JP2014169239A - Nucleic acid derivative and production method thereof - Google Patents

Nucleic acid derivative and production method thereof Download PDF

Info

Publication number
JP2014169239A
JP2014169239A JP2013041084A JP2013041084A JP2014169239A JP 2014169239 A JP2014169239 A JP 2014169239A JP 2013041084 A JP2013041084 A JP 2013041084A JP 2013041084 A JP2013041084 A JP 2013041084A JP 2014169239 A JP2014169239 A JP 2014169239A
Authority
JP
Japan
Prior art keywords
group
compound
nucleic acid
acid derivative
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013041084A
Other languages
Japanese (ja)
Inventor
Noriaki Namikawa
典昭 南川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokushima NUC
Original Assignee
University of Tokushima NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokushima NUC filed Critical University of Tokushima NUC
Priority to JP2013041084A priority Critical patent/JP2014169239A/en
Publication of JP2014169239A publication Critical patent/JP2014169239A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a nucleic acid derivative with an oxygen atom on a ribose ring being substituted by a -S-S- group; and a nucleic acid derivative produced by the method.SOLUTION: The production method of the nucleic acid derivative according to the present invention is a method for producing a nucleic acid derivative having a dithiane ring, where a carboxylate compound is obtained from a thiolsulfinate compound by Pummerer rearrangement reaction before a nucleic acid base group is introduced by Vorbruggen reaction.

Description

本発明は、核酸誘導体と、その効率的な製造方法に関するものである。   The present invention relates to a nucleic acid derivative and an efficient production method thereof.

核酸誘導体は、対象特異性や様々な活性を有する医薬や農薬としての開発が期待されている。しかし、例えばオリゴRNAには、安定性が低い、自然免疫応答の抗原になる、対象へのドラッグデリバリーシステムが確立していないといった問題があり、医薬としては未だ実用段階にないのが実情である。   Nucleic acid derivatives are expected to be developed as pharmaceuticals and agricultural chemicals having target specificity and various activities. However, for example, oligo RNA has problems such as low stability, an antigen of an innate immune response, and a drug delivery system to a target has not been established, and it is actually not in practical use as a pharmaceutical .

本発明者は、核酸分解酵素による攻撃を回避して核酸誘導体またはそのオリゴマーの安定性を向上すべく、ヌクレオシドの糖部酸素原子を硫黄原子に置換した4’−チオ核酸を開発している(非特許文献1〜3)。   The present inventor has developed a 4′-thionucleic acid in which a sugar atom oxygen atom of a nucleoside is substituted with a sulfur atom in order to avoid the attack by a nucleolytic enzyme and improve the stability of a nucleic acid derivative or an oligomer thereof ( Non-patent documents 1 to 3).

Nucleic Acids Res.,2012,40,5787Nucleic Acids Res. , 2012, 40, 5787 ChemBioChem,2007,8,2133ChemBioChem, 2007, 8, 2133 FEBS Lett.,2005,579,3115FEBS Lett. , 2005, 579, 3115

上述したように、核酸誘導体やそのオリゴマーを工夫することにより、従来の核酸医薬の欠点を改善できたり、或いは、新たな又はより優れた薬効が得られる可能性がある。   As described above, by devising nucleic acid derivatives and oligomers thereof, there is a possibility that the drawbacks of conventional nucleic acid medicines can be improved, or that new or better medicinal effects can be obtained.

本発明者は、新たな核酸誘導体として、核酸のリボース環の酸素原子を−S−S−基とした1,2−ジチアン誘導体を考案して合成に着手した。しかし、従来方法を適用しても目的化合物を得ることはできなかった。   As a new nucleic acid derivative, the present inventors have devised a 1,2-dithiane derivative in which the oxygen atom of the ribose ring of the nucleic acid is a -S-S- group and started synthesis. However, the target compound could not be obtained by applying the conventional method.

そこで本発明は、リボース環の酸素原子が−S−S−基で置換された核酸誘導体を製造するための方法と、当該方法で製造された核酸誘導体を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing a nucleic acid derivative in which the oxygen atom of the ribose ring is substituted with a -SS- group, and a nucleic acid derivative produced by the method.

本発明者は、上記課題を解決するために鋭意研究を重ねた。先ず、核酸のリボース環の酸素原子を−S−S−基で直接置換することはできない。そこで、1,2−ジチアン化合物をスルフィナート化した上で、Pummerer転位反応の変法により核酸塩基基を直接導入すべく試みたが、収率が低く目的化合物は僅かしか得られなかった。そこで、Pummerer転位反応を利用して無水酢酸を反応させることにより上記チオールスルフィナート化合物へアセトキシ基をいったん導入し、さらにVorbruggen反応で核酸塩基基を導入することにより目的の核酸誘導体が得られることを見出して、本発明を完成した。   This inventor repeated earnest research in order to solve the said subject. First, the oxygen atom of the ribose ring of a nucleic acid cannot be directly substituted with a -S-S- group. Therefore, an attempt was made to directly introduce a nucleobase group by converting the 1,2-dithiane compound into a sulfinate and then modifying the Pummerer rearrangement reaction. However, the yield was low and only a few target compounds were obtained. Therefore, the target nucleic acid derivative can be obtained by once introducing an acetoxy group into the thiolsulfinate compound by reacting acetic anhydride using the Pummerer rearrangement reaction and further introducing a nucleobase group by the Vorbruggen reaction. And the present invention was completed.

本発明に係る核酸誘導体の製造方法は、下記式(I)で表される核酸誘導体を製造するための方法であって、   A method for producing a nucleic acid derivative according to the present invention is a method for producing a nucleic acid derivative represented by the following formula (I):

[式中、
1およびR2は独立に水素原子または水酸基の保護基を示し;
3は水素原子、水酸基、保護水酸基、C1-6アルコキシ基、2−(C1-6アルコキシ)エトキシ基またはハロゲン原子を示し;
Bは、下記式で表される何れかの核酸塩基基:
[Where:
R 1 and R 2 independently represent a hydrogen atom or a hydroxyl protecting group;
R 3 represents a hydrogen atom, a hydroxyl group, a protected hydroxyl group, a C 1-6 alkoxy group, a 2- (C 1-6 alkoxy) ethoxy group or a halogen atom;
B is any nucleobase represented by the following formula:

[式中、R4は水素原子またはアミノ基の保護基を示す]を示す]
下記式(II)で表されるチオールスルフィナート化合物にカルボン酸無水物を作用させることにより、下記式(III)で表されるカルボキシレート化合物を得る工程:
[Wherein R 4 represents a hydrogen atom or an amino-protecting group]
The process of obtaining the carboxylate compound represented by following formula (III) by making a carboxylic anhydride act on the thiol sulfinate compound represented by following formula (II):

[式中、R1〜R3は上記と同義を示し;R5はC1-6アルキル基またはC1-6ハロゲン化アルキル基を示す];および
シリル化剤とルイス酸の存在下、カルボキシレート化合物(III)と核酸塩基を反応させることにより核酸誘導体(I)を得る工程を含むことを特徴とする。
[Wherein R 1 to R 3 are as defined above; R 5 is a C 1-6 alkyl group or a C 1-6 halogenated alkyl group]; and carboxy in the presence of a silylating agent and a Lewis acid. It comprises a step of obtaining a nucleic acid derivative (I) by reacting a rate compound (III) with a nucleobase.

上記本発明方法において、ルイス酸としてはトリフルオロメタンスルホン酸トリメチルシリルを、シリル化剤としてはN,O−ビス(トリメチルシリル)アセトアミドを好適に用いることができる。   In the method of the present invention, trimethylsilyl trifluoromethanesulfonate can be suitably used as the Lewis acid, and N, O-bis (trimethylsilyl) acetamide can be suitably used as the silylating agent.

上記本発明方法において、チオールスルフィナート化合物(II)を得る工程として、さらに、ジチアン化合物(IV)を酸化してチオールスルフィナート化合物(II)を得る工程:   In the method of the present invention, as the step of obtaining the thiolsulfinate compound (II), the step of further oxidizing the dithiane compound (IV) to obtain the thiolsulfinate compound (II):

[式中、R1〜R3は上記と同義を示す]
を含むことが好ましい。
[Wherein R 1 to R 3 are as defined above]
It is preferable to contain.

本発明に係る核酸誘導体は、下記式(I)で表されることを特徴とする。   The nucleic acid derivative according to the present invention is represented by the following formula (I).

[式中、
1およびR2は独立に水素原子または水酸基の保護基を示し;
3は水素原子、水酸基、保護水酸基、C1-6アルコキシ基、2−(C1-6アルコキシ)エトキシ基またはハロゲン原子を示し;
Bは、下記式で表される何れかの核酸塩基基:
[Where:
R 1 and R 2 independently represent a hydrogen atom or a hydroxyl protecting group;
R 3 represents a hydrogen atom, a hydroxyl group, a protected hydroxyl group, a C 1-6 alkoxy group, a 2- (C 1-6 alkoxy) ethoxy group or a halogen atom;
B is any nucleobase represented by the following formula:

[式中、R4は水素原子またはアミノ基の保護基を示す]を示す] [Wherein R 4 represents a hydrogen atom or an amino-protecting group]

本発明において、「水酸基の保護基」は、水酸基の保護基として当業界で一般に用いられるものであれば特に制限されないが、例えば、ベンジル基、p−メトキシベンジル基、3,4−ジメトキシベンジル基、o−またはp−ニトロベンジル基、p−ハロベンジル基、2,6−ジクロロベンジル基などのベンジル系保護基;トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t−ブチルジメチルシリル基、トリフェニルシリル基などのシリル系保護基;アセチル基やベンゾイル基などのアシル系保護基;メトキシメチル基、p−メトキシベンジルオキシメチル基、t−ブトキシメチル基、2−メトキシエトキシメチル基、1−メトキシエチル基、1−エトキシエチル基などのアルコキシメチル系保護基などを挙げることができる。また、チオールスルフィナート環の4位と5位の水酸基を同時に保護できる保護基として、メチレンアセタール基、エチレンアセタール基、アセトニド基などの環状アセタール系保護基などを用いてもよい。   In the present invention, the “hydroxyl-protecting group” is not particularly limited as long as it is generally used in the art as a hydroxyl-protecting group, and examples thereof include a benzyl group, a p-methoxybenzyl group, and a 3,4-dimethoxybenzyl group. Benzyl protecting groups such as o- or p-nitrobenzyl group, p-halobenzyl group, 2,6-dichlorobenzyl group; trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, t-butyldimethylsilyl group, triphenyl Silyl protecting group such as silyl group; Acyl protecting group such as acetyl group and benzoyl group; Methoxymethyl group, p-methoxybenzyloxymethyl group, t-butoxymethyl group, 2-methoxyethoxymethyl group, 1-methoxyethyl And alkoxymethyl protecting groups such as 1-ethoxyethyl group It can be. Further, as a protecting group capable of simultaneously protecting the 4-position and 5-position hydroxyl groups of the thiolsulfinate ring, a cyclic acetal-based protecting group such as a methylene acetal group, an ethylene acetal group, an acetonide group, or the like may be used.

