JP2012052880A - Fuel property measurement device - Google Patents

Fuel property measurement device Download PDF

Info

Publication number
JP2012052880A
JP2012052880A JP2010194813A JP2010194813A JP2012052880A JP 2012052880 A JP2012052880 A JP 2012052880A JP 2010194813 A JP2010194813 A JP 2010194813A JP 2010194813 A JP2010194813 A JP 2010194813A JP 2012052880 A JP2012052880 A JP 2012052880A
Authority
JP
Japan
Prior art keywords
light
light source
fuel
wavelength
fuel property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010194813A
Other languages
Japanese (ja)
Inventor
Ryoji Fushimi
良治 伏見
Yoshio Tsunasawa
義夫 綱澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010194813A priority Critical patent/JP2012052880A/en
Publication of JP2012052880A publication Critical patent/JP2012052880A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost fuel property measurement device that can be installed on a motor vehicle, a motor cycle, a small-sized marine vessel and any other vehicles with an internal combustion engine.SOLUTION: The fuel property measurement device, using a plurality of low-cost near-infrared LED sources L, L, Lhaving a wide emission wavelength width, makes the LED sources substantially function as a light source with a narrow emission wavelength width by combining the LED sources with a diffraction grating 7, and reduces the cost required for detectors, which are more expensive than light sources in near-infrared applications, by reducing light receiving elements of the detector 7 to a single type. As the detection method substantially has a narrow wavelength width, a plurality of components of mixed fuel can be separated and measured.

Description

本発明は、自動車や自動二輪車、小型船舶等の内燃機関を有するものに搭載することが可能な、混合燃料の組成を検出・測定するための燃料性状測定装置に関する。   The present invention relates to a fuel property measuring apparatus for detecting and measuring a composition of a mixed fuel that can be mounted on an automobile, a motorcycle, a small ship, or the like having an internal combustion engine.

近年、原油価格の高騰や地球温暖化といった問題に対応して、ガソリンにエタノール等のアルコールを混合した混合燃料が自動車燃料として使用されるようになってきている。ガソリンとアルコールとでは発熱量や気化特性が異なっており、これらの比率によって最適な燃焼条件が相違する。そのため混合燃料を使用する車(FFV)では、様々な混合比に対応できるように、使用される燃料中の成分の混合比を測定又は推定し、それに応じてエンジンの燃料噴射量や点火タイミング等の制御を変更する必要がある。   In recent years, mixed fuels in which alcohol such as ethanol is mixed with gasoline have been used as automobile fuels in response to problems such as soaring crude oil prices and global warming. Gasoline and alcohol differ in calorific value and vaporization characteristics, and optimum combustion conditions differ depending on these ratios. Therefore, in vehicles using mixed fuel (FFV), the mixture ratio of the components in the fuel used is measured or estimated so that it can correspond to various mixture ratios, and the fuel injection amount, ignition timing, etc. of the engine accordingly. It is necessary to change the control.

自動車等に搭載される燃料性状検出装置では、混合燃料に含まれる各種成分の濃度を測定するために以下のことが求められる。
・レスポンスが速いこと。
・混合燃料の構成成分を正確に分離定量できること。
・安価であること。
・温度変化に強いこと。
・振動に強いこと。
・コンパクトであること。
In a fuel property detection device mounted on an automobile or the like, the following is required in order to measure the concentrations of various components contained in the mixed fuel.
-The response is fast.
-The components of the mixed fuel can be accurately separated and quantified.
・ It must be inexpensive.
-Be resistant to temperature changes.
-Be resistant to vibration.
・ It must be compact.

混合燃料に含まれる各種成分の濃度を測定する手法としては、従来、様々な方法が提案されている。例えば特許文献1には、1600nm付近の所定の1波長の近赤外光を混合燃料に照射し、その透過光の検出信号から得られる吸光度に基づいて、アルコール濃度を測定する手法が開示されている。1600nm付近の波長域にはアルコールの吸収波長帯が存在するため、アルコール濃度が高くなるほど吸光度は大きくなる。そのため、吸光度とアルコール濃度の関係を示すマップを予め作成しておけば、混合燃料に光を照射し、その透過光を検出するだけで、アルコール濃度を即座に算出することができる(すなわちレスポンスが速い)。   Conventionally, various methods have been proposed for measuring the concentrations of various components contained in the mixed fuel. For example, Patent Document 1 discloses a technique for irradiating a mixed fuel with near-infrared light having a predetermined wavelength near 1600 nm and measuring the alcohol concentration based on the absorbance obtained from the detection signal of the transmitted light. Yes. Since the absorption wavelength band of alcohol exists in the wavelength range near 1600 nm, the higher the alcohol concentration, the higher the absorbance. Therefore, if a map showing the relationship between the absorbance and the alcohol concentration is created in advance, the alcohol concentration can be immediately calculated by simply irradiating the mixed fuel with light and detecting the transmitted light (that is, the response is fast).

なお、混合燃料に対して光の吸収を利用して分析を行う場合、特許文献1のように、近赤外域の光が一般的に用いられる。これは以下の理由による。赤外域の光では、混合燃料に含まれる成分の吸収が強すぎる(吸収係数が大きすぎる)ので、混合燃料を希釈することが必要になる。可視域の光では、赤外光とは逆にアルコールや炭化水素に(吸収係数が小さすぎるため)吸収されず、分析に利用することができない。これに対し、近赤外域の光は吸収係数がその中間であって、混合燃料を希釈せずに数mm程度の光路長(吸収を受ける部分の光路の長さ)で透過光を測定することができる。そのため、赤外域と可視域の中間の近赤外域の光が、このような試料の希釈を要しない実用分析に用いられる。   In addition, when analyzing by using light absorption with respect to mixed fuel, the light of a near infrared region is generally used like patent document 1. FIG. This is due to the following reason. Infrared light absorbs components contained in the mixed fuel too strongly (absorption coefficient is too large), so it is necessary to dilute the mixed fuel. In contrast to infrared light, visible light is not absorbed by alcohol or hydrocarbon (because the absorption coefficient is too small) and cannot be used for analysis. In contrast, near-infrared light has an intermediate absorption coefficient, and the transmitted light is measured with an optical path length of about several millimeters (the length of the optical path where the absorption is received) without diluting the mixed fuel. Can do. For this reason, light in the near-infrared region between the infrared region and the visible region is used for practical analysis that does not require dilution of the sample.

