ってマグヌス塩を生成する。   Hereinafter, a specific example of the method for producing platinum powder of the present invention will be described. The manufacturing method of this one specific example is a method of manufacturing platinum powder by reducing ammonium chloroplatinate as a raw material by a wet method. First, in the first step, a reducing agent and ammonium chloride platinate as the raw material are added. A neutralizing agent is added, and a reaction is performed at 10 to 60 ° C. to produce a Magnus salt.

このように、塩化白金酸アンモニウムに還元剤及び中和剤を添加して所定の温度範囲内に調節することにより、Pt(IV)からPt(II)への還元反応が生じ、水に難溶性のマグヌス塩が生成する。このマグヌス塩は低温でも生成するが、温度が低いとスラリーの粘性が高くなって泡切れが悪くなったり、生成したマグヌス塩の取り扱いが困難になったりする。このような問題を抑えるため、反応時の液温度を10℃以上にしている。   In this way, by adding a reducing agent and a neutralizing agent to ammonium chloroplatinate and adjusting the temperature within a predetermined temperature range, a reduction reaction from Pt (IV) to Pt (II) occurs and is hardly soluble in water. Of Magnus salt. This magnus salt is produced even at a low temperature, but if the temperature is low, the viscosity of the slurry becomes high and the foam breakage becomes worse, or the produced magnus salt becomes difficult to handle. In order to suppress such a problem, the liquid temperature at the time of reaction shall be 10 degreeC or more.

一方、反応時の液温度が60℃を超えると、余剰のアンモニアの存在下では安定なテトラアンミン白金(II)が生成する。その結果、液に白金が溶解し、溶解した白金の還元を進めると反応槽の内壁や攪拌機の羽根に箔状の白金が析出する。このように、槽壁等に白金が付着すると、析出により得られた白金を回収する際に非常に手間がかかる。この問題を抑えるため、マグヌス塩の生成反応時の液温度の上限を60℃にしている。特に、液温度の変動や測定誤差等を考慮するとこの上限は50℃とするのが好ましい。   On the other hand, when the liquid temperature during the reaction exceeds 60 ° C., stable tetraammineplatinum (II) is produced in the presence of excess ammonia. As a result, when platinum is dissolved in the solution and the reduction of the dissolved platinum is advanced, foil-like platinum is deposited on the inner wall of the reaction vessel and the blade of the stirrer. Thus, when platinum adheres to a tank wall etc., it will take very much time to collect platinum obtained by precipitation. In order to suppress this problem, the upper limit of the liquid temperature during the production reaction of Magnus salt is set to 60 ° C. In particular, the upper limit is preferably set to 50 ° C. in consideration of variations in liquid temperature, measurement errors, and the like.

最終的に得られる白金粉にナトリウムなどの不純物が混じるのを防ぐため、マグヌス塩を生成する際に用いる上記の中和剤及び還元剤は、ナトリウムなどの不純物を含まないものであることが望ましい。このため、中和剤にはアンモニア化合物、還元剤にはヒドラジン化合物を使用している。   In order to prevent impurities such as sodium from being mixed in the finally obtained platinum powder, it is desirable that the neutralizing agent and reducing agent used when producing the Magnus salt are free of impurities such as sodium. . For this reason, an ammonia compound is used as the neutralizing agent, and a hydrazine compound is used as the reducing agent.

中和剤としてのアンモニア化合物には、例えば炭酸アンモニウム、重炭酸アンモニウム、アンモニア水を使用することができる。これらのうち、炭酸アンモニウム及び重炭酸アンモニウムは、中和により遊離した炭酸が炭酸ガスとして揮発することから発泡が多くなり、反応槽において突沸等の問題を生ずるおそれがある。よって、中和剤には発泡の少ないアンモニア水を使用するのが好ましい。一方、還元剤としてのヒドラジン化合物には、例えば硫酸ヒドラジン、塩酸ヒドラジン、水加ヒドラジンを使用することができる。これらの中では、価格や取扱い易さの面から水加ヒドラジンが好ましい。   As the ammonia compound as the neutralizing agent, for example, ammonium carbonate, ammonium bicarbonate, or aqueous ammonia can be used. Of these, ammonium carbonate and ammonium bicarbonate are liable to foam due to the volatilization of carbon dioxide released by neutralization as carbon dioxide gas, which may cause problems such as bumping in the reaction vessel. Therefore, it is preferable to use ammonia water with less foaming as the neutralizing agent. On the other hand, as the hydrazine compound as a reducing agent, for example, hydrazine sulfate, hydrazine hydrochloride, and hydrazine hydrate can be used. Among these, hydrated hydrazine is preferable from the viewpoint of price and ease of handling.