「保護水酸基」とは、上記保護基で保護された水酸基を意味する。例えば、ベンジルオキシ基、p−メトキシベンジルオキシ基、トリメチルシリルオキシ基、トリイソプロピルシリルオキシ基、1−メトキシエトキシ基などを挙げることができる。   “Protected hydroxyl group” means a hydroxyl group protected by the above-described protecting group. For example, a benzyloxy group, a p-methoxybenzyloxy group, a trimethylsilyloxy group, a triisopropylsilyloxy group, a 1-methoxyethoxy group, and the like can be given.

「C1-6アルコキシ基」は、炭素数1以上、6以下の直鎖状または分岐鎖状の一価脂肪族飽和炭化水素オキシ基をいう。例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基などを挙げることができる。これらのうち、C1-4アルコキシ基が好ましく、C1-2アルコキシ基がより好ましく、メトキシ基が特に好ましい。 The “C 1-6 alkoxy group” refers to a linear or branched monovalent aliphatic saturated hydrocarbon oxy group having 1 to 6 carbon atoms. For example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group, etc. Can do. Of these, a C 1-4 alkoxy group is preferable, a C 1-2 alkoxy group is more preferable, and a methoxy group is particularly preferable.

「2−(C1-6アルコキシ)エトキシ基」は、エトキシ基の2位に上記C1-6アルコキシ基が置換した基をいう。例えば2−メトキシエトキシ基は、CH3OCH2CH2O−の構造を有する。 “2- (C 1-6 alkoxy) ethoxy group” refers to a group in which the C 1-6 alkoxy group is substituted at the 2-position of the ethoxy group. For example, the 2-methoxyethoxy group has a structure of CH 3 OCH 2 CH 2 O—.

「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができる。R3のハロゲン原子としては、フッ素原子が好適である。 Examples of the “halogen atom” include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The halogen atom for R 3 is preferably a fluorine atom.

なお、R3がC1-6アルコキシ基、2−(C1-6アルコキシ)エトキシ基またはハロゲン原子である場合、生体内で分解され難くなり、本発明に係る核酸誘導体またはそれを含むオリゴマーの安定性が向上する。 In addition, when R 3 is a C 1-6 alkoxy group, a 2- (C 1-6 alkoxy) ethoxy group or a halogen atom, the nucleic acid derivative according to the present invention or an oligomer containing the nucleic acid derivative is hardly decomposed in vivo. Stability is improved.

「アミノ基の保護基」は、アミノ基の保護基として当業界で一般に用いられるものであれば特に制限されないが、例えば、メチルカルバメート基、エチルカルバメート基、9−フルオレニルメチルカルバメート基、t−ブチルカルバメート基などのカルバメート系保護基;アセチル基やベンゾイル基などのアシル系保護基などを挙げることができる。なお、−NHR4基においては、保護基であるR4は、例えば、ジメチルアミノメチレン基、ベンジリデン基、ジフェニルメチレン基などのイミン系保護基や、環状保護基など、−N=R4の形でアミノ基を保護するものであってもよいものとする。 The “amino-protecting group” is not particularly limited as long as it is commonly used in the art as an amino-protecting group. For example, a methyl carbamate group, an ethyl carbamate group, a 9-fluorenylmethyl carbamate group, t -Carbamate protecting groups such as butyl carbamate groups; acyl protecting groups such as acetyl groups and benzoyl groups. In the -NHR 4 group, R 4 is a protecting group, for example, dimethylamino methylene group, a benzylidene group, and imine protecting groups such as diphenylmethylene group, a cyclic protecting group, -N = the form of R 4 In this case, the amino group may be protected.

「カルボン酸無水物」とは、炭素数2以上、6以下の、ハロゲン原子で置換されていてもよい直鎖状または分岐鎖状のカルボン酸の無水物をいう。例えば、無水酢酸、プロピオン酸無水物、トリフルオロ酢酸無水物などを挙げることができる。   “Carboxylic anhydride” refers to a linear or branched carboxylic anhydride having 2 to 6 carbon atoms and optionally substituted with a halogen atom. For example, acetic anhydride, propionic anhydride, trifluoroacetic anhydride and the like can be mentioned.

「C1-6アルキル基」とは、炭素数1以上、6以下の直鎖状または分岐鎖状の一価脂肪族飽和炭化水素基をいう。例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基等を挙げることができる。これらのうち、C1-4アルキル基が好ましく、C1-2アルキル基がより好ましく、メチル基が特に好ましい。 The “C 1-6 alkyl group” refers to a linear or branched monovalent aliphatic saturated hydrocarbon group having 1 to 6 carbon atoms. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group and the like can be mentioned. Of these, a C 1-4 alkyl group is preferable, a C 1-2 alkyl group is more preferable, and a methyl group is particularly preferable.

「C1-6ハロゲン化アルキル基」は、少なくとも一つのハロゲン原子で置換されているC1-6アルキル基を意味する。例えば、トリフルオロメチル基、トリフルオロエチル基、ペンタフルオロエチル基、クロロメチル基、ブロモメチル基などが挙げられる。 “C 1-6 halogenated alkyl group” means a C 1-6 alkyl group substituted with at least one halogen atom. Examples thereof include a trifluoromethyl group, a trifluoroethyl group, a pentafluoroethyl group, a chloromethyl group, and a bromomethyl group.

本発明方法によれば、リボース環の酸素原子が−S−S−基に置換された新規な核酸誘導体を製造することが可能である。当該核酸誘導体は、それ自体が、或いはそれが少なくとも一部に含まれる核酸オリゴマーが、従来の核酸医薬の欠点を克服したり、また、新たな又はより優れた薬効を示す可能性がある。従って本発明方法は、新たな核酸医薬の提供の一助になるものとして、産業上有用である。   According to the method of the present invention, it is possible to produce a novel nucleic acid derivative in which the oxygen atom of the ribose ring is substituted with the —SS— group. In the nucleic acid derivative, the nucleic acid oligomer itself or at least a part of the nucleic acid derivative may overcome the shortcomings of conventional nucleic acid drugs, and may exhibit a new or superior medicinal effect. Therefore, the method of the present invention is industrially useful as an aid for providing a new nucleic acid drug.

以下、本発明方法を実施の順番に従って説明する。なお、下記の何れの工程においても、適時、各保護基を各反応に適したものに変更してもよいものとする。適切な保護基と保護反応および脱保護反応は、当業者であれば公知方法から適宜選択することができる。例えば、T.W.Green,P.G.M.Wuts,"PROTECTIVE GROUPS IN ORGANIC SYNTHESIS",JOHN WILEY & SONS,Inc.を参照すればよい。   Hereinafter, the method of the present invention will be described in the order of execution. In any of the following steps, each protecting group may be changed to one suitable for each reaction at an appropriate time. Appropriate protecting groups and protecting and deprotecting reactions can be appropriately selected from known methods by those skilled in the art. For example, T.W. W. Green, P. G. M. Wuts, "PROTECTIVE GROUPS IN ORGANIC SYNTHESIS", JOHN WILEY & SONS, Inc. Please refer to.

また、化合物(I)〜(IV)等における絶対構造は制限されないが、以下では、天然の核酸の成分であるD−リボースを出発原料とした例をもって説明する。他の立体配置を有する化合物も、以下の方法を適用して合成可能である。但し、化合物(I)〜(IV)等としては、D−リボースと同様の立体構造を有するものが好適である。   The absolute structures of the compounds (I) to (IV) and the like are not limited. In the following, description will be made with an example using D-ribose, which is a component of natural nucleic acid, as a starting material. Compounds having other steric configurations can also be synthesized by applying the following method. However, as the compounds (I) to (IV), those having the same steric structure as D-ribose are suitable.

(1) D−リビトール化合物の製造工程
上述したとおり、核酸のリボース環の酸素原子を−S−S−基で直接置換することはできないため、原料中間体としてジチアン化合物を得る必要がある。本工程では、ジチアン化合物を得るための合成中間体であるD−リビトール化合物をD−リボースから製造する。
(1) Production process of D-ribitol compound As described above, since the oxygen atom of the ribose ring of the nucleic acid cannot be directly substituted with the -SS- group, it is necessary to obtain a dithiane compound as a raw material intermediate. In this step, a D-ribitol compound, which is a synthetic intermediate for obtaining a dithian compound, is produced from D-ribose.

本工程におけるR1とR2は、求核置換反応や塩基性条件に耐える保護基とし、また、R3も求核置換反応や塩基性条件に耐える保護基で保護された水酸基とすることが好ましい。なお、以降において、これらR1〜R3は、所望のものに適宜官能基変換すればよい。 In this step, R 1 and R 2 are protective groups that can withstand nucleophilic substitution reactions and basic conditions, and R 3 is also a hydroxyl group protected by a protective group that can withstand nucleophilic substitution reactions and basic conditions. preferable. In the following, these R 1 to R 3 may be appropriately converted into desired functional groups.

求核置換反応や塩基性条件に耐える保護基は、適宜選択すればよいが、例えば、ベンジル基、p−メトキシベンジル基、3,4−ジメトキシベンジル基、o−またはp−ニトロベンジル基、p−ハロベンジル基、2,6−ジクロロベンジル基などのベンジル系保護基などを挙げることができる。   A protecting group that can withstand a nucleophilic substitution reaction and basic conditions may be appropriately selected. For example, a benzyl group, a p-methoxybenzyl group, a 3,4-dimethoxybenzyl group, an o- or p-nitrobenzyl group, p And benzyl protecting groups such as -halobenzyl group and 2,6-dichlorobenzyl group.

例えば、R1とR2がp−メトキシベンジル基であり、R3がp−メトキシベンジルオキシ基であるリビトール化合物は、D−リボースから製造されている公知化合物である。よって、本工程は、例えば、Tetrahedronn,2003,59,pp.1699-1702を参照して実施することができる。 For example, a ribitol compound in which R 1 and R 2 are p-methoxybenzyl groups and R 3 is a p-methoxybenzyloxy group is a known compound produced from D-ribose. Therefore, this process is described in, for example, Tetrahedronn, 2003, 59, pp. It can be implemented with reference to 1699-1702.

(2) ジチアン化合物の製造工程
次に、二段階の求核置換反応を利用して水酸基を−SAc基に変換した後、閉環することによりジチアン化合物(IV)を得る。
(2) Manufacturing process of dithiane compound Next, a dithiane compound (IV) is obtained by converting a hydroxyl group into -SAc group using a two-step nucleophilic substitution reaction and then ring-closing.

[上記スキーム中、Halは、塩素原子、臭素原子、ヨウ素原子など脱離基となるハロゲン原子を示す] [In the above scheme, Hal represents a halogen atom serving as a leaving group such as a chlorine atom, a bromine atom or an iodine atom]

本工程の第一段階では、水酸基をメタンスルホニル基などの脱離基とした後、求核置換反応により、上記リビトール化合物の二級アルコール基の立体配置を反転させつつ、脱離基であるハロゲン原子に変換する。   In the first step of this process, after leaving the hydroxyl group to be a leaving group such as a methanesulfonyl group, the configuration of the secondary alcohol group of the ribitol compound is reversed by a nucleophilic substitution reaction, and the leaving group is a halogen group. Convert to atom.

本工程の第二段階では、チオ酢酸塩を用いてハロゲン原子を−SAc基で求核置換する。この際、立体配置は反転するので、4位の立体配置はD−リビトールと同じになる。   In the second step of this process, the halogen atom is nucleophilically substituted with a -SAc group using thioacetate. At this time, since the configuration is reversed, the configuration at the 4-position is the same as that of D-ribitol.

