JP2014168201A - MSK modulation circuit - Google Patents

MSK modulation circuit Download PDF

Info

Publication number
JP2014168201A
JP2014168201A JP2013039939A JP2013039939A JP2014168201A JP 2014168201 A JP2014168201 A JP 2014168201A JP 2013039939 A JP2013039939 A JP 2013039939A JP 2013039939 A JP2013039939 A JP 2013039939A JP 2014168201 A JP2014168201 A JP 2014168201A
Authority
JP
Japan
Prior art keywords
transmission
frequency
circuit
signal
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013039939A
Other languages
Japanese (ja)
Inventor
Masakazu Miyaji
正和 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Signal Co Ltd
Original Assignee
Daido Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Signal Co Ltd filed Critical Daido Signal Co Ltd
Priority to JP2013039939A priority Critical patent/JP2014168201A/en
Publication of JP2014168201A publication Critical patent/JP2014168201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an MSK modulation circuit 10+20 having a short startup time and not requiring PLL.SOLUTION: The MSK modulation circuit includes a rectangular wave generation circuit 11 generating two transmission signals f0, f1 by rectangular wave signals in synchronism with a data input clock CLK-DATAIN, a state determination circuit 13 determining a next transition state from current state and transmission data DATA-IN, and a waveform selection circuit 14 for selecting one of transmission signals f0, f0-, f1, f1- depending on that state and the transmission data DATA-IN, and outputting that signal. With regard to the transmission speed D and the transmission frequencies fH, fL of the transmission signals f0, f1 and a positive integer n, any one of the frequency selection conditions of a first mode, i.e., a formula (fH/D=n+0.50) and a formula (fL/D=n) are all established, or the frequency selection conditions of a second mode, i.e., a formula (fH/D=n) and a formula (fL/D=n-0.50) are all established, is satisfied.

Description

この発明は、デジタル変調の一種のFSK(frequency shift keying)変調に更に位相連続等の条件も課したMSK(minimum shift keying)変調を行うMSK変調回路に関し、詳しくは、高速起動が可能で鉄道信号設備のATS−Pシステムの無電源地上子にも使用しうるMSK変調回路に関する。   The present invention relates to an MSK modulation circuit for performing MSK (minimum shift keying) modulation in which a condition such as phase continuity is further imposed on a kind of digital modulation FSK (frequency shift keying) modulation. The present invention relates to an MSK modulation circuit that can also be used for an unpowered ground element of an ATS-P system of equipment.

MSK変調回路の実現手段としては直交振幅変調によるものが一般に知られている。図4は、そのようなMSK変調回路の具体例を示しており、(a)がブロック構成図、(b)が信号波形例のタイムチャートである。
その内容は公知なので、ここでは詳細な説明は割愛するが、図示したMSK変調回路では、周波数fcの基準信号を基に入力データのデジタル信号に応じたI(t)信号とQ(t)信号を生成・加算することでMSK変調している。そのため、このMSK変調回路は電源オンから基準信号の正弦波形・レベルの安定まで時間がかかる。
As means for realizing the MSK modulation circuit, one using quadrature amplitude modulation is generally known. FIG. 4 shows a specific example of such an MSK modulation circuit, where (a) is a block diagram and (b) is a time chart of a signal waveform example.
Since the contents thereof are publicly known, a detailed description is omitted here. However, in the illustrated MSK modulation circuit, an I (t) signal and a Q (t) signal corresponding to the digital signal of the input data based on the reference signal of the frequency fc. Are generated and added to perform MSK modulation. Therefore, this MSK modulation circuit takes time from the power-on to the stabilization of the sine waveform and level of the reference signal.

一般に、MSK変調方式では、高低2種の送信周波数がデータに応じて使い分けられ、高い方の送信周波数fHと低い方の送信周波数fLとのうち何れか一方を採択する送信周波数の切替がデータの変化時に行われるが、その切り替え時にも送信信号の位相を連続に保つ必要がある。そして、図示したような一般のMSK変調方式では、送信周波数切替時の位相連続維持の実現のために、PLL(phase locked loop)回路を用いてMSK変調回路を具現化していた。そのため、起動してから動作が安定するまで時間がかかる。   In general, in the MSK modulation system, two types of transmission frequencies, high and low, are used depending on data, and switching of the transmission frequency that adopts one of the higher transmission frequency fH and the lower transmission frequency fL is used for data transmission. Although it is performed at the time of change, it is necessary to keep the phase of the transmission signal continuous even at the time of switching. In the general MSK modulation system as shown in the figure, an MSK modulation circuit is implemented using a PLL (phase locked loop) circuit in order to maintain phase continuity when switching transmission frequencies. Therefore, it takes time until the operation is stabilized after starting.

一方、鉄道の分野では、高速デジタル無線伝送を利用した信号設備として、ATS−Pシステムが東日本旅客鉄道株式会社を始め公民鉄で多く使われている。このシステムでは地上子・車上子間の無線伝送にFSK変調方式を使用している(例えば非特許文献1,2参照)。FSK変調方式は送信回路の構成が簡単であるうえ起動から動作安定までの時間が短いために、常時稼働している有電源地上子ばかりでなく、車上子から電力波で電源を供給されたときのみ無線でデータを伝送する無電源地上子にも使用されている。   On the other hand, in the field of railways, the ATS-P system is widely used in public railways such as East Japan Railway Company as signal equipment using high-speed digital wireless transmission. In this system, the FSK modulation method is used for radio transmission between the ground unit and the vehicle unit (see, for example, Non-Patent Documents 1 and 2). Since the FSK modulation system has a simple transmission circuit configuration and a short time from start-up to stable operation, power is supplied not only from the grounded power unit that is always in operation, but also from the car unit to the power wave. It is also used in non-powered ground units that only transmit data wirelessly.

ATS−Pのようなシステムでは(例えば非特許文献2参照)、電源線の敷設が不要な無電源地上子(情報固定形)は速度制限箇所での列車防護に不可欠の機器であり、また、無電源地上子(情報可変形)は地上設備費の低減に寄与するため多く使用されている。
ATS−Pシステムでは、地上から車上への無線伝送に1708kHz±32kHz(中心周波数fcが1708kHzで,偏倚周波数fdが32kHzで,送信周波数fHが1740kHzで,送信周波数fLが1676kHz)のFSK変調信号を用い、車上から地上への無線伝送に3000kHz±32kHz(中心周波数fcが3000kHzで,偏倚周波数fdが32kHzで,送信周波数fHが3032kHzで,送信周波数fLが2968kHz)のFSK変調信号を用いて64kbpsのデジタル情報伝送を実施しており、ビット誤り率(BER)が3×10−5以下の高品質伝送が得られている。
In a system such as ATS-P (see, for example, Non-Patent Document 2), a non-powered ground element (information fixed type) that does not require the installation of a power line is an indispensable device for train protection at a speed limiting point The non-powered ground unit (variable information type) is often used to contribute to the reduction of ground facility costs.
In the ATS-P system, an FSK modulation signal of 1708 kHz ± 32 kHz (center frequency fc is 1708 kHz, bias frequency fd is 32 kHz, transmission frequency fH is 1740 kHz, transmission frequency fL is 1676 kHz) for radio transmission from the ground to the vehicle. The FSK modulation signal of 3000 kHz ± 32 kHz (the center frequency fc is 3000 kHz, the bias frequency fd is 32 kHz, the transmission frequency fH is 3032 kHz, and the transmission frequency fL is 2968 kHz) is used for wireless transmission from the vehicle to the ground. has implemented 64kbps digital information transmission, the bit error rate (BER) is high-quality transmission of 3 × 10 -5 hereinafter are obtained.