アンモニア化合物を添加する際は、アンモニア化合物に含まれているアンモニアのモル量が、原料としての塩化白金酸アンモニウムに含まれる白金のモル量の4〜12倍となるように添加することが好ましい。白金のモル量の4倍は理論量から導き出された値であり、白金のモル量の12倍は反応を速やかに完了させるために好適な値である。   When adding an ammonia compound, it is preferable to add it so that the molar amount of ammonia contained in the ammonia compound is 4 to 12 times the molar amount of platinum contained in ammonium chloroplatinate as a raw material. Four times the molar amount of platinum is a value derived from the theoretical amount, and 12 times the molar amount of platinum is a suitable value for completing the reaction quickly.

一方、ヒドラジン化合物を添加する際は、20kgの塩化白金酸アンモニウムに対してヒドラジン濃度30〜70wt%のヒドラジン化合物を1〜10リットル/時程度の添加速度で滴下し、スラリーが黄色からマグヌス塩の生成を示す緑に変色した時点で滴下を終了するのが好ましい。   On the other hand, when adding the hydrazine compound, a hydrazine compound having a hydrazine concentration of 30 to 70 wt% is added dropwise to 20 kg of ammonium chloroplatinate at an addition rate of about 1 to 10 liters / hour. The dripping is preferably terminated when the color changes to green indicating generation.

上記第1工程に続いて行われる第2工程では、第1工程で得たマグヌス塩を含む液にヒドラジン化合物を追加し、40〜60℃の液温度範囲内で、好ましくは40〜50℃の液温度範囲内で還元して白金粉を析出させる。この還元時の液温度が60℃を超えるとテトラアンミン白金(II)が生成し、反応槽の内壁や攪拌機の羽根に箔状の白金が析出する。一方、この温度が40℃未満では還元反応が進みにくくなる。   In the 2nd process performed following the said 1st process, a hydrazine compound is added to the liquid containing the Magnus salt obtained at the 1st process, Preferably it is 40-50 degreeC within the liquid temperature range of 40-60 degreeC. Reduction within the liquid temperature range causes platinum powder to precipitate. When the liquid temperature during the reduction exceeds 60 ° C., tetraammineplatinum (II) is produced, and foil-like platinum is deposited on the inner wall of the reaction tank and the blades of the stirrer. On the other hand, if this temperature is less than 40 ° C., the reduction reaction is difficult to proceed.

ヒドラジン化合物の添加は、20kgの塩化白金酸アンモニウムに対してヒドラジン濃度30〜70wt%のヒドラジン化合物を1〜10リットル/時程度の添加速度で滴下し、マグヌス塩の存在を示す緑色のスラリーが黒色に変色した時点で滴下を終了するのが好ましい。還元により析出させた白金粉は濾過などの固液分離法により回収した後、必要に応じて水洗及び乾燥を行って不純物を除去する。   The hydrazine compound was added by dropping a hydrazine compound having a hydrazine concentration of 30 to 70 wt% to 20 kg of ammonium chloroplatinate at an addition rate of about 1 to 10 liters / hour, and the green slurry indicating the presence of magnus salt was black. The dripping is preferably terminated when the color changes. The platinum powder precipitated by reduction is recovered by a solid-liquid separation method such as filtration, and then washed with water and dried as necessary to remove impurities.

