JP2014167451A - Apparatus and method for measuring gas - Google Patents

Apparatus and method for measuring gas Download PDF

Info

Publication number
JP2014167451A
JP2014167451A JP2013040074A JP2013040074A JP2014167451A JP 2014167451 A JP2014167451 A JP 2014167451A JP 2013040074 A JP2013040074 A JP 2013040074A JP 2013040074 A JP2013040074 A JP 2013040074A JP 2014167451 A JP2014167451 A JP 2014167451A
Authority
JP
Japan
Prior art keywords
gas
infrared
light source
output
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013040074A
Other languages
Japanese (ja)
Other versions
JP6062767B2 (en
Inventor
Seiichi Tokuo
聖一 徳尾
Ayato Iba
彩人 射庭
Masato Ikeda
誠人 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2013040074A priority Critical patent/JP6062767B2/en
Publication of JP2014167451A publication Critical patent/JP2014167451A/en
Application granted granted Critical
Publication of JP6062767B2 publication Critical patent/JP6062767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple gas measuring apparatus that can be manufactured more easily and has high measurement accuracy, and a gas measuring method capable of saving power.SOLUTION: A gas measuring apparatus 100 displaying a concentration of a measured gas according to an amount of infrared radiation that reaches an infrared detection element 20 comprises: a measurement cell 30 capable of introducing a gas to be measured into an internal space 31; a calculation section 40 performing concentration determination for the gas to be measured in the internal space 31 on the basis of an output from the infrared detection element 20; and a control section 60 controlling a light source 10 and the calculation section 40. The light source 10 can emit both an infrared radiation in an absorption wavelength band absorbed by the gas to be measured and an infrared radiation in a non-absorption wavelength band not absorbed by the gas to be measured, simultaneously. The control section 60 acquires the output of the infrared detection element 20 multiple times during a period in which an emission spectrum of the infrared radiation emitted by the light source 10 changes continuously, and causes the calculation section 40 to perform calculation for the concentration determination of the gas to be measured on the basis of the output acquired.

Description

本発明は、ガス測定装置及びガス測定方法に関し、より詳細には、光路に導入された測定対象ガスの雰囲気で、光源から発せられた赤外線が、赤外線検出素子に到達した赤外線量に応じて、測定対象ガスの濃度として表示されるガス測定装置及びガス測定方法に関する。   The present invention relates to a gas measuring device and a gas measuring method, and more specifically, in an atmosphere of a measurement target gas introduced into an optical path, an infrared ray emitted from a light source is in accordance with an amount of infrared rays reaching an infrared detecting element, The present invention relates to a gas measuring device and a gas measuring method which are displayed as a concentration of a measurement target gas.

従来から大気中のガスの測定を行う赤外線ガス測定装置として、ガスの種類によって吸収される赤外線の波長が異なることを利用し、この吸収量を検出することによりそのガス濃度を測定する非分散赤外吸収型(Non−Dispersive Infrared)ガス測定装置が知られている。このガス測定装置は、検出するガスが吸収特性を持つ波長に限定した赤外線を透過するフィルタ(透過部材)と赤外線センサを組み合わせ、その吸収量を測定することによってガスの濃度を測定するようにしたものである。   Conventionally, as an infrared gas measuring device for measuring gas in the atmosphere, non-dispersed red is used to measure the gas concentration by detecting the amount of absorption using the difference in the wavelength of infrared rays absorbed by the type of gas. Non-Dispersive Infrared gas measuring devices are known. This gas measurement device combines a filter (transmission member) that transmits infrared light limited to a wavelength with which the gas to be detected has absorption characteristics and an infrared sensor, and measures the amount of absorption to measure the gas concentration. Is.

このガス測定装置は、測定対象のガスによる赤外線の吸収が生じない波長域の赤外線を選択的に透過する参照用フィルタと、測定対象のガスによる赤外線の吸収が生じる波長域の赤外線を選択的に透過する測定用フィルタをそれぞれ配置した赤外線検出素子を複数配置し、それぞれの赤外線検出素子からの出力信号に基づいて測定対象のガスの有無や濃度を検出している。   This gas measuring device selectively transmits infrared light in a wavelength range in which infrared absorption by the measurement target gas does not occur and selective infrared light in a wavelength range in which infrared absorption by the measurement target gas occurs. A plurality of infrared detection elements each having a transmitting measurement filter are arranged, and the presence / absence or concentration of the measurement target gas is detected based on an output signal from each infrared detection element.

例えば、特許文献1に記載のものは、検出精度や出力の安定性を向上させたガス測定装置及びCO検出方法である。以下、これらも含めて、ガス測定装置及びガス測定方法ともいう。その動作原理は、波長による吸収度合いの差異を、CO検出に応用したものである。光源であるセラミックヒータから放射された赤外線において、波長4.3μm付近の赤外線は、気体容器内のCOにより吸収されて、その放射強度が低下する。一方、波長3.9μmの赤外線は、COによる吸収はなく、その放射強度が低下することはない。 For example, what is described in Patent Document 1 is a gas measurement device and a CO 2 detection method with improved detection accuracy and output stability. Hereinafter, it is also called a gas measuring device and a gas measuring method including these. The principle of operation is that the difference in the degree of absorption depending on the wavelength is applied to CO 2 detection. Among infrared rays emitted from a ceramic heater as a light source, infrared rays having a wavelength of about 4.3 μm are absorbed by CO 2 in the gas container, and the radiation intensity is reduced. On the other hand, infrared rays having a wavelength of 3.9 μm are not absorbed by CO 2 and their radiation intensity does not decrease.

そして、ガス測定装置の気体容器内を通過した異なる波長を含む赤外線から、波長4.3μmと波長3.9μmとの2波を、2波それぞれに対応した通過帯域を有する2種類の光学フィルタで濾波選別する。これら波長の異なる赤外線それぞれの放射強度に基づいて、気体容器内のCOの濃度が算出される。セラミックヒータの放射強度分布は、COの赤外線吸収スペクトルを含む、2μm〜50μmの波長領域でブロードであり、COの赤外線吸収スペクトル付近の波長領域で十分な放射強度を有する。したがって、光源にセラミックヒータを用いたガス測定装置の検出精度及び出力の安定性は向上される。 Then, from the infrared rays including different wavelengths that have passed through the gas container of the gas measuring device, two waves with a wavelength of 4.3 μm and a wavelength of 3.9 μm are two types of optical filters having passbands corresponding to the two waves respectively. Filter selection. Based on the radiant intensity of each of these infrared rays having different wavelengths, the concentration of CO 2 in the gas container is calculated. Radiant intensity distribution of the ceramic heater comprises an infrared absorption spectrum of CO 2, a broad a wavelength range of 2Myuemu~50myuemu, with sufficient radiation intensity in the wavelength region near infrared absorption spectrum of CO 2. Therefore, the detection accuracy and output stability of the gas measuring device using a ceramic heater as the light source are improved.

図1は、従来のガス測定装置を説明するための構成図である。このガス測定装置300は、内部空間331に測定対象ガス(図1のGAS)を導入することが可能な測定セル330により外形が構成されている。また、その測定セル330の内部の一端に配置されて赤外線(図1のIR)を発光する1つの光源310から、内部の他端に並べて配置された2つの赤外線検出素子321,322までの間に、それぞれ形成された光路332,333を有している。ガス測定装置300は、これらの光路332,333に、それぞれ介挿された2種類の異なる光学フィルタ351,352と、赤外線検出素子321,322からの出力に基づいて、内部空間331に導入された測定対象ガスの濃度判定を行う演算部340とをさらに備えて構成されている。   FIG. 1 is a configuration diagram for explaining a conventional gas measuring apparatus. The gas measuring device 300 has an outer shape constituted by a measuring cell 330 capable of introducing a measuring object gas (GAS in FIG. 1) into the internal space 331. Further, a distance from one light source 310 arranged at one end inside the measurement cell 330 to emit infrared rays (IR in FIG. 1) to two infrared detection elements 321 and 322 arranged side by side at the other end inside. The optical paths 332 and 333 are formed respectively. The gas measuring device 300 was introduced into the internal space 331 based on the output from the two different optical filters 351 and 352 and the infrared detection elements 321 and 322 inserted in these optical paths 332 and 333, respectively. It further includes a calculation unit 340 that performs concentration determination of the measurement target gas.

図2は、図1の内部空間のCO雰囲気における赤外線透過スペクトル例(波長帯域:2.5μm〜8μm)の図である。この赤外線透過スペクトル例の特定帯域、すなわち、波長4.2〜4.4μmの帯域(以下、CO吸収帯域ともいう)において、COによる赤外線の吸収が発生し、赤外線の透過率が局所的に低下することが確認できる。 FIG. 2 is a diagram of an infrared transmission spectrum example (wavelength band: 2.5 μm to 8 μm) in the CO 2 atmosphere in the internal space of FIG. 1. In a specific band of this infrared transmission spectrum example, that is, a band having a wavelength of 4.2 to 4.4 μm (hereinafter also referred to as a CO 2 absorption band), infrared absorption by CO 2 occurs, and the infrared transmittance is local. It can be confirmed that

ガス測定装置300では、CO吸収帯域の赤外線を選択的に透過する光学フィルタ351を有する第一の赤外線検出素子321と、CO吸収帯域以外の赤外線を選択的に透過する光学フィルタ352を有する第二の赤外線検出素子322との2組を用いている。COの濃度に応じて第一の赤外線検出素子の出力ICO2は変化するが、第二の赤外線検出素子322の出力Irefは変化しないため、それらの出力の差や比に基づいてCOの濃度を測定することが可能になる。
具体的例としては、下記式に基づき、CO濃度を導出することが可能である。
In the gas measuring device 300 has an optical filter 352 and the first infrared detecting element 321, selectively transmits infrared than CO 2 absorption band with an optical filter 351 selectively transmits infrared CO 2 absorption band Two pairs with the second infrared detecting element 322 are used. Although the output I CO2 of the first infrared detection element changes according to the concentration of CO 2 , the output I ref of the second infrared detection element 322 does not change, so that the CO 2 is based on the difference or ratio between these outputs. It becomes possible to measure the density | concentration of.
As a specific example, it is possible to derive the CO 2 concentration based on the following equation.