宮地正和・松本憲二郎・片方喜信・入夏仁美・豊島進・共著「ATS−Ps(仮称)システムの構成と機能」第31回鉄道サイバネ論文集、論文番号411、P.147−150、1994年11月発行Jointly written by Masakazu Miyaji, Kenjiro Matsumoto, Yoshinobu Katakata, Hitomi Iratsu, Susumu Toyoshima, “ATS-Ps (tentative name) system configuration and function”, 31st Railway Cybane Proceedings, paper number 411, p. 147-150, issued in November 1994 鉄道電気技術者のための信号概論「ATS・ATC[改訂二版]」P.55−58、社団法人日本鉄道電気技術協会平成24年4月発行Overview of Signals for Railway Electricians “ATS • ATC [Second Revised Edition]” p. 55-58, issued by Japan Railway Electrical Engineering Association, April 2012

これら従来のFSK変調方式とMSK変調方式とを比較すると、位相連続を要しないFSK変調方式の方が、位相連続を要するMSK変調方式よりも、回路を簡素化しやすいうえ、起動から動作安定までの時間短縮も実現容易であるのに対し、MSK変調方式は、同じ周波数帯域(送信周波数fL〜送信周波数fHの範囲)を使用するのであっても伝送速度DをFSK変調方式の2倍まで高めることが可能である。また、FSK変調方式とMSK変調方式とで、送信信号の周波数帯域ひいては偏倚周波数fd(送信周波数fH−中心周波数fc,中心周波数fc−送信周波数fL)が同じであれば、受信回路の占有帯域幅も同じにできるため、雑音レベルも同じであり、従ってビット誤り率も同程度になる。   When comparing these conventional FSK modulation methods and MSK modulation methods, the FSK modulation method that does not require phase continuity is easier to simplify the circuit than the MSK modulation method that requires phase continuity, and it can be from start-up to stable operation. Although time reduction is easy to implement, the MSK modulation method increases the transmission rate D to twice that of the FSK modulation method even if the same frequency band (range of transmission frequency fL to transmission frequency fH) is used. Is possible. In addition, if the frequency band of the transmission signal, and hence the bias frequency fd (transmission frequency fH−center frequency fc, center frequency fc−transmission frequency fL), are the same in the FSK modulation method and the MSK modulation method, the occupied bandwidth of the reception circuit Therefore, the noise level is the same, and therefore the bit error rate is also the same.

上述のATS−Pシステムに当てはめれば、MSK変調方式の採用により、偏倚周波数fdを32kHzのまま維持して、周波数帯域や通信品質を維持したまま、FSK変調方式では64kbpsであった伝送速度Dを2倍の128kbpsに高めることができるのである。より高速のデータ伝送ができれば、地上子や車上子の小型化が可能になるという利点や、現在の地上子や車上子の形状のままでもより高速の列車に対応できるという利点、電文を長くして各地上子からの伝送情報量を増やすことができるという利点などを享受することができるので、中心周波数fcや偏倚周波数fdを余り変えずに伝送速度Dを増大したいという要求に応えることができる。   If applied to the above-described ATS-P system, the transmission rate D, which was 64 kbps in the FSK modulation method, is maintained while maintaining the frequency band and communication quality by maintaining the bias frequency fd at 32 kHz by adopting the MSK modulation method. Can be doubled to 128 kbps. If higher-speed data transmission is possible, it will be possible to reduce the size of the ground unit and the vehicle upper unit, the advantage that it can handle higher speed trains even with the current shape of the ground unit and vehicle upper unit, Since it is possible to enjoy the advantage that the amount of transmission information from each ground element can be increased by increasing the length, the request to increase the transmission speed D without changing the center frequency fc and the bias frequency fd is met. Can do.

しかしながら、上述した従来のMSK変調回路ではPLLを用いて直交変調をおこなっているため、起動してから動作が安定するまでの謂わば起動後整定時間が長いので、電力波受信後1〜2msで立ち上がって送信を開始する無電源地上子には従来のMSK変調回路を使用するのが困難であった。回路の簡素化も難しい。
そこで、PLLが不要で起動後整定時間が短いMSK変調回路を実現することが技術的な課題となる。
However, since the above-described conventional MSK modulation circuit performs quadrature modulation using a PLL, the so-called start-up settling time from the start-up until the operation is stabilized is long, so that it takes 1 to 2 ms after receiving the power wave. It has been difficult to use a conventional MSK modulation circuit for a non-powered ground element that starts up and starts transmission. It is difficult to simplify the circuit.
Therefore, it is a technical problem to realize an MSK modulation circuit that requires no PLL and has a short settling time after startup.

本発明のMSK変調回路は、このような課題を解決するために創案されたものであり、二値データ列からなる送信データを入力するタイミングを定めるデータ入力クロックに同期させて周波数の異なる二つの送信信号を矩形波信号で生成する矩形波生成回路と、現状態と前記送信データの入力値とから次に遷移する状態を決定する状態決定回路と、前記状態決定回路の状態と前記送信データの入力値とに応じて前記の二つの送信信号とその反転信号との四つの信号から何れか一つを選択して出力する波形選択回路とを備えたMSK変調回路であって、前記データ入力クロックの周波数に対応した伝送速度をDとし、前記送信信号のうち低い方の送信周波数をfLとし、前記送信信号のうち高い方の送信周波数をfHとし、正の整数の何れか一つをnとしたときに、式[fH/D=n+0.50]と式[fL/D=n]とが総て成立する第1態様の周波数選定条件か、式[fH/D=n]と式[fL/D=n−0.50]とが総て成立する第2態様の周波数選定条件か、何れかの周波数選定条件が満たされていることを特徴とする。   The MSK modulation circuit of the present invention has been created to solve such a problem, and is synchronized with a data input clock that determines the timing for inputting transmission data composed of a binary data string. A rectangular wave generation circuit that generates a transmission signal as a rectangular wave signal; a state determination circuit that determines a next transition state from a current state and an input value of the transmission data; a state of the state determination circuit; and a state of the transmission data An MSK modulation circuit comprising a waveform selection circuit that selects and outputs one of four signals of the two transmission signals and its inverted signal according to an input value, the data input clock The transmission speed corresponding to the frequency of the transmission signal is D, the lower transmission frequency of the transmission signals is fL, the higher transmission frequency of the transmission signals is fH, and any one of positive integers. Where n is the frequency selection condition of the first mode in which the equations [fH / D = n + 0.50] and [fL / D = n] are all satisfied, or the equation [fH / D = n] The frequency selection condition of the second mode in which all the expressions [fL / D = n−0.50] are satisfied, or any one of the frequency selection conditions is satisfied.