第3工程では、上記第2工程で得た白金粉を焙焼する。湿式法での還元により得た白金粉は、前述した水洗等によりある程度不純物を除去することができるものの、還元反応により生成した塩化アンモニウムが少なからず含まれている。第3工程は、この白金粉に含まれる塩化アンモニウムを焙焼によって揮発除去するのを目的としており、これにより合格基準を満たす白金粉が得られる。   In the third step, the platinum powder obtained in the second step is roasted. The platinum powder obtained by the reduction by the wet method can remove impurities to some extent by washing with water as described above, but contains a little ammonium chloride produced by the reduction reaction. The third step is intended to volatilize and remove ammonium chloride contained in this platinum powder by roasting, whereby a platinum powder satisfying the acceptance criteria is obtained.

焙焼温度は、700〜950℃の範囲で行うことが好ましい。その理由は、白金粉に含まれる塩化アンモニウムは、示差熱−熱重量同時測定(TG−DTA)で温度に対する質量変化を測定すると450℃から700℃までの間で重量減少が認められ、700℃以上ではほとんど重量減少が認められないからである。すなわち、白金粉の焙焼温度を700℃以上とすることで、白金粉に混じっている塩化アンモニウムをほぼ完全に揮発除去することができ、白金粉に含まれるCl品位をより下げることができる。   The roasting temperature is preferably in the range of 700 to 950 ° C. The reason for this is that ammonium chloride contained in platinum powder shows a weight loss between 450 ° C. and 700 ° C. when the mass change with respect to temperature is measured by differential thermal-thermogravimetric simultaneous measurement (TG-DTA). This is because almost no weight reduction is observed. That is, by setting the roasting temperature of the platinum powder to 700 ° C. or higher, the ammonium chloride mixed in the platinum powder can be almost completely volatilized and removed, and the quality of Cl contained in the platinum powder can be further reduced.

他方、950℃以下の焙焼温度が好ましい理由は、焙焼温度を上げると白金粉の焼結が進み、950℃を超えると粉状物に塊状物が含まれるようになるため、焙焼後に粉砕等の操作が必要になるからである。   On the other hand, the reason why a roasting temperature of 950 ° C. or lower is preferable is that if the roasting temperature is increased, the sintering of platinum powder proceeds, and if it exceeds 950 ° C., the powdery material contains agglomerates. This is because operations such as crushing are required.

(実施例1)
先ず、湿潤状態で20kgの塩化白金酸アンモニウム(白金含有量約8kg相当)と30リットルの25%アンモニア水とを容量200リットルのグラスライニング槽に入れ、更に水を加えて液量を約100リットルに調整した。この時、添加したアンモニアのモル量は白金のモル量に対して11倍となる。上記液量の調整により得られたスラリーのpHと温度を測定するとpH10.6、温度が17℃であった。
Example 1
First, in a wet state, 20 kg of ammonium chloroplatinate (equivalent to about 8 kg of platinum) and 30 liters of 25% aqueous ammonia are placed in a glass lining tank with a capacity of 200 liters. Adjusted. At this time, the molar amount of added ammonia is 11 times the molar amount of platinum. When the pH and temperature of the slurry obtained by adjusting the liquid volume were measured, the pH was 10.6 and the temperature was 17 ° C.

続けて、60%水加ヒドラジンを2リットル/時の添加速度で槽内に滴下した。その結果、槽内のスラリーが黄色からマグヌス塩の生成を示す緑に変化すると共に、反応によりスラリーの温度は50℃まで上昇し、その後、徐々に低下した。また、反応の際に生成する泡も徐々に少なくなった。スラリーの温度が46℃まで低下したのでpHを測定すると8.1であった。このスラリーのサンプルを採取したところ、上澄み液の色は当初の赤色が薄黄色となりほぼ無色になっていた。   Subsequently, 60% hydrazine was dropped into the tank at an addition rate of 2 liters / hour. As a result, the slurry in the tank changed from yellow to green indicating the formation of Magnus salt, and the temperature of the slurry increased to 50 ° C. by the reaction, and then gradually decreased. In addition, bubbles generated during the reaction gradually decreased. Since the temperature of the slurry was lowered to 46 ° C., the pH was measured to be 8.1. When a sample of this slurry was collected, the color of the supernatant liquid was almost colorless, with the original red color being pale yellow.

