JP2014167331A - Attenuation force change-over seismic base isolation system - Google Patents

Attenuation force change-over seismic base isolation system Download PDF

Info

Publication number
JP2014167331A
JP2014167331A JP2013039573A JP2013039573A JP2014167331A JP 2014167331 A JP2014167331 A JP 2014167331A JP 2013039573 A JP2013039573 A JP 2013039573A JP 2013039573 A JP2013039573 A JP 2013039573A JP 2014167331 A JP2014167331 A JP 2014167331A
Authority
JP
Japan
Prior art keywords
damping force
switching
seismic
acceleration
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013039573A
Other languages
Japanese (ja)
Inventor
Hiroyasu Komatsu
宏康 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013039573A priority Critical patent/JP2014167331A/en
Publication of JP2014167331A publication Critical patent/JP2014167331A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To simplify a configuration of a base isolation system and restrict its manufacturing cost to an inexpensive price.SOLUTION: An attenuation force change-over base isolation system 10 comprises a plurality of hydraulic dampers 20 (20to 20), attenuation force change-over solenoid valves (30to 30), a seismoscope 40 for low acceleration, a seismoscope 50 for high acceleration, a control circuit 60 and a power source 70. When the seismoscope 40 for low acceleration detects lower acceleration than a prescribed value, the control circuit 60 turns on a solenoid valve change-over signal outputted with respect to each of the attenuation force change-over solenoid valves 30. Each of the attenuation force change-over solenoid valves 30 changes over an attenuation coefficient of dampers 20 to a low attenuation coefficient CL. When the seismoscope 50 for high acceleration detects higher acceleration than a prescribed value, the control circuit 60 changes over a solenoid valve change-over signal to off with respect to each of the attenuation force change-over solenoid valves 30. Each of the attenuation force change-over solenoid valves 30 changes over an attenuation coefficient of each of the hydraulic dampers 20 to a high attenuation coefficient CH.

Description

本発明は減衰力切換免震システムに関する。   The present invention relates to a damping force switching seismic isolation system.

例えば、建物の免震装置としては、基礎と建物との間に介装されて地震動に対して建物への応答を抑制するボールアイソレータ(免震手段)と、基礎及び建物間に介装されたダンパと、ダンパの減衰力を切換える切換用電磁弁と、基礎上に設置されて地震動を検知する地震検知器と、基礎と建物との相対位置を検出するリミットスイッチ(位置検出手段)と、地震検知器とリミットスイッチからの各信号に基づいて減衰力を高めるように切換用電磁弁を切換えるための制御信号を演算してダンパの減衰力を制御する装置がある(例えば、特許文献1参照)。   For example, as a building seismic isolation device, a ball isolator that is interposed between the foundation and the building and suppresses the response to the building against earthquake motion is installed between the foundation and the building. A damper, a switching solenoid valve that switches the damping force of the damper, an earthquake detector that is installed on the foundation to detect earthquake motion, a limit switch (position detection means) that detects the relative position between the foundation and the building, and an earthquake There is a device that controls a damping force of a damper by calculating a control signal for switching a switching electromagnetic valve so as to increase the damping force based on each signal from a detector and a limit switch (see, for example, Patent Document 1). .

特開平9−264376号公報JP-A-9-264376

上記従来の免震装置は、地震検知器とリミットスイッチからの各信号に基づいて減衰力を高めるように切換用電磁弁を切換えるための制御信号を演算することになるため、演算処理が複雑になり、制御回路における演算の負担が増大すると共に、地震検知器やリミットスイッチ等の複数の検出手段が必要であるので、製造コストが高価になり、且つ各機器との信号線の配線作業に手間がかかるという問題があった。   Since the conventional seismic isolation device calculates the control signal for switching the switching solenoid valve so as to increase the damping force based on the signals from the earthquake detector and the limit switch, the calculation processing is complicated. This increases the burden of calculation in the control circuit and requires multiple detection means such as an earthquake detector and a limit switch, resulting in high manufacturing costs and labor for wiring signal lines with each device. There was a problem that it took.

そこで、本発明は上記事情に鑑み、上記課題を解決した減衰力切換免震システムの提供を目的とする。   Therefore, in view of the above circumstances, an object of the present invention is to provide a damping force switching seismic isolation system that solves the above problems.

上記課題を解決するため、本発明は以下のような手段を有する。   In order to solve the above problems, the present invention has the following means.