このような本発明のMSK変調回路にあっては、後で例示するように、基本的な二値論理素子を組み合わせた順序回路で具現化することができるので、簡素化やIC化が容易であり、PLLも要らない。しかも、周波数選定条件の満足に必要な各信号の同期をとるのが、分周カウンタやフリップフロップの一斉初期化といった簡便な手法で出来るうえ、初期化後は各信号が速やかに安定するので、起動から動作安定までの時間が短い。
したがって、この発明によれば、PLLが不要で起動後整定時間が短いMSK変調回路を実現することができる。
Such an MSK modulation circuit according to the present invention can be realized by a sequential circuit in which basic binary logic elements are combined, as will be exemplified later. Yes, no PLL is required. In addition, it is possible to synchronize each signal necessary for satisfying the frequency selection condition with a simple method such as simultaneous initialization of the frequency division counter and flip-flop, and after initialization, each signal stabilizes quickly, The time from startup to stable operation is short.
Therefore, according to the present invention, it is possible to realize an MSK modulation circuit that requires no PLL and has a short settling time after startup.

本発明の実施例1について、MSK変調回路の構造を示し、(a)が矩形波信号処理用の二値論理回路からなる変調処理部の回路図、(b)が正弦波化用の共振回路からなる送信部の回路図である。1 shows the structure of an MSK modulation circuit according to the first embodiment of the present invention, in which (a) is a circuit diagram of a modulation processing unit composed of a binary logic circuit for rectangular wave signal processing, and (b) is a resonance circuit for sine wave conversion. It is a circuit diagram of the transmission part which consists of. MSK変調回路の設計条件と動作例を示し、(a)が第1態様の周波数選定条件、(b)が周波数選定例、(c)が基本波形例、(d)が決定性有限オートマトン様の状態遷移図、(e)がデータ例と信号波形例のタイムチャートである。The design conditions and operation examples of the MSK modulation circuit are shown, (a) is the frequency selection condition of the first mode, (b) is the frequency selection example, (c) is the basic waveform example, and (d) is the deterministic finite automaton-like state A transition diagram, (e) is a time chart of a data example and a signal waveform example. MSK変調回路の他の設計条件と動作例を示し、(a)が第2態様の周波数選定条件、(b)が周波数選定例、(c)が基本波形例、(d)が決定性有限オートマトン様の状態遷移図、(e)がデータ例と信号波形例のタイムチャートである。Other design conditions and operation examples of the MSK modulation circuit are shown, (a) is the frequency selection condition of the second mode, (b) is the frequency selection example, (c) is the basic waveform example, (d) is the deterministic finite automaton-like (E) is a time chart of a data example and a signal waveform example. 一般に知られている直交振幅変調によるMSK変調回路について、(a)がブロック構成図、(b)信号波形例のタイムチャートである。FIG. 2A is a block diagram of a generally known MSK modulation circuit using quadrature amplitude modulation, and FIG. 2B is a time chart of a signal waveform example.

このような本発明のMSK変調回路について、これを実施するための具体的な形態を、以下の実施例1により説明する。
図1〜3に示した実施例1は、上述した解決手段1(出願当初の請求項1)を具現化したものである。
A specific embodiment for implementing the MSK modulation circuit of the present invention will be described with reference to the following first embodiment.
The embodiment 1 shown in FIGS. 1 to 3 embodies the above-described solution 1 (claim 1 at the beginning of the application).

本願発明のMSK変調回路の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、(a)が変調処理部10の回路図、(b)が送信部20の回路図である。また、図2(a)が第1態様の周波数選定条件を示し、図3(a)が第2態様の周波数選定条件を示している。   A specific configuration of the first embodiment of the MSK modulation circuit according to the present invention will be described with reference to the drawings. 1A is a circuit diagram of the modulation processing unit 10, and FIG. 1B is a circuit diagram of the transmission unit 20. FIG. 2A shows the frequency selection condition of the first aspect, and FIG. 3A shows the frequency selection condition of the second aspect.

このMSK変調回路10+20は、特定の周波数選定条件を満たす矩形波信号を矩形波のまま処理することでMSK変調を行う二値論理回路(順序回路)からなる変調処理部10(本体部)と、MSK変調後の矩形波信号を正弦波化する共振回路からなる送信部20(後置部)とを具えている。変調処理部10に係る特定の周波数選定条件として二態様があり、変調処理部10はその二態様のうち何れか一方を任意に選択して周波数選定条件を切り替えることができるようになっているので、先ず、二態様の周波数選定条件とその限定理由を説明し、次に回路構成を説明し(図1参照)、それから、二態様のうち第1態様の周波数選定条件と動作等とを説明し(図2参照)、その後で、二態様のうち残りの第2態様の周波数選定条件と動作等とを説明する(図3参照)。   The MSK modulation circuit 10 + 20 includes a modulation processing unit 10 (main body unit) including a binary logic circuit (sequential circuit) that performs MSK modulation by processing a rectangular wave signal that satisfies a specific frequency selection condition as a rectangular wave. A transmission unit 20 (post-installation unit) including a resonance circuit that converts a rectangular wave signal after MSK modulation into a sine wave is provided. There are two modes as the specific frequency selection conditions related to the modulation processing unit 10, and the modulation processing unit 10 can arbitrarily select one of the two modes and switch the frequency selection conditions. First, the frequency selection conditions of the two modes and the reasons for their limitation will be described, then the circuit configuration will be described (see FIG. 1), and then the frequency selection conditions and operation of the first mode will be described. (Refer to FIG. 2) Then, the frequency selection conditions and operations of the remaining second aspect of the two aspects will be described (see FIG. 3).