しかしながら、特許文献1の手法では以下のような問題がある。アルコールには水分が混じっていることが多い上、水の吸収波長帯はアルコールの吸収波長帯に近い。また、1600nm付近の波長の光は、弱いながらも炭化水素(ガソリン)による吸収を受けてしまう。そのため、特許文献1のように1波長の光を用いるだけでは、ガソリン、アルコール、水を正確に分離定量することは困難である。従って、混合燃料の性状測定に光の吸収を利用する場合、複数の波長の光に対する光の吸収を測定する必要がある。   However, the method of Patent Document 1 has the following problems. Alcohol often contains water, and the absorption wavelength band of water is close to the absorption wavelength band of alcohol. In addition, light with a wavelength around 1600 nm is weakly absorbed by hydrocarbons (gasoline). For this reason, it is difficult to accurately separate and quantify gasoline, alcohol, and water only by using light of one wavelength as in Patent Document 1. Therefore, when light absorption is used to measure the properties of the mixed fuel, it is necessary to measure light absorption with respect to light having a plurality of wavelengths.

特開2008-157728号公報JP 2008-157728 A

混合燃料の性状測定において多波長の光の吸収を測定する場合、単一の連続光源から連続光を混合燃料に照射し、その透過光を回折格子で分光したうえで、複数の受光素子(例えばフォトダイオード)が一次元に並べられたアレイ形検出器により並列に検出する、という構成を用いることが考えられる。この構成では、可動部分がないため振動に強く、しかも多波長の光を同時に測定することができる、といった利点がある。   When measuring the absorption of multi-wavelength light in the measurement of the properties of the mixed fuel, the mixed fuel is irradiated with continuous light from a single continuous light source, and the transmitted light is dispersed with a diffraction grating, and then a plurality of light receiving elements (for example, It is conceivable to use a configuration in which a photodiode) is detected in parallel by an array type detector arranged in one dimension. This configuration has the advantage that it has no moving parts and is resistant to vibration, and can simultaneously measure multi-wavelength light.

しかしながら、安価に入手可能なシリコンのアレイ形検出器は、可視域には高い感度を有するものの、近赤外域の光を検出することができない。シリコン以外の近赤外域用のアレイ形検出器は入手可能ではあるものの非常に高価であるため、自動車などに搭載するような安価な装置には適当でない。   However, a silicon array detector available at low cost has high sensitivity in the visible region, but cannot detect light in the near infrared region. Although an array type detector for the near infrared region other than silicon is available, it is very expensive, and is not suitable for an inexpensive apparatus mounted on an automobile or the like.

一方、検出器の受光素子を単一とする(すなわちアレイ形検出器を用いない)構成も考えられる。この場合、複数の単色(単波長)光源からそれぞれ波長の異なる単波長光をこの単一の受光素子に向けて照射し、単色光源と受光素子(検出器)の間で混合燃料による光の吸収を行わせる、という構成になる。この構成では、受光素子が単一であるため検出器の分のコストを削減することができる。しかしながら、波長幅の十分狭い単波長光を照射可能な単色光源(例えばレーザ光源など)は高価であり、さらに必要とする波長の数だけ用意する必要があるため、連続光源を用いる方式と同様にコストが高くなってしまう。   On the other hand, a configuration in which the light receiving element of the detector is single (that is, an array detector is not used) is also conceivable. In this case, single-wavelength light with different wavelengths is emitted from a plurality of single-color (single-wavelength) light sources toward this single light-receiving element, and light is absorbed by the mixed fuel between the single-color light source and the light-receiving element (detector). It becomes the composition that it is made to do. In this configuration, since the light receiving element is single, the cost for the detector can be reduced. However, a monochromatic light source (for example, a laser light source) that can irradiate a single wavelength light having a sufficiently narrow wavelength width is expensive, and it is necessary to prepare as many as the required number of wavelengths. Cost becomes high.

本発明が解決しようとする課題は、車載に好適な、上記の様々な要求を満たすことができる燃料性状測定装置を提供することである。   The problem to be solved by the present invention is to provide a fuel property measuring apparatus suitable for in-vehicle use and capable of satisfying the above various requirements.

上記課題を解決するために成された本発明に係る燃料性状測定装置は、
異なる位置に配置された、所定の波長幅を有する複数の近赤外用の光源と、
前記複数の光源から照射される光の中から、それぞれ特定の波長の光を共通の方向に回折させる回折格子と、
前記回折格子により前記共通の方向に回折された各々の光を受光する単一の受光部と、
前記光源と前記受光部の間の光路上に設けられた、測定対象である燃料を収容するための測定セルと、
前記受光部の検出信号から得られた各光源からの光の吸収の度合いに基づいて、前記燃料に含まれる各成分の濃度を算出する算出手段と、
を有することを特徴とする。
The fuel property measuring apparatus according to the present invention, which has been made to solve the above problems,
A plurality of near-infrared light sources having predetermined wavelength widths arranged at different positions;
A diffraction grating that diffracts light of a specific wavelength in a common direction from among the light emitted from the plurality of light sources,
A single light receiving portion for receiving each light diffracted in the common direction by the diffraction grating;
A measurement cell provided on an optical path between the light source and the light receiving unit for containing fuel to be measured;
Calculation means for calculating the concentration of each component contained in the fuel based on the degree of absorption of light from each light source obtained from the detection signal of the light receiving unit;
It is characterized by having.

なお、各光源から回折格子を経て共通の方向(受光部の方向)に回折される特定の波長の光とは、燃料中に含まれる検出対象とする成分の吸収波長帯にそれぞれ対応したものであり、光源毎に波長が異なる。   The light of a specific wavelength diffracted from each light source through the diffraction grating in a common direction (the direction of the light receiving unit) corresponds to the absorption wavelength band of the component to be detected included in the fuel. There are different wavelengths for each light source.