本発明は、構造物に入力された加速度を減衰させる減衰力を発生させるダンパと、
前記ダンパの減衰力を切換える減衰力切換用電磁弁と、
地震による振動が所定の振動状態になったときに地震検知信号を出力する感震器と、
前記感震器より地震検知信号が入力されると、前記減衰力切換用電磁弁を切換える切換信号を出力する出力手段と、
を備えたことを特徴とする。
The present invention includes a damper that generates a damping force that attenuates acceleration input to a structure;
A damping force switching solenoid valve for switching the damping force of the damper;
A seismometer that outputs an earthquake detection signal when the vibration caused by the earthquake reaches a predetermined vibration state;
When an earthquake detection signal is input from the seismic device, output means for outputting a switching signal for switching the damping force switching electromagnetic valve;
It is provided with.

本発明によれば、感震器より地震検知信号が入力されると、減衰力切換用電磁弁を切換える切換信号を出力するため、制御手段の演算処理の負担が軽減されると共に、各検出手段が不要になって構成の簡略化が図れるのに伴って製造コストを安価にでき、且つ各機器との信号線の配線作業も簡略化できる。   According to the present invention, when the earthquake detection signal is input from the seismic device, the switching signal for switching the damping force switching electromagnetic valve is output, so that the burden of the arithmetic processing of the control means is reduced and each detection means Therefore, the manufacturing cost can be reduced and the wiring work of signal lines with each device can be simplified.

本発明による減衰力切換免震システムの実施形態1を示す図である。It is a figure which shows Embodiment 1 of the damping force switching seismic isolation system by this invention. 実施形態1の免震制御処理1を説明するためのフローチャートである。It is a flowchart for demonstrating the seismic isolation control process 1 of Embodiment 1. FIG. 本発明による減衰力切換免震システムの実施形態2を示す図である。It is a figure which shows Embodiment 2 of the damping force switching seismic isolation system by this invention. 実施形態2の免震制御処理2を説明するためのフローチャートである。6 is a flowchart for explaining seismic isolation control processing 2 of the second embodiment. 本発明による減衰力切換免震システムの実施形態3を示す図である。It is a figure which shows Embodiment 3 of the damping force switching seismic isolation system by this invention. 実施形態3の免震制御の手順を説明するためのフローチャートである。10 is a flowchart for explaining a procedure of seismic isolation control according to the third embodiment.

以下、図面を参照して本発明を実施するための形態について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

〔実施形態1〕
図1は本発明による減衰力切換免震システムの実施形態1を示す図である。図1に示されるように、減衰力切換免震システム10は、例えば、建物(構造物)を地震の震動から免震するシステムであり、複数の油圧ダンパ20(20〜20)と、減衰力切換用電磁弁30(30〜30)と、低加速度用感震器(第1の感震器)40と、高加速度用感震器(第2の感震器)50と、制御回路(出力手段)60と、電源70とを有する。
Embodiment 1
FIG. 1 is a diagram showing Embodiment 1 of a damping force switching seismic isolation system according to the present invention. As shown in FIG. 1, the damping force switching seismic isolation system 10 is a system that isolates a building (structure) from earthquake vibrations, for example, and includes a plurality of hydraulic dampers 20 (20 1 to 20 n ), A damping force switching solenoid valve 30 (30 1 to 30 n ), a low acceleration seismic device (first seismic device) 40, a high acceleration seismic device (second seismic device) 50, A control circuit (output means) 60 and a power source 70 are included.

各油圧ダンパ20は、それぞれ建物の梁や壁面などの地震による加速度によって相対変位する箇所に取り付けられる。また、各油圧ダンパ20は、内部に作動油が充填されたシリンダ22と、外部から入力される加速度に応じて往復動するピストンロッド24とを有する。また、ピストンロッド24の端部には、シリンダ22内を摺動するピストンが取り付けられており、当該ピストンには作動油が通過する絞りにより減衰力を発生させる減衰力発生部が設けられている。   Each hydraulic damper 20 is attached to a location that is relatively displaced by an acceleration caused by an earthquake, such as a beam or a wall of a building. Each hydraulic damper 20 includes a cylinder 22 filled with hydraulic oil and a piston rod 24 that reciprocates according to acceleration input from the outside. A piston that slides in the cylinder 22 is attached to the end of the piston rod 24, and the piston is provided with a damping force generator that generates a damping force by a throttle through which hydraulic oil passes. .

各減衰力切換用電磁弁30は、地震検知信号が入力されるとシリンダ22に連通する流路を切換えるノーマルクローズ型電磁弁からなり、制御回路60と信号線62(62〜62)を介して電気的に接続されている。そのため、各減衰力切換用電磁弁30は、制御回路60からの切換信号のオン・オフにより、低い減衰力を発生させる免震モードと、高い減衰力を発生させる制振モードとに切り替わる。各減衰力切換用電磁弁30は、各油圧ダンパ20に設けられ、非通電時に減衰力がハード状態となり、通電時にハード状態より低い減衰力を発生するソフト状態となる。 Each damping force switching electromagnetic valve 30 is a normally closed electromagnetic valve that switches a flow path communicating with the cylinder 22 when an earthquake detection signal is input, and includes a control circuit 60 and signal lines 62 (62 1 to 62 n ). Is electrically connected. Therefore, each damping force switching electromagnetic valve 30 is switched between a seismic isolation mode in which a low damping force is generated and a vibration suppression mode in which a high damping force is generated by turning on and off the switching signal from the control circuit 60. Each damping force switching electromagnetic valve 30 is provided in each hydraulic damper 20, and the damping force is in a hard state when not energized, and is in a soft state that generates a damping force lower than the hard state when energized.