次に、マグヌス塩の還元を行うべく槽内の液の温度設定を40℃にセットし、60%水加ヒドラジンの添加速度を変えずにそのまま添加を継続した。槽内のマグヌス塩の存在を示す緑色のスラリーが黒色に変色したので、ヒドラジンによるマグヌス塩の還元反応が少なくなったと判断して60%水加ヒドラジンの添加を止めた。その後、30分攪拌を続けた。   Next, the temperature setting of the liquid in the tank was set to 40 ° C. to reduce the Magnus salt, and the addition was continued without changing the addition rate of 60% hydrazine. Since the green slurry indicating the presence of magnus salt in the tank turned black, it was judged that the reduction reaction of magnus salt by hydrazine was reduced, and the addition of 60% hydrazine was stopped. Thereafter, stirring was continued for 30 minutes.

30分の攪拌終了後、槽内のスラリーを抜き取り、3種ろ紙とブフナー漏斗を用いた吸引濾過により白金粉を回収した。得られた白金粉は粉状であり、濾過等のハンドリング性も良好であった。スラリーを抜き取った後の槽内を観察したところ、内壁や攪拌羽根への白金粉の付着は全く見られなかった。また、上記濾過により分離した濾液を誘導結合高周波プラズマ分光分析装置(ICP分光分析装置)で分析したところ、濾液に含まれる白金は0.01g/L未満であり、白金の回収率は99%以上であった。   After 30 minutes of stirring, the slurry in the tank was extracted, and platinum powder was collected by suction filtration using a three-type filter paper and a Buchner funnel. The obtained platinum powder was powdery and had good handling properties such as filtration. When the inside of the tank after removing the slurry was observed, no adhesion of platinum powder to the inner wall or the stirring blade was observed. Further, when the filtrate separated by the filtration was analyzed with an inductively coupled high-frequency plasma spectrometer (ICP spectrometer), the platinum contained in the filtrate was less than 0.01 g / L, and the platinum recovery rate was 99% or more. Met.

次に、得られた白金粉をアルミナ製坩堝に入れ、600℃で焙焼した。焙焼後の白金粉の容量は、焙焼前に比べて20%ほど坩堝内で収縮していたが粉状であり取扱性の良いものであった。この白金粉に含まれる不純物の含有率を測定するためグロー放電質量分析装置(GD−MS装置)でNa及びClを測定した。その結果、Naは12ppmw、Clは72ppmwであり、合格基準を満たす白金粉が得られた。   Next, the obtained platinum powder was put into an alumina crucible and roasted at 600 ° C. The capacity of the platinum powder after roasting was 20% less than that before roasting in the crucible, but it was powdery and easy to handle. In order to measure the content of impurities contained in the platinum powder, Na and Cl were measured with a glow discharge mass spectrometer (GD-MS apparatus). As a result, Na was 12 ppmw, Cl was 72 ppmw, and platinum powder satisfying the acceptance criteria was obtained.

(実施例2)
実施例1と同様にして白金粉を作製したが、ヒドラジン添加前の液温を10℃とし、60%水加ヒドラジンの添加により液の温度は31℃まで上昇させた後、低下させた。また、マグヌス塩の還元反応を行うべく設定した槽内の液の温度を40℃に代えて50℃にし、還元反応により60℃まで昇温させた。
(Example 2)
Platinum powder was prepared in the same manner as in Example 1, but the liquid temperature before addition of hydrazine was 10 ° C., and the temperature of the liquid was increased to 31 ° C. by adding 60% hydrazine, and then decreased. Moreover, the temperature of the liquid in the tank set to perform the reduction reaction of Magnus salt was changed to 40 ° C. instead of 40 ° C., and the temperature was raised to 60 ° C. by the reduction reaction.