Figure 2014167451
Figure 2014167451

(CCO2:CO濃度、εCO2:COの吸収係数、l:光路長)
また、例えば、特許文献2に記載のものは、組み立て精度が確保され、小型で低コストの波長選択型赤外線検出素子及びそれを用いた赤外線ガス分析計である。この赤外線ガス分析計(以下、単にガス測定装置ともいう)は、光源からの赤外線を波長選択的に透過させる波長選択フィルタと、この波長選択フィルタを透過した赤外線を検出する赤外線検出素子とを一体に形成した複数のミラーを用いた波長選択フィルタを赤外線検出素子と一体形成したものである。
(C CO2 : CO 2 concentration, ε CO2 : CO 2 absorption coefficient, l: optical path length)
Further, for example, the device described in Patent Document 2 is a small and low-cost wavelength-selective infrared detection element that secures assembly accuracy, and an infrared gas analyzer using the same. This infrared gas analyzer (hereinafter, also simply referred to as a gas measuring device) is an integral unit of a wavelength selection filter that selectively transmits infrared light from a light source and an infrared detection element that detects infrared light transmitted through the wavelength selection filter. A wavelength selective filter using a plurality of mirrors formed in the above is integrally formed with the infrared detecting element.

また、特許文献3に記載のものは、1組の光学フィルタ及び赤外線検出素子でガス濃度を測定することが可能な濃度測定装置(以下、単にガス測定装置という)である。このガス測定装置は、2つの異なる波長の赤外線を、離散的かつ選択的に発するように制御される光源と、その光源から発せられた赤外線を選択的に透過する光学フィルタとを用いることにより、フィルタ及び赤外線検出素子を1組で足りるようにしたものである。なお、このガス測定装置は、検出用赤外線に波長4.257μm、参照用赤外線に波長1.5μmが採用されている。   Further, what is described in Patent Document 3 is a concentration measuring device (hereinafter simply referred to as a gas measuring device) capable of measuring a gas concentration with a pair of optical filters and an infrared detecting element. This gas measurement device uses a light source controlled to emit two different wavelengths of infrared rays discretely and selectively, and an optical filter that selectively transmits infrared rays emitted from the light source, One set of filter and infrared detection element is sufficient. In this gas measuring device, a wavelength of 4.257 μm is used for the detection infrared and a wavelength of 1.5 μm is used for the reference infrared.

特開平9−33431号公報JP-A-9-33431 特開2001−228022号公報Japanese Patent Laid-Open No. 2001-228022 特開2005−49171号公報JP-A-2005-49171

上述した特許文献1に開示されたガス測定装置、あるいは図1に示された従来のガス測定装置では、光学フィルタ及び赤外線検出素子は、個別素子の組み合わせであるため、両者を精度良く位置合わせすることが困難であった。その結果、組み立て精度のばらつきによって、測定器間で測定誤差が発生しやすかった。また、複数の光学フィルタ及び赤外線検出素子を用いるため、装置の大型化や高コスト化が不可避であった。   In the gas measuring device disclosed in Patent Document 1 described above or the conventional gas measuring device shown in FIG. 1, the optical filter and the infrared detecting element are a combination of individual elements. It was difficult. As a result, measurement errors were likely to occur between measuring instruments due to variations in assembly accuracy. In addition, since a plurality of optical filters and infrared detection elements are used, it is inevitable to increase the size and cost of the apparatus.

上述した特許文献2に開示されたガス測定装置、一体形成により位置合わせの精度の問題はある程度低減されるものの、赤外線検出素子を複数用いるので小型化が困難である。そればかりか、このガス測定装置の測定精度を維持するためには、複数のミラーを用いた波長選択フィルタの光学特性を揃えて維持することが不可欠である。このように構成が簡素でないという問題があった。   Although the problem of alignment accuracy is reduced to some extent by integrally forming the gas measuring device disclosed in Patent Document 2 described above, miniaturization is difficult because a plurality of infrared detection elements are used. In addition, in order to maintain the measurement accuracy of the gas measuring device, it is essential to maintain the optical characteristics of the wavelength selective filter using a plurality of mirrors in a uniform manner. Thus, there was a problem that the configuration was not simple.

また、上述した特許文献3に開示されたガス測定装置では、参照用赤外線と検出用赤外線とを離散的かつ選択的に発するように制御される光源が必要であり、その制御に相当の電力を要するという欠点があった。そればかりか、このガス測定装置の測定精度を維持するためには、検出用赤外線の波長域と参照用赤外線の波長域と、それぞれ離散した波長域の赤外線とを、選択的に透過する光学フィルタの光学特性を揃えて維持することが不可欠である。この光学フィルタは、特殊な部材であり一般的でないため製造が容易でないという問題があった。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、より簡素で製造容易かつ測定精度が高いガス測定装置及び節電対応したガス測定方法を提供することにある。
In addition, the gas measuring device disclosed in Patent Document 3 described above requires a light source that is controlled so as to discretely and selectively emit reference infrared rays and infrared rays for detection. There was a drawback that it took. In addition, in order to maintain the measurement accuracy of the gas measuring device, an optical filter that selectively transmits the detection infrared wavelength range, the reference infrared wavelength range, and the discrete wavelength range infrared rays, respectively. It is essential to maintain the same optical characteristics. Since this optical filter is a special member and is not general, there is a problem that it is not easy to manufacture.
The present invention has been made in view of such problems, and an object of the present invention is to provide a gas measurement device that is simpler, easier to manufacture, and has higher measurement accuracy, and a gas measurement method that supports power saving.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、光路(32)に導入された測定対象ガスの雰囲気で、光源(10)から発せられた赤外線が、赤外線検出素子(20)に到達した赤外線量に応じて、測定対象ガスの濃度が表示されるガス測定装置(100)において、内部空間(31)に測定対象ガスを導入することが可能な測定セル(30)と、前記赤外線検出素子(20)からの出力に基づいて前記内部空間(31)の測定対象ガスの濃度判定を行う演算部(40)と、前記光源(10)と演算部(40)とを制御する制御部(60)とを備え、前記光源(10)は、測定対象ガスにより吸収される吸収波長帯の赤外線と吸収されない非吸収波長帯の赤外線の両方を同時に発光可能であり、前記制御部(60)は、前記光源(10)から発せられる赤外線の発光スペクトルが連続的変化している期間内に、前記赤外線検出素子(20)の出力を複数回取得し、該取得された出力に基づいて測定対象ガスの濃度判定のための演算を前記演算部(40)に実行させることを特徴とする。(図3)   The present invention has been made to achieve such an object, and the invention according to claim 1 is emitted from the light source (10) in the atmosphere of the measurement target gas introduced into the optical path (32). In the gas measurement device (100) in which the concentration of the measurement target gas is displayed according to the amount of infrared rays that have reached the infrared detection element (20), the measurement target gas can be introduced into the internal space (31). A measurement cell (30), a calculation unit (40) for determining the concentration of the gas to be measured in the internal space (31) based on the output from the infrared detection element (20), and the light source (10) And a control unit (60) for controlling the unit (40), and the light source (10) simultaneously emits both an infrared ray in an absorption wavelength band absorbed by the measurement target gas and an infrared ray in a non-absorption wavelength band that is not absorbed. Is possible and The unit (60) acquires the output of the infrared detection element (20) a plurality of times within a period in which the emission spectrum of the infrared light emitted from the light source (10) is continuously changing, and converts the output to the acquired output. Based on this, the calculation unit (40) is caused to execute a calculation for determining the concentration of the gas to be measured. (Figure 3)

また、請求項2に記載の発明は、請求項1に記載の発明において、前記制御部(60)が、前記光源(10)から発せられる赤外線のピークの連続的変化に基づいて、前記発光スペクトルの連続的変化を制御することを特徴とする。(図3、図5、図6乃至図8)
また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記制御部(60)が、前記光源(10)の温度の連続的変化に基づいて、前記発光スペクトルの連続的変化を制御することを特徴とする。(図3、図5、図6乃至図8)
According to a second aspect of the present invention, in the first aspect of the present invention, the control unit (60) is configured such that the emission spectrum is based on a continuous change in an infrared peak emitted from the light source (10). It is characterized by controlling the continuous change of the. (FIGS. 3, 5, 6 to 8)
According to a third aspect of the present invention, in the first or second aspect of the present invention, the control unit (60) is configured to continue the emission spectrum based on a continuous change in the temperature of the light source (10). It is characterized by controlling the change of the eye. (FIGS. 3, 5, 6 to 8)

また、請求項4に記載の発明は、請求項1、2又は3に記載の発明において、前記制御部(60)が、前記光源(10)が点灯開始制御されてからの所定期間内と、前記光源(10)が消灯制御されてから所定期間内との、いずれかの期間内に、前記発光スペクトルの連続的変化を制御することを特徴とする。(図3、図5、図6乃至図8)
また、請求項5に記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記演算部(40)が、前記光源(10)が未発光時の赤外線検出素子(20)の出力に基づいて前記光源(10)以外からの赤外線輻射によるオフセットを相殺することを特徴とする。(図3、図5、図6乃至図8)
The invention according to claim 4 is the invention according to claim 1, 2 or 3, wherein the control unit (60) is within a predetermined period after the light source (10) is controlled to start lighting, The continuous change of the emission spectrum is controlled within any period of a predetermined period after the light source (10) is controlled to be turned off. (FIGS. 3, 5, 6 to 8)
According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects of the present invention, the calculation unit (40) includes an infrared detection element (20) when the light source (10) is not emitting light. The offset due to infrared radiation from other than the light source (10) is canceled based on the output. (FIGS. 3, 5, 6 to 8)

また、請求項6に記載の発明は、請求項1乃至5のいずれかに記載の発明において、前記測定対象ガスが、COであることを特徴とする。(図5、図7、図8)
また、請求項7に記載の発明は、請求項1乃至6のいずれかに記載の発明において、前記光源(10)と前記赤外線検出素子(20)との間の光路(32)に介挿された光学フィルタ(50)をさらに備え、該光学フィルタ(50)は、前記吸収波長帯及び非吸収波長帯の赤外線に対する透過率が、最大透過率の50%以上の透過率を持つ連続した波長帯域に含まれることを特徴とする。(図5)
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the gas to be measured is CO 2 . (FIGS. 5, 7, and 8)
According to a seventh aspect of the present invention, there is provided an optical path (32) between the light source (10) and the infrared detection element (20) according to any of the first to sixth aspects. The optical filter (50) further comprises a continuous wavelength band in which the transmittance for infrared rays in the absorption wavelength band and the non-absorption wavelength band is greater than 50% of the maximum transmittance. It is contained in. (Fig. 5)