本発明に係る燃料性状測定装置では、各々の光源の光の中から特定の波長の光を回折格子を用いて受光部の方向に回折させるため、各光源が発する光の波長幅よりも狭い波長幅の光を受光部に入射させることができる。また、各光源における光の出射位置と受光部における光の入射位置のそれぞれにスリットを設けることにより、より狭い波長幅の光を取り出すことも可能となる。そのため、各光源の発光波長幅は広くてもよく、例えば発光波長幅が100nm程度の安価な近赤外LEDを光源として用いることができ、装置のコストをより削減することができる。   In the fuel property measuring apparatus according to the present invention, since light of a specific wavelength is diffracted from the light of each light source toward the light receiving unit using a diffraction grating, the wavelength narrower than the wavelength width of the light emitted by each light source Light having a width can be incident on the light receiving unit. Further, by providing slits at the light emission position of each light source and the light incident position of the light receiving unit, it is possible to extract light having a narrower wavelength width. Therefore, the emission wavelength width of each light source may be wide. For example, an inexpensive near infrared LED having an emission wavelength width of about 100 nm can be used as the light source, and the cost of the apparatus can be further reduced.

測定セルを回折格子と受光部の間に設ける場合、各光源の特定波長の光は共通の光路を通るため、この光路上に測定セルを配置すれば良い。一方、測定セルを各光源と回折格子の間に設ける場合、光源毎に光路が異なるため、各々の光路をまたぐように測定セルを配置する必要がある。   When the measurement cell is provided between the diffraction grating and the light receiving unit, the light of a specific wavelength of each light source passes through a common optical path. Therefore, the measurement cell may be disposed on this optical path. On the other hand, when the measurement cell is provided between each light source and the diffraction grating, the optical path is different for each light source. Therefore, it is necessary to dispose the measurement cell so as to straddle each optical path.

本発明に係る燃料性状測定装置は、従来の単一の光源を用いる方式と単一の受光素子を用いる方式のそれぞれの長所を組み合わせた構成となっている。このような構成を採ることにより、従来、コストが高くなる原因であった近赤外用の受光素子の数を削減することができると共に、発光波長幅が100nm程度の安価な近赤外LEDを光源として用いることができるため、燃料性状測定装置を安価に提供することが可能となる。また、受光部が1つであるために、温度変化による波長毎の吸光度の測定誤差のばらつきが少なくなり、結果として、従来よりも正確に分離定量を行う(すなわち温度変化に強くする)ことが可能となる。   The fuel property measuring apparatus according to the present invention is configured by combining the advantages of the conventional method using a single light source and the method using a single light receiving element. By adopting such a configuration, it is possible to reduce the number of near-infrared light-receiving elements, which has been a cause of high costs, and to produce inexpensive near-infrared LEDs with a light emission wavelength width of about 100 nm as a light source. Therefore, the fuel property measuring device can be provided at low cost. In addition, since there is one light receiving section, variation in absorbance measurement error for each wavelength due to temperature change is reduced, and as a result, separation and quantification can be performed more accurately than before (that is, stronger against temperature change). It becomes possible.

混合燃料に典型的に含まれる各成分の吸収スペクトル。Absorption spectrum of each component typically contained in a mixed fuel. 本実施例の各光源位置における波長分散と波長分解能を示す図。The figure which shows the chromatic dispersion and wavelength resolution in each light source position of a present Example. 本発明に係る燃料性状測定装置の一実施例の光学系を示す図。The figure which shows the optical system of one Example of the fuel property measuring apparatus which concerns on this invention. 本実施例の燃料性状測定装置の機能ブロック図。The functional block diagram of the fuel property measuring apparatus of a present Example. 本実施例の燃料測定装置による数値シミュレーションの結果を示す表。The table | surface which shows the result of the numerical simulation by the fuel measuring apparatus of a present Example. 本発明に係る燃料性状測定装置の変形例の光学系を示す図。The figure which shows the optical system of the modification of the fuel property measuring apparatus which concerns on this invention.

図1に、混合燃料に一般的に含まれるエタノール、水、直鎖炭化水素(ヘプタン及びヘキサン)の各吸収スペクトルを示す。なお、図1の吸収スペクトルは、水以外の光路長を10mm、水の光路長を2mmとした場合のものである。   FIG. 1 shows absorption spectra of ethanol, water, and straight chain hydrocarbons (heptane and hexane) that are generally contained in a mixed fuel. In addition, the absorption spectrum of FIG. 1 is a thing when optical path lengths other than water are 10 mm, and the optical path length of water is 2 mm.

図1の吸収スペクトルを示すエタノール、水、直鎖炭化水素の各成分を、複数の光源を用いて分離する場合、一般的に1550nm、1450nm、1200nmのそれぞれの単色光を発生する3つの単色光源が用いられる。なお、1450nmと1200nmはそれぞれ水と直鎖炭化水素の吸収ピークの波長であるが、1550nmは1580nm付近にあるエタノールの吸収ピークから若干ずれている。これは、ベンゼンの吸収ピークが1630nm付近にあり、その影響を受けないようにするためである。   When the components of ethanol, water, and straight chain hydrocarbons having the absorption spectrum shown in FIG. 1 are separated using a plurality of light sources, three monochromatic light sources that generally generate monochromatic lights of 1550 nm, 1450 nm, and 1200 nm, respectively. Is used. 1450 nm and 1200 nm are the wavelengths of water and linear hydrocarbon absorption peaks, respectively, but 1550 nm is slightly deviated from the absorption peak of ethanol near 1580 nm. This is because the absorption peak of benzene is around 1630 nm and is not affected by this.