その結果、実施例1と同様に槽の内壁や攪拌羽根への白金粉の付着はなく、得られた白金粉は粉状であって濾過等のハンドリング性が良好であった。また、濾過により分離した濾液中の白金は0.01g/L未満であり、白金の回収率は98%以上であった。更に、焙焼後の白金粉に含まれるNaは12ppmw、Clは76ppmwであり、合格基準を満たす白金粉が得られた。   As a result, as in Example 1, the platinum powder did not adhere to the inner wall of the tank or the stirring blade, and the obtained platinum powder was powdery and had good handling properties such as filtration. Moreover, platinum in the filtrate separated by filtration was less than 0.01 g / L, and the recovery rate of platinum was 98% or more. Furthermore, Na contained in the platinum powder after roasting was 12 ppmw and Cl was 76 ppmw, and platinum powder satisfying the acceptance criteria was obtained.

(実施例3)
焙焼温度を600℃に代えて700℃としたこと以外は実施例1と同様にして白金粉を作製した。その結果、得られた白金粉に含まれるNaは2ppmw、Clは22ppmwであり、合格基準を満たす白金粉が得られた。実施例1に比べて焙焼温度を上げることによってCl品位が下がり、より高品質の白金粉が得られた。なお、白金の回収率は99%以上であった。
(Example 3)
A platinum powder was produced in the same manner as in Example 1 except that the roasting temperature was changed to 700 ° C. instead of 600 ° C. As a result, Na contained in the obtained platinum powder was 2 ppmw, Cl was 22 ppmw, and platinum powder satisfying the acceptance criteria was obtained. By raising the roasting temperature as compared with Example 1, the Cl quality was lowered and a higher quality platinum powder was obtained. The recovery rate of platinum was 99% or more.

(実施例4)
焙焼温度を600℃に代えて700℃としたこと以外は実施例2と同様にして白金粉を作製した。その結果、得られた白金粉に含まれるNaは2ppmw、Clは26ppmwであり、合格基準を満たす白金粉が得られた。実施例2に比べて焙焼温度を上げることによってCl品位が下がり、より高品質の白金粉が得られた。なお、白金の回収率は98%以上であった。
Example 4
A platinum powder was produced in the same manner as in Example 2 except that the roasting temperature was changed to 700 ° C. instead of 600 ° C. As a result, Na contained in the obtained platinum powder was 2 ppmw, Cl was 26 ppmw, and a platinum powder satisfying the acceptance criteria was obtained. By raising the roasting temperature as compared with Example 2, the Cl quality was lowered, and higher quality platinum powder was obtained. The recovery rate of platinum was 98% or more.

(比較例1)
マグヌス塩の生成を70℃で行った後、マグヌス塩の還元を80℃で行ったことと、焙焼温度を700℃としたこと以外は実施例1と同様にして白金粉を作製した。その結果、得られた白金粉に含まれるNaは2ppmw、Clは23ppmwであり、合格基準を満たす白金粉が得られた。
(Comparative Example 1)
After producing the Magnus salt at 70 ° C., platinum powder was prepared in the same manner as in Example 1 except that the Magnus salt was reduced at 80 ° C. and the roasting temperature was 700 ° C. As a result, Na contained in the obtained platinum powder was 2 ppmw, Cl was 23 ppmw, and platinum powder satisfying the acceptance criteria was obtained.

しかしながら、反応終了後に槽内の液を濾過して得た濾液をICP分光分析装置で測定したところ、濾液中の白金は20g/Lであった。濾液中に残留した白金量と濾過で回収した白金粉量から白金回収率を算出すると72.8%となり、回収率は悪いものであった。更に、槽内の攪拌羽根や邪魔板に箔状の白金が付着していた。   However, when the filtrate obtained by filtering the liquid in the tank after completion of the reaction was measured with an ICP spectrometer, the platinum in the filtrate was 20 g / L. When the platinum recovery rate was calculated from the amount of platinum remaining in the filtrate and the amount of platinum powder recovered by filtration, it was 72.8%, and the recovery rate was poor. Furthermore, foil-like platinum was adhered to the stirring blade and the baffle plate in the tank.