低加速度用感震器40は、予め設定された所定の低い加速度(第1の振動状態)を検知する感震器であり、例えば12Gal程度の加速度でその接点を閉じると共に第1の地震検知信号を出力する構成になっている。ここで、12Galの加速度とは、気象庁震動階級の震度3の目安である8.0〜25Gal相当の範囲に相当する加速度である。この低加速度用感震器40が所定値より低い加速度を検知して地震検知信号を制御回路60に出力すると、制御回路60は各減衰力切換用電磁弁30に対して出力される電磁弁切換信号をオンにする。これにより、各減衰力切換用電磁弁30は、各ダンパ20の減衰力を小さくするように減衰係数を低い減衰係数CLに切り換える。   The low acceleration seismic device 40 is a seismic device that detects a predetermined low acceleration (first vibration state) set in advance. For example, the contact is closed at an acceleration of about 12 Gal and the first earthquake detection signal is detected. Is output. Here, the acceleration of 12 Gal is an acceleration corresponding to a range corresponding to 8.0 to 25 Gal which is a standard of seismic intensity 3 of the Japan Meteorological Agency vibration class. When the low acceleration seismic device 40 detects an acceleration lower than a predetermined value and outputs an earthquake detection signal to the control circuit 60, the control circuit 60 switches the electromagnetic valve output to each damping force switching electromagnetic valve 30. Turn on the signal. Accordingly, each damping force switching electromagnetic valve 30 switches the damping coefficient to a low damping coefficient CL so as to reduce the damping force of each damper 20.

なお、上記所定の低い加速度は、体感可能な程度の小さな加速度に設定してもよい。この場合、低加速度用感震器40は連続的に検知が可能な自動復帰型の感震器であることが望ましい。   The predetermined low acceleration may be set to a small acceleration that can be experienced. In this case, it is desirable that the low acceleration seismic device 40 is an automatic return type seismic device capable of continuous detection.

高加速度用感震器50は、前述の所定の低い加速度より高い、予め設定された所定の高い加速度(第2の振動状態)を検知する感震器であり、例えば150Gal程度の加速度でその接点を閉じる構成になっている。ここで、150Galの加速度とは、気象庁震動階級の震度5の目安である80〜250Gal相当の範囲に相当する加速度である。この高加速度用感震器50が所定値より高い加速度を検知して第2の地震検知信号を制御回路60に出力すると、制御回路60は各減衰力切換用電磁弁30に対して電磁弁切換信号をオフに切換える。すなわち、各減衰力切換用電磁弁30は、各油圧ダンパ20の減衰力を高い状態に維持するように減衰係数を高い減衰係数CHに切り換える(CH>CL)。   The high acceleration seismic device 50 is a seismic device that detects a predetermined high acceleration (second vibration state) that is higher than the predetermined low acceleration described above. Is configured to close. Here, the acceleration of 150 Gal is an acceleration corresponding to a range corresponding to 80 to 250 Gal, which is a standard of seismic intensity 5 of the Japan Meteorological Agency vibration class. When the high acceleration seismic device 50 detects an acceleration higher than a predetermined value and outputs a second earthquake detection signal to the control circuit 60, the control circuit 60 switches the electromagnetic valve to each damping force switching electromagnetic valve 30. Switch the signal off. That is, each damping force switching electromagnetic valve 30 switches the damping coefficient to a high damping coefficient CH so as to maintain the damping force of each hydraulic damper 20 in a high state (CH> CL).

尚、上記検知可能な加速度は、150Galに限らず、例えば震度階級の震度6の加速度250〜400Galに対応するように、300Gal程度に設定することも可能である。   The detectable acceleration is not limited to 150 Gal, and can be set to about 300 Gal so as to correspond to accelerations 250 to 400 Gal of seismic intensity 6 of the seismic intensity class, for example.

上記各感震器40、50は、重力により錘が落下することで、スイッチを切換える重力式の感震器がコスト面から望ましい。   From the viewpoint of cost, each of the above-mentioned seismic devices 40 and 50 is preferably a gravitational type seismic device that switches a switch when a weight falls due to gravity.

ここで、制御回路60が実行する免震制御処理1について説明する。   Here, the seismic isolation control process 1 executed by the control circuit 60 will be described.