図1では利用する3つの波長(1550nm、1450nm、1200nm)を棒線で示しているが、ここで、単色光源の代わりに例えば波長半値全幅が100nm程度のLED光源をそのまま用いると、その発光は、この縦棒を中心に図2のように基底幅では200nm程度範囲に広がるため、図1の急峻な吸収スペクトルを分離するには不十分である。これらの分離を行うには、少なくとも半値全幅で20nm(基底幅なら40nm)程度に狭くする必要がある。以下に示す本発明に係る燃料性状測定装置は、この光源波長幅の実効的な減少効果を実現するものである。   In FIG. 1, the three wavelengths (1550 nm, 1450 nm, and 1200 nm) to be used are indicated by bar lines. However, if an LED light source having a full width at half maximum of about 100 nm, for example, is used as it is instead of a monochromatic light source, the light emission is as follows. Since the base width spreads in the range of about 200 nm as shown in FIG. 2 centering on this vertical bar, it is not sufficient to separate the steep absorption spectrum of FIG. In order to perform these separations, it is necessary to reduce the full width at half maximum to about 20 nm (40 nm for the base width). The fuel property measuring apparatus according to the present invention described below realizes an effective reduction effect of the light source wavelength width.

本発明に係る燃料性状測定装置の一実施例の光学系を図3に示す。なお、本実施例では各光源と検出器が同一の水平面上に配置されるインプレーン配置を用いる。
本実施例の燃料性状測定装置は、3つの光源L1, L2, L3を用いる3波長測定系であり、各光源として、中心波長が1550nm、1450nm、1200nm、波長半値全幅が100nm程度のLED光源を用いる。
FIG. 3 shows an optical system of an embodiment of the fuel property measuring apparatus according to the present invention. In this embodiment, an in-plane arrangement is used in which each light source and detector are arranged on the same horizontal plane.
The fuel property measuring apparatus of this embodiment is a three-wavelength measuring system using three light sources L 1 , L 2 , and L 3 , and each light source has a center wavelength of 1550 nm, 1450 nm, 1200 nm, and a full width at half maximum of about 100 nm. Use an LED light source.

光源L1, L2, L3から照射された光は、まず回折格子2に入射される。この回折格子2は、光源L1, L2, L3からそれぞれ特定の波長の光を取り出す「波長幅を狭くする」機能と、異なる位置に配置された光源L1, L2, L3から照射される光を単一の検出器7の方向に向けるための「光混合器」として機能と、を有する。回折格子2が有する「波長幅を狭くする」機能については後述するが、例えば回折格子2として1000本/mmの溝数のものを用いた場合、光源L1, L2, L3の波長半値全幅が100nm程度であっても、30nm程度にまで狭くすることができる。また、回折格子2が有する「光混合器」としての機能のために、3つの光源L1, L2, L3が互いに数mm離れていても、回折格子2から検出器7に向かっては共通の光路を進むことができる。以上の機能により、光源L1, L2, L3からの入射光のうちそれぞれ特定の波長を有する光が回折格子2により検出器7の方向に回折され、レンズ3により集光された後、フローセル5内に導入された混合燃料6に照射される。 The light emitted from the light sources L 1 , L 2 and L 3 is first incident on the diffraction grating 2. The diffraction grating 2, respectively specific extracting light of a wavelength "narrowing the wavelength width" function from the light source L 1, L 2, L 3, from the light source L 1, L 2, L 3, which are arranged at different positions And a function as an “optical mixer” for directing the irradiated light toward the single detector 7. The function of “narrowing the wavelength width” of the diffraction grating 2 will be described later. For example, when a diffraction grating 2 having a number of grooves of 1000 / mm is used, the half-wavelengths of the light sources L 1 , L 2 , and L 3 are used. Even if the total width is about 100 nm, it can be reduced to about 30 nm. Further, because of the function as the “optical mixer” of the diffraction grating 2, even if the three light sources L 1 , L 2 , and L 3 are separated from each other by several mm, the diffraction grating 2 is directed toward the detector 7. You can follow a common optical path. With the above function, light having a specific wavelength among the incident lights from the light sources L 1 , L 2 and L 3 is diffracted by the diffraction grating 2 toward the detector 7 and collected by the lens 3. The mixed fuel 6 introduced into the flow cell 5 is irradiated.

フローセル5は、レンズ3と検出器7の間の光路上に窓4が設けられた、直径5mm程度のチューブ状のものであり、光源L1, L2, L3からの光はフローセル5のチューブ内に導入された混合燃料6に照射され、混合燃料6に含まれる各成分の吸収を受けた後、透過光が検出器7に到達し、検出器7が有する単一の受光素子(受光部)によって、その透過光強度が測定される。ここで、吸収の度合いを表す透過光強度は、試料各成分の濃度に直接比例する吸光度(透過率の逆数の対数)に変換したのち、各成分の濃度に分ける。 The flow cell 5 is a tube having a diameter of about 5 mm provided with a window 4 on the optical path between the lens 3 and the detector 7, and light from the light sources L 1 , L 2 , L 3 is transmitted from the flow cell 5. After irradiating the mixed fuel 6 introduced into the tube and receiving absorption of each component contained in the mixed fuel 6, the transmitted light reaches the detector 7, and a single light receiving element (light receiving) of the detector 7 is received. Part)), the transmitted light intensity is measured. Here, the transmitted light intensity representing the degree of absorption is converted into absorbance (logarithm of the reciprocal of the transmittance) that is directly proportional to the concentration of each component of the sample, and then divided into the concentration of each component.

検出器7が有する受光素子としては、1200nmから1700nmの波長域に感度を有するGe(ゲルマニウム)ダイオードを好適に用いることができる。また、やや高価ではあるものの、InGaAs(インジウムガリウム砒素)ダイオードを用いても良い。いずれにせよ、本発明では受光素子を単一にすることができるため、装置のコストを大幅に削減することができる。   As the light receiving element of the detector 7, a Ge (germanium) diode having sensitivity in a wavelength range of 1200 nm to 1700 nm can be preferably used. Further, although it is somewhat expensive, an InGaAs (indium gallium arsenide) diode may be used. In any case, in the present invention, since the light receiving element can be made single, the cost of the apparatus can be greatly reduced.