(比較例2)
湿潤状態で400gの塩化白金酸アンモニウム(白金含有量約160g相当)と400mLの25%アンモニア水とを容量3リットルのビーカーに入れ、更に水を加えて液量を約2リットルに調整した。この時、添加したアンモニアのモル量は白金のモル量に対して7倍となる。上記液量の調整により得られたスラリーの温度を70℃に調整し、60%水加ヒドラジンを40mL/時の添加速度で槽内に滴下した。
(Comparative Example 2)
In a wet state, 400 g of ammonium chloroplatinate (equivalent to about 160 g of platinum) and 400 mL of 25% aqueous ammonia were placed in a 3 liter beaker, and water was added to adjust the liquid volume to about 2 liters. At this time, the molar amount of added ammonia is 7 times the molar amount of platinum. The temperature of the slurry obtained by adjusting the liquid volume was adjusted to 70 ° C., and 60% hydrazine hydrate was dropped into the tank at an addition rate of 40 mL / hour.

引き続き、スラリーの温度を70℃に保ちながら60%水加ヒドラジンの添加速度を変えずにそのまま添加を継続した。その結果、槽内のスラリーが薄黄色の液に溶解し、ビーカーの内壁面に白金が銀鏡の状態となって付着した。更に1時間還元を続けた後、ビーカー内部を観察すると、ビーカーの内壁面及び攪拌羽根に白金が箔状になって付着し、白金粉はほとんど得られなかった。   Subsequently, addition was continued without changing the addition rate of 60% hydrazine while maintaining the temperature of the slurry at 70 ° C. As a result, the slurry in the tank was dissolved in a light yellow liquid, and platinum adhered to the inner wall surface of the beaker as a silver mirror. After further reduction for 1 hour, when the inside of the beaker was observed, platinum adhered to the inner wall surface of the beaker and the stirring blade in the form of a foil, and platinum powder was hardly obtained.

(比較例3)
湿潤状態で20kgの塩化白金酸アンモニウムを容量200リットルの槽に入れ、水を添加して容量を100リットルに調整した後、24%苛性ソーダでpH12に調整した。得られたスラリーの温度を80℃に昇温させてから60%水加ヒドラジンを2リットル/時の添加速度で添加した。
(Comparative Example 3)
In a wet state, 20 kg of ammonium chloroplatinate was placed in a 200 liter tank, water was added to adjust the volume to 100 liters, and then adjusted to pH 12 with 24% caustic soda. After the temperature of the resulting slurry was raised to 80 ° C., 60% hydrazine was added at an addition rate of 2 liters / hour.

槽内の泡の発生が少なくなったのでヒドラジンによる還元反応がなくなったものと判断してヒドラジンの添加を停止した。その後、30分攪拌を続け、30℃まで冷却してからスラリーの濾過を行って白金粉を回収した。回収した白金粉は取扱性のよい粉状であった。また、槽内に箔状等の白金の付着はなかった。上記濾過で得た濾液をICP分析装置で測定したところ、濾液中の白金は0.01g/L未満であり、98%以上の回収率が得られた。   Since the generation of bubbles in the tank was reduced, it was judged that the reduction reaction by hydrazine was eliminated, and the addition of hydrazine was stopped. Thereafter, stirring was continued for 30 minutes, and after cooling to 30 ° C., the slurry was filtered to recover platinum powder. The recovered platinum powder was in a powder form with good handleability. Moreover, there was no adhesion of platinum, such as foil shape, in the tank. When the filtrate obtained by the above filtration was measured with an ICP analyzer, platinum in the filtrate was less than 0.01 g / L, and a recovery rate of 98% or more was obtained.

次に、回収した白金粉を温水で洗浄した後、アルミナ製坩堝に入れて700℃で焙焼した。焙焼後の白金粉に含まれるNa、ClをGD−MS装置で使用して測定したところ、Naは940ppmw、Clは140ppmwであり、合格基準を満たしていなかった。   Next, after the collected platinum powder was washed with warm water, it was put into an alumina crucible and roasted at 700 ° C. When Na and Cl contained in the platinum powder after roasting were measured using a GD-MS apparatus, Na was 940 ppmw and Cl was 140 ppmw, which did not satisfy the acceptance criteria.