本工程の第三段階では、酸素雰囲気で加水分解することにより閉環し、ジチアン化合物(IV)とする。加水分解の条件は、Ac基を除去できれば特に制限されないが、例えば、水酸化カリウムや水酸化ナトリウムの水溶液中で攪拌すればよい。この際、化合物が溶解し難い場合には、アルコール系溶媒などの水混和性有機溶媒を加えてもよい。また、酸素雰囲気は、反応を大気中開放系で行えば特に問題はないが、その他、空気など酸素を含む気体や酸素自体を反応液中にバブリングしてもよい。   In the third stage of this step, the ring is closed by hydrolysis in an oxygen atmosphere to obtain a dithiane compound (IV). The conditions for the hydrolysis are not particularly limited as long as the Ac group can be removed. For example, the hydrolysis may be performed in an aqueous solution of potassium hydroxide or sodium hydroxide. At this time, if the compound is difficult to dissolve, a water-miscible organic solvent such as an alcohol solvent may be added. The oxygen atmosphere is not particularly problematic as long as the reaction is performed in an open system in the atmosphere, but in addition, a gas containing oxygen such as air or oxygen itself may be bubbled into the reaction solution.

(3) チオールスルフィナート化合物の製造工程
次に、ジチアン化合物(IV)を酸化することにより、チオールスルフィナート化合物(II)を得る。
(3) Manufacturing process of thiol sulfinate compound Next, the thiol sulfinate compound (II) is obtained by oxidizing the dithiane compound (IV).

本工程では、溶媒中、ジチアン化合物(IV)に酸化剤を作用させる。   In this step, an oxidizing agent is allowed to act on the dithian compound (IV) in a solvent.

使用できる溶媒としては、各化合物を適度に溶解することができ且つ反応を阻害しないものであれば特に制限されず、適宜選択すればよいが、例えば、ジクロロメタンやジクロロエタンなどのハロゲン化炭化水素系溶媒;アセトニトリルなどのニトリル系溶媒;メタノールやエタノールなどのアルコール系溶媒;ジエチルエーテルやテトラヒドロフランなどのエーテル系溶媒;これら2以上の混合溶媒を挙げることができる。   The solvent that can be used is not particularly limited as long as each compound can be appropriately dissolved and does not inhibit the reaction, and may be appropriately selected. For example, a halogenated hydrocarbon solvent such as dichloromethane or dichloroethane. A nitrile solvent such as acetonitrile; an alcohol solvent such as methanol and ethanol; an ether solvent such as diethyl ether and tetrahydrofuran; and a mixture of two or more of these.

酸化剤は適宜選択すればよいが、チオールスルフォナート体まで酸化し難くチオールスルフィナート体が効率的に得られるものが好ましい。例えば、メタクロロ過安息香酸、過ヨウ素酸ナトリウムなどのメタ過ヨウ素酸塩、過酸化水素、過酢酸、オゾン、ハロゲン、N−ハロゲン化合物などを挙げることができる。   The oxidizing agent may be selected as appropriate, but it is preferable to oxidize the thiolsulfonate form with little difficulty in oxidizing the thiolsulfinate form. Examples thereof include metaperiodates such as metachloroperbenzoic acid and sodium periodate, hydrogen peroxide, peracetic acid, ozone, halogen, and N-halogen compounds.

反応液中におけるジチアン化合物(IV)の濃度は適宜調整すればよいが、例えば、0.01g/mL以上、0.5g/mL以下程度とすればよい。   The concentration of the dithian compound (IV) in the reaction solution may be appropriately adjusted. For example, it may be about 0.01 g / mL or more and 0.5 g / mL or less.

酸化剤の使用量に関しては、ジチアン化合物(IV)を十分に酸化する必要がある一方でスルホン化を抑制する必要があるので、ジチアン化合物(IV)に対して0.9倍モル以上、1.5倍モル以下とすることが好ましく、0.95倍モル以上、1.2倍モル以下とすることがより好ましい。   Regarding the amount of the oxidizing agent used, since it is necessary to sufficiently oxidize the dithian compound (IV) while suppressing sulfonation, it is 0.9 times mol or more with respect to the dithian compound (IV). It is preferably 5 times mol or less, more preferably 0.95 times mol or more and 1.2 times mol or less.

反応温度も適宜調整すればよいが、酸化反応を制御するために、例えば、10℃以下とすることができ、0℃以下とすることが好ましく、−50℃以下とすることがより好ましい。具体的には、ドライアイスの昇華点が−79℃、液体窒素の温度が−196℃であるから、これらを利用すればよい。また、反応時間も適宜調整すればよく、原料化合物であるジチアン化合物(IV)が実質的に検出できなくなるまでや、予備実験などで決定すればよいが、通常、5分間以上、1時間以下程度とすることができる。   The reaction temperature may be adjusted as appropriate, but in order to control the oxidation reaction, for example, it can be 10 ° C. or lower, preferably 0 ° C. or lower, more preferably −50 ° C. or lower. Specifically, since the sublimation point of dry ice is −79 ° C. and the temperature of liquid nitrogen is −196 ° C., these may be used. Further, the reaction time may be adjusted as appropriate, and may be determined until the dithian compound (IV) as the raw material compound is substantially undetectable, or by preliminary experiments, but is usually about 5 minutes to 1 hour. It can be.

反応終了後は、一般的な後処理を行えばよい。例えば、過剰の酸化剤を分解するために飽和炭酸水素ナトリウム水溶液を加え、有機溶媒で抽出し、乾燥・濃縮した後に、クロマトグラフィなどで精製すればよい。   After the reaction is completed, general post-treatment may be performed. For example, a saturated aqueous sodium hydrogen carbonate solution may be added to decompose excess oxidant, extracted with an organic solvent, dried and concentrated, and then purified by chromatography or the like.

なお、チオールスルフィナート化合物(II)のスルホキシド基の硫黄原子は非共有電子対を有し、キラリティを示すので、チオールスルフィナート化合物(II)はジアステレオマーが存在する。本発明では、何れの異性体も利用可能である。   In addition, since the sulfur atom of the sulfoxide group of the thiol sulfinate compound (II) has an unshared electron pair and exhibits chirality, the thiol sulfinate compound (II) has a diastereomer. Any isomer can be used in the present invention.

(4) アセテート化工程
次に、チオールスルフィナート化合物(II)にカルボン酸無水物を作用させることにより、アセテート化合物(III)を得る。
(4) Acetate step Next, the acetate compound (III) is obtained by reacting the thiolsulfinate compound (II) with a carboxylic acid anhydride.

本工程では、Pummerer転位反応を利用して無水酢酸を反応させることでチオールスルフィナート化合物(II)にアセトキシ基を導入する。   In this step, an acetoxy group is introduced into the thiolsulfinate compound (II) by reacting acetic anhydride using a Pummerer rearrangement reaction.

本工程では、無水酢酸を溶媒として用い、加熱するのみで容易にアセテート化合物(III)が得られる。当該反応液におけるチオールスルフィナート化合物(II)の濃度は適宜調整すればよいが、例えば、0.01g/mL以上、1.0g/mL以下程度とすればよい。   In this step, acetate compound (III) can be easily obtained simply by heating using acetic anhydride as a solvent. The concentration of the thiolsulfinate compound (II) in the reaction solution may be appropriately adjusted. For example, the concentration may be about 0.01 g / mL or more and 1.0 g / mL or less.

反応温度は適宜調整すればよいが、例えば、80℃以上、180℃以下程度とすることができ、加熱還流するのが簡便である。反応時間も適宜調整すればよく、原料化合物であるチオールスルフィナート化合物(II)が実質的に検出できなくなるまでや、予備実験などで決定すればよいが、通常、1時間以上、50時間以下程度とすることができる。   The reaction temperature may be appropriately adjusted. For example, the reaction temperature may be about 80 ° C. or higher and 180 ° C. or lower, and it is easy to heat and reflux. The reaction time may be adjusted as appropriate, and may be determined until the thiolsulfinate compound (II) as a raw material compound is substantially undetectable, or by preliminary experiments, etc., but usually 1 hour or more and 50 hours or less Can be about.

反応終了後は、一般的な後処理を行えばよい。例えば、過剰の無水酢酸を処理するために、冷却しつつ飽和炭酸水素ナトリウム水溶液を加え、有機溶媒で抽出し、乾燥・濃縮した後に、クロマトグラフィなどで精製すればよい。   After the reaction is completed, general post-treatment may be performed. For example, in order to treat excess acetic anhydride, a saturated aqueous solution of sodium bicarbonate is added while cooling, extracted with an organic solvent, dried and concentrated, and then purified by chromatography or the like.

なお、Pummerer転位反応では、スルホニウムイオンを経由するため、通常、生成物の立体構造を制御することはできず、アセテート化合物(III)はジアステレオマー混合物として得られる。本発明では、何れの異性体も利用可能である。   In the Pummerer rearrangement reaction, since it passes through a sulfonium ion, the three-dimensional structure of the product cannot usually be controlled, and the acetate compound (III) is obtained as a diastereomeric mixture. Any isomer can be used in the present invention.

(5) Vorbruggen反応工程
次に、シリル化剤とルイス酸の存在下、アセテート化合物(III)と核酸塩基を反応させることにより、目的化合物である核酸誘導体(I)を得る。
(5) Vorbruggen reaction step Next, the nucleic acid derivative (I) as the target compound is obtained by reacting the acetate compound (III) with the nucleobase in the presence of a silylating agent and a Lewis acid.

本工程では、溶媒中、アセテート化合物(III)と核酸塩基を混合し、さらにシリル化剤を加えた後、冷却しつつルイス酸を添加して反応させればよい。   In this step, the acetate compound (III) and the nucleobase are mixed in a solvent, a silylating agent is further added, and then a Lewis acid is added to the reaction while cooling.

使用できる溶媒としては、各化合物を適度に溶解することができ且つ反応を阻害しないものであれば特に制限されず、適宜選択すればよいが、例えば、アセトニトリルなどのニトリル系溶媒;ジクロロメタンやジクロロエタンなどのハロゲン化炭化水素系溶媒;ベンゼンやトルエンなどの芳香族炭化水素系溶媒;これら2以上の混合溶媒を挙げることができる。   The solvent that can be used is not particularly limited as long as each compound can be appropriately dissolved and does not inhibit the reaction, and may be appropriately selected. For example, nitrile solvents such as acetonitrile; dichloromethane, dichloroethane, and the like A halogenated hydrocarbon solvent of the above; aromatic hydrocarbon solvents such as benzene and toluene; a mixed solvent of two or more of these.

核酸塩基としては、以下のものを用いる。なお、これら核酸塩基は、市販されていればそれを用いることができ、或いは、市販化合物からアミノ基を選択的に保護することにより容易に合成することができる。   The following are used as nucleobases. These nucleobases can be used if they are commercially available, or can be easily synthesized by selectively protecting amino groups from commercially available compounds.

[式中、R4は上記と同義を示す] [Wherein R 4 is as defined above]

シリル化剤としては、例えば、N,O−ビス(トリメチルシリル)アセトアミド、1,1,1,3,3,3−ヘキサメチルジシラザンなどを挙げることができる。   Examples of the silylating agent include N, O-bis (trimethylsilyl) acetamide, 1,1,1,3,3,3-hexamethyldisilazane and the like.