また、請求項8に記載の発明は、請求項1乃至7のいずれかに記載の発明において、前記制御部(60)が、前記発光スペクトルが連続的変化している期間内に、赤外線検出素子(20)からの出力を取得するタイミングを制御することを特徴とする。(図3、図5、図6乃至図8)
また、請求項9に記載の発明は、請求項8に記載の発明において、前記制御部(60)が、前記光源(10)の温度又は光源(10)の点灯開始後経過時間と、消灯制御後経過時間との、いずれかに基づいて赤外線検出素子(20)からの出力を取得するタイミングを制御することを特徴とする。(図3、図5)
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the control unit (60) has an infrared detecting element within a period in which the emission spectrum continuously changes. The timing for acquiring the output from (20) is controlled. (FIGS. 3, 5, 6 to 8)
The invention according to claim 9 is the invention according to claim 8, wherein the controller (60) controls the temperature of the light source (10) or the elapsed time after the lighting of the light source (10) is started, and the turn-off control. The timing for acquiring the output from the infrared detection element (20) is controlled based on either the elapsed time or the post-elapsed time. (Fig. 3, Fig. 5)

また、請求項10に記載の発明は、光路(32)に導入された測定対象ガスの雰囲気で、光源(10)から発せられた赤外線が、赤外線検出素子(20)に到達した赤外線量に応じて、測定対象ガスの濃度として表示されるようにしたガス測定方法において、前記吸収波長帯の赤外線と、前記非吸収波長帯の赤外線とを、前記光源(10)から両方同時に発する発光工程(S10)と、前記光源(10)から発せられた赤外線の発光スペクトルの連続的変化の期間に赤外線検出素子(20)からの出力を複数回取得して出力群(Iall(T,C))を得る発光時出力取得工程(S20)と、前記出力群(Iall(T,C))に基づいて測定対象ガスの濃度判定のための演算を実行するガス濃度演算工程(S30)とを有することを特徴とする。(図4) According to the tenth aspect of the present invention, in the atmosphere of the measurement target gas introduced into the optical path (32), the infrared rays emitted from the light source (10) correspond to the amount of infrared rays that have reached the infrared detection element (20). Then, in the gas measurement method that is displayed as the concentration of the gas to be measured, the light emitting step (S10) that emits both the infrared of the absorption wavelength band and the infrared of the non-absorption wavelength band from the light source (10) simultaneously. ), And obtaining the output group (I all (T, C) ) by acquiring the output from the infrared detecting element (20) a plurality of times during the continuous change of the emission spectrum of the infrared light emitted from the light source (10). A light emission output acquisition step (S20) to be obtained, and a gas concentration calculation step (S30) for performing a calculation for determining the concentration of the gas to be measured based on the output group (I all (T, C) ). Features And (Fig. 4)

また、請求項11に記載の発明は、請求項10に記載の発明において、前記発光スペクトルの連続的変化は、前記光源(10)の温度の連続的変化によることを特徴とする。(図3,図5,図6乃至図8)
また、請求項12に記載の発明は、請求項11に記載の発明において、前記光源(10)の未発光時に取得された赤外線検出素子(20)の出力を取得する未発光時出力取得工程(S25)を更に有し、前記ガス濃度演算工程(S30)は、前記未発光時出力取得工程(S25)により前記光源(10)の未発光時に取得された赤外線検出素子(20)の出力と、前記出力群(Iall(T,C))とに基づいて前記演算を実行することを特徴とする。(図4)
また、請求項13に記載の発明は、請求項10、11又は12に記載の発明において、前記演算は、前記出力群(Iall(T,C))に関する下記式(1)により導出された透過率Aλi(c)に基づいて実行されることを特徴とする。
The invention described in claim 11 is the invention described in claim 10, characterized in that the continuous change of the emission spectrum is due to the continuous change of the temperature of the light source (10). (FIGS. 3, 5, 6 to 8)
According to a twelfth aspect of the present invention, in the invention of the eleventh aspect, a non-light-emitting output acquisition step of acquiring the output of the infrared detection element (20) acquired when the light source (10) is not emitting light ( The gas concentration calculation step (S30) further includes an output of the infrared detection element (20) acquired when the light source (10) is not emitting light by the non-light emitting output acquisition step (S25), The calculation is performed based on the output group (I all (T, C) ). (Fig. 4)
The invention according to claim 13 is the invention according to claim 10, 11 or 12, wherein the calculation is derived by the following expression (1) relating to the output group (I all (T, C) ). It is performed based on the transmittance A λi (c) .

Figure 2014167451
Figure 2014167451

(ただし、Iall(T,c)は光源温度T[℃]、ガス濃度cにおける赤外線検出素子(20)の出力群(Iall(T,C))を示し、Aλi(c)はガス濃度cにおける波長帯λiの赤外線の透過率を示し、Iλi(T)はガス濃度ゼロ、温度T[℃]における波長帯λiの赤外線に対する赤外線検出素子(20)の出力を示し、nは赤外線検出素子(20)に入射する赤外線スペクトルの範囲を分割する数で2以上の整数を示す。)
また、請求項14に記載の発明は、請求項13に記載の発明において、前記出力群(Iall(T,C))の数が、前記n以上であり、前記式(1)で表される前記出力群(Iall(T,C))から最小二乗法を用いて各波長帯λiにおける赤外線の透過率Aλi(c)を導出することを特徴とする。
(Where I all (T, c) represents the output group (I all (T, C) ) of the infrared detection element (20) at a light source temperature T [° C.] and a gas concentration c, and A λi (c) represents gas Infrared transmittance of the wavelength band λi at the concentration c, I λi (T) indicates the output of the infrared detection element (20) for the infrared of the wavelength band λi at a gas concentration of zero and temperature T [° C.], n is infrared (An integer greater than or equal to 2 is shown by the number which divides | segments the range of the infrared spectrum which injects into a detection element (20).)
The invention according to claim 14 is the invention according to claim 13, wherein the number of the output groups (I all (T, C) ) is equal to or more than n, and is represented by the formula (1). Infrared transmittance A λi (c) in each wavelength band λi is derived from the output group (I all (T, C) ) using the least square method.

また、請求項15に記載の発明は、請求項13に記載の発明において、前記出力群(Iall(T,C))の数が、前記nに等しく、前記式(1)で表される出力群(Iall(T,C))の逆行列を解くことにより各波長帯λiにおける赤外線の透過率Aλi(c)を導出することを特徴とする。
また、請求項16に記載の発明は、請求項13に記載の発明において、前記透過率Aλi(c)において、ガス吸収のない波長帯域λrefの透過率Aλref(c)を参照用パラメータとして、他の波長帯の透過率との比率を求める演算を実行することを特徴とする請求項13に記載のガス測定方法。(図8)
Further, in the invention described in claim 15, in the invention described in claim 13, the number of the output groups (I all (T, C) ) is equal to the n, and is represented by the formula (1). Infrared transmittance A λi (c) in each wavelength band λi is derived by solving an inverse matrix of the output group (I all (T, C) ).
The invention of claim 16 is the invention according to claim 13, wherein the transmittance A λi (c), the parameter for the reference transmittance A .lambda.ref (c) without wavelength band lambda ref of gas absorption The gas measurement method according to claim 13, wherein a calculation for obtaining a ratio with the transmittance of another wavelength band is performed. (Fig. 8)

本発明によれば、より簡素で製造容易かつ測定精度が高いガス測定装置及び節電対応したガス測定方法が実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the gas measuring apparatus and gas measuring method corresponding to power saving which are simpler, easy to manufacture, and have high measurement accuracy can be realized.

従来のガス測定装置を説明するための構成図である。It is a block diagram for demonstrating the conventional gas measuring apparatus. 図1の内部空間のCO雰囲気における赤外線透過スペクトル例の図である。It is a diagram of the infrared transmission spectrum example in the CO 2 atmosphere in the space of FIG. 本発明に係るガス測定装置の実施例1を説明するための構成図である。It is a block diagram for demonstrating Example 1 of the gas measuring device which concerns on this invention. 図3のガス測定装置によるガス測定方法を説明するためのフローチャートを示す図である。It is a figure which shows the flowchart for demonstrating the gas measuring method by the gas measuring device of FIG. 本発明に係るガス測定装置の実施例2を説明するための構成図である。It is a block diagram for demonstrating Example 2 of the gas measuring device which concerns on this invention. 光源の温度別に示した赤外線の発光スペクトルの図である。It is a figure of the infrared emission spectrum shown according to the temperature of a light source. 図6の発光スペクトルにおける波長3.8μm〜4.4μm付近の拡大図である。FIG. 7 is an enlarged view in the vicinity of a wavelength of 3.8 μm to 4.4 μm in the emission spectrum of FIG. 6. 光源温度1200℃、CO濃度0〜6000ppmにおいて、赤外線検出素子に入射される赤外線量を示す図である。Source temperature 1200 ° C., in the CO 2 concentration 0~6000Ppm, illustrates the amount of infrared incident on the infrared detector.

以下、図面を参照して本発明の各実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図3は、本発明に係るガス測定装置の実施例1を説明するための構成図である。実施例1のガス測定装置100は、光源10と、その光源10から発せられる赤外線を受光する赤外線検出素子20と、内部空間31に測定対象ガスを導入部33から導入して導出部34から排出することが可能な測定セル30と、赤外線検出素子20からの出力に基づいて内部空間31の測定対象ガスの濃度判定を行う演算部40と、これらを制御する制御部60を備えて構成されている。   FIG. 3 is a configuration diagram for explaining the first embodiment of the gas measuring device according to the present invention. The gas measurement apparatus 100 according to the first embodiment introduces a measurement target gas into the internal space 31 from the introduction unit 33 and discharges it from the extraction unit 34, the light source 10, the infrared detection element 20 that receives infrared rays emitted from the light source 10. A measurement cell 30 that can perform the calculation, a calculation unit 40 that determines the concentration of the gas to be measured in the internal space 31 based on an output from the infrared detection element 20, and a control unit 60 that controls them. Yes.

<測定セル>
測定セル30は、内部空間31に測定対象ガスを導入することが可能なものであれば特に制限されない。導入部33及び導出部34は、測定セル30の内部空間31に対する何らかの通気機能部が少なくとも合わせて一つ以上あれば良い。なお、経時的なガス濃度の測定精度向上といった観点から、ガスの導入部33及び導出部34をそれぞれ備えるものであることが好ましい。
<Measurement cell>
The measurement cell 30 is not particularly limited as long as the measurement target gas can be introduced into the internal space 31. The introduction part 33 and the lead-out part 34 may be at least one in combination with some ventilation function part for the internal space 31 of the measurement cell 30. In addition, from the viewpoint of improving the measurement accuracy of the gas concentration over time, it is preferable that the gas introduction part 33 and the derivation part 34 are provided respectively.