図2は実施形態1の免震制御処理1を説明するためのフローチャートである。図2に示されるように、制御回路60は、S11で電源70の電源スイッチがオンに操作されると、S12に進み、各減衰力切換用電磁弁30への通電をオフにして油圧ダンパ20の減衰係数を高い減衰係数CHに設定する。すなわち、各減衰力切換用電磁弁30に対する通電せず(電磁弁切換信号を出力せず)、高い減衰力を発生させる高減衰モード状態を維持する。   FIG. 2 is a flowchart for explaining the seismic isolation control process 1 of the first embodiment. As shown in FIG. 2, when the power switch of the power source 70 is turned on in S11, the control circuit 60 proceeds to S12 and turns off the energization of each damping force switching electromagnetic valve 30 and thereby the hydraulic damper 20 Is set to a high attenuation coefficient CH. That is, the damping force switching electromagnetic valve 30 is not energized (no solenoid valve switching signal is output), and the high damping mode state in which a high damping force is generated is maintained.

これにより、建物が風により振動してしまうことを防止する。   This prevents the building from vibrating due to the wind.

次のS13では、低加速度用感震器40が予め設定された所定の低い加速度(例えば、12Gal)を検知(地震検知信号を出力)したか否かをチェックする。S13において、低加速度用感震器40が予め設定された所定の低い加速度(例えば、12Gal)を検知しない場合(NOの場合)、S12の処理に戻り、S12、S13の処理を繰り返す。従って、通常は、低加速度用感震器40が予め設定された所定値より低い加速度(例えば、12Gal)を検知したか否かを監視しており、油圧ダンパ20の減衰係数を高い減衰係数CHによる制振モードに保つ。   In the next S13, it is checked whether or not the low acceleration seismic device 40 has detected a predetermined low acceleration (for example, 12 Gal) (output an earthquake detection signal). In S13, when the low acceleration seismic device 40 does not detect a predetermined low acceleration (for example, 12 Gal) set in advance (in the case of NO), the process returns to S12, and the processes of S12 and S13 are repeated. Therefore, normally, it is monitored whether or not the low acceleration seismic device 40 detects an acceleration (for example, 12 Gal) lower than a predetermined value set in advance, and the damping coefficient of the hydraulic damper 20 is set to a high damping coefficient CH. Keep vibration suppression mode.

また、S13において、低加速度用感震器40が予め設定された所定の低い加速度(例えば、12Gal)を検知した場合(YESの場合)、建物と基礎との相対変位が大きくなり、許容変位を超える可能性があるので、S14に進む。   In S13, if the low acceleration seismic device 40 detects a predetermined low acceleration (for example, 12 Gal) set in advance (in the case of YES), the relative displacement between the building and the foundation becomes large, and the allowable displacement is reduced. Since there is a possibility of exceeding, the process proceeds to S14.

S14では、タイマT1(例えば、タイマカウント時間180秒)を起動して計時開始する。S14において、タイマカウント時間180秒が未経過の場合(NOの場合)、S15に進み、各減衰力切換用電磁弁30への通電をオンにして油圧ダンパ20の減衰係数を低い減衰係数CLに設定する。尚、上記タイマT1は、油圧ダンパ20の減衰係数を低い状態のまま所定時間(タイマカウント時間180秒)維持する。すなわち、S15では、低い加速度(例えば、12Gal)の地震の場合、油圧ダンパ20の減衰係数を低い減衰係数CLに切換えて免震効果を高めると共に、低加速度用感震器40からの第1の地震検知信号が出力されてから当該所定時間が経過するまでの間は各減衰力切換用電磁弁30に通電(電磁弁切換信号を出力)し、低い減衰力を発生させる免震モードを維持する。   In S14, a timer T1 (for example, a timer count time of 180 seconds) is started to start timing. In S14, when the timer count time of 180 seconds has not elapsed (in the case of NO), the process proceeds to S15, and energization of each damping force switching electromagnetic valve 30 is turned on to set the damping coefficient of the hydraulic damper 20 to a low damping coefficient CL. Set. The timer T1 maintains the damping coefficient of the hydraulic damper 20 for a predetermined time (timer count time 180 seconds) with a low state. That is, in S15, in the case of an earthquake with a low acceleration (for example, 12 Gal), the damping coefficient of the hydraulic damper 20 is switched to a low damping coefficient CL to enhance the seismic isolation effect, and the first acceleration sensor 40 for the low acceleration is used. During the period from when the earthquake detection signal is output until the predetermined time elapses, each damping force switching electromagnetic valve 30 is energized (outputs the electromagnetic valve switching signal) to maintain the seismic isolation mode for generating a low damping force. .