ルイス酸としては、例えば、トリフルオロメタンスルホン酸トリメチルシリル、ヨウ化トリメチルシラン、塩化スズ、塩化亜鉛、塩化水銀、四塩化チタンなどを挙げることができる。但し、本発明に係る核酸誘導体を医薬などに用いる場合には、重金属の残留は好ましくないため、トリフルオロメタンスルホン酸トリメチルシリルやヨウ化トリメチルシランなど重金属を含まないものを用いることが望ましい。なお、トリフルオロメタンスルホン酸トリメチルシリルは、ルイス酸としてのみでなくシリル化剤としても作用する。   Examples of the Lewis acid include trimethylsilyl trifluoromethanesulfonate, trimethylsilane iodide, tin chloride, zinc chloride, mercury chloride, and titanium tetrachloride. However, when the nucleic acid derivative according to the present invention is used for medicines and the like, it is not preferable that heavy metal remains. Therefore, it is desirable to use a substance that does not contain heavy metals such as trimethylsilyl trifluoromethanesulfonate and trimethylsilane iodide. Trimethylsilyl trifluoromethanesulfonate acts not only as a Lewis acid but also as a silylating agent.

アセテート化合物(III)と核酸塩基は、理論上は等モル用いればよいが、市販されているか、或いは市販のものを保護するのみで簡便に合成できる核酸塩基を過剰に用いることが好ましい。例えば、アセテート化合物(III)に対して、核酸塩基を1.0倍モル以上、3倍モル以下用いることができ、2.5倍モル以下がより好ましく、2.0倍モル以下がさらに好ましい。シリル化剤とルイス酸の使用量は適宜調整すればよいが、同様の理由で、シリル化剤は、アセテート化合物(III)に対して2.0倍モル以上、6倍モル以下用いることが好ましく、ルイス酸は、アセテート化合物(III)に対して2.0倍モル以上、5倍モル以下用いることが好ましい。   The acetate compound (III) and the nucleobase may theoretically be used in an equimolar amount, but it is preferable to use an excess of a nucleobase that is commercially available or that can be synthesized simply by protecting the commercially available product. For example, the nucleobase can be used in an amount of 1.0-fold mol or more and 3-fold mol or less, more preferably 2.5-fold mol or less, and further preferably 2.0-fold mol or less with respect to acetate compound (III). The amount of the silylating agent and Lewis acid used may be adjusted as appropriate, but for the same reason, the silylating agent is preferably used in an amount of 2.0 to 6 moles with respect to the acetate compound (III). The Lewis acid is preferably used in an amount of 2.0 to 5 times the mol of the acetate compound (III).

溶媒の使用量は適宜調整すればよいが、例えば、アセテート化合物(III)と核酸塩基の合計の濃度が10mg/mL以上、300mg/mL以下となるようにすればよい。   The amount of the solvent used may be appropriately adjusted. For example, the total concentration of the acetate compound (III) and the nucleobase may be 10 mg / mL or more and 300 mg / mL or less.

本工程では、通常、アセテート化合物(III)、核酸塩基およびシリル化剤を含む溶液にルイス酸を加える。この際、急激な反応の進行を抑制するために、冷却すればよい。冷却温度は特に制限されないが、例えば、反応器を氷冷すればよい。   In this step, Lewis acid is usually added to a solution containing acetate compound (III), nucleobase and silylating agent. At this time, cooling may be performed in order to suppress the rapid progress of the reaction. Although the cooling temperature is not particularly limited, for example, the reactor may be ice-cooled.

ルイス酸を添加した後は、反応温度を上げ、反応を十分に進行させることが好ましい。反応温度は適宜調整すればよいが、例えば、40℃以上、120℃以下程度とすることができ、加熱還流するのが簡便である。反応時間も適宜調整すればよく、原料化合物であるアセテート化合物(III)が実質的に検出できなくなるまでや、予備実験などで決定すればよいが、通常、1時間以上、20時間以下程度とすることができる。   After adding the Lewis acid, it is preferable to raise the reaction temperature and allow the reaction to proceed sufficiently. The reaction temperature may be appropriately adjusted. For example, the reaction temperature may be about 40 ° C. or higher and 120 ° C. or lower, and it is easy to heat and reflux. What is necessary is just to adjust reaction time suitably, and it may be determined by the preliminary experiment etc. until the acetate compound (III) which is a raw material compound becomes substantially undetectable, but it is usually about 1 hour or more and 20 hours or less be able to.

反応終了後は、一般的な後処理を行えばよい。例えば、過剰のルイス酸などを処理するために、冷却しつつ飽和炭酸水素ナトリウム水溶液を加え、有機溶媒で抽出し、乾燥・濃縮した後に、クロマトグラフィなどで精製すればよい。   After the reaction is completed, general post-treatment may be performed. For example, in order to treat excess Lewis acid or the like, a saturated aqueous sodium hydrogen carbonate solution is added while cooling, extracted with an organic solvent, dried and concentrated, and then purified by chromatography or the like.

その後、さらに、得られた化合物を脱保護反応に付したり、また、R3の水酸基をアルコキシ基やハロゲン原子に官能基変換してもよい。 Thereafter, the obtained compound may be further subjected to a deprotection reaction, or the hydroxyl group of R 3 may be functionally converted to an alkoxy group or a halogen atom.

以上で説明した本発明方法によれば、リボース部分が1,2−ジチアン環に変更された核酸誘導体を製造することができる。当該核酸誘導体およびそれを含む核酸オリゴマーは、医薬や農薬などとしての利用が期待できる。   According to the method of the present invention described above, a nucleic acid derivative in which the ribose moiety is changed to a 1,2-dithiane ring can be produced. The nucleic acid derivative and the nucleic acid oligomer containing the nucleic acid derivative can be expected to be used as a medicine or an agricultural chemical.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

なお、NMRはBruker社製のFT−NMR AV500およびAV400を用いて測定した。1H NMRおよび13C NMRの化学シフトはテトラメチルシラン0.00ppm(1H)、CHCl37.26ppm(1H)および77.0ppm(13C)、またはDMSO2.50ppm(1H)および39.5ppm(13C)を内部標準とした。値をppmで示し、結合定数はJ値(Hz)で表示した。シグナルの多重度は、s:singlet,d:doublet,t:triplet,q:quartet,m:multiplet,br:broadの略号を用いて示した。シグナルの帰属は1H−1H COSY スペクトルに基づいて行った。 NMR was measured using FT-NMR AV500 and AV400 manufactured by Bruker. The chemical shifts of 1 H NMR and 13 C NMR are tetramethylsilane 0.00 ppm ( 1 H), CHCl 3 7.26 ppm ( 1 H) and 77.0 ppm ( 13 C), or DMSO 2.50 ppm ( 1 H) and 39 .5 ppm ( 13 C) was used as an internal standard. Values are expressed in ppm, and coupling constants are expressed in J values (Hz). The multiplicity of signals is shown using abbreviations of s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad. Signal assignment was performed based on the 1H-1H COSY spectrum.

質量分析(MS)は、Waters社製のMicromass LCT PREMIERを用いて実施した。   Mass spectrometry (MS) was performed using a Micromass LCT PREMIER manufactured by Waters.

反応は、特に記載しない限り、アルゴン雰囲気下、市販の無水溶媒を用いて行った。溶媒として、アセトニトリルとジクロロメタンは五酸化二リンを用いて、ピリジンは水酸化カリウムを用いて蒸留したものを用いた。   The reaction was performed using a commercially available anhydrous solvent under an argon atmosphere unless otherwise specified. As the solvent, acetonitrile and dichloromethane used were diphosphorus pentoxide, and pyridine used was distilled using potassium hydroxide.

TLCにはMerck社製のsilica gel 60F254を使用した。シリカゲルカラムクロマトグラフィーにはMerck社製のsilica gel 60(0.063−0.200mesh)を使用した。フラッシュシリカゲルカラムクロマトグラフィーには、Merck社製のsilica gel 60(230−600mesh ASTM)を使用した。セライト濾過には、Nacalai社製のtesque Celite 545を使用した。   A silica gel 60F254 manufactured by Merck was used for TLC. Silica gel 60 (0.063-0.200 mesh) manufactured by Merck was used for silica gel column chromatography. For flash silica gel column chromatography, silica gel 60 (230-600 mesh ASTM) manufactured by Merck was used. For celite filtration, tesque Celite 545 manufactured by Nacalai was used.