MSK変調できるためには、搬送波として切り替え使用される二つの送信信号であって周波数の異なるものが必要であり、そのうち低い方の送信周波数fLの送信信号と、高い方の送信周波数fHの送信信号とが、直交しなければならない。この直交条件を満足したうえで、二つの送信信号(fL,fH)の周波数間隔を最小にするには、二値データ列からなる送信データの伝送速度D(これは後述するデータ入力クロックCLK−DATAINデータ入力クロックの周波数に対応しており両者は同じ数値になる)と、上記の送信周波数fL及び送信周波数fHとの間に、次に列挙する第1〜第4態様の周波数選定条件の何れかが成立しなければならない。
それらの周波数選定条件において、nは正の整数である。
In order to be able to perform MSK modulation, two transmission signals that are switched and used as a carrier wave and have different frequencies are required. A transmission signal having a lower transmission frequency fL and a transmission signal having a higher transmission frequency fH are required. And must be orthogonal. In order to minimize the frequency interval between the two transmission signals (fL, fH) while satisfying this orthogonal condition, the transmission speed D of transmission data consisting of a binary data string (this is a data input clock CLK− described later). Between the transmission frequency fL and the transmission frequency fH, and any of the frequency selection conditions of the following first to fourth modes listed below, which corresponds to the frequency of the DATAIN data input clock. That must be true.
In these frequency selection conditions, n is a positive integer.

第1態様の周波数選定条件は式[fH/D=n+0.50]と式[fL/D=n]とが総て成立することであり(図2(a)参照)、第2態様の周波数選定条件は式[fH/D=n]と式[fL/D=n−0.50]とが総て成立することであり(図3(a)参照)、第3態様の周波数選定条件は式[fH/D=n+0.25]と式[fL/D=n−0.25]とが総て成立することであり(図示せず)、第4態様の周波数選定条件は式[fH/D=n−0.25]と式[fL/D=n−0.75]とが総て成立することである(図示せず)。   The frequency selection condition of the first mode is that the formula [fH / D = n + 0.50] and the formula [fL / D = n] are all satisfied (see FIG. 2A), and the frequency of the second mode. The selection condition is that the expression [fH / D = n] and the expression [fL / D = n−0.50] are all satisfied (see FIG. 3A), and the frequency selection condition of the third aspect is The expression [fH / D = n + 0.25] and the expression [fL / D = n−0.25] are all satisfied (not shown), and the frequency selection condition of the fourth aspect is the expression [fH / D D = n−0.25] and the formula [fL / D = n−0.75] are all established (not shown).

常時電源を印加した状態でPLL回路を用いれば、第1〜第4態様の周波数選定条件のどれでもMSK変調ができるが、本発明では、周波数選定条件を第1,第2態様のもの(図2(a),図3(a)参照)に限定したことで、伝送速度Dで二値のうち何れかの値をとる送信データを入力するタイミングを定めるデータ入力クロックCLK−DATAINに二つの送信信号(fL,fH)を同期させれば、送信データの変化時における二つの送信信号(fL,fH)の位相がπか0の何れかに限定されるので、矩形波信号(fL,fH)とその反転信号(fL ̄,fH ̄)とでMSK信号(デジタルMSK信号MSK−OUT)を表現することができる。   If the PLL circuit is used in a state where power is constantly applied, any one of the frequency selection conditions of the first to fourth modes can be subjected to MSK modulation. In the present invention, the frequency selection conditions are those of the first and second modes (see FIG. 2 (a) and FIG. 3 (a)), two transmissions are performed on the data input clock CLK-DATAIN that determines the timing for inputting transmission data that takes one of two values at the transmission speed D. If the signals (fL, fH) are synchronized, the phase of the two transmission signals (fL, fH) when the transmission data changes is limited to either π or 0, so that the rectangular wave signal (fL, fH) The MSK signal (digital MSK signal MSK-OUT) can be expressed by the inverted signal (fL ̄, fH ̄).

そのため、PLL回路を含まない簡便な順序回路にて、簡単な状態遷移を行いながら四つの矩形波信号を切替使用してMSK信号を作成するMSK変調回路10+20を具現化することができる。このMSK変調回路10+20は、上述したように(図1参照)、本体部の変調処理部10と、後置部の送信部20とを具備している。
変調処理部10は(図1(a)参照)、矩形波生成回路11と条件切替回路12と状態決定回路13と波形選択回路14とを具備しているが、何れも、二値論理を実行するゲート素子やフリップフロップ等を組み合わせた順序回路からなり、IC化可能である。
Therefore, the MSK modulation circuit 10 + 20 that creates an MSK signal by switching and using four rectangular wave signals while performing simple state transition can be realized with a simple sequential circuit that does not include a PLL circuit. As described above (see FIG. 1), the MSK modulation circuit 10 + 20 includes the modulation processing unit 10 of the main unit and the transmission unit 20 of the post unit.
The modulation processing unit 10 (see FIG. 1A) includes a rectangular wave generation circuit 11, a condition switching circuit 12, a state determination circuit 13, and a waveform selection circuit 14, all of which execute binary logic. It consists of a sequential circuit combining a gate element, a flip-flop, etc., and can be made into an IC.

矩形波生成回路11は、詳細な回路図は割愛したが、例えば、三つの分周カウンタ等で構成され、伝送速度Dの周波数と低い方の送信周波数fLと高い方の送信周波数fHという三つの周波数の公倍数を周波数とする基本クロックを、各カウンタで分周することで、特定の周波数選定条件を満たす矩形波状のデータ入力クロックCLK−DATAINと送信周波数fLと送信周波数fHとを生成するものとなっている。この例では、データ値“0”に送信周波数fHが割り当てられているので送信周波数fHの送信信号を送信信号FREQ−f0と呼び、データ値“1”に送信周波数fLが割り当てられているので送信周波数fLの送信信号を送信信号FREQ−f1と呼ぶが、三つの分周カウンタをリセット信号RESET−INで同時に初期化することで容易に、上述した三つの信号(CLK−DATAIN,fL,fH)の初期位相が揃うので、送信信号FREQ−f0と送信信号FREQ−f1が送信データDATA−INに同期するものとなっている。   Although the detailed circuit diagram is omitted, the rectangular wave generation circuit 11 is configured by, for example, three frequency division counters and the like, and includes three frequencies of the transmission speed D, the lower transmission frequency fL, and the higher transmission frequency fH. A basic clock whose frequency is a common multiple of the frequency is divided by each counter to generate a rectangular wave-shaped data input clock CLK-DATAIN, a transmission frequency fL, and a transmission frequency fH that satisfy a specific frequency selection condition. It has become. In this example, since the transmission frequency fH is assigned to the data value “0”, the transmission signal having the transmission frequency fH is referred to as a transmission signal FREQ-f0, and the transmission value fL is assigned to the data value “1”. A transmission signal having a frequency fL is referred to as a transmission signal FREQ-f1, but the above three signals (CLK-DATAIN, fL, fH) can be easily obtained by simultaneously initializing the three frequency dividing counters with the reset signal RESET-IN. Therefore, the transmission signal FREQ-f0 and the transmission signal FREQ-f1 are synchronized with the transmission data DATA-IN.