また、S14において、タイマカウント時間180秒が経過した場合(YESの場合)、さらに地震が続く可能性が小さいので、S12の処理に戻り、油圧ダンパ20の減衰係数を高い減衰係数CHに戻してS12以降の処理を行う。   In S14, when the timer count time of 180 seconds has elapsed (in the case of YES), since there is a low possibility that an earthquake will continue, the process returns to S12 and the damping coefficient of the hydraulic damper 20 is returned to the high damping coefficient CH. The process after S12 is performed.

次のS16では、高加速度用感震器50が予め設定された所定の高い加速度(例えば、150Gal)を検知したか否かをチェックする。S16において、高加速度用感震器50が予め設定された所定の高い加速度(例えば、150Gal)を検知しない場合(NOの場合)、S14の処理に戻り、S14〜S16の処理を繰り返す。また、S16において、高加速度用感震器50が予め設定された所定の高い加速度(例えば、150Gal)を検知した場合(YESの場合)、建物の相対変位(振幅)が許容変位以上に増幅するおそれがあるので、S17の処理に進む。   In next S16, it is checked whether or not the high acceleration seismic device 50 has detected a predetermined high acceleration (for example, 150 Gal) set in advance. In S16, when the high acceleration sensor 50 does not detect a predetermined high acceleration (for example, 150 Gal) set in advance (in the case of NO), the process returns to S14, and the processes of S14 to S16 are repeated. In S16, when the high acceleration seismic device 50 detects a predetermined high acceleration (for example, 150 Gal) set in advance (in the case of YES), the relative displacement (amplitude) of the building is amplified more than the allowable displacement. Since there is a fear, the process proceeds to S17.

S17では、タイマT2(例えば、タイマカウント時間60秒)を起動して計時開始する。S17において、タイマカウント時間60秒が未経過の場合(NOの場合)、S18に進み、油圧ダンパ20の減衰係数を高い減衰係数CHに設定する。すなわち、高い加速度(例えば、150Gal)の地震の場合、油圧ダンパ20の減衰係数を高い減衰係数CHに切換えて建物と基礎との相対変位(振幅)が許容範囲(限界値)を超えないように抑制すると共に、高加速度用感震器50からの第2の地震検知信号が出力されてから当該所定時間(タイマカウント時間60秒)が経過するまでの間は各減衰力切換用電磁弁30に対して通電せず(電磁弁切換信号を出力せず)、高い減衰力を発生させる制振モードを維持する。その後は、S17の処理に戻る。また、S17において、タイマカウント時間60秒が経過した場合(YESの場合)、高い加速度(例えば、150Gal)の地震が収束している可能性が高いので、上記S13の処理に戻り、S13以降の処理を行う。   In S17, a timer T2 (for example, a timer count time of 60 seconds) is activated to start timing. In S17, when the timer count time of 60 seconds has not elapsed (in the case of NO), the process proceeds to S18, and the damping coefficient of the hydraulic damper 20 is set to a high damping coefficient CH. That is, in the case of an earthquake with a high acceleration (for example, 150 Gal), the damping coefficient of the hydraulic damper 20 is switched to a high damping coefficient CH so that the relative displacement (amplitude) between the building and the foundation does not exceed the allowable range (limit value). In addition, the damping force switching electromagnetic valve 30 is in the period from when the second earthquake detection signal from the high acceleration seismic device 50 is output until the predetermined time (timer count time 60 seconds) elapses. On the other hand, no vibration is applied (no solenoid valve switching signal is output), and the vibration suppression mode for generating a high damping force is maintained. Thereafter, the process returns to S17. In S17, when the timer count time of 60 seconds elapses (in the case of YES), it is highly likely that an earthquake with high acceleration (for example, 150 Gal) has converged, so the process returns to S13, and after S13 Process.

一般的に免震システムを備えた建物は、油圧ダンパ20の減衰力が低いほうが、地面の加速度が建物に伝達しにくくなるので、振動の伝達低減効果が高いが、基礎(地盤)と建物との相対変位を生じやすくなる。一方、油圧ダンパ20の減衰力が高いと、基礎(地盤)と建物との相対変位を抑えられるが、地震の加速度が建物に伝わりやすく、振動の伝達低減効果は得にくくなる傾向がある。   Generally, buildings with a seismic isolation system have a lower effect of reducing vibration transmission because the lower the damping force of the hydraulic damper 20 is, the harder it is to transmit the ground acceleration to the building. The relative displacement is likely to occur. On the other hand, when the damping force of the hydraulic damper 20 is high, the relative displacement between the foundation (ground) and the building can be suppressed, but the acceleration of the earthquake is easily transmitted to the building, and the effect of reducing vibration transmission tends to be difficult to obtain.