<光源>
光源10は、測定対象ガスによる吸収波長帯の赤外線と、非吸収波長帯の赤外線の両方を同時に発光可能であり、発光スペクトルを連続的に変化できるものであれば特に制限されない。例えば白熱電球や、MEMS(micro electro mechanical systems)ヒーター、LED等が挙げられる。また、光源10は点光源と面光源とのいずれでも構わない。
ここでいう吸収波長帯については、測定対象ガスの濃度によって赤外線透過率(以下、単に透過率ともいう)が変化する波長帯であれば良い。
<Light source>
The light source 10 is not particularly limited as long as the light source 10 can emit both infrared rays in the absorption wavelength band and non-absorption wavelength band by the measurement target gas, and can continuously change the emission spectrum. For example, an incandescent light bulb, a MEMS (micro electro mechanical systems) heater, an LED, and the like can be given. The light source 10 may be either a point light source or a surface light source.
The absorption wavelength band here may be a wavelength band in which the infrared transmittance (hereinafter also simply referred to as transmittance) varies depending on the concentration of the measurement target gas.

この吸収波長帯は、測定対象ガスによって任意に決定することが可能である。例えば、測定対象ガスがCOの場合、吸収波長帯は約4.2μmから約4.4μmにおいて、特異的に赤外線吸収が生じる。その吸収波長帯以外の帯域から、非吸収波長帯が任意に選択される。つまり、非吸収波長帯は、約4.2μmから約4.4μm以外の帯域に設定される。なお、吸収波長帯と非吸収波長帯とは、測定対象ガスの雰囲気において、透過率に大差をつける条件を満足するならば、極力近接した波長帯であることが好ましい。すなわち、単一の光源10を用いて異なる波長帯の赤外線を発光させる場合、それらの異なる波長帯が近接している程、光源10に対する要求性能は、より一般的なもので足りるので有利になる。その結果、光源10には製造容易で、簡素なものを使える。また、類似した観点から、非吸収波長帯が、吸収波長帯に近接した波長帯である程、少ない計算量で濃度を導出できるなど演算が容易となる。その結果、演算部40に対する要求性能も、より一般的かつ簡素なもので足りるので有利になる。 This absorption wavelength band can be arbitrarily determined depending on the measurement target gas. For example, when the measurement target gas is CO 2 , infrared absorption occurs specifically at an absorption wavelength band of about 4.2 μm to about 4.4 μm. A non-absorption wavelength band is arbitrarily selected from a band other than the absorption wavelength band. That is, the non-absorption wavelength band is set to a band other than about 4.2 μm to about 4.4 μm. It should be noted that the absorption wavelength band and the non-absorption wavelength band are preferably as close as possible to each other as long as the conditions for making a large difference in transmittance are satisfied in the atmosphere of the measurement target gas. That is, when infrared rays having different wavelength bands are emitted using a single light source 10, the closer the different wavelength bands are, the more advantageous the required performance for the light source 10 is. . As a result, the light source 10 can be easily manufactured and simple. From a similar point of view, the closer the non-absorption wavelength band is to the absorption wavelength band, the easier the calculation, for example, the concentration can be derived with a small amount of calculation. As a result, the required performance for the arithmetic unit 40 is advantageous because it is sufficient to be more general and simple.

<赤外線検出素子>
赤外線検出素子20は、光源10が発する赤外線に対する感度を有するものであれば特に制限されない。その赤外線検出素子10には、焦電センサ(Pyroelectric sensor)、サーモパイル(thermopile:熱電堆)、ボロメータ(bolometer)等の熱型赤外線センサや、量子型赤外線センサ等が好適である。
本実施例1のガス測定装置100は、単一の赤外線検出素子20により、光源20の発光スペクトルが連続的に変化している期間中に、光源20が発する赤外線に含まれる前記吸収波長帯及び非吸収波長帯に対する赤外線検出素子20の出力を少なくとも2回以上取得する。これら取得された2回以上の出力に基づいて測定対象ガスの濃度判定ができるため、前記赤外線検出素子20は1つでよく、測定セル30をより小型化することが可能になる。
<Infrared detector>
The infrared detection element 20 is not particularly limited as long as it has sensitivity to infrared rays emitted from the light source 10. The infrared detection element 10 is preferably a thermal infrared sensor such as a pyroelectric sensor, a thermopile, a bolometer, a quantum infrared sensor, or the like.
In the gas measuring apparatus 100 of the first embodiment, the absorption wavelength band included in the infrared rays emitted from the light source 20 during the period in which the emission spectrum of the light source 20 continuously changes by the single infrared detection element 20 and The output of the infrared detection element 20 for the non-absorption wavelength band is acquired at least twice. Since the concentration of the measurement target gas can be determined based on these two or more outputs obtained, the number of the infrared detection elements 20 is sufficient, and the measurement cell 30 can be further downsized.

<演算部>
演算部40は、光源10から発せられる赤外線の発光スペクトルが連続的に変化する期間内に、赤外線検出素子20の出力を少なくとも2回以上取得し、その取得された出力に基づいて測定対象ガスの濃度判定のための演算を実行することが可能なものであれば特に制限されない。その演算部40には、例えば、アナログIC、デジタルIC及びCPU(Central Processing Unit)等が好適である。なお、制御部60に、演算部40の機能が含まれていても構わない。
<Calculation unit>
The calculation unit 40 acquires the output of the infrared detection element 20 at least twice within a period in which the emission spectrum of infrared rays emitted from the light source 10 continuously changes, and based on the acquired output, the measurement target gas There is no particular limitation as long as the calculation for density determination can be executed. For example, an analog IC, a digital IC, and a CPU (Central Processing Unit) are suitable for the calculation unit 40. The control unit 60 may include the function of the calculation unit 40.

演算部40は、制御部60により、光源10とともに総合制御され、赤外線検出素子20から取得された出力に基づいて、各波長帯における透過率Aλiを導出する。それから、濃度判定するために、下記(1)〜(4)に例示する演算処理を実行することが有効である。
(1)所望の濃度αにおける透過率Aλi(α)を閾値として記憶しておき、その閾値と導出された透過率Aλiを比較することにより、空間中の測定対象ガス、例えば、COに対する濃度が閾値以上であるか否かを判定する演算処理。
(2)各濃度における透過率を記憶しておき、それらの値と導出された透過率Aλiを比較することにより空間中の測定対象ガス、例えば、CO濃度を定量的に判定する演算処理。
The calculation unit 40 is comprehensively controlled by the control unit 60 together with the light source 10 and derives the transmittance Aλi in each wavelength band based on the output acquired from the infrared detection element 20. Then, in order to determine the density, it is effective to execute arithmetic processing exemplified in the following (1) to (4).
(1) The transmittance Aλi (α) at a desired concentration α is stored as a threshold value, and the concentration with respect to the measurement target gas in the space, for example, CO 2 is compared by comparing the threshold value and the derived transmittance Aλi. Processing for determining whether or not is greater than or equal to a threshold value.
(2) A calculation process for quantitatively determining the concentration of gas to be measured, for example, CO 2 in the space, by storing the transmittance at each concentration and comparing the derived transmittance Aλi.

(3)また、光源10が未発光時の赤外線検出素子20の出力に基づいて光源10以外からの赤外線輻射によるオフセットを相殺する演算処理。
(4)また、光源20の発光中、赤外線検出素子20から2種類の出力を、少なくとも各1回ずつ合計2回以上取得する。これらの出力は、測定対象ガスに対する吸収波長帯の出力と、非吸収波長帯の出力との2種類である。これら取得された2種類の出力に基づいて測定対象ガスの濃度判定のために実行する演算処理。この演算処理によれば、吸収波長帯と、非吸収波長帯とは、光源20の経時劣化に伴って、測定対象ガスの無い条件に限れば、それぞれの出力が、概ね均等に減少するので、経時劣化に伴う出力減少分も容易に補正することが可能になる。
(3) In addition, calculation processing for offsetting offset due to infrared radiation from other than the light source 10 based on the output of the infrared detection element 20 when the light source 10 is not emitting light.
(4) In addition, during the light emission of the light source 20, two types of outputs are acquired from the infrared detection element 20 at least once each, a total of two or more times. These outputs are of two types, an output in the absorption wavelength band for the measurement target gas and an output in the non-absorption wavelength band. A calculation process executed for determining the concentration of the measurement target gas based on these two types of outputs. According to this calculation process, the absorption wavelength band and the non-absorption wavelength band are almost uniformly reduced as long as the light source 20 is deteriorated with the condition that the measurement target gas does not exist. It is possible to easily correct a decrease in output due to deterioration with time.

<制御部>
制御部60は、光源10の発光と、演算部40の演算処理とを、適切なタイミングを計りながら総合制御し、赤外線検出素子20から取得された出力に基づいて、測定対象ガスの濃度判定するための演算を演算部40に実行させる。なお、演算部40に、制御部60の機能が含まれていても構わない。
制御部60は、光源10から発せられる発光スペクトルを連続的に変化させるように制御できるほか、赤外線検出素子20の出力を取得するタイミングを制御する機能も備えている。そして、この制御部60は、光源10から発せられる発光スペクトルを連続的に変化させている期間中に同期して、赤外線検出素子20の出力を取得するように、出力取得のタイミングを制御する。このような制御部60の機能によって、より高精度なガス濃度判定が可能になる。つまり、ガス濃度判定に必要な、異なる2種類以上の波長域の赤外線にそれぞれ対応した出力を、1組の光源10及び赤外線検出素子20によって、複数回に亘って取得することで、より高精度なガス濃度判定が可能になる。
<Control unit>
The control unit 60 comprehensively controls light emission of the light source 10 and calculation processing of the calculation unit 40 while measuring appropriate timing, and determines the concentration of the measurement target gas based on the output acquired from the infrared detection element 20. For this purpose, the calculation unit 40 is caused to execute the calculation. Note that the function of the control unit 60 may be included in the calculation unit 40.
The control unit 60 can control to continuously change the emission spectrum emitted from the light source 10, and also has a function of controlling the timing for acquiring the output of the infrared detection element 20. And this control part 60 controls the timing of output acquisition so that the output of the infrared detection element 20 may be acquired synchronizing with the period when the emission spectrum emitted from the light source 10 is changed continuously. Such a function of the control unit 60 enables more accurate gas concentration determination. In other words, the output corresponding to the infrared rays of two or more different wavelength ranges necessary for the gas concentration determination is acquired more than once by one set of the light source 10 and the infrared detection element 20, thereby achieving higher accuracy. Gas concentration determination is possible.