上記の各光学素子やフローセル5等は全て遮光機能を有する筐体1に固着されており、可動部を持たないため、振動や外部からの衝撃に強い。また、装置のサイズは縦横それぞれおよそ3cmほどであり、自動車に搭載できる程度に小型である。
なお、本実施例のように、平面回折格子に平行光でなく発散光が入射される平面回折格子の使用法は、モンク・ギリーソンマウンティングとして古くから知られており、簡易な分光器に多用されている。本実施例においても、装置を小型化するために、モンク・ギリーソンマウンティングを用いた。
Each of the above optical elements, the flow cell 5 and the like are all fixed to the housing 1 having a light shielding function, and have no movable parts, so that they are resistant to vibrations and external impacts. In addition, the size of the device is about 3 cm in length and width, and it is small enough to be mounted on a car.
As in this example, the use of a planar diffraction grating in which divergent light is incident on the planar diffraction grating instead of parallel light has been known for a long time as Monk-Gilleyson mounting, and is often used for simple spectrometers. Has been. Also in this example, Monk / Gillison mounting was used to reduce the size of the apparatus.

光源L1, L2, L3としては、半導体レーザのような波長幅の狭いものを用いることが望ましいが、半導体レーザは非常に高価であるため、自動車等に搭載する安価な燃料性状測定装置としては適当でない。そこで、本実施例では半値全幅が100nm程度の近赤外LEDを光源として用いると共に、光源L1, L2, L3のそれぞれにおける光の出射位置と検出器7における光の入射位置に同じ幅のスリット8(入射・出射の倍率が1でないので正確には、倍率を含めたスリットの実効幅が同じ)を設け、さらに検出器7側のスリット8の開口がレンズ3の焦点位置となるようにした。回折格子2のみでも光源L1, L2, L3から狭い波長幅の光を取り出すことができるが、さらにスリット8を用いることにより、以下のようにさらに波長幅の狭い光を取り出すことが可能となる。 As the light sources L 1 , L 2 , and L 3 , it is desirable to use a light source having a narrow wavelength width such as a semiconductor laser. However, since a semiconductor laser is very expensive, an inexpensive fuel property measuring device mounted on an automobile or the like. Is not appropriate. Therefore, in this embodiment, a near-infrared LED having a full width at half maximum of about 100 nm is used as the light source, and the same width is used for the light emission position of each of the light sources L 1 , L 2 , and L 3 and the light incident position of the detector 7. Slit 8 (to be precise, the effective width of the slit including the magnification is the same since the incident / exit magnification is not 1), and the opening of the slit 8 on the detector 7 side is the focal position of the lens 3. I made it. Although only the diffraction grating 2 can extract light having a narrow wavelength width from the light sources L 1 , L 2 , and L 3 , it is possible to extract light having a narrower wavelength width by using the slit 8 as follows. It becomes.

例えば、回折格子として1000本/mmの溝数のもの(溝間隔0.001mm)を仮定し、回折格子2と光源L1, L2, L3の距離を25mmとして光源上での回折格子の線分散を計算してみた。分光器の設計でよく知られているように線分散(この場合は光源の横方向の移動距離δxと波長の変化δλの比例関係)の式、

Figure 2012052880
が成り立つ。ここで、Lは回折格子から光源までの距離、dは回折格子の溝間隔、θは回折格子の法線と回折格子からみた注目する光源の方向とのなす角度である。L=25mm, d=0.001mm,θ=38度の場合で(1)式を計算すると、δλ=1nm に対して、δxは0.032mm、100nmあたりなら3.2mmとなる。すなわち図2のように、中心波長が1450nmの光源L2の位置を0mm(原点)とすれば、1550nmの光源L1は+3.2mmの位置に、1200nmの光源L3を-7.1mm(マイナス側では計算上分散が250nm×3.2mm/100nm=8mmより少し小さくなる)の位置に置くことになる。ここでスリット幅を0.5mmにすると、光源の光の半値全幅は16nm(分散の計算:100/3.2×0.5)となるため、各光源において実質的に利用される波長幅は図2の三角形のようになり、もとの波長幅を十分狭くすることができる。なお、図2では参考のために、中心波長が1300nmの光源を使う場合の位置(-4.3mm)も記載した。 For example, assuming that the diffraction grating has a number of grooves of 1000 / mm (groove spacing 0.001 mm), and the distance between the diffraction grating 2 and the light sources L 1 , L 2 , L 3 is 25 mm, the diffraction grating lines on the light source I calculated the variance. As is well known in the design of spectrometers, an equation for linear dispersion (in this case, the proportional relationship between the lateral movement distance δx of the light source and the change in wavelength δλ),
Figure 2012052880
Holds. Here, L is a distance from the diffraction grating to the light source, d is a groove interval of the diffraction grating, and θ is an angle formed between the normal line of the diffraction grating and the direction of the light source to be observed as viewed from the diffraction grating. When equation (1) is calculated when L = 25 mm, d = 0.001 mm, and θ = 38 degrees, Δx is 0.032 mm for Δλ = 1 nm and 3.2 mm for 100 nm. That is, as shown in FIG. 2, if the position of the light source L 2 having a center wavelength of 1450 nm is 0 mm (origin), the light source L 1 of 1550 nm is at the position of +3.2 mm and the light source L 3 of 1200 nm is −7.1 mm (minus). On the side, the dispersion is calculated at a position where the dispersion is slightly smaller than 250 nm × 3.2 mm / 100 nm = 8 mm). If the slit width is 0.5 mm, the full width at half maximum of the light from the light source is 16 nm (dispersion calculation: 100 / 3.2 × 0.5). Thus, the original wavelength width can be made sufficiently narrow. For reference, FIG. 2 also shows the position (−4.3 mm) when a light source having a center wavelength of 1300 nm is used.

線分散の値はθを38度から0度まで小さくすると、100nmあたり3.2mmのものが2.5mm程度と小さくなるし、線分散の値は回折格子の溝本数でも変わる。光源の横方向のサイズが2mmから3mm程度であるから、図2の典型例は、この程度の回折格子を使えば、いずれにしても、3つの光源が互いにぶつかることなく、逆に距離が離れすぎることもなく、ちょうどよい大きさに収容できることを示したものである。また、光源としてLEDチップを専用に製作し(1mm程度の)小型のものを作ることも可能であるため、図2でLの値を半分にし、全体としてもさらに半分程度のサイズにするような小型化も可能である。   As the value of linear dispersion is reduced from 38 degrees to 0 degrees, the value of 3.2 mm per 100 nm becomes as small as about 2.5 mm, and the value of linear dispersion also changes with the number of grooves in the diffraction grating. Since the horizontal size of the light source is about 2 mm to 3 mm, the typical example in FIG. 2 is that the distance between the three light sources does not collide with each other if the diffraction grating of this level is used. It shows that it can be accommodated in the right size without too much. In addition, since it is possible to make LED chips as light sources exclusively (about 1mm), the L value in Fig. 2 is halved and the overall size is reduced to about half. Miniaturization is also possible.