すなわち、中規模程度(例えば、気象庁震度階級の震度3)の地震においては、加速度の低減を優先しても基礎(地盤)と建物との相対変位は、許容範囲(通常、積層ゴムの最大振幅)を超えることが無い。しかし、大規模な地震(例えば、気象庁震度階級の震度6以上)の地震においては、加速度の低減を優先した場合、基礎(地盤)と建物との相対変位は、許容範囲を超えてしまうことがあり、仮に、許容範囲を超えるような振動の場合、許容範囲直前でストッパやダンパにより変位を抑制するため、その際に、大きな加速度が建物に伝わることになる。そのため、免震システムを開発する際は、大規模な地震(例えば、気象庁震度階級の震度5以上)を想定して基礎(地盤)と建物との許容変位量と建物に必要な減衰力の大きさを設定することが必要になるので、中規模程度(例えば、気象庁震度階級の震度3)の地震においては、十分な免震効果は得られない。   In other words, in a moderate-scale earthquake (for example, the Japan Meteorological Agency seismic intensity 3), the relative displacement between the foundation (ground) and the building is within an allowable range (usually the maximum amplitude of laminated rubber), even if acceleration reduction is prioritized. ) Is not exceeded. However, in a large-scale earthquake (for example, an earthquake intensity of 6 or more in the Meteorological Agency seismic class), if priority is given to reducing acceleration, the relative displacement between the foundation (ground) and the building may exceed the allowable range. Yes, if the vibration exceeds the allowable range, the displacement is suppressed by the stopper or the damper immediately before the allowable range, and at that time, a large acceleration is transmitted to the building. Therefore, when developing a seismic isolation system, the amount of allowable displacement between the foundation (ground) and the building and the amount of damping force required for the building is assumed, assuming a large-scale earthquake (for example, seismic intensity 5 or higher of the Meteorological Agency seismic intensity class) Therefore, a sufficient seismic isolation effect cannot be obtained in a moderate-scale earthquake (for example, the Japan Meteorological Agency seismic intensity level 3).

しかし、本実施の形態においては、中規模以下、すなわち、所定の低い加速度(例えば、12Gal)までの地震においては、油圧ダンパ20の減衰力を高く設定し、風等による建物の揺れを防止し、所定の低い加速度(例えば、12Gal)を超える地震においては、油圧ダンパ20の減衰力を低く設定し、建物への振動の伝達を効果的に抑え、大規模地震など加速度が大きくなったときには、油圧ダンパ20の減衰力を大きくできるように切換えることで、振幅を許容範囲に納めつつ、振動の伝達を抑えた免震システムを構築できる。   However, in the present embodiment, the damping force of the hydraulic damper 20 is set to be high to prevent the building from being shaken by winds or the like in the middle scale or lower, that is, in an earthquake up to a predetermined low acceleration (for example, 12 Gal). In an earthquake exceeding a predetermined low acceleration (for example, 12 Gal), the damping force of the hydraulic damper 20 is set low to effectively suppress the transmission of vibrations to the building. By switching so that the damping force of the hydraulic damper 20 can be increased, it is possible to construct a seismic isolation system that suppresses vibration transmission while keeping the amplitude within an allowable range.

また、従来のように、コンピュータを用いて各センサからの信号に基づいて演算を行ってから各油圧ダンパ20の減衰係数を切換える方式よりも演算処理の負担が軽減され、安価なコンピュータで構成できるので、製造コストも大幅に軽減できる。   Further, as compared with the conventional method in which the calculation is performed based on the signal from each sensor using a computer and then the damping coefficient of each hydraulic damper 20 is switched, the calculation processing load is reduced and the computer can be configured with an inexpensive computer. Therefore, the manufacturing cost can be greatly reduced.

〔実施形態2〕
図3は本発明による減衰力切換免震システムの実施形態2を示す図である。図3において、図1と同一部分には、同一符号を付して説明を省略する。
[Embodiment 2]
FIG. 3 is a diagram showing Embodiment 2 of the damping force switching seismic isolation system according to the present invention. In FIG. 3, the same parts as those in FIG.

図3に示されるように、減衰力切換免震システム10Aは、複数の油圧ダンパ20(20〜20)と、減衰力切換用電磁弁30(30〜30)と、低加速度用感震器40と、地震感震器付きブレーカ(電源スイッチ切換手段)80と、制御回路60と、電源70とを有する。 As shown in FIG. 3, the damping force switching seismic isolation system 10A includes a plurality of hydraulic dampers 20 (20 1 to 20 n ), a damping force switching electromagnetic valve 30 (30 1 to 30 n ), and a low acceleration type. It includes a seismic device 40, a breaker with an earthquake seismic device (power switch switching means) 80, a control circuit 60, and a power source 70.