また、制御部60によれば、光源10から発せられる赤外線の発光スペクトルの連続的変化は、その光源10から発せられる赤外線のピークの連続的変化に基づいて制御することができる。
また、制御部60によれば、上述した発光スペクトルの連続的変化は、光源10が白熱電球や、MEMS(micro electro mechanical systems)ヒーターの場合、温度の連続的変化に基づいて制御することができる。
また、制御部60によれば、上述した発光スペクトルの連続的変化は、光源10が点灯開始制御されてから所定期間内と、前記光源10が消灯制御されてから所定期間内との、いずれかの期間内における赤外線の発光スペクトルの連続的変化に基づいて実行することができる。
Further, according to the control unit 60, the continuous change in the emission spectrum of the infrared light emitted from the light source 10 can be controlled based on the continuous change in the peak of the infrared light emitted from the light source 10.
Moreover, according to the control part 60, the continuous change of the emission spectrum mentioned above can be controlled based on the continuous change of temperature, when the light source 10 is an incandescent light bulb or a MEMS (microelectromechanical systems) heater. .
Further, according to the control unit 60, the above-described continuous change in the emission spectrum is either within a predetermined period after the light source 10 is controlled to start lighting, or within a predetermined period after the light source 10 is controlled to be turned off. It can be performed on the basis of a continuous change in the emission spectrum of infrared rays within a period of.

また、制御部60は、光源10の温度又は光源10の点灯開始後経過時間と、消灯制御後経過時間との、いずれかに基づいて赤外線検出素子20からの出力を取得する。すなわち、光源10がON⇔OFFされる際に、光源10の温度変化に伴って、発光される赤外線の波長スペクトルが変化するので、複数回計測することで異なる波長スペクトルに対する赤外線検出素子20からの出力を取得することが可能である。このように、赤外線検出素子20からの出力を取得するタイミングを制御することで、より高精度なガス濃度判定が可能になる。   In addition, the control unit 60 acquires the output from the infrared detection element 20 based on either the temperature of the light source 10 or the elapsed time after the lighting of the light source 10 starts and the elapsed time after the extinction control. That is, when the light source 10 is turned on and off, the wavelength spectrum of the emitted infrared light changes as the temperature of the light source 10 changes. It is possible to get the output. In this way, by controlling the timing for acquiring the output from the infrared detection element 20, it is possible to determine the gas concentration with higher accuracy.

また、上述した光源10の温度に基づいたタイミングの制御に関し、例えば、光源10の温度に基づく情報をモニタリングする方法がある。ここで、タングステンフィラメント球の光源10を例示する。タングステンの温度と電気抵抗は相関関係を有するため、タングステンの電気抵抗を、制御部60が、モニタリングすることにより光源10の温度情報を取得することが可能である。そのようにして取得された温度情報に基づいて、赤外線検出素子20からの出力を取得するタイミングが制御されることにより、光源10が所望の温度である時のタイミングで赤外線検出素子20からの出力を取得することが可能になる。
実施例1のガス測定装置100は、測定対象ガスの濃度を判定するための赤外線検出素子20が一つで足りるため、図1に示した従来のガス測定装置などと比較して、節電対応することも可能になる。
このように、本発明のガス測定装置によれば、節電対応するとともに、より高い測定精度を実現できる。
In addition, regarding timing control based on the temperature of the light source 10 described above, for example, there is a method of monitoring information based on the temperature of the light source 10. Here, the light source 10 of a tungsten filament sphere is illustrated. Since the temperature and electrical resistance of tungsten have a correlation, it is possible for the control unit 60 to monitor the electrical resistance of tungsten and obtain temperature information of the light source 10. The output from the infrared detection element 20 is controlled at the timing when the light source 10 is at a desired temperature by controlling the timing for acquiring the output from the infrared detection element 20 based on the temperature information thus acquired. It becomes possible to get.
The gas measuring apparatus 100 according to the first embodiment is capable of saving power as compared with the conventional gas measuring apparatus shown in FIG. 1 and the like because only one infrared detecting element 20 for determining the concentration of the measurement target gas is required. It becomes possible.
Thus, according to the gas measuring device of the present invention, it is possible to realize power saving and higher measurement accuracy.

次に、実施例1のガス測定装置100を用いたガス測定方法について説明する。
図4は、図3のガス測定装置によるガス測定方法を説明するためのフローチャートを示す図である。本実施例1のガス測定方法は、光源10から発せられた赤外線が赤外線検出素子20に到達する間に、光路32に導入された測定対象ガスによって赤外線吸収が生じることを利用したガス測定方法である。このガス測定方法には、図4に示すように、発光工程(S10)と、発光時の出力取得工程(S20)と、ガス濃度演算工程(S30)とを有する。
Next, a gas measurement method using the gas measurement device 100 of Example 1 will be described.
FIG. 4 is a flowchart for explaining a gas measuring method by the gas measuring apparatus of FIG. The gas measurement method of the first embodiment is a gas measurement method that utilizes infrared absorption caused by the measurement target gas introduced into the optical path 32 while the infrared rays emitted from the light source 10 reach the infrared detection element 20. is there. As shown in FIG. 4, the gas measurement method includes a light emission step (S10), an output acquisition step during light emission (S20), and a gas concentration calculation step (S30).

まず、発光工程(S10)により、吸収波長帯の赤外線と、非吸収波長帯の赤外線とを、光源10から両方同時に発する。また、発光時出力取得工程(S20)により、光源10から発せられた赤外線の発光スペクトルの連続的変化の期間に赤外線検出素子20からの出力を複数回取得して出力群Iall(T,C)を得る。そして、ガス濃度演算工程(S30)により、出力群Iall(T,C)に基づいて演算を実行することによって、測定対象ガスの濃度を判定する。上述したガス測定方法によれば、単一の赤外線検出素子20からの出力に基づいて、高精度なガス濃度判定を行うことが可能である。 First, in the light emitting step (S10), both infrared rays in the absorption wavelength band and infrared rays in the non-absorption wavelength band are emitted from the light source 10 simultaneously. Also, the output from the infrared detection element 20 is acquired a plurality of times during the period of continuous change of the emission spectrum of the infrared rays emitted from the light source 10 by the output output acquisition step (S20), and the output group I all (T, C ) Then, in the gas concentration calculation step (S30), the concentration of the measurement target gas is determined by executing a calculation based on the output group I all (T, C) . According to the gas measurement method described above, it is possible to perform highly accurate gas concentration determination based on the output from the single infrared detection element 20.

なお、発光スペクトルの連続的変化は、光源10の温度の連続的変化に基づいて制御部60により制御されるようにしても良い。さらに、光源10以外からの赤外線輻射によるオフセットを低減する観点から、光源10の未発光時に取得された赤外線検出素子20の出力を取得する未発光時出力取得工程(S25)を更に備え、ガス濃度演算工程(S30)では、未発光時出力取得工程(S25)により光源10の未発光時に取得された赤外線検出素子20の出力と、発光時出力取得工程(S20)に複数回取得された出力群Iall(T,C)とに基づいて演算を実行することが好ましい。 Note that the continuous change of the emission spectrum may be controlled by the control unit 60 based on the continuous change of the temperature of the light source 10. Furthermore, from the viewpoint of reducing offset due to infrared radiation from other than the light source 10, it further includes a non-light-emitting output acquisition step (S25) for acquiring the output of the infrared detection element 20 acquired when the light source 10 is not emitting light, and the gas concentration In the calculation step (S30), the output of the infrared detection element 20 acquired when the light source 10 is not emitting light by the non-light-emitting output acquisition step (S25), and the output group acquired a plurality of times in the light-emitting output acquisition step (S20) It is preferable to perform the operation based on I all (T, C) .

実施例1のガス測定装置100を用いて、工程(S20)乃至工程(S30)を実行するガス測定方法によれば、測定対象ガスの濃度を判定するための赤外線検出素子20が一つで足りるため、図1に示した従来のガス測定装置を用いガス測定方法などと比較して、節電対応することも可能になる。
本発明のガス測定方法によれば、節電対応するとともに、より高い測定精度を実現できる。
According to the gas measurement method for performing the steps (S20) to (S30) using the gas measurement device 100 of the first embodiment, only one infrared detection element 20 for determining the concentration of the measurement target gas is sufficient. Therefore, it becomes possible to cope with power saving as compared with a gas measuring method using the conventional gas measuring apparatus shown in FIG.
According to the gas measuring method of the present invention, it is possible to realize power saving and higher measurement accuracy.

図5は、本発明のガス測定装置の実施例2を説明するための構成図である。実施例2のガス測定装置200において、測定対象ガス(図5のGAS)は、COを示し、符号50は光学フィルタを示し、それ以外の符号は図3と同じものを示す。つまり、実施例2は実施例1の条件をいくつか限定した内容であるため、実施例1について説明した内容は、そのまま実施例2に適用した上で、実施例2に固有の説明を加える。 FIG. 5 is a block diagram for explaining Example 2 of the gas measuring device of the present invention. In the gas measurement device 200 of Example 2, the measurement target gas (GAS in FIG. 5) indicates CO 2 , the reference numeral 50 indicates an optical filter, and the other reference numerals are the same as those in FIG. In other words, since the content of the second embodiment is limited to some conditions of the first embodiment, the description of the first embodiment is applied to the second embodiment as it is, and a description specific to the second embodiment is added.

<光学フィルタ>
光学フィルタ50を、光源10と赤外線検出素子20との間の光路32に介挿することで、より高精度なガス濃度判定が可能になる。この光学フィルタ50は、最大透過率の50%以上の透過率を持つ連続した波長帯域に吸収波長帯と非吸収波長帯を含むものが好ましい。
本実施例2のガス測定装置200に用いられた光学フィルタ50は、波長3.8μmから4.4μmにおける透過率が100%であり、それ以外の波長帯の透過率が0%のバンドパスフィルタである。
<Optical filter>
By inserting the optical filter 50 in the optical path 32 between the light source 10 and the infrared detection element 20, it is possible to determine the gas concentration with higher accuracy. The optical filter 50 preferably includes an absorption wavelength band and a non-absorption wavelength band in a continuous wavelength band having a transmittance of 50% or more of the maximum transmittance.
The optical filter 50 used in the gas measuring apparatus 200 of the second embodiment has a transmittance of 100% at a wavelength of 3.8 μm to 4.4 μm and a transmittance of 0% for other wavelengths. It is.