実施例1   Example 1

(1)2,3,5−トリ−O−p−メトキシベンジル−D−リビトール(化合物1)
D−リボース(12.0g,79.9mmol)をアリルアルコール(250mL)に懸濁し、濃硫酸(1.30mL,24.4mmol)を加えて室温にて22時間撹拌した。反応混合液に固体の炭酸水素ナトリウムを加えて中和し、析出した塩をセライトパッドに通して濾去し、メタノールで洗浄した。濾液を減圧濃縮し、メタノールで共沸した後、トルエン共沸を3回行い、粗アリルグリコシド体を黄色油状物質として得た。水素化ナトリウム(60%ミネラルオイル懸濁液,14.4g,360mmol)をテトラヒドロフラン(140mL)に溶解し、そこに上記アリルグリコシド体とN,N−ジメチルホルムアミド(70mL)の混合溶液を氷冷下15分かけて滴下した後、室温にて1時間30分撹拌した。反応混合液にパラメトキシベンジルクロライド(43.4mL,320mmol)の三分の一量を氷冷下、15分かけて滴下した後、氷浴を取り除き室温に戻しながら残りのパラメトキシベンジルクロライドを滴下した。滴下後、室温にて14時間撹拌し、反応混合液中に氷を加えた。反応混合液を酢酸エチルと水で分配し、得られた有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、粗パラメトキシベンジル保護体を白黄色油状物質として得た。得られた当該物質をクロロホルム(240mL)に溶解し、水(160mL)と塩化パラジウム(II価,2.12g,12.0mmol)を加え、酸素雰囲気下、50℃にて20時間激しく撹拌した。氷冷下において沈殿した固体をセライトパッドで濾去し、酢酸エチルで洗浄した。濾液を減圧濃縮した後、得られた残渣を酢酸エチルと水で分配し、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、粗生成物を茶褐色油状物質として得た。得られた当該物質をメタノール(400mL)に溶解し、氷冷下において水素化ホウ素ナトリウムを加え、室温に戻し10分間撹拌した。反応混合液を減圧濃縮し、メタノール共沸を2回行い、得られた残渣を酢酸エチルと水で分配した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=3/1〜2/1〜1/1)で精製し、化合物1(29.3g,57.2mmol,4工程の総収率:72%)を淡黄色油状物質として得た。
1H NMR(CDCl3);δ7.21(m,6H,Ar),6.85(m,6H,Ar),4.52(m,6H,-OCH2- × 3),3.95(m,2H,H-2),3.80(s,9H,-OMe × 3),3.71(m,4H,H-3 and H-4 and H-5),3.52(m,2H,H-1),2.70,2.36(each br s,each 1H,1-OH and 5-OH)
(1) 2,3,5-tri-Op-methoxybenzyl-D-ribitol (compound 1)
D-ribose (12.0 g, 79.9 mmol) was suspended in allyl alcohol (250 mL), concentrated sulfuric acid (1.30 mL, 24.4 mmol) was added, and the mixture was stirred at room temperature for 22 hours. The reaction mixture was neutralized with solid sodium hydrogen carbonate, and the precipitated salt was filtered off through a celite pad and washed with methanol. The filtrate was concentrated under reduced pressure and azeotroped with methanol, followed by toluene azeotropy three times to obtain a crude allyl glycoside as a yellow oily substance. Sodium hydride (60% mineral oil suspension, 14.4 g, 360 mmol) was dissolved in tetrahydrofuran (140 mL), and a mixed solution of the above allyl glycoside and N, N-dimethylformamide (70 mL) was added thereto under ice cooling. After dropwise addition over 15 minutes, the mixture was stirred at room temperature for 1 hour and 30 minutes. A third of paramethoxybenzyl chloride (43.4 mL, 320 mmol) was added dropwise to the reaction mixture over 15 minutes under ice cooling, and then the remaining paramethoxybenzyl chloride was added dropwise while removing the ice bath and returning to room temperature. did. After dropping, the mixture was stirred at room temperature for 14 hours, and ice was added to the reaction mixture. The reaction mixture was partitioned between ethyl acetate and water, and the resulting organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After the solution was filtered, the filtrate was concentrated under reduced pressure to obtain a crude paramethoxybenzyl protected product as a white yellow oily substance. The obtained substance was dissolved in chloroform (240 mL), water (160 mL) and palladium chloride (II value, 2.12 g, 12.0 mmol) were added, and the mixture was vigorously stirred at 50 ° C. for 20 hours in an oxygen atmosphere. The solid precipitated under ice cooling was filtered off through a celite pad and washed with ethyl acetate. The filtrate was concentrated under reduced pressure, and the resulting residue was partitioned between ethyl acetate and water. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After the solution was filtered, the filtrate was concentrated under reduced pressure to obtain the crude product as a brown oily substance. The obtained substance was dissolved in methanol (400 mL), sodium borohydride was added under ice-cooling, the temperature was returned to room temperature, and the mixture was stirred for 10 minutes. The reaction mixture was concentrated under reduced pressure, methanol azeotropy was performed twice, and the resulting residue was partitioned between ethyl acetate and water. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After filtration of the solution, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 3/1 to 2/1 to 1/1) to give compound 1 (29.3 g, 57 .2 mmol, total yield of 4 steps: 72%) was obtained as a pale yellow oil.
1 H NMR (CDCl 3 ); δ 7.21 (m, 6H, Ar), 6.85 (m, 6H, Ar), 4.52 (m, 6H, —OCH 2 − × 3), 3.95 (m, 2H, H— 2), 3.80 (s, 9H, -OMe × 3), 3.71 (m, 4H, H-3 and H-4 and H-5), 3.52 (m, 2H, H-1), 2.70, 2.36 (each br s, each 1H, 1-OH and 5-OH)

(2)(2S,3S,4R)−2,5−ジブロモ−1,3,4−トリス−p−メトキシベンジルオキシペンタン(化合物2)
上記化合物1(27.9g,54.5mmol)をピリジン(45mL)に溶解し、氷冷下にてメタンスルホニルクロライド(14.8mL,0.19mol)を加え30分間撹拌した。反応混合液に氷を加え、酢酸エチルと水で分配した。有機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、トルエン共沸を4回行い、ジメシル体を黄色油状の粗生成物として得た。得られたジメシル体をメチルエチルケトン(130mL)に溶解し、リチウムブロマイド(45.5g,0.52mol)を加え、5時間加熱還流した。反応混合液を酢酸エチルと水で分配し、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=7/1〜3/1)で精製し、化合物2(20.9g,32.7mmol,2工程の総収率:62%)を黄色油状物質として得た。
1H NMR(CDCl3);δ7.32-7.21(m,6H,Ar),6.86(m,6H,Ar),4.68-4.46(m,6H,-O-CH2-×3),4.40(m,1H),3.79(s,9H,-OCH3×3),3.89(m,1H),3.76-3.69(m,4H),3.64(m,1H)
(2) (2S, 3S, 4R) -2,5-dibromo-1,3,4-tris-p-methoxybenzyloxypentane (compound 2)
Compound 1 (27.9 g, 54.5 mmol) was dissolved in pyridine (45 mL), methanesulfonyl chloride (14.8 mL, 0.19 mol) was added under ice cooling, and the mixture was stirred for 30 minutes. Ice was added to the reaction mixture, and the mixture was partitioned between ethyl acetate and water. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. After the solution was filtered, the filtrate was concentrated under reduced pressure, and toluene azeotropy was performed 4 times to obtain a dimesyl compound as a yellow oily crude product. The obtained dimesyl compound was dissolved in methyl ethyl ketone (130 mL), lithium bromide (45.5 g, 0.52 mol) was added, and the mixture was heated to reflux for 5 hours. The reaction mixture was partitioned between ethyl acetate and water, and the organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solution was filtered, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 7/1 to 3/1) to give compound 2 (20.9 g, 32.7 mmol, 2 Total yield of process: 62%) was obtained as a yellow oil.
1 H NMR (CDCl 3 ); δ 7.32-7.21 (m, 6H, Ar), 6.86 (m, 6H, Ar), 4.68-4.46 (m, 6H, —O—CH 2 — × 3), 4.40 ( m, 1H), 3.79 (s, 9H, -OCH 3 × 3), 3.89 (m, 1H), 3.76-3.69 (m, 4H), 3.64 (m, 1H)

(3)(2R,3S,4R)−2,5−ジチオアセチル−1,3,4−トリス−p−メトキシベンジルオキシペンタン(化合物3)
上記化合物2(20.8g,32.7mmol)をN,N−ジメチルホルムアミド(32.0mL)に溶解し、チオ酢酸カリウム(26.0g,0.2mol)を加え、100℃にて7時間撹拌した。反応混合液を酢酸エチルと水で分配し、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=6/1〜3/1)で精製し、化合物3(7.60g,12.1mmol,収率:37%)を赤褐色油状物質として得た。
1H NMR(CDCl3);δ7.22(m,6H,Ar),6.84(m,6H,Ar),4.53-4.39(m,6H,-O-CH2- × 3),3.90(m,1H,H-2),3.84(dd,1H,H-3,J3,2 = 4.8,J3,5 = 5.5),3.79(s,9H,-OCH3×3),3.63(m,2H,H-5),3.43(dd,1H,H-4,J4,3 = 5.5,J4,5 = 6.5),3.33(dd,1H,H-1a J1a,2 = 4.3,J1a,1b = 14.1),3.18(dd,1H,H-1b J1b,2 = 5.3,J1b,1a = 14.1),2.35(s,3H,SC(O)CH3),2.30(s,3H,SC(O)CH3
13C NMR(CDCl3);δ196.07,195.01,159.64,159.58,130.39,130.20,129.99,129.68,114.09,114.04,78.66,78.44,73.43,72.96,71.83,70.07,55.63,45.02,31.07,30.99,30.01
ESIMS-LR m/z = 651(MNa+
(3) (2R, 3S, 4R) -2,5-dithioacetyl-1,3,4-tris-p-methoxybenzyloxypentane (compound 3)
Compound 2 (20.8 g, 32.7 mmol) was dissolved in N, N-dimethylformamide (32.0 mL), potassium thioacetate (26.0 g, 0.2 mol) was added, and the mixture was stirred at 100 ° C. for 7 hours. did. The reaction mixture was partitioned between ethyl acetate and water, and the organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After filtration of the solution, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 6/1 to 3/1) to obtain compound 3 (7.60 g, 12.1 mmol, yield). Ratio: 37%) was obtained as a reddish brown oil.
1 H NMR (CDCl 3 ); δ 7.22 (m, 6H, Ar), 6.84 (m, 6H, Ar), 4.53-4.39 (m, 6H, —O—CH 2 − × 3), 3.90 (m, 1H, H-2), 3.84 (dd, 1H, H-3, J3,2 = 4.8, J3,5 = 5.5), 3.79 (s, 9H, -OCH 3 × 3), 3.63 (m, 2H, H -5), 3.43 (dd, 1H, H-4, J4,3 = 5.5, J4,5 = 6.5), 3.33 (dd, 1H, H-1a J1a, 2 = 4.3, J1a, 1b = 14.1), 3.18 (Dd, 1H, H-1b J1b, 2 = 5.3, J1b, 1a = 14.1), 2.35 (s, 3H, SC (O) CH 3 ), 2.30 (s, 3H, SC (O) CH 3 )
13 C NMR (CDCl 3 ); 30.01
ESIMS-LR m / z = 651 (MNa + )

(4)(3R,4S,5R)−4,5−ビス−p−メトキシベンジルオキシ−3−p−メトキシベンジルオキシメチル−1,2−ジチアン(化合物4)
上記化合物3(7.60g,12.1mmol)を10%水酸化カリウム水溶液:メタノール(1:5)混合溶液(84mL)に溶解させ、酸素雰囲気下、8時間撹拌した。氷冷下、反応混合液に飽和塩化アンモニウム水溶液を加えて、酢酸エチルと水で分配し、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=6/1〜3/1)で精製し、化合物4(4.79g,8.83mmol,収率:73%)を赤褐色油状物質として得た。
1H NMR(CDCl3);δ7.23(m,6H,Ar),6.86(m,6H,Ar),4.56-4.41(m,6H,-O-CH2- × 3 ),3.89-3.75(m,4H),3.80(s,9H,-OCH3×3 ),3.50(m,1H),3.22(m,1H),2.78(m,1H)
13C NMR(CDCl3);δ159.05,129.48,129.43,129.18,113.65,113.62,80.18,78.94,72.55,71.27,71.16,68.19,55.13,46.99,30.59
ESIMS-LR m/z = 565(MNa+
(4) (3R, 4S, 5R) -4,5-bis-p-methoxybenzyloxy-3-p-methoxybenzyloxymethyl-1,2-dithiane (compound 4)
Compound 3 (7.60 g, 12.1 mmol) was dissolved in a mixed solution (84 mL) of 10% aqueous potassium hydroxide: methanol (1: 5) and stirred for 8 hours in an oxygen atmosphere. Under ice cooling, a saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was partitioned between ethyl acetate and water. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After filtering the solution, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 6/1 to 3/1) to obtain compound 4 (4.79 g, 8.83 mmol). Rate: 73%) was obtained as a reddish brown oil.
1 H NMR (CDCl 3 ); δ7.23 (m, 6H, Ar), 6.86 (m, 6H, Ar), 4.56-4.41 (m, 6H, —O—CH 2 − × 3), 3.89-3.75 ( m, 4H), 3.80 (s, 9H, -OCH 3 × 3), 3.50 (m, 1H), 3.22 (m, 1H), 2.78 (m, 1H)
13 C NMR (CDCl 3 ); δ 159.05, 129.48, 129.43, 129.18, 113.65, 113.62, 80.18, 78.94, 72.55, 71.27, 71.16, 68.19, 55.13, 46.99, 30.59
ESIMS-LR m / z = 565 (MNa + )