Claims (3)

原料としての塩化白金酸アンモニウムを湿式法で還元して白金粉を製造する方法であって、還元剤としてのヒドラジン化合物及び中和剤としてのアンモニア化合物を前記原料に添加し、10〜60℃でマグヌス塩を生成する第1工程と、得られたマグヌス塩にヒドラジン化合物を添加し、40〜60℃で白金粉まで還元する第2工程と、得られた白金粉を焙焼する第3工程とから少なくともなることを特徴とする白金粉の製造方法。   A method of producing platinum powder by reducing ammonium chloroplatinate as a raw material by a wet method, comprising adding a hydrazine compound as a reducing agent and an ammonia compound as a neutralizing agent to the raw material at 10 to 60 ° C. A first step of producing a Magnus salt, a second step of adding a hydrazine compound to the obtained Magnus salt and reducing the platinum powder to 40-60 ° C., and a third step of roasting the obtained platinum powder. A method for producing platinum powder, characterized by comprising at least 前記白金粉の焙焼が700〜950℃の焙焼温度で行われることを特徴とする、請求項1に記載の白金粉の製造方法。   The method for producing platinum powder according to claim 1, wherein the platinum powder is roasted at a roasting temperature of 700 to 950 ° C. 前記添加するアンモニア化合物のモル量が、前記原料としての塩化白金酸アンモニウムに含まれる白金のモル量の4〜12倍であることを特徴とする、請求項1または2に記載の白金粉の製造方法。   3. The production of platinum powder according to claim 1, wherein a molar amount of the ammonia compound to be added is 4 to 12 times a molar amount of platinum contained in ammonium chloroplatinate as the raw material. Method.
JP2013042138A 2013-03-04 2013-03-04 Method for producing platinum powder Active JP6051953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042138A JP6051953B2 (en) 2013-03-04 2013-03-04 Method for producing platinum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042138A JP6051953B2 (en) 2013-03-04 2013-03-04 Method for producing platinum powder

Publications (2)

Publication Number Publication Date
JP2014169484A true JP2014169484A (en) 2014-09-18
JP6051953B2 JP6051953B2 (en) 2016-12-27

Family

ID=51692059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042138A Active JP6051953B2 (en) 2013-03-04 2013-03-04 Method for producing platinum powder

Country Status (1)

Country Link
JP (1) JP6051953B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108907217A (en) * 2018-07-27 2018-11-30 江苏北矿金属循环利用科技有限公司 A kind of method that short route prepares Ultrafine Platinum Powder
CN108941597A (en) * 2018-07-27 2018-12-07 江苏北矿金属循环利用科技有限公司 A method of Ultrafine Platinum Powder is prepared by slightly solubility platinum salt
CN113477938A (en) * 2021-07-12 2021-10-08 安徽拓思贵金属有限公司 Preparation method of high-purity platinum powder