地震感震器付きブレーカ80は、制御回路60と電源70との間に設けられ、予め設定された所定値より高い加速度を検知する感震器と、当該感震器の地震検知により電源70から各減衰力切換用電磁弁30に対する電源供給を遮断するノーマルクローズ型の電源スイッチとを組み合わせた機器である。尚、地震感震器付きブレーカ80に搭載された感震器は、高加速度用感震器50と同じレベルで地震検知を行う。   The breaker 80 with a seismic seismic device is provided between the control circuit 60 and the power source 70. The seismic device detects an acceleration higher than a predetermined value set in advance, and the power source 70 detects an earthquake of the seismic device. This is a device combined with a normally closed type power switch that cuts off power supply to each damping force switching electromagnetic valve 30. Note that the seismoscope mounted on the breaker 80 with seismic seismograph performs earthquake detection at the same level as the high acceleration seismic sensor 50.

ここで、制御回路60が実行する免震制御処理2について説明する。   Here, the seismic isolation control process 2 executed by the control circuit 60 will be described.

図4は実施形態2の免震制御処理2を説明するためのフローチャートである。図4において、S21〜S25は前述したS11〜S15と同じ処理を行うため、説明を省略する。   FIG. 4 is a flowchart for explaining seismic isolation control processing 2 according to the second embodiment. In FIG. 4, since S21-S25 performs the same process as S11-S15 mentioned above, description is abbreviate | omitted.

制御回路60は、S26において、地震感震器付きブレーカ80の感震器が予め設定された所定の高い加速度(例えば、150Gal)を検知した場合(YESの場合)、S27の処理に進む。   When the seismoscope of the breaker 80 with seismic seismometer detects a predetermined high acceleration (for example, 150 Gal) set in advance (YES) in S26, the control circuit 60 proceeds to the process of S27.

S27では、地震感震器付きブレーカ80が電源70からの電源供給を遮断するため、油圧ダンパ20の減衰係数を高い減衰係数CHに設定する。すなわち、高い加速度(例えば、150Gal)の地震の場合、油圧ダンパ20の減衰係数を高い減衰係数CHに切換えて建物と基礎との相対変位(振幅)が許容範囲(限界値)を超えないように抑制する。また、地震感震器付きブレーカ80は、予め設定された所定値より高い加速度(例えば、150Gal)を検知して電源供給を遮断した後、地震感震器を手動操作によりリセットする。   In S27, since the breaker 80 with a seismic instrument blocks the power supply from the power supply 70, the damping coefficient of the hydraulic damper 20 is set to a high damping coefficient CH. That is, in the case of an earthquake with a high acceleration (for example, 150 Gal), the damping coefficient of the hydraulic damper 20 is switched to a high damping coefficient CH so that the relative displacement (amplitude) between the building and the foundation does not exceed the allowable range (limit value). Suppress. Moreover, the breaker 80 with a seismic seismic device detects acceleration (for example, 150 Gal) higher than a predetermined value set in advance and shuts off the power supply, and then resets the seismic seismic device manually.

〔実施形態3〕
図5は本発明による減衰力切換免震システムの実施形態3を示す図である。図5において、前述した図1、図3と同一部分には、同一符号を付して説明を省略する。
[Embodiment 3]
FIG. 5 is a diagram showing Embodiment 3 of the damping force switching seismic isolation system according to the present invention. In FIG. 5, the same parts as those in FIGS.

減衰力切換免震システム10Bは、複数の油圧ダンパ20(20〜20)と、減衰力切換用電磁弁30(30〜30)と、地震感震器付きブレーカ80と、電源70とを有する。尚、本実施形態3では、低加速度用感震器40及び制御回路60及びタイマが削減されているため、設置作業が容易に行えると共に、製造コストも安価に抑えられる。 The damping force switching seismic isolation system 10B includes a plurality of hydraulic dampers 20 (20 1 to 20 n ), a damping force switching solenoid valve 30 (30 1 to 30 n ), a breaker 80 with a seismic seismic device, and a power source 70. And have. In the third embodiment, since the low acceleration seismic device 40, the control circuit 60, and the timer are reduced, the installation work can be easily performed and the manufacturing cost can be reduced.

地震感震器付きブレーカ80は、電源70と各減衰力切換用電磁弁30との間に設けられ、信号線82(82〜82)を介して各減衰力切換用電磁弁30と電気的に接続されている。従って、地震感震器付きブレーカ80は、通常、電源70からの電流を直接各減衰力切換用電磁弁30に供給しており、各減衰力切換用電磁弁30に対する通電(電磁弁切換信号を出力)し、低い減衰力を発生させる状態を維持する。 The breaker 80 with a seismic device is provided between the power source 70 and each damping force switching electromagnetic valve 30 and is electrically connected to each damping force switching solenoid valve 30 via a signal line 82 (82 1 to 82 n ). Connected. Therefore, the breaker 80 with a seismic device normally supplies the current from the power source 70 directly to each damping force switching electromagnetic valve 30 and supplies power to each damping force switching electromagnetic valve 30 (a solenoid valve switching signal is supplied). Output) and maintain a state of generating a low damping force.