このような構成を用いることにより、本実施例の燃料性状測定装置では以下のような効果を奏する。
(1) LEDとフォトダイオードの組み合わせであるため、レスポンスが速い。
(2) 安価で波長幅の広い近赤外LEDを用いても、回折格子とスリットの作用により波長の半値全幅を狭めることができる。そして狭い半値幅の赤外光の吸収波長を比較することにより、混合燃料中の各成分を精度良く測定することが可能となる。
(3) 検出器にはフォトダイオードを一つ用いるだけで良いため、近赤外域では高価なフォトダイオードの分のコストを従来よりも削減することができる。
(4) LED、回折格子、フォトダイオードは、温度による特性変化が少ないため、温度変化に強い。また、フォトダイオードが1つのみであることから、温度変化による波長毎の吸光度の測定誤差のばらつきを少なくすることができ、結果として、従来よりも正確に各成分の濃度を算出することができる。
(5) 可動部がないため、振動に強く堅牢である。
(6) 縦横それぞれ約3cm程度又はそれ以下の大きさであり、コンパクトである。
By using such a configuration, the fuel property measuring apparatus of this embodiment has the following effects.
(1) The response is fast due to the combination of LED and photodiode.
(2) Even if an inexpensive near-infrared LED having a wide wavelength width is used, the full width at half maximum of the wavelength can be narrowed by the action of the diffraction grating and the slit. Then, by comparing the absorption wavelength of infrared light having a narrow half-value width, each component in the mixed fuel can be accurately measured.
(3) Since only one photodiode needs to be used for the detector, the cost of expensive photodiodes can be reduced in the near infrared region.
(4) LEDs, diffraction gratings, and photodiodes are resistant to temperature changes because their characteristics change little with temperature. Further, since there is only one photodiode, it is possible to reduce variation in absorbance measurement error for each wavelength due to temperature change, and as a result, it is possible to calculate the concentration of each component more accurately than in the past. .
(5) Since there are no moving parts, it is strong against vibration and is robust.
(6) Each size is about 3cm in length and width or less, and is compact.

図4に、本実施例の燃料性状測定装置の機能ブロック図を示す。この図に示すように本実施例の燃料性状測定装置では、図3に示した光学測定系の他に、光源L1, L2, L3の点灯を高速に切り換える光源点灯回路20と、検出器7の検出信号の増幅やアナログ信号からデジタル信号への変換など各種の信号処理を行う信号処理部21と、検出信号から得られる各光源からの光の吸光度に基づいて、混合燃料6に含まれる各成分の濃度を算出する演算部22と、これら光源点灯回路20、信号処理部21、演算部22を制御する制御部23と、を有している。 FIG. 4 shows a functional block diagram of the fuel property measuring apparatus of the present embodiment. As shown in this figure, in the fuel property measuring apparatus of the present embodiment, in addition to the optical measurement system shown in FIG. 3, a light source lighting circuit 20 that switches lighting of the light sources L 1 , L 2 , L 3 at high speed, and a detection Included in the mixed fuel 6 based on the signal processing unit 21 that performs various signal processing such as amplification of the detection signal of the detector 7 and conversion from an analog signal to a digital signal, and the absorbance of light from each light source obtained from the detection signal The light source lighting circuit 20, the signal processing unit 21, and the control unit 23 that controls the calculation unit 22 are included.

光源点灯回路20によって逐次的に切り換えられた各光源からの光は、それぞれフローセル5中の混合燃料6により吸収を受けた後に検出器7により検出され、信号処理部21において時分割で取得される。そして、演算部22において、それぞれの光源に対する吸光度が算出され、以下に示す多波長演算により、混合燃料6に含まれる各成分の濃度が計算される。なお、本実施例においては、光源点灯回路20によって光源を切り換える際に光源L1, L2, L3のいずれも点灯しない、暗信号を検出するための期間を設けており、光源L1, L2, L3のそれぞれが点灯する期間で得られた検出信号から、この暗信号の期間に得られた検出信号を差し引いた値を、各光源に対する検出信号として用いている。 The light from each light source sequentially switched by the light source lighting circuit 20 is detected by the detector 7 after being absorbed by the mixed fuel 6 in the flow cell 5, and is acquired by the signal processing unit 21 in a time division manner. . Then, the calculation unit 22 calculates the absorbance for each light source, and calculates the concentration of each component contained in the mixed fuel 6 by the multiwavelength calculation described below. In this embodiment, a period for detecting a dark signal is provided in which none of the light sources L 1 , L 2 , and L 3 is lit when the light source is switched by the light source lighting circuit 20, and the light sources L 1 , L 1 , A value obtained by subtracting the detection signal obtained during the dark signal period from the detection signal obtained during the period during which each of L 2 and L 3 is lit is used as the detection signal for each light source.