(5)(3R,4S,5R)−4,5−ジヒドロキシ−3−ヒドロキシメチル−1,2−ジチアン(化合物5)
上記化合物4(4.79g,8.83mmol)を20%トリフルオロ酢酸−ジクロロメタン混合溶液(20mL)に溶解させ、4時間30分撹拌した。反応液を減圧濃縮し、メタノールで3回共沸した。残渣にメタノールを加え不溶物を濾去し、濾液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/メタノール=19/1〜17/3)にて精製し、化合物5(1.35g,7.42mmol,収率:84%)を無色透明油状物質として得た。
1H NMR(DMSO-d6);δ4.85(br s,3H,4-OH,5-OH,7-OH exchangable with D2O),3.86(m,1H),3.75-3.55(m,3H),3.16(m,1H),2.97(m,1H),2.75(m,1H)
13C NMR(DMSO-d6);δ75.56,73.89,64.34,52.18,32.36
ESIMS-LR m/z = 205(MNa+
(5) (3R, 4S, 5R) -4,5-dihydroxy-3-hydroxymethyl-1,2-dithiane (compound 5)
The above compound 4 (4.79 g, 8.83 mmol) was dissolved in a 20% trifluoroacetic acid-dichloromethane mixed solution (20 mL) and stirred for 4 hours and 30 minutes. The reaction mixture was concentrated under reduced pressure and azeotroped with methanol three times. Methanol was added to the residue, the insoluble material was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: chloroform / methanol = 19/1 to 17/3) to obtain Compound 5 (1.35 g, 7.42 mmol, yield: 84%) as a colorless transparent oily substance. Obtained.
1 H NMR (DMSO-d 6 ); δ 4.85 (br s, 3H, 4-OH, 5-OH, 7-OH exchangable with D 2 O), 3.86 (m, 1H), 3.75-3.55 (m, 3H), 3.16 (m, 1H), 2.97 (m, 1H), 2.75 (m, 1H)
13 C NMR (DMSO-d 6 ); δ 75.56, 73.89, 64.34, 52.18, 32.36
ESIMS-LR m / z = 205 (MNa + )

(6)(3R,4S,5R)−4,5−ジヒドロキシ−3−トリイソプロピルシロキシメチル−1,2−ジチアン(化合物6)
上記化合物5(1.20g,6.58mmol)をN,N−ジメチルホルムアミド(16.0mL)に溶解し、氷冷下にてイミダゾール(0.99g,14.5mmol)とトリイソプロピルシリルクロリド(1.50mL,7.24mmol)を順次加え、室温で5時間撹拌した。反応液に氷を加えて反応を停止させ、酢酸エチルと水で分配し、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=5/1〜1/1)にて精製し、化合物6(2.0g,5.90mmol,収率:91%)を赤褐色油状物質として得た。
1H NMR(DMSO-d6);δ4.85(br s,2H,4-OH,5-OH,exchangable with D2O),4.12(m,1H),3.92(m,1H),3.80(m,1H),3.61(m,1H),3.31(m,1H),2.98(m,1H),2.79(m,1H)
13C NMR(CDCl3);δ74.74,67.07,60.30,48.19,33.52,17.78,11.63
ESIMS-LR m/z = 361(MNa+
(6) (3R, 4S, 5R) -4,5-dihydroxy-3-triisopropylsiloxymethyl-1,2-dithiane (Compound 6)
Compound 5 (1.20 g, 6.58 mmol) was dissolved in N, N-dimethylformamide (16.0 mL), and imidazole (0.99 g, 14.5 mmol) and triisopropylsilyl chloride (1 .50 mL, 7.24 mmol) was sequentially added, and the mixture was stirred at room temperature for 5 hours. Ice was added to the reaction solution to stop the reaction, and the mixture was partitioned with ethyl acetate and water. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After filtering the solution, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 5/1 to 1/1) to give compound 6 (2.0 g, 5.90 mmol, Yield: 91%) was obtained as a reddish brown oil.
1 H NMR (DMSO-d 6 ); δ 4.85 (br s, 2H, 4-OH, 5-OH, exchangable with D 2 O), 4.12 (m, 1H), 3.92 (m, 1H), 3.80 ( m, 1H), 3.61 (m, 1H), 3.31 (m, 1H), 2.98 (m, 1H), 2.79 (m, 1H)
13 C NMR (CDCl 3 ); δ 74.74, 67.07, 60.30, 48.19, 33.52, 17.78, 11.63
ESIMS-LR m / z = 361 (MNa + )

(7)(3R,4S,5R)−4,5−O−(1−メチルエチリデン)−3−トリイソプロピルシロキシメチル−1,2−ジチアン(化合物7)
上記化合物6(2.0g,5.90mmol)をアセトン(20mL)に溶解し、2,2−ジメトキシプロパン(5.30mL,41.0mmol)とp−トルエンスルホン酸水和物(0.22g,1.20mmol)を順次加え、室温にて10分撹拌した。反応液に、氷冷下、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルと水で分配し、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=49/1〜24/1)にて精製し、化合物7(1.98g,5.23mmol,収率:98%)を赤褐色油状物質として得た。
1H NMR(CDCl3);δ4.33(m,1H,H-4),4.22(dd,1H,H-5,J5,4 = 4.6,J5,6 = 8.7 Hz),4.11(dd,1H,H-7a,J7,6 = 4.5,J7a,7b = 10.4 Hz),3.98(dd,1H,H-7b,J7b,6 = 5.0,J7b,7a = 10.4 Hz ),3.31(dd,1H,H-3a,J3a,4 = 3.7,J3a,3b = 14.6 Hz),3.26(m,1H,H-6),3.18(dd,1H,H-3b,J3b,4 = 4.5,J3b,3a = 14.6 Hz),1.52,1.38(each s,each 3H,isopropylidene),1.07(m,21H,TIPS)
13C NMR(CDCl3);δ108.14,72.73,71.14,62.96,51.89,36.58,28.60,26.86,18.12,12.04
ESIMS-LR m/z = 401(MNa+
(7) (3R, 4S, 5R) -4,5-O- (1-methylethylidene) -3-triisopropylsiloxymethyl-1,2-dithiane (Compound 7)
Compound 6 (2.0 g, 5.90 mmol) was dissolved in acetone (20 mL), 2,2-dimethoxypropane (5.30 mL, 41.0 mmol) and p-toluenesulfonic acid hydrate (0.22 g, 1.20 mmol) was sequentially added, and the mixture was stirred at room temperature for 10 minutes. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution under ice-cooling, and the mixture was partitioned between ethyl acetate and water. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After filtering the solution, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 49/1 to 24/1) to give compound 7 (1.98 g, 5.23 mmol, Yield: 98%) was obtained as a reddish brown oil.
1 H NMR (CDCl 3 ); δ 4.33 (m, 1H, H-4), 4.22 (dd, 1H, H-5, J5,4 = 4.6, J5,6 = 8.7 Hz), 4.11 (dd, 1H , H-7a, J7,6 = 4.5, J7a, 7b = 10.4 Hz), 3.98 (dd, 1H, H-7b, J7b, 6 = 5.0, J7b, 7a = 10.4 Hz), 3.31 (dd, 1H, H -3a, J3a, 4 = 3.7, J3a, 3b = 14.6 Hz), 3.26 (m, 1H, H-6), 3.18 (dd, 1H, H-3b, J3b, 4 = 4.5, J3b, 3a = 14.6 Hz ), 1.52, 1.38 (each s, each 3H, isopropylidene), 1.07 (m, 21H, TIPS)
13 C NMR (CDCl 3 ); δ 108.14, 72.73, 71.14, 62.96, 51.89, 36.58, 28.60, 26.86, 18.12, 12.04
ESIMS-LR m / z = 401 (MNa + )

(8)(3R,4S,5R)−4,5−O−(1−メチルエチリデン)−1−オキソ−3−トリイソプロピルシロキシメチル−1,2−ジチアン(化合物8)
上記化合物7(1.98g,5.23mmol)をジクロロメタン(26mL)に溶解し、−78℃にてメタクロロ過安息香酸(1.42g,5.75mmol)を少しずつ加えて、10分撹拌した。−78℃下、飽和炭酸水素ナトリウム水溶液を加え、その後反応混合液を室温に戻し、酢酸エチルと水で分配した。有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=7/1〜4/1)にて精製し、化合物8(1.78g,4.50mmol,収率:86%)を白色固体物質のジアステレオマー混合物として得た。分析用サンプルとして二つのジアステレオマーを分離した。
(8) (3R, 4S, 5R) -4,5-O- (1-methylethylidene) -1-oxo-3-triisopropylsiloxymethyl-1,2-dithiane (Compound 8)
The compound 7 (1.98 g, 5.23 mmol) was dissolved in dichloromethane (26 mL), metachloroperbenzoic acid (1.42 g, 5.75 mmol) was added little by little at −78 ° C., and the mixture was stirred for 10 minutes. Saturated aqueous sodium hydrogen carbonate solution was added at −78 ° C., and then the reaction mixture was returned to room temperature and partitioned between ethyl acetate and water. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After filtration of the solution, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 7/1 to 4/1) to give compound 8 (1.78 g, 4.50 mmol, Yield: 86%) was obtained as a diastereomeric mixture of white solid material. Two diastereomers were separated as analytical samples.