<光源>
光源10から出力される赤外線は、プランクの放射則に従って、光源温度に依存した赤外線を出力するものとする。この光源10から発せられる赤外線の発光スペクトルは、制御部60によって連続的変化するように制御される。
<制御部>
制御部60は、光源10の温度が連続的に変化することに基づいて、光源10の発光スペクトルを連続的に変化させるように制御する。なお、発光スペクトルの連続的変化に関する制御方法はこれに限定されず、他の制御方法でも構わない。
<Light source>
The infrared rays output from the light source 10 output infrared rays depending on the light source temperature in accordance with Planck's radiation law. The emission spectrum of infrared rays emitted from the light source 10 is controlled by the control unit 60 so as to continuously change.
<Control unit>
The controller 60 controls the emission spectrum of the light source 10 to change continuously based on the temperature of the light source 10 changing continuously. In addition, the control method regarding the continuous change of an emission spectrum is not limited to this, Other control methods may be used.

<プランクの放射則に従った赤外線の発光スペクトル>
図6は、光源の温度別に示した赤外線の発光スペクトルの図である。発光スペクトルは、光源10の各温度におけるプランクの放射則に従う。図7は、図6の発光スペクトルにおける波長3.8μm〜4.4μm付近の拡大図である。以下実施例説明のために、波長3.8μm〜4.0μmを波長帯をλ1、波長4.0μm〜4.2μmの波長帯をλ2、波長4.2μm〜4.4μmの波長帯をλ3と称する。
<Infrared emission spectrum according to Planck's radiation law>
FIG. 6 is a diagram of an infrared emission spectrum shown for each temperature of the light source. The emission spectrum follows Planck's radiation law at each temperature of the light source 10. FIG. 7 is an enlarged view in the vicinity of a wavelength of 3.8 μm to 4.4 μm in the emission spectrum of FIG. In the following description of the embodiments, the wavelength band of 3.8 μm to 4.0 μm is λ1, the wavelength band of 4.0 μm to 4.2 μm is λ2, and the wavelength band of 4.2 μm to 4.4 μm is λ3. Called.

図8は、光源温度1200℃、CO濃度3000ppmにおいて、赤外線検出素子に入射される赤外線量を示す図である。波長帯λ1においては、COによる赤外線吸収が発生しない為、CO濃度0ppmの場合の出力と実質的に同一の出力となる。波長帯λ2においては、COによる赤外線吸収が少し発生するため、CO濃度0ppmの場合の出力と比較して少し減少する。波長帯λ3においては、COによる赤外線吸収が多く発生するため、CO濃度0ppmの場合の出力と比較して、大幅に出力が減少する。
ここで、CO濃度0ppm、温度T℃における各波長帯λi赤外線検出素子からの出力をIλ1(T)とし、CO濃度cにおける各波長帯λiの吸収係数をλi(c)とすると、CO濃度cppm、温度T℃赤外線検出素子からの出力I(T,c)は下記式(2)で表現される。
FIG. 8 is a diagram showing the amount of infrared rays incident on the infrared detection element at a light source temperature of 1200 ° C. and a CO 2 concentration of 3000 ppm. In the wavelength band λ1, since infrared absorption by CO 2 does not occur, the output is substantially the same as the output when the CO 2 concentration is 0 ppm. In the wavelength band λ2, since infrared absorption by CO 2 is slightly generated, the output is slightly reduced compared with the output in the case where the CO 2 concentration is 0 ppm. In the wavelength range [lambda] 3, since the infrared absorption by CO 2 frequently occur, as compared with the output for the CO 2 concentration 0 ppm, significantly output decreases.
Here, assuming that the output from each wavelength band λi infrared detection element at a CO 2 concentration of 0 ppm and temperature T ° C. is I λ1 (T), and the absorption coefficient of each wavelength band λi at the CO 2 concentration c is λi (c), CO 2 concentration cppm, temperature T ° C. Output I (T, c) from the infrared detection element is expressed by the following equation (2).

<演算部>
演算部40で実行する演算は、実施例1と同様である。発光時出力取得工程(S20)において、光源10から発せられた赤外線の発光スペクトルの連続的変化の期間内に、赤外線検出素子20からの出力を複数回取得して出力群Iall(T,C)を得る。その出力群Iall(T,C)に関する下記式(2)により透過率Aλi(c)を導出する。
<Calculation unit>
The calculation executed by the calculation unit 40 is the same as in the first embodiment. In the light emission output acquisition step (S20), the output from the infrared detection element 20 is acquired a plurality of times within the period of continuous change in the emission spectrum of the infrared light emitted from the light source 10, and the output group I all (T, C ) The transmittance A λi (c) is derived from the following equation (2) regarding the output group I all (T, C) .

Figure 2014167451
Figure 2014167451

(ただし、Iall(T,c)は光源温度T[℃]、ガス濃度cにおける赤外線検出素子(20)の出力群(Iall(T,C))を示し、Aλi(c)はガス濃度cにおける波長帯λiの赤外線の透過率を示し、Iλi(T)はガス濃度ゼロ、温度T[℃]における波長帯λiの赤外線に対する赤外線検出素子(20)の出力を示し、nは赤外線検出素子(20)に入射する赤外線スペクトルの範囲を分割する数で2以上の整数を示す。)
本実施例2に当てはめると、n=3、T=1000,1100,1200℃である。
そして、光源の温度が1000℃、1100℃、1200℃のそれぞれにおける赤外線検出素子の出力はそれぞれ下記式(3)〜(5)で表される。
(Where I all (T, c) represents the output group (I all (T, C) ) of the infrared detection element (20) at a light source temperature T [° C.] and a gas concentration c, and A λi (c) represents gas Infrared transmittance of the wavelength band λi at the concentration c, I λi (T) indicates the output of the infrared detection element (20) for the infrared of the wavelength band λi at a gas concentration of zero and temperature T [° C.], n is infrared (An integer greater than or equal to 2 is shown by the number which divides | segments the range of the infrared spectrum which injects into a detection element (20).)
When applied to the second embodiment, n = 3, T = 1000, 1100, and 1200 ° C.
And the output of the infrared detection element in each of the temperature of a light source is 1000 degreeC, 1100 degreeC, and 1200 degreeC is represented by following formula (3)-(5), respectively.

Figure 2014167451
Figure 2014167451

Figure 2014167451
Figure 2014167451

Figure 2014167451
Figure 2014167451

少なくとも計算に使用する光源温度の条件数とnが同じ場合、逆行列を解くことでCO濃度に対応する透過率Aλiを求めることができる。すなわち、上記例では、出力群(Iall(T,C))の数が、nと等しく、式(2)で表される出力群(Iall(T,C))の逆行列を解くことにより各波長帯λiにおける赤外線の透過率Aλi(c)を導出する。
そして、取得された出力群の数が、式(2)のnと等しく、上記式(2)であらわされる出力群の光源温度が3つで、nが3であるため、逆行列を解くことで各波長帯における透過率Aλiを求めることができる。
上記式(3)〜(5)は、連立すると下記行列式(6)で表現できる。
If at least the condition number of the light source temperature used for the calculation and n are the same, the transmittance A λi corresponding to the CO 2 concentration can be obtained by solving the inverse matrix. That is, in the above example, the number of output groups (I all (T, C) ) is equal to n, and the inverse matrix of the output group (I all (T, C) ) represented by the equation (2) is solved. To derive infrared transmittance A λi (c) in each wavelength band λi.
Then, since the number of acquired output groups is equal to n in the equation (2), the light source temperatures of the output groups represented by the above equation (2) are three, and n is 3, the inverse matrix is solved. Thus, the transmittance A λi in each wavelength band can be obtained.
The above equations (3) to (5) can be expressed by the following determinant (6).

Figure 2014167451
Figure 2014167451

ここで上記式(6)を下記式(7)に置き換える。   Here, the above equation (6) is replaced with the following equation (7).

Figure 2014167451
Figure 2014167451

よって求めるべき係数Aは下記式(8)のように表現できる。   Therefore, the coefficient A to be obtained can be expressed as the following formula (8).

Figure 2014167451
Figure 2014167451

下記式(9)に示す逆行列を求める方法は、LU分解を用いる方法と、掃き出し法と、余因子を用いる方法とのいずれでも良い。   The method for obtaining the inverse matrix shown in the following equation (9) may be any of a method using LU decomposition, a sweep-out method, and a method using a cofactor.

Figure 2014167451
Figure 2014167451

さらに精度を高めるために、出力群(Iall(T,C))の数が、n以上であり、上記式(2)で表される出力群(Iall(T,C))から最小二乗法を用いて各波長帯λiにおける赤外線の透過率Aλi(c)を導出することが好ましい。
すなわち、取得された出力群Iall(T,C)の数が、n以上であり、nよりも多い光源温度の計測データを使用して連立させ、回帰分析を行っても良い。ここでは式(7)に従い、最小二乗法を用いて各波長帯における透過率Aλi(c)を算出する。最小二乗法とは単回帰式で誤差の二乗和を最小にするように各波長帯における透過率Aλi(c)を求める方法であり、下記式(10)に示す擬似逆行列を使って下記式(11)で算出できる。
In order to further improve the accuracy, the number of output groups (I all (T, C) ) is n or more, and a minimum of two from the output group (I all (T, C) ) represented by the above formula (2). It is preferable to derive infrared transmittance A λi (c) in each wavelength band λi by using multiplication.
That is, the number of acquired output groups I all (T, C) is n or more, and simultaneous measurement may be performed using measurement data of light source temperatures higher than n, and regression analysis may be performed. Here, according to the equation (7), the transmittance A λi (c) in each wavelength band is calculated using the least square method. The least square method is a method for obtaining the transmittance A λi (c) in each wavelength band so as to minimize the sum of squares of errors in a single regression equation, and is described below using a pseudo inverse matrix shown in the following equation (10). It can be calculated by equation (11).

Figure 2014167451
Figure 2014167451

Figure 2014167451
Figure 2014167451

このようにして導出された各波長帯における透過率Aλiから、空間中のCOガスの濃度判定を行うことができる。濃度判定の方法には、実施例1で説明した演算処理(1)、(2)を実行する。
(1)所望の濃度αにおける透過率Aλi(α)を閾値として記憶しておき、その閾値と導出された透過率Aλiを比較することにより、空間中のCOガスに対する濃度が閾値以上であるか否かを判定する演算処理。
(2)各濃度における透過率を記憶しておき、それらの値と導出された透過率Aλiを比較することにより空間中のCO濃度を定量的に判定する演算処理。
From the transmittance A λi in each wavelength band derived in this way, the concentration of CO 2 gas in the space can be determined. As the density determination method, the calculation processes (1) and (2) described in the first embodiment are executed.
(1) The transmittance A λi (α) at a desired concentration α is stored as a threshold, and the concentration of the CO 2 gas in the space is equal to or greater than the threshold by comparing the threshold and the derived transmittance A λi. An arithmetic process for determining whether or not.
(2) A calculation process in which the transmittance at each concentration is stored, and the CO 2 concentration in the space is quantitatively determined by comparing these values with the derived transmittance Aλi.