<多波長演算の例>
演算部22では、例えば以下の計算を行なう。
x1, x2, x3をそれぞれ混合燃料中に含まれるアルコール、直鎖炭化水素、水の濃度、uをこれら以外の構成成分(例えばベンゼンなど)の濃度とし、それぞれの濃度の総和を1とする。また、光源L1, L2, L3のそれぞれに対して得られた吸光度の測定値をa1, a2, a3とし、さらにhijをxi=1のときの光源Ljに対して得られた吸光度とする。このとき、以下の連立方程式が成立する。

Figure 2012052880
なお、上式ではuの寄与が十分小さいものとしてuに関する項を除いている。そのため、式(1)は実際には近似式であるが、簡単のため等式で表すことにする。
さらに濃度の総和が1であることから、次式が得られる。
Figure 2012052880
式(1)及び(2)を行列を用いて表すと、
Figure 2012052880
となる。ここで、式(3)の係数行列の逆行列を両辺に掛けると次式が成立する。
Figure 2012052880
式(4)の逆行列は、hijが既知であれば予め求めておくことができる。そのため、吸光度の測定値a1, a2, a3が得られれば、式(4)より、x1, x2, x3及びuの濃度が即座に算出される。 <Example of multi-wavelength calculation>
For example, the calculation unit 22 performs the following calculation.
x 1 , x 2 , x 3 are the concentrations of alcohol, straight chain hydrocarbons, and water contained in the mixed fuel, u is the concentration of other components (such as benzene), and the sum of the concentrations is 1 And In addition, the measured absorbance values obtained for the light sources L 1 , L 2 , and L 3 are a 1 , a 2 , and a 3 , and h ij is the light source L j when x i = 1. The absorbance obtained as described above. At this time, the following simultaneous equations hold.
Figure 2012052880
In the above equation, the term relating to u is excluded on the assumption that the contribution of u is sufficiently small. Therefore, equation (1) is actually an approximate equation, but will be expressed as an equation for simplicity.
Further, since the sum of the concentrations is 1, the following equation is obtained.
Figure 2012052880
When Expressions (1) and (2) are expressed using a matrix,
Figure 2012052880
It becomes. Here, when the inverse matrix of the coefficient matrix of Expression (3) is multiplied on both sides, the following expression is established.
Figure 2012052880
The inverse matrix of Equation (4) can be obtained in advance if h ij is known. Therefore, if the absorbance measurement values a 1 , a 2 , and a 3 are obtained, the concentrations of x 1 , x 2 , x 3, and u are immediately calculated from the equation (4).

図1のグラフから得られる各成分の吸光度hijを用いてシミュレーション計算した結果を、図5の表に示す。この表はx1(エタノールの濃度)、x2(ヘプタンとヘキサンの平均濃度)、x3(水の濃度)の設定値を変化させたときの、式(4)による算出値と設定値とを比較したものである。なお、この数値シミュレーションでは、uはベンゼンのみの濃度とした。 The result of the simulation calculation using the absorbance h ij of each component obtained from the graph of FIG. 1 is shown in the table of FIG. This table shows the calculated values and set values by Equation (4) when x 1 (ethanol concentration), x 2 (average concentration of heptane and hexane), and x 3 (water concentration) are changed. Is a comparison. In this numerical simulation, u is the concentration of benzene only.

図5の表から、各成分の設定値をどのように変化させてもエタノールの誤差は出にくく、最大でも1%程度の誤差(上から2段目の最右欄)であり、十分な精度でエタノールの濃度を測定することができていることが分かる。一方、直鎖炭化水素(ヘプタン及びヘキサン)の誤差については、上から3段目の最左欄が最も誤差が大きく3.4%となった。これは、式(4)でベンゼンの寄与の補正を行っていないにも関わらずベンゼンの濃度が0.8もあることが原因であるが、それでも十分高い精度で各濃度が測定されている。   From the table in Fig. 5, the ethanol error is not likely to occur no matter how the set values of each component are changed, and the error is about 1% at the maximum (the rightmost column in the second row from the top) with sufficient accuracy. It can be seen that the ethanol concentration can be measured. On the other hand, regarding the error of straight chain hydrocarbons (heptane and hexane), the leftmost column in the third row from the top had the largest error, which was 3.4%. This is due to the fact that the concentration of benzene is 0.8 even though benzene contribution is not corrected in equation (4), but each concentration is still measured with sufficiently high accuracy.

図6に、本実施例の燃料性状測定装置の変形例を示す。本変形例は光源L1, L2, L3と検出器7が同じ水平面上にない、オフプレーン配置を用いた例である。図6の例では、光源L1, L2, L3から照射された光が回折格子2に斜め下の角度から入射し、斜め上向きで出射している。この変形例の装置では、図3に示す同一の水平面上に光源と検出器が配置されるインプレーン配置よりも、設計の自由度を高くすることができる。 FIG. 6 shows a modification of the fuel property measuring apparatus of the present embodiment. This modification is an example using an off-plane arrangement in which the light sources L 1 , L 2 , L 3 and the detector 7 are not on the same horizontal plane. In the example of FIG. 6, light emitted from the light sources L 1 , L 2 , and L 3 is incident on the diffraction grating 2 from an obliquely downward angle and is emitted obliquely upward. In the apparatus of this modification, the degree of freedom in design can be made higher than in the in-plane arrangement in which the light source and the detector are arranged on the same horizontal plane shown in FIG.

なお、上記実施例はいずれも本発明の一例であり、本発明の趣旨の範囲で適宜に変形や修正、追加などを行っても、本願特許請求の範囲に包含されることは明らかである。例えば、上記実施例では3つの光源を用いる3波長測定系を示したが、ベンゼンの吸収波長帯に対応する光源を更に設けた4波長測定系とすることもできる。また、それ以上の数の光源に対しても容易に拡張可能である。さらに、回折格子2の溝間隔やスリット8のスリット幅を更に狭くすることで、光源としてより波長幅の広いものを用いたり、光源の実効的な波長幅をより狭くすることもできる。   It should be noted that any of the above-described embodiments is an example of the present invention, and it is obvious that modifications, corrections, additions, and the like as appropriate within the scope of the present invention are included in the scope of the claims of the present application. For example, in the above embodiment, a three-wavelength measurement system using three light sources is shown, but a four-wavelength measurement system further provided with a light source corresponding to the absorption wavelength band of benzene can be used. Further, it can be easily expanded to a larger number of light sources. Furthermore, by further narrowing the groove interval of the diffraction grating 2 and the slit width of the slit 8, a light source having a wider wavelength width can be used, or the effective wavelength width of the light source can be further narrowed.