ジアステレオマーAの1H NMR
1H NMR(CDCl3);δ4.58(ddd,1H,H-4,J4,3a = 3.5,J4,5 = 5.5,J4,3b = 7.8 Hz),4.30(dd,1H,H-7a,J7a,6 = 4.3,J7a,7b = 10.5 Hz),4.26(dd,1H,H-5,J5,4 = 5.5,J5,6 = 9.5 Hz ),4.13(t,1H,H-7,J7b,6 = J7b,7a = 10.5),3.55(dd,1H,H-3a,J3a,4 = 3.5,J3a,3b = 13.6 Hz),3.16(dd,1H,H-3b,J3b,4 = 7.8,J3b,3a = 13.6 Hz),3.06(ddd,1H,H-6,J6,7a = 4.3,J6,5 = 9.5,J6,7b = 10.5 Hz),1.50,1.37(each s,each 3H,isopropylidene),1.07(m,21H,TIPS)
ジアステレオマーBの1H NMR
δ4.71(dd,1H,H-5,J5,4 = 6.0,J5,6 = 10.3 Hz ),4.38(dd,1H,H-7a,J7a,6 = 2.3,J7a,7b = 10.5 Hz),4.20(ddd,1H,H-4,J4,3a = 4.0,J4,5 = 6.0,J4,3b = 10.3 Hz) ,4.09(dd,1H,H-7,J7b,6 = 2.8,J7b,7a = 10.5),3.84(dd,1H,H-3a,J3a,4 = 4.0,J3a,3b = 13.3 Hz),3.80(m,1H,H-6),2.98(dd,1H,H-3b,J3b,4 = 10.3,J3b,3a = 13.3 Hz),1.49,1.36(each s,each 3H,isopropylidene),1.07(m,21H,TIPS).
ジアステレオマーAの13C NMR
13C NMR(500 MHz,CDCl3)δ109.25,71.24,70.18,67.02,61.64,28.30,27.83,26.20,18.30,12.23
ジアステレオマーBの13C NMR
13C NMR(500 MHz,CDCl3)δ109.76,72.85,71.66,62.25,55.31,43.29,27.87,25.32,17.79,11.73
ESIMS-LR m/z = 395(MH+
1 H NMR of diastereomer A
1 H NMR (CDCl 3 ); δ 4.58 (ddd, 1H, H-4, J4, 3a = 3.5, J4, 5 = 5.5, J4, 3b = 7.8 Hz), 4.30 (dd, 1H, H-7a, J7a, 6 = 4.3, J7a, 7b = 10.5 Hz), 4.26 (dd, 1H, H-5, J5,4 = 5.5, J5,6 = 9.5 Hz), 4.13 (t, 1H, H-7, J7b, 6 = J7b, 7a = 10.5), 3.55 (dd, 1H, H-3a, J3a, 4 = 3.5, J3a, 3b = 13.6 Hz), 3.16 (dd, 1H, H-3b, J3b, 4 = 7.8, J3b , 3a = 13.6 Hz), 3.06 (ddd, 1H, H-6, J6,7a = 4.3, J6,5 = 9.5, J6,7b = 10.5 Hz), 1.50, 1.37 (each s, each 3H, isopropylidene), 1.07 (m, 21H, TIPS)
1 H NMR of diastereomer B
δ4.71 (dd, 1H, H-5, J5,4 = 6.0, J5,6 = 10.3 Hz), 4.38 (dd, 1H, H-7a, J7a, 6 = 2.3, J7a, 7b = 10.5 Hz), 4.20 (ddd, 1H, H-4, J4,3a = 4.0, J4,5 = 6.0, J4,3b = 10.3 Hz), 4.09 (dd, 1H, H-7, J7b, 6 = 2.8, J7b, 7a = 10.5), 3.84 (dd, 1H, H-3a, J3a, 4 = 4.0, J3a, 3b = 13.3 Hz), 3.80 (m, 1H, H-6), 2.98 (dd, 1H, H-3b, J3b, 4 = 10.3, J3b, 3a = 13.3 Hz), 1.49, 1.36 (each s, each 3H, isopropylidene), 1.07 (m, 21H, TIPS).
13 C NMR of diastereomer A
13 C NMR (500 MHz, CDCl 3 ) δ 109.25, 71.24, 70.18, 67.02, 61.64, 28.30, 27.83, 26.20, 18.30, 12.23
13 C NMR of diastereomer B
13 C NMR (500 MHz, CDCl 3 ) δ 109.76, 72.85, 71.66, 62.25, 55.31, 43.29, 27.87, 25.32, 17.79, 11.73
ESIMS-LR m / z = 395 (MH + )

(9)(4R,5S,6R)−3−アセトキシ−4,5−O−(1−メチルエチリデン)−6−トリイソプロピルシロキシメチル−1,2−ジチアン(化合物9)
上記化合物8(1.75g,4.40mmol)を無水酢酸(22mL)に溶解し、33時間加熱還流した。氷冷下、飽和炭酸水素ナトリウム水溶液へ室温に戻した反応液を少しずつ加え、発泡がなくなるまで撹拌した。その後、反応混合液を酢酸エチルと水で分配し、有機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=97/3〜23/2)にて精製し、化合物9(371.0mg,0.85mmol,収率:19%)を橙色油状物質のジアステレオマー混合物として得た。
(9) (4R, 5S, 6R) -3-Acetoxy-4,5-O- (1-methylethylidene) -6-triisopropylsiloxymethyl-1,2-dithiane (Compound 9)
Compound 8 (1.75 g, 4.40 mmol) was dissolved in acetic anhydride (22 mL) and heated to reflux for 33 hours. Under ice-cooling, the reaction solution returned to room temperature was added little by little to a saturated aqueous sodium hydrogen carbonate solution, and the mixture was stirred until no foaming occurred. Thereafter, the reaction mixture was partitioned between ethyl acetate and water, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. After filtration of the solution, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 97 / 3-23 / 2) to give compound 9 (371.0 mg, 0.85 mmol, Yield: 19%) was obtained as a diastereomeric mixture of orange oil.

ジアステレオマーAの1H NMR
1H NMR(CDCl3);δ6.01(d,1H,H-3,J3,4 = 4.8 Hz),4.48(dd,1H,H-5,J5,4 = 4.8,J5,6 = 7.5 Hz),4.16(t,1H,H-4,J4,3 = J4,5 = 4.8),4.14(dd,1H,H-7a,J7a,6 = 5.5,J7a,7b = 10.5 Hz),4.00(dd,1H,H-7b,J7b,6 = 5.5,J7b,7a = 10.5 Hz),3.26(dt,1H,H-6,J6,7 = 5.5,J6,5 = 7.5 Hz),2.16(s,3H,-OC(O)CH3),1.52,1.36(each s,each 3H,isopropylidene),1.07(m,21H,TIPS)
ジアステレオマーBの1H NMR
1H NMR(CDCl3);δ6.16(d,1H,H-3,J3,4 = 3.0 Hz),4.46(dd,1H,H-5,J5,4 = 5.0,J5,6 = 9.0 Hz),4.41(dd,1H,H-4,J4,3 = 3.0,J4,5 = 5.0),4.12(dd,1H,H-7a,J7a,6 = 4.3,J7a,7b = 10.5 Hz),4.01(dd,1H,H-7b,J7b,6 = 4.3,J7b,7a = 10.5 Hz),3.25(dt,1H,H-6,J6,7 = 4.3,J6,5 = 9.0 Hz),2.16(s,3H,-OC(O)CH3),1.54,1.39(each s,each 3H,isopropylidene),1.07(m,21H,TIPS)
ジアステレオマーAの13C NMR
13C NMR(CDCl3);δ169.15,108.50,74.60,74.45,73.56,62.88,50.27,28.38,26.73,21.15,18.08,12.01
ジアステレオマーBの13C NMR
δ169.34,109.86,74.60,74.45,73.56,62.41,51.78,27.93,26.56,21.19,18.08,12.01
ESIMS-LR m/z = 459(MNa+
1 H NMR of diastereomer A
1 H NMR (CDCl 3 ); δ6.01 (d, 1H, H-3, J3,4 = 4.8 Hz), 4.48 (dd, 1H, H-5, J5,4 = 4.8, J5,6 = 7.5 Hz ), 4.16 (t, 1H, H-4, J4,3 = J4,5 = 4.8), 4.14 (dd, 1H, H-7a, J7a, 6 = 5.5, J7a, 7b = 10.5 Hz), 4.00 (dd , 1H, H-7b, J7b, 6 = 5.5, J7b, 7a = 10.5 Hz), 3.26 (dt, 1H, H-6, J6,7 = 5.5, J6,5 = 7.5 Hz), 2.16 (s, 3H , -OC (O) CH 3 ), 1.52, 1.36 (each s, each 3H, isopropylidene), 1.07 (m, 21H, TIPS)
1 H NMR of diastereomer B
1 H NMR (CDCl 3 ); δ 6.16 (d, 1H, H-3, J3,4 = 3.0 Hz), 4.46 (dd, 1H, H-5, J5,4 = 5.0, J5,6 = 9.0 Hz ), 4.41 (dd, 1H, H-4, J4,3 = 3.0, J4,5 = 5.0), 4.12 (dd, 1H, H-7a, J7a, 6 = 4.3, J7a, 7b = 10.5 Hz), 4.01 (Dd, 1H, H-7b, J7b, 6 = 4.3, J7b, 7a = 10.5 Hz), 3.25 (dt, 1H, H-6, J6,7 = 4.3, J6,5 = 9.0 Hz), 2.16 (s , 3H, -OC (O) CH 3), 1.54,1.39 (each s, each 3H, isopropylidene), 1.07 (m, 21H, TIPS)
13 C NMR of diastereomer A
13 C NMR (CDCl 3 ); δ 169.15, 108.50, 74.60, 74.45, 73.56, 62.88, 50.27, 28.38, 26.73, 21.15, 18.08, 12.01
13 C NMR of diastereomer B
δ169.34, 109.86, 74.60, 74.45, 73.56, 62.41, 51.78, 27.93, 26.56, 21.19, 18.08, 12.01
ESIMS-LR m / z = 459 (MNa + )

(10)1−[(3’R,4’R,5’S,6’R)−1’,2’−ジチアン−4’,5’−O−(1−メチルエチリデン)−6’−トリイソプロピルシロキシメチル−3’−イル]ウラシル(化合物10)
上記化合物9(223mg,0.53mmol)とウラシル(120mg,1.07mmol)をアセトニトリル(2.60mL)に懸濁させ、N,O−ビス(トリメチルシリル)アセトアミド(0.52mL,2.14mmol)を加え、透明な溶液とした。そこに、氷冷下、トリフルオロメタンスルホン酸トリメチルシリル(0.24mL,1.30mmol)を加え、5時間加熱還流した。氷冷下、飽和炭酸水素ナトリウム水溶液へ室温に戻した反応液を少しずつ加えた。その後、反応混合液を酢酸エチルと水で分配し、有機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液を濾過後、濾液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=9/1〜3/2)にて精製し、化合物10(94.8mg,0.19mmol,収率:37%)を茶色油状物質として得た。
1H NMR(CDCl3);δ8.18(br s,1H,NH,exchangable with D2O ),7.39(d,1H,H-6,J6,5 = 8.2 Hz),5.78(d,1H,H-3',J3',4' = 7.6 Hz),5.75(d,1H,H-5,J5,6 = 8.2 Hz),4.80(t,1H,H-5’,J5,4' = J5,6' = 4.7 Hz),4.38(dd,1H,H-4’,J4',5' = 4.7,J4',3' = 7.6 Hz),4.17(dd,1H,H-7’a,J7a',6' = 6.9,J7'a,7'b = 10.4 Hz),4.14(dd,1H,H-7'b,J7b,6' = 5.4,J7'b,7'a = 10.4 Hz),3.33(ddd,1H,H-6',J6',5' = 4.7,J6',7'b = 5.4 J6',7'a = 6.9 Hz),1.57,1.37(each s,each 3H,isopropylidene),1.07(m,21H,TIPS)
ESIMS-LR m/z = 511(MNa+
(10) 1-[(3′R, 4′R, 5 ′S, 6′R) -1 ′, 2′-dithian-4 ′, 5′-O- (1-methylethylidene) -6′- Triisopropylsiloxymethyl-3′-yl] uracil (Compound 10)
Compound 9 (223 mg, 0.53 mmol) and uracil (120 mg, 1.07 mmol) were suspended in acetonitrile (2.60 mL), and N, O-bis (trimethylsilyl) acetamide (0.52 mL, 2.14 mmol) was added. In addition, a clear solution was obtained. Trimethylsilyl trifluoromethanesulfonate (0.24 mL, 1.30 mmol) was added thereto under ice cooling, and the mixture was heated to reflux for 5 hours. The reaction liquid which was returned to room temperature was added little by little to saturated sodium hydrogencarbonate aqueous solution under ice-cooling. Thereafter, the reaction mixture was partitioned between ethyl acetate and water, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. After filtering the solution, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 9 / 1-3 / 2) to give compound 10 (94.8 mg, 0.19 mmol, Yield: 37%) was obtained as a brown oil.
1 H NMR (CDCl 3 ); δ8.18 (br s, 1H, NH, exchangable with D 2 O), 7.39 (d, 1H, H-6, J6,5 = 8.2 Hz), 5.78 (d, 1H, H-3 ', J3', 4 '= 7.6 Hz), 5.75 (d, 1H, H-5, J5,6 = 8.2 Hz), 4.80 (t, 1H, H-5', J5,4 '= J5 , 6 '= 4.7 Hz), 4.38 (dd, 1H, H-4', J4 ', 5' = 4.7, J4 ', 3' = 7.6 Hz), 4.17 (dd, 1H, H-7'a, J7a ', 6' = 6.9, J7'a, 7'b = 10.4 Hz), 4.14 (dd, 1H, H-7'b, J7b, 6 '= 5.4, J7'b, 7'a = 10.4 Hz), 3.33 (ddd, 1H, H-6 ', J6', 5 '= 4.7, J6', 7'b = 5.4 J6 ', 7'a = 6.9 Hz), 1.57, 1.37 (each s, each 3H, isopropylidene) , 1.07 (m, 21H, TIPS)
ESIMS-LR m / z = 511 (MNa + )