条件切替回路12は、スイッチSWが接地電圧側GNDに切り替えられると、第1態様の周波数選定条件が満足されているときの状態遷移動作を行わせる指令を、状態決定回路13に送出する一方、スイッチSWが電源電圧側Vccに切り替えられると、第2態様の周波数選定条件が満足されているときの状態遷移動作を行わせる指令を、状態決定回路13に送出するようになっている。   When the switch SW is switched to the ground voltage side GND, the condition switching circuit 12 sends a command to perform a state transition operation when the frequency selection condition of the first mode is satisfied to the state determination circuit 13, while When the switch SW is switched to the power supply voltage side Vcc, a command for performing a state transition operation when the frequency selection condition of the second mode is satisfied is sent to the state determination circuit 13.

状態決定回路13は、二状態A,Bの何れか一方の状態を採ってそれを現状態として記憶保持するとともに状態信号STATE−A,STATE−Bにて出力するフリップフロップと、その状態と送信データDATA−INの値とからフリップフロップが次に採るべき状態を二値論理演算にて決定する論理ゲート回路とからなる。この論理ゲート回路が条件切替回路12から受けた指令に応じてフリップフロップの状態遷移先を切り替えることで、第1,第2態様いずれの態様の周波数選定条件が採用されても、同じハードウェアを使用することができるようになっている。また、このフリップフロップが矩形波生成回路11と同じくリセット信号RESET−INで初期化されるとともにデータ入力クロックCLK−DATAINのタイミングで状態遷移することで簡便に、各信号の位相連続に必要な同期条件が満たされるものとなっている。   The state determination circuit 13 takes one of the two states A and B, stores and holds it as the current state, and outputs it in the state signals STATE-A and STATE-B, and the state and transmission It consists of a logic gate circuit that determines the state to be taken next by the flip-flop from the value of the data DATA-IN by a binary logic operation. This logic gate circuit switches the state transition destination of the flip-flop according to the command received from the condition switching circuit 12, so that the same hardware can be used regardless of the frequency selection condition of either of the first and second modes. It can be used. In addition, the flip-flop is initialized by the reset signal RESET-IN similarly to the rectangular wave generating circuit 11, and the state transition is performed at the timing of the data input clock CLK-DATAIN. The condition is met.

波形選択回路14は、論理ゲート回路からなり、状態決定回路13の状態(STATE−A,STATE−B)と送信データDATA−INの値とに応じて、矩形波生成回路11から入力した送信信号FREQ−f0そのままの送信信号f0と、送信信号FREQ−f1を反転させた送信信号f0 ̄と、矩形波生成回路11から入力した送信信号FREQ−f1そのままの送信信号f1と、送信信号FREQ−f1を反転させた送信信号f1 ̄とから何れか一つの送信信号を選択し、それをデジタルMSK信号MSK−OUTとして送信部20に送出するようになっている。この選択は、データ入力クロックCLK−DATAINのタイミングで行われ、第1,第2態様の何れであっても周波数選定条件が満足されていれば選択切替の前後で位相の連続する送信信号が選ばれるようになっている。   The waveform selection circuit 14 includes a logic gate circuit, and a transmission signal input from the rectangular wave generation circuit 11 in accordance with the state (STATE-A, STATE-B) of the state determination circuit 13 and the value of the transmission data DATA-IN. The transmission signal f0 as it is FREQ-f0, the transmission signal f0 ̄ obtained by inverting the transmission signal FREQ-f1, the transmission signal f1 as it is input from the rectangular wave generation circuit 11, and the transmission signal FREQ-f1 One of the transmission signals is selected from the transmission signal f1 ̄ obtained by inverting the signal, and the selected signal is transmitted to the transmission unit 20 as a digital MSK signal MSK-OUT. This selection is performed at the timing of the data input clock CLK-DATAIN. If the frequency selection condition is satisfied in either of the first and second modes, a transmission signal having a continuous phase before and after the selection switching is selected. It is supposed to be.

送信部20は(図1(b)参照)は、無線アンテナとして機能する送信コイルL1をデジタルMSK信号MSK−OUTで駆動するものであるが、その駆動に際して矩形波の信号から高調波成分を除去しながら効率良く出力するために、送信コイルL1にコンデンサC1,C2を並列接続された共振回路になっている。そのため、送信部20は矩形波状のMSK変調信号から正弦波状のMSK変調信号を生成して無線伝送することができる。図示したE−OR素子はブースターの一例であり、必要とされる送信パワーの大小に応じて、より強力なパワーアンプ等が用いられることもあれば、省かれることもある。   The transmission unit 20 (see FIG. 1B) drives the transmission coil L1 functioning as a radio antenna with the digital MSK signal MSK-OUT, and removes harmonic components from the rectangular wave signal during the drive. However, in order to output efficiently, it is a resonance circuit in which capacitors C1 and C2 are connected in parallel to the transmission coil L1. Therefore, the transmission unit 20 can generate a sinusoidal MSK modulation signal from the rectangular wave MSK modulation signal and wirelessly transmit it. The illustrated E-OR element is an example of a booster, and a more powerful power amplifier or the like may be used or omitted depending on the required transmission power.

このMSK変調回路10+20について、変調処理部10の周波数選定条件が第1態様に切り替えられているときの使用態様及び動作を、図面を引用して説明する。図2は、(a)が第1態様の周波数選定条件、(b)がその周波数選定例、(c)が基本波形例、(d)が決定性有限オートマトン様の状態遷移図、(e)が具体的なデータ例と信号波形例のタイムチャートである。   With respect to the MSK modulation circuit 10 + 20, a usage mode and an operation when the frequency selection condition of the modulation processing unit 10 is switched to the first mode will be described with reference to the drawings. 2A is a frequency selection condition of the first mode, FIG. 2B is an example of frequency selection, FIG. 2C is a basic waveform example, FIG. 2D is a state transition diagram of a deterministic finite automaton, and FIG. It is a time chart of a specific data example and a signal waveform example.

スイッチSWが接地電圧側GNDに接続されて上述した第1態様の周波数選定条件が満足されており(図2(a)参照)、その条件が任意の正整数について成立するところ、簡明な説明のため、ここではn=1の場合を述べるが、n>1の場合も同様である。nが1なので(図2(b)参照)、送信周波数fH/伝送速度D=1.50、送信周波数fL/伝送速度D=1.00となる。また、上述したように周波数fHの送信信号f0,f0 ̄がデータ値“0”に割り当てられ周波数fLの送信信号f1,f1 ̄がデータ値“1”に割り当てられているので、伝送速度Dの一周期の中に(図2(c)参照)、送信信号f1,f1 ̄は一周期分の波形が収まり、送信信号f0,f0 ̄は一周期半の波形が収まり、何れも始端・終端の位相が0かπになる。   When the switch SW is connected to the ground voltage side GND and the frequency selection condition of the first aspect described above is satisfied (see FIG. 2A), the condition holds for any positive integer. Therefore, although the case where n = 1 is described here, the same applies to the case where n> 1. Since n is 1 (see FIG. 2B), the transmission frequency fH / transmission speed D = 1.50 and the transmission frequency fL / transmission speed D = 1.00. Further, as described above, the transmission signals f0 and f0 ̄ having the frequency fH are assigned to the data value “0” and the transmission signals f1 and f1 ̄ having the frequency fL are assigned to the data value “1”. Within one cycle (see FIG. 2 (c)), the transmission signals f1 and f1 ̄ contain a waveform for one cycle, and the transmission signals f0 and f0 半 contain a waveform for one and a half cycles. The phase becomes 0 or π.