1…筐体
2…回折格子
3…レンズ
4…窓
5…フローセル
6…混合燃料
7…検出器
8…スリット
20…光源点灯回路
21…信号処理部
22…演算部
23…制御部
1、L2、L3…光源
1 ... housing 2 ... diffraction grating 3 ... lens 4 ... window 5 ... flow cell 6 ... mixed fuel 7 ... detector 8 ... slit 20 ... light source lighting circuit 21 ... signal processor 22 ... computing unit 23 ... controller L 1, L 2 , L 3 ... Light source

Claims (5)

異なる位置に配置された、所定の波長幅を有する複数の近赤外用の光源と、
前記複数の光源から照射される光の中から、それぞれ特定の波長の光を共通の方向に回折させる回折格子と、
前記回折格子により前記共通の方向に回折された各々の光を受光する単一の受光部と、
前記光源と前記受光部の間の光路上に設けられた、測定対象である燃料を収容するための測定セルと、
前記受光部の検出信号から得られた各光源からの光の吸収の度合いに基づいて、前記燃料に含まれる各成分の濃度を算出する算出手段と、
を有することを特徴とする燃料性状測定装置。
A plurality of near-infrared light sources having predetermined wavelength widths arranged at different positions;
A diffraction grating that diffracts light of a specific wavelength in a common direction from among the light emitted from the plurality of light sources,
A single light receiving portion for receiving each light diffracted in the common direction by the diffraction grating;
A measurement cell provided on an optical path between the light source and the light receiving unit for containing fuel to be measured;
Calculation means for calculating the concentration of each component contained in the fuel based on the degree of absorption of light from each light source obtained from the detection signal of the light receiving unit;
A fuel property measuring apparatus comprising:
前記光源が、700nm以上3000nm以下の波長の光を発する発光ダイオードであることを特徴とする請求項1に記載の燃料性状測定装置。   2. The fuel property measuring apparatus according to claim 1, wherein the light source is a light emitting diode that emits light having a wavelength of 700 nm to 3000 nm. 前記光源の発光半値全幅が40nm以上200nm以下であることを特徴とする請求項1又は2に記載の燃料性状測定装置。   3. The fuel property measuring apparatus according to claim 1, wherein the light emission has a full width at half maximum of 40 nm to 200 nm. 前記光源における光の出射位置と前記受光部における光の入射位置のそれぞれにスリットが配置されていることを特徴とする請求項1〜3のいずれかに記載の燃料性状測定装置。   The fuel property measuring device according to any one of claims 1 to 3, wherein slits are arranged at each of an emission position of light in the light source and an incident position of light in the light receiving unit. 前記燃料から、鎖状炭化水素又は芳香族炭化水素の濃度と、アルコールの濃度と、水の濃度と、を測定することを特徴とする請求項1〜4のいずれかに記載の燃料性状測定装置。   The fuel property measuring device according to any one of claims 1 to 4, wherein the concentration of chain hydrocarbon or aromatic hydrocarbon, the concentration of alcohol, and the concentration of water are measured from the fuel. .
JP2010194813A 2010-08-31 2010-08-31 Fuel property measurement device Pending JP2012052880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010194813A JP2012052880A (en) 2010-08-31 2010-08-31 Fuel property measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010194813A JP2012052880A (en) 2010-08-31 2010-08-31 Fuel property measurement device

Publications (1)

Publication Number Publication Date
JP2012052880A true JP2012052880A (en) 2012-03-15

Family

ID=45906365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010194813A Pending JP2012052880A (en) 2010-08-31 2010-08-31 Fuel property measurement device

Country Status (1)

Country Link
JP (1) JP2012052880A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167451A (en) * 2013-02-28 2014-09-11 Asahi Kasei Electronics Co Ltd Apparatus and method for measuring gas
JP2016038208A (en) * 2014-08-05 2016-03-22 株式会社島津製作所 Optical detector
WO2021173547A1 (en) * 2020-02-24 2021-09-02 California Institute Of Technology Infrared absorption-based composition sensor for fluid mixtures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167451A (en) * 2013-02-28 2014-09-11 Asahi Kasei Electronics Co Ltd Apparatus and method for measuring gas
JP2016038208A (en) * 2014-08-05 2016-03-22 株式会社島津製作所 Optical detector
WO2021173547A1 (en) * 2020-02-24 2021-09-02 California Institute Of Technology Infrared absorption-based composition sensor for fluid mixtures

Similar Documents

Publication Publication Date Title
US8693004B2 (en) Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source
US8455845B2 (en) Method for detecting drag reducer additives in gasoline
JP6243088B2 (en) Rider system and measurement method
US10132787B2 (en) Device for optically determining the concentration of alcohol and carbohydrates in a liquid sample
KR102022730B1 (en) Spectral characteristic measurement apparatus and spectral characteristic measurement method
JP2012052880A (en) Fuel property measurement device
JP2016121926A (en) Optical analyzer
JPWO2016129033A1 (en) Multichannel spectrophotometer and data processing method for multichannel spectrophotometer
US20100141949A1 (en) Measuring of fuel composition by using laser
KR20150115036A (en) NO/NO2 multi-gases analyzer using non-dispersive ultraviolet method and NO/NO2 multi-gases analyzing method
Hawe et al. Hazardous gas detection using an integrating sphere as a multipass gas absorption cell
US9389171B2 (en) Device for high-resolution determination of the concentration of substances in fluid media
Wiesent et al. Limits of IR-spectrometers based on linear variable filters and detector arrays
Paiva et al. Method for building a portable near infrared photometer based on LEDs and interference filters chosen by a spectral variable selection algorithm
Herget et al. Progress in the prototype development of a new multicomponent exhaust gas sampling and analyzing system
KR102106091B1 (en) Optical-circuit type device for detecting reformulated fuel and method for manufacturing sensor element thereof
Denzer et al. Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode
Wang et al. Industrial applications of tunable diode laser absorption spectroscopy
US9797830B2 (en) Biodiesel detector
JP7461948B2 (en) Sample gas analyzer, sample gas analysis method, and sample gas analysis program
JP2013088263A (en) Spectroscopic instrument calibration method
RU134648U1 (en) LIDAR SYSTEM FOR REMOTE MEASUREMENT OF CONCENTRATIONS OF POLLUTANTS IN THE ATMOSPHERE
US9030666B2 (en) Non-dispersive gas analyzer
KR101317059B1 (en) Multi-gas analysis device for ultra-violet measurements
JP2013242280A (en) Spectrometer