本実施例2の透過率Aλi(c)において、ガス吸収のない波長帯域λrefの透過率Aλref(c)を参照用パラメータとして他の波長帯の透過率との比率を求める演算を採用しても良い。具体的には、赤外線検出素子からの各出力が、上記式(2)の代わりに下記式(12)で表されることを用いる。これにより、Aλ1(c)/Aλref(c)、Aλ2(c)/Aλref(c)、Aλ3(c)/Aλref(c)、をそれぞれ導出することによって、ガス濃度を判定する方法である。 In the transmittance A λi (c) of the second embodiment, a calculation for obtaining the ratio of the transmittance A λref (c) of the wavelength band λ ref without gas absorption to the transmittance of other wavelength bands is used as a reference parameter. You may do it. Specifically, it is used that each output from the infrared detection element is represented by the following formula (12) instead of the above formula (2). Thereby, the gas concentration is determined by deriving A λ1 (c) / A λref (c) , A λ2 (c) / A λref (c) , A λ3 (c) / A λref (c) , respectively. It is a method to do.

Figure 2014167451
Figure 2014167451

この方法によれば、光源10の経時劣化や、光学フィルタ50への付着物等の影響によりIall(T、c)の値が変動した場合であっても、高い判定精度を維持してガス濃度判定を行うことが可能となる。
この方法を採用した場合のガス濃度判定の動作を、本実施例2で限定した条件下で説明する。すなわち、測定対象ガスがCOであり、光源10はタングステンフィラメント電球を用いる。この光源10の温度の連続的変化によって、発光スペクトルが連続的変化する赤外線が、その光源10から発せられる。そして、光学フィルタ50は、波長3.8μmから4.4μmの赤外線の透過率が100%で、それ以外の波長帯の透過率が0%のバンドパスフィルタを用いる、という条件下である。
According to this method, even when the value of I all (T, c) fluctuates due to the deterioration of the light source 10 over time or the influence of the deposits on the optical filter 50, the gas is maintained with high determination accuracy. It is possible to perform density determination.
The gas concentration determination operation when this method is employed will be described under the conditions limited in the second embodiment. That is, the measurement target gas is CO 2 and the light source 10 uses a tungsten filament bulb. Due to the continuous change in the temperature of the light source 10, infrared light whose emission spectrum continuously changes is emitted from the light source 10. The optical filter 50 is under the condition that a band-pass filter having an infrared transmittance of 100% for wavelengths from 3.8 μm to 4.4 μm and a transmittance of 0% for other wavelengths is used.

本実施例2で限定した条件下において、測定対象ガスがCOであるため、3.8μm〜4.0μmの波長帯λ1においては、ガスによる赤外線吸収が生じない。この波長帯λ1における赤外線の透過率Aλ1(c)をAref(c)とすると、上記式(12)は下記式(13)となる。 Since the measurement target gas is CO 2 under the conditions limited in the second embodiment, infrared absorption by the gas does not occur in the wavelength band λ1 of 3.8 μm to 4.0 μm. When the infrared transmittance A λ1 (c) in this wavelength band λ1 is A ref (c) , the above equation (12) becomes the following equation (13).

Figure 2014167451
Figure 2014167451

この式(13)を、上記式(3)〜(5)と同様に逆行列又は最小二乗法を用いて、Aλ1(c)/Aλ1(c),Aλ2(c)/Aλ1(c),Aλ3(c)/Aλ1(c)を、それぞれ導出すれば、ガス濃度を判定することが可能になる。
以下の条件でシミュレーションしたところ、相当に高精度な判定結果が得られた。すなわち、ガス濃度1000ppm、光源10の温度がそれぞれ1240℃,1460℃,1630℃の場合において、赤外線検出素子の出力Iall(T、1000ppm)に5%のオフセットを加えた場合、式(2)に基づいて導出されるAλ1(1000ppm),Aλ2(1000ppm),λ3(1000ppm)は、設定値に対して同じく5%の誤差を有する。一方、上記式(13)に基づいて導出されるAλ2(1000ppm)/Aλ1(1000ppm)は、設定値に対して0.005%の誤差、Aλ3(1000ppm)/Aλ1(1000ppm)は、0.0005%の誤差に抑制されることが確認された。つまり、上記式(13)に基づいて導出される判定結果は、きわめて高精度であることが確認できた。
以上説明したように、本発明によれば、より簡素で製造容易かつ測定精度が高いガス測定装置及び節電対応したガス測定方法を実現できる。
This equation (13) is converted into A λ1 (c) / A λ1 (c) , A λ2 (c) / A λ1 ( ) using the inverse matrix or the least square method in the same manner as the above equations (3) to (5). c) and A λ3 (c) / A λ1 (c) are derived, respectively, so that the gas concentration can be determined.
When a simulation was performed under the following conditions, a highly accurate determination result was obtained. That is, in the case where the gas concentration is 1000 ppm and the temperature of the light source 10 is 1240 ° C., 1460 ° C., and 1630 ° C., respectively, when an offset of 5% is added to the output I all (T, 1000 ppm) of the infrared detection element, A λ1 (1000 ppm) , A λ2 (1000 ppm), and A λ3 (1000 ppm) derived on the basis of the same value have an error of 5% with respect to the set value. On the other hand, A λ2 (1000 ppm) / A λ1 (1000 ppm) derived based on the above equation (13) is an error of 0.005% with respect to the set value, and A λ3 (1000 ppm) / A λ1 (1000 ppm) is It was confirmed that the error was suppressed to 0.0005%. That is, it has been confirmed that the determination result derived based on the above equation (13) has extremely high accuracy.
As described above, according to the present invention, it is possible to realize a gas measuring device that is simpler, easier to manufacture, and has high measurement accuracy, and a gas measuring method that supports power saving.

本発明は、光路に導入された測定対象ガスの雰囲気で、光源から発せられた赤外線が赤外線検出素子に到達した赤外線量に応じて出力される電気信号により測定対象ガスの濃度として表示するガス測定装置及びガス測定方法に関し、本発明のガス測定装置及びガス測定方法は、光源から発せられる赤外線の発光スペクトルが連続的変化している期間内に、赤外線検出素子の出力を複数回取得し、該取得された出力に基づいて測定対象ガスの濃度を、きわめて高精度に判定するので、COに代表されるガスの濃度判定に好適である。 The present invention is a gas measurement in which an infrared signal emitted from a light source is displayed as a concentration of a measurement target gas by an electric signal output in accordance with the amount of infrared rays reaching the infrared detection element in an atmosphere of the measurement target gas introduced into an optical path. Regarding the apparatus and the gas measuring method, the gas measuring apparatus and the gas measuring method of the present invention acquire the output of the infrared detecting element a plurality of times within a period in which the emission spectrum of the infrared light emitted from the light source is continuously changing, Since the concentration of the measurement object gas is determined with extremely high accuracy based on the acquired output, it is suitable for determining the concentration of a gas typified by CO 2 .

10 光源
20,321,322 赤外線検出素子、
30,330 測定セル
31,331 内部空間
40 演算部
50,351,352 光学フィルタ
100,200,300 ガス測定装置
10 light source 20, 321, 322 infrared detection element,
30, 330 Measurement cells 31, 331 Internal space 40 Calculation unit 50, 351, 352 Optical filter 100, 200, 300 Gas measuring device

Claims (16)