そして、リセット信号RESET−INでの初期化に続いて送信データDATA−INが入力されるが、変調処理部10は二値論理の順序回路なので初期化が済んでスタートすると直ちに安定動作し、状態決定回路13による状態遷移と波形選択回路14による送信信号波形の選択とがデータ入力クロックCLK−DATAINの各周期毎に行われる。状態A,Bがそれぞれデータ変化点の位相0,πに対応しているので、状態Aでは次に始端の位相が0である非反転の正規信号(f0又はf1)が選ばれ、状態Bでは次に始端の位相がπである反転信号(f0 ̄又はf1 ̄)が選ばれる。また、始端と終端とで位相の変わる送信信号(f0又はf0 ̄)を選択したときには他の状態に移るが、始端と終端とで位相の変わらない送信信号(f1又はf1 ̄)を選択したときには同じ状態にとどまる。   Then, transmission data DATA-IN is input following initialization with the reset signal RESET-IN, but since the modulation processing unit 10 is a binary logic sequential circuit, the initialization operation is immediately completed and the operation is stable immediately. The state transition by the decision circuit 13 and the selection of the transmission signal waveform by the waveform selection circuit 14 are performed for each period of the data input clock CLK-DATAIN. Since the states A and B correspond to the phase 0 and π of the data change point, respectively, in the state A, a non-inverted normal signal (f0 or f1) whose starting phase is 0 is selected next, and in the state B, Next, an inverted signal (f0 ̄ or f1 ̄) having a starting phase of π is selected. In addition, when a transmission signal (f0 or f0 位相) whose phase changes between the start end and the end is selected, another state is entered, but when a transmission signal (f1 or f1 ̄) whose phase does not change between the start end and the end is selected. Stay in the same state.

具体的には(図2(d)参照)、状態Aからスタートし、状態Aのときデータ値“1”が入力されると送信信号f1を選択して状態Aにとどまり、状態Aのときデータ値“0”が入力されると送信信号f0を選択して状態Bに移り、状態Bのときデータ値“1”が入力されると送信信号f1 ̄を選択して状態Bにとどまり、状態Bのときデータ値“0”が入力されると送信信号f0 ̄を選択して状態Aに移る、という処理が繰り返される。この処理によって、データ変化点の位相がπであれば次に反転信号(f0 ̄又はf1 ̄)が選ばれ、データ変化点の位相が0であれば次に非反転の正規信号(f0又はf1)が選ばれるので、デジタルMSK信号MSK−OUTは位相の連続した矩形波状信号になる。   More specifically (see FIG. 2D), starting from state A, when data value “1” is input in state A, transmission signal f1 is selected and stays in state A. When the value “0” is input, the transmission signal f0 is selected and the state shifts to the state B. When the data value “1” is input in the state B, the transmission signal f1 選 択 is selected and the state B remains. When the data value “0” is input at this time, the process of selecting the transmission signal f0 ̄ and moving to the state A is repeated. By this processing, if the phase of the data change point is π, the next inverted signal (f0 ̄ or f1 ̄) is selected, and if the phase of the data change point is 0, the next non-inverted normal signal (f0 or f1) is selected. ) Is selected, the digital MSK signal MSK-OUT becomes a rectangular wave signal having a continuous phase.

そのため、例えば送信データDATA−INのデータ値が“0”,“1”,“1”,“0”,“0”,“1”,…であったとすると(図2(e)参照)、それに応じて、状態がB,B,B,A,B,B,…と遷移し、デジタルMSK信号MSK−OUTが送信信号f0,f1 ̄,f1 ̄,f0 ̄,f0,f1 ̄,…と変化する。このデジタルMSK信号MSK−OUTは、矩形波ではあるが、全域で位相が連続しているので適切なMSK信号となっている。送信データDATA−INが他の値をとった場合も、繰り返しとなる煩雑な説明は割愛するが、同様にして、適切なMSK信号が生成される。この矩形波のMSK信号が送信部20によって正弦波状のMSK信号にされ無線送信される。   Therefore, for example, when the data value of the transmission data DATA-IN is “0”, “1”, “1”, “0”, “0”, “1”,... (See FIG. 2E). Accordingly, the state transitions to B, B, B, A, B, B,..., And the digital MSK signal MSK-OUT is transmitted signals f0, f1 ̄, f1 ̄, f0 ̄, f0, f1 ̄,. Change. This digital MSK signal MSK-OUT is a rectangular wave, but is an appropriate MSK signal because the phase is continuous throughout the entire area. Even when the transmission data DATA-IN has other values, an appropriate MSK signal is generated in the same manner, although the repeated complicated explanation is omitted. This rectangular MSK signal is converted into a sinusoidal MSK signal by the transmitter 20 and transmitted wirelessly.

さらに、MSK変調回路10+20について、変調処理部10の周波数選定条件が第2態様に切り替えられているときの使用態様及び動作を、図面を引用して説明する。図3は、(a)が第2態様の周波数選定条件、(b)がその周波数選定例、(c)が基本波形例、(d)が決定性有限オートマトン様の状態遷移図、(e)が具体的なデータ例と信号波形例のタイムチャートである。   Furthermore, with respect to the MSK modulation circuit 10 + 20, the usage mode and operation when the frequency selection condition of the modulation processing unit 10 is switched to the second mode will be described with reference to the drawings. 3A is a frequency selection condition of the second mode, FIG. 3B is an example of frequency selection, FIG. 3C is a basic waveform example, FIG. 3D is a state transition diagram like a deterministic finite automaton, and FIG. It is a time chart of a specific data example and a signal waveform example.

スイッチSWが電源電圧側Vccに接続されて上述した第2態様の周波数選定条件が満足されており(図3(a)参照)、その条件が任意の正整数について成立する。ここでも、n=1の場合を述べると(図3(b)参照)、送信周波数fH/伝送速度D=1.00、送信周波数fL/伝送速度D=0.50となる。また、やはり周波数fHの送信信号f0,f0 ̄がデータ値“0”に割り当てられ周波数fLの送信信号f1,f1 ̄がデータ値“1”に割り当てられているので、伝送速度Dの一周期の中に(図3(c)参照)、送信信号f0,f0 ̄は一周期分の波形が収まり、送信信号f1,f1 ̄は半周期分の波形が収まり、何れも始端・終端の位相が0かπになる。   The switch SW is connected to the power supply voltage side Vcc to satisfy the frequency selection condition of the second aspect described above (see FIG. 3A), and the condition is satisfied for any positive integer. Again, when the case of n = 1 is described (see FIG. 3B), the transmission frequency fH / transmission speed D = 1.00 and the transmission frequency fL / transmission speed D = 0.50. Also, the transmission signals f0 and f0 ̄ having the frequency fH are assigned to the data value “0” and the transmission signals f1 and f1 ̄ having the frequency fL are assigned to the data value “1”. Inside (see FIG. 3C), the transmission signals f0 and f0f have a waveform for one cycle, and the transmission signals f1 and f1 ̄ have a waveform for a half cycle. Or π.