(11)1−[(3’R,4’R,5’S,6’R)−4’,5’−ジヒドロキシ−1’,2’−ジチアン−6’ −ヒドロキシメチル−3’−イル]ウラシル(化合物11)
上記化合物10(73.0mg,0.15mmol)に、別途調製した50%トリフルオロ酢酸−ジクロロメタン混合溶液(1.5mL)を加え、25時間撹拌した。反応液を減圧濃縮し、メタノールで3回共沸後、トルエン共沸を3回行った。残渣をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/メタノール=17/3〜3/1)にて精製し、化合物11(40mg,0.14mmol,収率:91%)を茶色固体物質として得た。
1H NMR(500 MHz,DMSO-d6,70℃)δ7.63(dd,1H,H-6,J = 4.0,J = 8.2 Hz),5.72(d,1H,H-3’,J3’,4’ = 9.8 Hz),5.62(dd,1H,H-5,J = 1.6 J = 8.2 Hz),5.34(br s,2H,4’-OH,5’-OH,exchangable with D2O),5.06(br s,1H,7’-OH,exchangable with D2O),4.28(dd,1H,H-5',J5',4' = 2.2,J5',6' = 3.5 Hz),4.09(dd,1H,H-4',J4',5' = 2.2,J4',3' = 9.8 Hz),3.92(dd,1H,H-7'a,J7'a,6' = 3.8,J7'a,7'b = 11.3 Hz),3.91(dd,1H,H-7 'b,J7'b,6' = 6.9,J7'b,7'a = 11.3 Hz),3.10(ddd,1H,H-6',J6',5' = 3.5 J6',7'a = 3.8,J6',7'b = 6.9 Hz)
(11) 1-[(3′R, 4′R, 5 ′S, 6′R) -4 ′, 5′-dihydroxy-1 ′, 2′-dithian-6′-hydroxymethyl-3′-yl ] Uracil (Compound 11)
A separately prepared 50% trifluoroacetic acid-dichloromethane mixed solution (1.5 mL) was added to the compound 10 (73.0 mg, 0.15 mmol), and the mixture was stirred for 25 hours. The reaction solution was concentrated under reduced pressure, azeotroped 3 times with methanol, and then azeotroped with toluene 3 times. The residue was purified by silica gel column chromatography (eluent: chloroform / methanol = 17/3 to 3/1) to obtain compound 11 (40 mg, 0.14 mmol, yield: 91%) as a brown solid substance.
1 H NMR (500 MHz, DMSO-d 6 , 70 ° C) δ7.63 (dd, 1H, H-6, J = 4.0, J = 8.2 Hz), 5.72 (d, 1H, H-3 ', J3' , 4 '= 9.8 Hz), 5.62 (dd, 1H, H-5, J = 1.6 J = 8.2 Hz), 5.34 (br s, 2H, 4'-OH, 5'-OH, exchangable with D 2 O) , 5.06 (br s, 1H, 7'-OH, exchangable with D 2 O), 4.28 (dd, 1H, H-5 ', J5', 4 '= 2.2, J5', 6 '= 3.5 Hz), 4.09 (Dd, 1H, H-4 ', J4', 5 '= 2.2, J4', 3 '= 9.8 Hz), 3.92 (dd, 1H, H-7'a, J7'a, 6' = 3.8, J7 'a, 7'b = 11.3 Hz), 3.91 (dd, 1H, H-7' b, J7'b, 6 '= 6.9, J7'b, 7'a = 11.3 Hz), 3.10 (ddd, 1H, H-6 ', J6', 5 '= 3.5 J6', 7'a = 3.8, J6 ', 7'b = 6.9 Hz)

Claims (5)

下記式(I)で表される核酸誘導体を製造するための方法であって、

[式中、
1およびR2は独立に水素原子または水酸基の保護基を示し;
3は水素原子、水酸基、保護水酸基、C1-6アルコキシ基、2−(C1-6アルコキシ)エトキシ基またはハロゲン原子を示し;
Bは、下記式で表される何れかの核酸塩基基:

[式中、R4は水素原子またはアミノ基の保護基を示す]を示す]
下記式(II)で表されるチオールスルフィナート化合物にカルボン酸無水物を作用させることにより、下記式(III)で表されるカルボキシレート化合物を得る工程:

[式中、R1〜R3は上記と同義を示し;R5はC1-6アルキル基またはC1-6ハロゲン化アルキル基を示す];および
シリル化剤とルイス酸の存在下、カルボキシレート化合物(III)と核酸塩基を反応させることにより核酸誘導体(I)を得る工程を含むことを特徴とする製造方法。
A method for producing a nucleic acid derivative represented by the following formula (I):

[Where:
R 1 and R 2 independently represent a hydrogen atom or a hydroxyl protecting group;
R 3 represents a hydrogen atom, a hydroxyl group, a protected hydroxyl group, a C 1-6 alkoxy group, a 2- (C 1-6 alkoxy) ethoxy group or a halogen atom;
B is any nucleobase represented by the following formula:

[Wherein R 4 represents a hydrogen atom or an amino-protecting group]
The process of obtaining the carboxylate compound represented by following formula (III) by making a carboxylic anhydride act on the thiol sulfinate compound represented by following formula (II):

[Wherein R 1 to R 3 are as defined above; R 5 is a C 1-6 alkyl group or a C 1-6 halogenated alkyl group]; and carboxy in the presence of a silylating agent and a Lewis acid. A production method comprising a step of obtaining a nucleic acid derivative (I) by reacting a rate compound (III) with a nucleobase.
ルイス酸としてトリフルオロメタンスルホン酸トリメチルシリルを用いる請求項1に記載の製造方法。   The production method according to claim 1, wherein trimethylsilyl trifluoromethanesulfonate is used as the Lewis acid. シリル化剤としてN,O−ビス(トリメチルシリル)アセトアミドを用いる請求項1または2に記載の製造方法。   The production method according to claim 1 or 2, wherein N, O-bis (trimethylsilyl) acetamide is used as the silylating agent. さらに、ジチアン化合物(IV)を酸化してチオールスルフィナート化合物(II)を得る工程:

[式中、R1〜R3は上記と同義を示す]
を含む請求項1〜3のいずれかに記載の製造方法。
Furthermore, the step of oxidizing the dithiane compound (IV) to obtain the thiolsulfinate compound (II):

[Wherein R 1 to R 3 are as defined above]
The manufacturing method in any one of Claims 1-3 containing.
下記式(I)で表される核酸誘導体。

[式中、
1およびR2は独立に水素原子または水酸基の保護基を示し;
3は水素原子、水酸基、保護水酸基、C1-6アルコキシ基、2−(C1-6アルコキシ)エトキシ基またはハロゲン原子を示し;
Bは、下記式で表される何れかの核酸塩基基:

[式中、R4は水素原子またはアミノ基の保護基を示す]を示す]
A nucleic acid derivative represented by the following formula (I).

[Where:
R 1 and R 2 independently represent a hydrogen atom or a hydroxyl protecting group;
R 3 represents a hydrogen atom, a hydroxyl group, a protected hydroxyl group, a C 1-6 alkoxy group, a 2- (C 1-6 alkoxy) ethoxy group or a halogen atom;
B is any nucleobase represented by the following formula:

[Wherein R 4 represents a hydrogen atom or an amino-protecting group]
JP2013041084A 2013-03-01 2013-03-01 Nucleic acid derivative and production method thereof Pending JP2014169239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041084A JP2014169239A (en) 2013-03-01 2013-03-01 Nucleic acid derivative and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041084A JP2014169239A (en) 2013-03-01 2013-03-01 Nucleic acid derivative and production method thereof

Publications (1)

Publication Number Publication Date
JP2014169239A true JP2014169239A (en) 2014-09-18

Family

ID=51691931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041084A Pending JP2014169239A (en) 2013-03-01 2013-03-01 Nucleic acid derivative and production method thereof

Country Status (1)

Country Link
JP (1) JP2014169239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264630B2 (en) 2017-02-28 2022-03-01 Okinawa Institute Of Science And Technology School Corporation Process for preparing a supported catalytic material, and supported catalytic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264630B2 (en) 2017-02-28 2022-03-01 Okinawa Institute Of Science And Technology School Corporation Process for preparing a supported catalytic material, and supported catalytic material

Similar Documents

Publication Publication Date Title
JP7280248B2 (en) Amidite compound and method for producing polynucleotide using said compound
CN110785425B (en) Synthesis of 3 '-deoxyadenosine-5' -O- [ phenyl (benzyloxy-L-alanyl) ] phosphate (NUC-7738)
EP2277878B1 (en) Process for production of ethynylthymidine compound using 5-methyluridine as starting raw material
NO179675B (en) Pyrimidine nucleoside derivatives and pharmaceutical compositions containing them
RU2681939C2 (en) Synthesis route for 2'-deoxy-2',2'-difluorotetrahydrouridines
WO2009061894A1 (en) Novel synthesis of beta-nucleosides
JP2010519179A (en) Nucleoside and nucleotide analogs having quaternary carbon centers and methods of use
JP2014169239A (en) Nucleic acid derivative and production method thereof
US11214590B2 (en) Photoresponsive nucleotide analog capable of photocrosslinking in visible light region
WO2018029264A1 (en) Process for preparation of dapagliflozin and intermediates thereof
EP1889840A1 (en) Rearrangement of spirolactams
JP6950904B2 (en) Nucleotide derivatives and RNA derivatives or methods for producing RNA
EP2508528A1 (en) Stereoselective synthesis of beta-nucleosides
KR101259648B1 (en) A manufacturing process of 2′,2′-difluoronucloside and intermediate
EP3925948A1 (en) Intermediate of eribulin, synthesis method therefor and use thereof
KR20080056633A (en) Method of preparing taxane derivatives and intermediates used therein
EP3686208B1 (en) Intermediates for preparing halichondrin compounds and preparation method therefor
KR101241321B1 (en) Improved preparation method of Decitabine
AT509773B1 (en) NEW 2,2-DITHIOSUBSTITUTED FURANOSE DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
Yadav et al. Synthesis of 3, 5, 6-Substituted Uridine Derivatives as Potential Therapeutic Agents
CA2480002A1 (en) Lactic acid derivative
WO2022194924A1 (en) Chiral synthons for the synthesis of chiral phosphorothioates
CN117105996A (en) Preparation method of deoxyribose derivative
WO2013162922A1 (en) Taxane compounds, compositions and methods
KR20120051328A (en) Novel derivatives of nucleosides