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294416A (en) * 1989-05-09 1990-12-05 Ishifuku Kinzoku Kogyo Kk Production of platinum powder
JPH04323309A (en) * 1991-04-12 1992-11-12 Daido Steel Co Ltd Production of fine metal powder
JPH06145727A (en) * 1992-11-10 1994-05-27 Mitsubishi Materials Corp Production of spheroidal palladium powder
JPH11241103A (en) * 1998-02-25 1999-09-07 Ishifuku Metal Ind Co Ltd Production of spherical platinum powder to be used for platinum paste
JP2002155306A (en) * 2000-11-16 2002-05-31 Sumitomo Metal Mining Co Ltd Method for producing palladium powder
JP2006199982A (en) * 2005-01-18 2006-08-03 Tanaka Kikinzoku Kogyo Kk Method for producing metallic fine powder
JP2008095174A (en) * 2006-09-14 2008-04-24 Kojima Kagaku Yakuhin Kk Method for producing particulate platinum powder
JP2008106349A (en) * 2006-09-28 2008-05-08 Kojima Kagaku Yakuhin Kk Method for producing platinum powder
JP2009191298A (en) * 2008-02-12 2009-08-27 Noritake Co Ltd Method for producing metal particulate-dispersed liquid
WO2010024150A1 (en) * 2008-08-28 2010-03-04 日鉱金属株式会社 Process for producing powder mixture comprising noble-metal powder and oxide powder and powder mixture comprising noble-metal powder and oxide powder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294416A (en) * 1989-05-09 1990-12-05 Ishifuku Kinzoku Kogyo Kk Production of platinum powder
JPH04323309A (en) * 1991-04-12 1992-11-12 Daido Steel Co Ltd Production of fine metal powder
JPH06145727A (en) * 1992-11-10 1994-05-27 Mitsubishi Materials Corp Production of spheroidal palladium powder
JPH11241103A (en) * 1998-02-25 1999-09-07 Ishifuku Metal Ind Co Ltd Production of spherical platinum powder to be used for platinum paste
JP2002155306A (en) * 2000-11-16 2002-05-31 Sumitomo Metal Mining Co Ltd Method for producing palladium powder
JP2006199982A (en) * 2005-01-18 2006-08-03 Tanaka Kikinzoku Kogyo Kk Method for producing metallic fine powder
JP2008095174A (en) * 2006-09-14 2008-04-24 Kojima Kagaku Yakuhin Kk Method for producing particulate platinum powder
JP2008106349A (en) * 2006-09-28 2008-05-08 Kojima Kagaku Yakuhin Kk Method for producing platinum powder
JP2009191298A (en) * 2008-02-12 2009-08-27 Noritake Co Ltd Method for producing metal particulate-dispersed liquid
WO2010024150A1 (en) * 2008-08-28 2010-03-04 日鉱金属株式会社 Process for producing powder mixture comprising noble-metal powder and oxide powder and powder mixture comprising noble-metal powder and oxide powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108907217A (en) * 2018-07-27 2018-11-30 江苏北矿金属循环利用科技有限公司 A kind of method that short route prepares Ultrafine Platinum Powder
CN108941597A (en) * 2018-07-27 2018-12-07 江苏北矿金属循环利用科技有限公司 A method of Ultrafine Platinum Powder is prepared by slightly solubility platinum salt
CN113477938A (en) * 2021-07-12 2021-10-08 安徽拓思贵金属有限公司 Preparation method of high-purity platinum powder

Also Published As

Publication number Publication date
JP6051953B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP5287016B2 (en) Method for separating zinc sulfide
EP1845169B1 (en) Method for recovering indium
CN107513620A (en) A kind of process of the Extraction of rare earth oxide from fluorescent powder scrap
CN103993173B (en) Method for the dechlorination of hydroxide nickel cobalt
JPH09217133A (en) Method for recovering useful element from rear earth-nickel alloy
KR20120034127A (en) Method for collection of valuable metal from ito scrap
JP6011809B2 (en) Method for producing gold powder with high bulk density
JP6051953B2 (en) Method for producing platinum powder
JP4999058B2 (en) Method for recovering indium from indium-containing material
CN105087934A (en) Method for recycling rare earth metal from waste fluorescent powder
JP4747286B2 (en) Fine tin oxide powder and its production method and use
CN105132707A (en) Method for recycling silver from silver-copper composite material
JP2007009274A (en) Method for recovering indium
JP2014025141A (en) METHOD OF RECOVERING GALLIUM FROM InGa WASTE MATERIAL
JP6406613B2 (en) Method for producing nickel powder with reduced concentration of carbon and sulfur
JP5991309B2 (en) Manufacturing method of high-purity platinum powder
AU2016345951B2 (en) Method for producing seed crystal of cobalt powder
KR20050076650A (en) Method for producing indium-containing aqueous solution
JP5156992B2 (en) Method for recovering indium from indium-containing material
JP5339762B2 (en) Method for producing indium metal
JP2017082270A5 (en)
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP6017876B2 (en) A method for recovering gallium from waste copper gallium.
CN110484744A (en) A method of recycling noble metal from waste and old patch capacitor
JP4432566B2 (en) Method for producing tin oxide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6051953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150