そして、やはり初期化後は直ちに安定動作し、データ入力クロックCLK−DATAINの各周期毎に状態決定回路13による状態遷移と波形選択回路14による送信信号波形の選択とが行われるが、この第2態様では(図3(d)参照)、状態Aからスタートし、状態Aのときデータ値“1”が入力されると送信信号f1を選択して状態Bに移り、状態Aのときデータ値“0”が入力されると送信信号f0を選択して状態Aにとどまり、状態Bのときデータ値“1”が入力されると送信信号f1 ̄を選択して状態Aに移り、状態Bのときデータ値“0”が入力されると送信信号f0 ̄を選択して状態Bにとどまる、という処理が繰り返される。この処理によって、やはり、データ変化点の始端位相がπであれば次に反転信号(f0 ̄又はf1 ̄)が選ばれ、データ変化点の始端位相が0であれば次に非反転の正規信号(f0又はf1)が選ばれるので、周波数選定条件が第2態様の場合も、デジタルMSK信号MSK−OUTは位相の連続した矩形波状信号になる。   After the initialization, the operation immediately stabilizes, and the state transition by the state determination circuit 13 and the selection of the transmission signal waveform by the waveform selection circuit 14 are performed every cycle of the data input clock CLK-DATAIN. In the mode (see FIG. 3D), starting from the state A, when the data value “1” is input in the state A, the transmission signal f1 is selected to move to the state B, and in the state A, the data value “ When "0" is input, the transmission signal f0 is selected and stays in the state A. When the data value "1" is input in the state B, the transmission signal f1 is selected and the state A is shifted. When the data value “0” is input, the process of selecting the transmission signal f 0 し て and staying in the state B is repeated. By this process, if the start phase of the data change point is π, the next inverted signal (f0 ̄ or f1 ̄) is selected, and if the start phase of the data change point is 0, the next non-inverted normal signal is selected. Since (f0 or f1) is selected, even when the frequency selection condition is the second mode, the digital MSK signal MSK-OUT is a rectangular wave signal having a continuous phase.

そのため、この場合も送信データDATA−INのデータ値が例えば“0”,“1”,“1”,“0”,“0”,“1”,…であったとすると(図3(e)参照)、それに応じて、状態がA,B,A,A,A,B,…と遷移し、デジタルMSK信号MSK−OUTが送信信号f0,f1,f1 ̄,f0,f0,f1,…と変化する。この場合も、デジタルMSK信号MSK−OUTは、矩形波であるが、全域で位相が連続しているので適切なMSK信号となっている。送信データDATA−INが他の値をとった場合も、同様にして、適切な矩形波のMSK信号が生成され、最終出力は正弦波状のMSK信号になる。   Therefore, also in this case, assuming that the data value of the transmission data DATA-IN is, for example, “0”, “1”, “1”, “0”, “0”, “1”,. Accordingly, the state changes to A, B, A, A, A, B,..., And the digital MSK signal MSK-OUT is transmitted signals f0, f1, f1f, f0, f0, f1,. Change. In this case as well, the digital MSK signal MSK-OUT is a rectangular wave, but is an appropriate MSK signal because the phase is continuous throughout the entire area. Similarly, when the transmission data DATA-IN takes other values, an appropriate rectangular wave MSK signal is generated in the same manner, and the final output becomes a sinusoidal MSK signal.

最後に、ATS−Pシステムに適した実用的な周波数選定条件の具体例を挙げる。送信周波数fH/伝送速度D:送信周波数fL/伝送速度Dがn+0.50:nとなる第1態様の周波数選定条件の例としては、データ入力クロックCLK−DATAINの周波数=伝送速度D=128kbps、送信周波数fL=1664kHz、送信周波数fH=1728kHz、n=13、fH/D=13.50、fL/D=13.00のものが挙げられる。送信周波数fH/伝送速度D:送信周波数fL/伝送速度Dがn:n−0.50となる第2態様の周波数選定条件の例としては、伝送速度D=128kbps、送信周波数fL=1728kHz、送信周波数fH=1792kHz、n=14、fH/D=14.00、fL/D=13.50のものが挙げられる。これらのうちでは第1態様の周波数選定条件が現行のATS−Pの占有帯域に近いことがわかる。   Finally, specific examples of practical frequency selection conditions suitable for the ATS-P system will be given. Transmission frequency fH / Transmission speed D: Transmission frequency fL / Transmission speed D is n + 0.50: n As an example of the frequency selection condition of the first aspect, the frequency of the data input clock CLK-DATAIN = transmission speed D = 128 kbps, Examples include transmission frequency fL = 1664 kHz, transmission frequency fH = 1728 kHz, n = 13, fH / D = 13.50, and fL / D = 13.00. Transmission frequency fH / transmission speed D: transmission frequency fL / transmission speed D is n: n−0.50. As an example of the frequency selection condition of the second aspect, transmission speed D = 128 kbps, transmission frequency fL = 1728 kHz, transmission Examples include frequencies fH = 1792 kHz, n = 14, fH / D = 14.00, and fL / D = 13.50. Among these, it can be seen that the frequency selection condition of the first aspect is close to the current occupied band of ATS-P.

そのような特定条件を満たすよう各信号の周波数を選定して変調処理部10に適用したことにより、変調処理部10は、二つの送信信号(fL,fH)を含めて“1”/“0”のNRZ信号で全て構成できるため、簡単なIC回路の構成で位相連続のデジタルMSK信号MSK−OUTを生成することができる。また、送信部20は、送信コイルL1と共振コンデンサC1,C2とで正弦波状のMSK変調信号を生成することができる。そのため、MSK変調回路10+20は、電源オンからMSK変調信号送信までの立上りが速く、電源投入から1〜2msで位相連続の信号を生成できるので、無電源地上子に組み込んで使用することができる。無電源地上子にすら適用できるのであるから、常時電源を投入されている有電源地上子や車上装置にも組み込んで使用することができる。しかも、変調処理部10も送信部20も回路構成が簡素なため、価格や信頼性の面でも有利である。   Since the frequency of each signal is selected and applied to the modulation processing unit 10 so as to satisfy such a specific condition, the modulation processing unit 10 includes “1” / “0” including two transmission signals (fL, fH). Therefore, it is possible to generate a phase-continuous digital MSK signal MSK-OUT with a simple IC circuit configuration. Further, the transmission unit 20 can generate a sinusoidal MSK modulation signal with the transmission coil L1 and the resonance capacitors C1 and C2. For this reason, the MSK modulation circuit 10 + 20 has a fast rise from power-on to MSK modulation signal transmission, and can generate a phase-continuous signal in 1 to 2 ms after the power is turned on. Since it can be applied even to a non-powered ground element, it can also be used by being incorporated in a powered ground element or on-vehicle device that is always powered on. In addition, since both the modulation processing unit 10 and the transmission unit 20 have simple circuit configurations, they are advantageous in terms of price and reliability.