光路に導入された測定対象ガスの雰囲気で、光源から発せられた赤外線が、赤外線検出素子に到達した赤外線量に応じて、測定対象ガスの濃度が表示されるガス測定装置において、
内部空間に測定対象ガスを導入することが可能な測定セルと、
前記赤外線検出素子からの出力に基づいて前記内部空間の測定対象ガスの濃度判定を行う演算部と、
前記光源と演算部とを制御する制御部とを備え、
前記光源は、測定対象ガスにより吸収される吸収波長帯の赤外線と吸収されない非吸収波長帯の赤外線の両方を同時に発光可能であり、
前記制御部は、前記光源から発せられる赤外線の発光スペクトルが連続的変化している期間内に、前記赤外線検出素子の出力を複数回取得し、該取得された出力に基づいて測定対象ガスの濃度判定のための演算を前記演算部に実行させることを特徴とするガス測定装置。
In the gas measuring device in which the concentration of the measurement target gas is displayed according to the amount of infrared rays that the infrared ray emitted from the light source reaches the infrared detection element in the atmosphere of the measurement target gas introduced into the optical path.
A measurement cell capable of introducing a gas to be measured into the internal space;
A calculation unit for determining the concentration of the measurement target gas in the internal space based on the output from the infrared detection element;
A control unit for controlling the light source and the calculation unit,
The light source is capable of simultaneously emitting both infrared light in an absorption wavelength band absorbed by the measurement target gas and infrared light in a non-absorption wavelength band that is not absorbed,
The control unit acquires the output of the infrared detection element a plurality of times within a period in which the emission spectrum of the infrared light emitted from the light source is continuously changing, and the concentration of the measurement target gas based on the acquired output A gas measuring apparatus that causes the calculation unit to execute a calculation for determination.
前記制御部が、前記光源から発せられる赤外線のピークの連続的変化に基づいて、前記発光スペクトルの連続的変化を制御することを特徴とする請求項1に記載のガス測定装置。   The gas measuring apparatus according to claim 1, wherein the control unit controls a continuous change in the emission spectrum based on a continuous change in an infrared peak emitted from the light source. 前記制御部が、前記光源の温度の連続的変化に基づいて、前記発光スペクトルの連続的変化を制御することを特徴とする請求項1又は2に記載のガス測定装置。   The gas measurement device according to claim 1, wherein the control unit controls a continuous change in the emission spectrum based on a continuous change in the temperature of the light source. 前記制御部が、前記光源が点灯開始制御されてからの所定期間内と、前記光源が消灯制御されてから所定期間内との、いずれかの期間内に、前記発光スペクトルの連続的変化を制御することを特徴とする請求項1、2又は3に記載のガス測定装置。   The controller controls a continuous change in the emission spectrum within a predetermined period after the light source is controlled to start lighting and within a predetermined period after the light source is controlled to be turned off. The gas measuring device according to claim 1, 2, or 3. 前記演算部が、前記光源が未発光時の赤外線検出素子の出力に基づいて前記光源以外からの赤外線輻射によるオフセットを相殺することを特徴とする請求項1乃至4のいずれかに記載のガス測定装置。   5. The gas measurement according to claim 1, wherein the calculation unit cancels an offset due to infrared radiation from other than the light source based on an output of an infrared detection element when the light source is not emitting light. apparatus. 前記測定対象ガスが、COであることを特徴とする請求項1乃至5のいずれかに記載のガス測定装置。 The gas measuring apparatus according to claim 1, wherein the measurement target gas is CO 2 . 前記光源と前記赤外線検出素子との間の光路に介挿された光学フィルタをさらに備え、該光学フィルタは、前記吸収波長帯及び非吸収波長帯の赤外線に対する透過率が、最大透過率の50%以上の透過率を持つ連続した波長帯域に含まれることを特徴とする請求項1乃至6のいずれかに記載のガス測定装置。   The optical filter further includes an optical filter interposed in an optical path between the light source and the infrared detection element, and the optical filter has a transmittance with respect to infrared rays in the absorption wavelength band and a non-absorption wavelength band of 50% of the maximum transmittance. 7. The gas measuring device according to claim 1, wherein the gas measuring device is included in a continuous wavelength band having the above transmittance. 前記制御部が、前記発光スペクトルが連続的変化している期間内に、赤外線検出素子からの出力を取得するタイミングを制御することを特徴とする請求項1乃至7のいずれかに記載のガス測定装置。   The gas measurement according to any one of claims 1 to 7, wherein the control unit controls the timing of acquiring the output from the infrared detection element within a period in which the emission spectrum is continuously changing. apparatus. 前記制御部が、前記光源の温度又は光源の点灯開始後経過時間と、消灯制御後経過時間との、いずれかに基づいて赤外線検出素子からの出力を取得するタイミングを制御することを特徴とする請求項8に記載のガス測定装置。   The control unit controls the timing for acquiring the output from the infrared detecting element based on either the temperature of the light source or the elapsed time after the light source starts lighting and the elapsed time after the extinction control. The gas measuring device according to claim 8. 光路に導入された測定対象ガスの雰囲気で、光源から発せられた赤外線が、赤外線検出素子に到達した赤外線量に応じて、測定対象ガスの濃度として表示されるようにしたガス測定方法において、
前記吸収波長帯の赤外線と、前記非吸収波長帯の赤外線とを、前記光源から両方同時に発する発光工程と、
前記光源から発せられた赤外線の発光スペクトルの連続的変化の期間に赤外線検出素子からの出力を複数回取得して出力群を得る発光時出力取得工程と、
前記出力群に基づいて測定対象ガスの濃度判定のための演算を実行するガス濃度演算工程とを有することを特徴とするガス測定方法。
In the gas measurement method in which the infrared light emitted from the light source is displayed as the concentration of the measurement target gas in accordance with the amount of infrared light that has reached the infrared detection element in the atmosphere of the measurement target gas introduced into the optical path.
A light emitting step of simultaneously emitting both infrared light of the absorption wavelength band and infrared light of the non-absorption wavelength band from the light source;
A light emission output acquisition step of obtaining an output group by acquiring the output from the infrared detection element a plurality of times during a continuous change in the emission spectrum of the infrared light emitted from the light source;
And a gas concentration calculation step of performing a calculation for determining the concentration of the measurement target gas based on the output group.
前記発光スペクトルの連続的変化は、前記光源の温度の連続的変化によることを特徴とする請求項10に記載のガス測定方法。   The gas measurement method according to claim 10, wherein the continuous change in the emission spectrum is due to a continuous change in the temperature of the light source. 前記光源の未発光時に取得された赤外線検出素子の出力を取得する未発光時出力取得工程を更に有し、
前記ガス濃度演算工程は、前記未発光時出力取得工程により前記光源の未発光時に取得された赤外線検出素子の出力と、前記出力群とに基づいて前記演算を実行することを特徴とする請求項11に記載のガス測定方法。
It further includes an output acquisition step when not emitting light that acquires an output of the infrared detection element acquired when the light source does not emit light,
The said gas concentration calculation process performs the said calculation based on the output of the infrared rays detection element acquired when the said light source is not light-emitted by the said light emission time output acquisition process, and the said output group. 11. The gas measuring method according to 11.
前記演算は、前記出力群に関する下記式(1)により導出された透過率Aλi(c)に基づいて実行されることを特徴とする請求項10、11又は12に記載のガス測定方法。
Figure 2014167451
(ただし、Iall(T,c)は光源温度T[℃]、ガス濃度cにおける赤外線検出素子の出力群(Iall(T,C))を示し、Aλi(c)はガス濃度cにおける波長帯λiの赤外線の透過率を示し、Iλi(T)はガス濃度ゼロ、温度T[℃]における波長帯λiの赤外線に対する赤外線検出素子の出力を示し、nは赤外線検出素子に入射する赤外線スペクトルの範囲を分割する数で2以上の整数を示す。)
The gas measurement method according to claim 10, 11 or 12, wherein the calculation is executed based on a transmittance A λi (c) derived by the following equation (1) relating to the output group.
Figure 2014167451
(Where I all (T, c) represents the output group (I all (T, C) ) of the infrared detection element at the light source temperature T [° C.] and the gas concentration c, and A λi (c) represents the gas concentration c. Infrared transmittance of the wavelength band λi is shown, I λi (T) indicates the output of the infrared detecting element for the infrared of the wavelength band λi at a gas concentration of zero and temperature T [° C.], and n is the infrared ray incident on the infrared detecting element (An integer greater than or equal to 2 is indicated by the number dividing the spectrum range.)
前記出力群(Iall(T,C))の数が、前記n以上であり、前記式(1)で表される前記出力群(Iall(T,C))から最小二乗法を用いて各波長帯λiにおける赤外線の透過率Aλi(c)を導出することを特徴とする請求項13に記載のガス測定方法。 The number of the output groups (I all (T, C) ) is n or more, and the least square method is used from the output group (I all (T, C) ) represented by the formula (1). The gas measurement method according to claim 13, wherein an infrared transmittance A λi (c) in each wavelength band λi is derived. 前記出力群(Iall(T,C))の数が、前記nに等しく、前記式(1)で表される出力群(Iall(T,C))の逆行列を解くことにより各波長帯λiにおける赤外線の透過率Aλi(c)を導出することを特徴とする請求項13に記載のガス測定方法。 Each wavelength is obtained by solving the inverse matrix of the output group (I all (T, C) ) represented by the formula (1) in which the number of the output groups (I all (T, C) ) is equal to the n. 14. The gas measuring method according to claim 13, wherein infrared transmittance A λi (c) in the band λi is derived. 前記透過率Aλi(c)において、ガス吸収のない波長帯域λrefの透過率Aλref(c)を参照用パラメータとして、他の波長帯の透過率との比率を求める演算を実行することを特徴とする請求項13に記載のガス測定方法。 In the transmittance A λi (c) , a calculation for obtaining a ratio of the transmittance A λref (c) of the wavelength band λ ref without gas absorption to the transmittance of other wavelength bands is performed. The gas measuring method according to claim 13, wherein
JP2013040074A 2013-02-28 2013-02-28 Gas measuring device and gas measuring method Active JP6062767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013040074A JP6062767B2 (en) 2013-02-28 2013-02-28 Gas measuring device and gas measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013040074A JP6062767B2 (en) 2013-02-28 2013-02-28 Gas measuring device and gas measuring method

Publications (2)

Publication Number Publication Date
JP2014167451A true JP2014167451A (en) 2014-09-11
JP6062767B2 JP6062767B2 (en) 2017-01-18

Family

ID=51617206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013040074A Active JP6062767B2 (en) 2013-02-28 2013-02-28 Gas measuring device and gas measuring method

Country Status (1)

Country Link
JP (1) JP6062767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026582A (en) * 2015-07-28 2017-02-02 旭化成エレクトロニクス株式会社 Gas concentration measuring apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347403A (en) * 1993-06-12 1994-12-22 Horiba Ltd Infrared gas analyzer
JPH09182740A (en) * 1995-12-30 1997-07-15 Shimadzu Corp Biological photomeasuring device
JP2001324446A (en) * 2000-05-12 2001-11-22 Shimadzu Corp Apparatus for measuring isotope gas
JP2005049171A (en) * 2003-07-31 2005-02-24 Yazaki Corp Concentration measuring apparatus and concentration measuring system
JP2012052880A (en) * 2010-08-31 2012-03-15 Shimadzu Corp Fuel property measurement device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347403A (en) * 1993-06-12 1994-12-22 Horiba Ltd Infrared gas analyzer
JPH09182740A (en) * 1995-12-30 1997-07-15 Shimadzu Corp Biological photomeasuring device
JP2001324446A (en) * 2000-05-12 2001-11-22 Shimadzu Corp Apparatus for measuring isotope gas
JP2005049171A (en) * 2003-07-31 2005-02-24 Yazaki Corp Concentration measuring apparatus and concentration measuring system
JP2012052880A (en) * 2010-08-31 2012-03-15 Shimadzu Corp Fuel property measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026582A (en) * 2015-07-28 2017-02-02 旭化成エレクトロニクス株式会社 Gas concentration measuring apparatus

Also Published As

Publication number Publication date
JP6062767B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP5023507B2 (en) Wavelength calibration method and wavelength calibration apparatus
JP6420807B2 (en) Methods for wavelength spectrum analysis for detecting various gases using processed tapes
US7619742B2 (en) High-speed spectrographic sensor for internal combustion engines
JP6042961B2 (en) Color measuring unit
JP2013096883A5 (en)
US20220276154A1 (en) Method for analysing a gas using an optical sensor
US20120250014A1 (en) Spectrophotometer and method for calibrating the same
JP2011149965A (en) Absorption analyzer
JP6062767B2 (en) Gas measuring device and gas measuring method
JP6979704B2 (en) Temperature measuring device and temperature measuring method
JP2008268106A (en) Method of measuring temperature information
US11060972B2 (en) Method for analysing a gas
WO2023046523A1 (en) Respiratory gas sensing
JP2010286291A (en) Infrared spectroscope and infrared spectral measuring device
US20220268635A1 (en) Method and device for monitoring radiation
JP2017032317A (en) Gas concentration measurement device
JP7381475B2 (en) Gas analysis method using double illumination
JP6543065B2 (en) Gas concentration measuring device
JP6543126B2 (en) Gas concentration measuring device
CN108303387B (en) Method and micro spectrometer for analyzing a measurement area
JP5285553B2 (en) Gas detection device and fire detection device
JP4257436B2 (en) Infrared dual wavelength processing method
US20100140477A1 (en) Method and device for gas analysis
JP2017150930A (en) Optical physical quantity measurement device and light source control method therefor
JP2013072574A (en) Combustion diagnostic device and method of diagnosing combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161215

R150 Certificate of patent or registration of utility model

Ref document number: 6062767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350