本発明のMSK変調回路は、ATS−Pシステムの無電源地上子への適用を当初の目的として開発されたものであるが、その適用は無電源地上子に限られる訳でなく、高速なデジタル信号伝送を利用した点制御ATSなどの列車制御分野、さらにはその他全般のデジタル信号伝送にも適用することができる。   The MSK modulation circuit of the present invention was originally developed for application to an unpowered ground element of the ATS-P system, but its application is not limited to the unpowered ground element. The present invention can also be applied to train control fields such as point control ATS using signal transmission, and other general digital signal transmission.

10…変調処理部(矩形波信号処理回路,MSK変調回路の本体部)、
11…矩形波生成回路、12…条件切替回路、
13…状態決定回路、14…波形選択回路、
20…送信部(共振回路,MSK変調回路の後置部)
10 ... modulation processing part (rectangular wave signal processing circuit, main part of MSK modulation circuit),
11 ... rectangular wave generation circuit, 12 ... condition switching circuit,
13 ... State determination circuit, 14 ... Waveform selection circuit,
20: Transmitter (rear circuit, rear part of MSK modulation circuit)

Claims (1)

二値データ列からなる送信データを入力するタイミングを定めるデータ入力クロックに同期させて周波数の異なる二つの送信信号を矩形波信号で生成する矩形波生成回路と、現状態と前記送信データの入力値とから次に遷移する状態を決定する状態決定回路と、前記状態決定回路の状態と前記送信データの入力値とに応じて前記の二つの送信信号とその反転信号との四つの信号から何れか一つを選択して出力する波形選択回路とを備えたMSK変調回路であって、前記データ入力クロックの周波数に対応した伝送速度をDとし、前記送信信号のうち低い方の送信周波数をfLとし、前記送信信号のうち高い方の送信周波数をfHとし、正の整数の何れか一つをnとしたときに、式[fH/D=n+0.50]と式[fL/D=n]とが総て成立する第1態様の周波数選定条件か、式[fH/D=n]と式[fL/D=n−0.50]とが総て成立する第2態様の周波数選定条件か、何れかの周波数選定条件が満たされていることを特徴とするMSK変調回路。   A rectangular wave generation circuit that generates two transmission signals having different frequencies in a rectangular wave signal in synchronization with a data input clock that determines the timing of inputting transmission data composed of a binary data string, and a current state and an input value of the transmission data A state determination circuit that determines the next transition state from one of the four signals of the two transmission signals and its inverted signal according to the state of the state determination circuit and the input value of the transmission data. An MSK modulation circuit including a waveform selection circuit for selecting and outputting one, wherein D is a transmission rate corresponding to the frequency of the data input clock, and fL is a lower transmission frequency of the transmission signals. , When the higher transmission frequency of the transmission signals is fH and any one of the positive integers is n, Expression [fH / D = n + 0.50] and Expression [fL / D = n] All Either the frequency selection condition of the first aspect to be performed or the frequency selection condition of the second aspect in which the expression [fH / D = n] and the expression [fL / D = n−0.50] are all established is any frequency. An MSK modulation circuit characterized in that selection conditions are satisfied.
JP2013039939A 2013-02-28 2013-02-28 MSK modulation circuit Pending JP2014168201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039939A JP2014168201A (en) 2013-02-28 2013-02-28 MSK modulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039939A JP2014168201A (en) 2013-02-28 2013-02-28 MSK modulation circuit

Publications (1)

Publication Number Publication Date
JP2014168201A true JP2014168201A (en) 2014-09-11

Family

ID=51617674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039939A Pending JP2014168201A (en) 2013-02-28 2013-02-28 MSK modulation circuit

Country Status (1)

Country Link
JP (1) JP2014168201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518176A (en) * 2017-04-25 2020-06-18 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Generation of FSK signal included in OFDM signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933962A (en) * 1982-08-20 1984-02-24 Oki Electric Ind Co Ltd Digital msk modulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933962A (en) * 1982-08-20 1984-02-24 Oki Electric Ind Co Ltd Digital msk modulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518176A (en) * 2017-04-25 2020-06-18 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Generation of FSK signal included in OFDM signal
JP7037578B2 (en) 2017-04-25 2022-03-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Generation of FSK signal included in OFDM signal

Similar Documents

Publication Publication Date Title
TWI410791B (en) Apparatus and method for transmitting and receiving data bits
US8457247B2 (en) In-band generation of low-frequency periodic signaling
US9054689B2 (en) Phase comparison circuit and data receiving unit
US8705592B2 (en) Data transmission apparatus, data reception apparatus, and data transmission method
WO2017199603A1 (en) Communication system and transmission apparatus
US8995600B1 (en) CMOS interpolator for a serializer/deserializer communication application
JP2013535026A (en) Timing controller and liquid crystal display including the same
TWI513195B (en) Oscillation signal generators, in-phase/quadrature oscillation signals generators, and relevant signal process methods
EP3228007B1 (en) An electronic latch, a method for an electronic latch, a frequency division by two and a 4-phase generator
KR20020064158A (en) Sampling clock generator circuit and data receiver using the same
US8169347B2 (en) Parallel-to-serial converter and parallel data output device
KR101443467B1 (en) Transmitting device, receiving device, and transmitting/receiving system
US7580493B2 (en) Electronic circuit
JP2014168201A (en) MSK modulation circuit
JP6819219B2 (en) Clock regenerative circuit, semiconductor integrated circuit device and RF tag
WO2020198917A1 (en) Optical communication driving circuit and method, optical communication sending terminal, system and vehicle
WO2019049524A1 (en) Data reception device and data transmission/reception device
CN109245729B (en) 8-path parallel 2Gsps digital mixer
JP7280587B2 (en) Receiving device and transmitting/receiving system
JP6159221B2 (en) CDR circuit and serial communication interface circuit
JP6249401B2 (en) Communication apparatus and communication system
JP2007103988A (en) Coding circuit and coding apparatus
Ryabov et al. A High-Frequency Digital Computational Synthesizer of Composite Broadband Signals for Telecommunication Systems
JP5703867B2 (en) Transceiver circuit
JPH1168861A (en) Simultaneous two-way transmission reception method and simultaneous two-way transmission reception circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328