また、地震感震器付きブレーカ80に搭載された感震器は、高加速度用感震器50と同じレベルで地震検知を行うため、所定の高い加速度(例えば、150Gal)の地震検知により地震感震器付きブレーカ80が電源70から各減衰力切換用電磁弁30に対する電源供給を遮断する。そのため、油圧ダンパ20の減衰係数は、高い減衰係数CHに設定される。すなわち、高い加速度(例えば、150Gal)の地震の場合、油圧ダンパ20の減衰係数を高い減衰係数CHに切換えて建物と基礎との相対変位(振幅)が許容範囲(限界値)を超えないように抑制する。   In addition, since the seismoscope mounted on the breaker with seismic seismic device 80 detects earthquakes at the same level as the high acceleration seismic device 50, the seismic sensation is detected by detecting earthquakes at a predetermined high acceleration (for example, 150 Gal). A breaker with a seismic device 80 cuts off the power supply from the power source 70 to each damping force switching electromagnetic valve 30. Therefore, the damping coefficient of the hydraulic damper 20 is set to a high damping coefficient CH. That is, in the case of an earthquake with a high acceleration (for example, 150 Gal), the damping coefficient of the hydraulic damper 20 is switched to a high damping coefficient CH so that the relative displacement (amplitude) between the building and the foundation does not exceed the allowable range (limit value). Suppress.

図6は実施形態3の免震制御の手順を説明するためのフローチャートである。尚、実施形態3では、制御回路が存在しないため、地震感震器付きブレーカ80の切換え動作の手順を説明する。
(手順1)電源スイッチをオンにする。
(手順2)地震感震器付きブレーカ80を介して各減衰力切換用電磁弁30に通電する。
(手順3)地震感震器付きブレーカ80が予め設定された所定の高い加速度(例えば、150Gal)を検知しない場合(NOの場合)、手順2で地震感震器付きブレーカ80を介して各減衰力切換用電磁弁30に通電する。また、地震感震器付きブレーカ80が予め設定された所定の高い加速度(例えば、150Gal)を検知した場合(YESの場合)、手順4に移る。
(手順4)地震感震器付きブレーカ80が電源70から各減衰力切換用電磁弁30に対する電源供給を遮断する。そのため、油圧ダンパ20の減衰係数は、高い減衰係数CHに設定される。すなわち、高い加速度(例えば、150Gal)の地震の場合、油圧ダンパ20の減衰係数を高い減衰係数CHにして建物と基礎との相対変位(振幅)が許容範囲(限界値)を超えないように抑制する。また、地震感震器付きブレーカ80は、予め設定された所定値より高い加速度(例えば、150Gal)を検知して電源供給を遮断した後、手動操作により地震感震器をリセットする。
FIG. 6 is a flowchart for explaining a procedure of seismic isolation control according to the third embodiment. In the third embodiment, since there is no control circuit, the procedure of the switching operation of the breaker with seismic device 80 will be described.
(Procedure 1) Turn on the power switch.
(Procedure 2) Each damping force switching electromagnetic valve 30 is energized via the breaker 80 with a seismic detector.
(Procedure 3) When the predetermined high acceleration (for example, 150 Gal) is not detected (in the case of NO) by the breaker 80 with the seismic shock absorber, each attenuation is performed through the breaker 80 with the seismic shock absorber in the procedure 2. The power switching electromagnetic valve 30 is energized. Moreover, when the breaker 80 with a seismic seismic device detects a predetermined high acceleration (for example, 150 Gal) set in advance (in the case of YES), the procedure proceeds to step 4.
(Procedure 4) The breaker 80 with a seismic seismic device cuts off the power supply from the power source 70 to each damping force switching electromagnetic valve 30. Therefore, the damping coefficient of the hydraulic damper 20 is set to a high damping coefficient CH. That is, in the case of an earthquake with high acceleration (for example, 150 Gal), the damping coefficient of the hydraulic damper 20 is set to a high damping coefficient CH so that the relative displacement (amplitude) between the building and the foundation does not exceed the allowable range (limit value). To do. Moreover, the breaker 80 with a seismic seismic device detects acceleration (for example, 150 Gal) higher than a predetermined value set in advance and shuts off the power supply, and then resets the seismic seismic device manually.

尚、上記実施形態1〜3では、各減衰力切換用電磁弁30がノーマルクローズ型電磁弁からなる場合について説明したが、これに限らず、上記とは逆のノーマルオープン型電磁弁を用いて各減衰力切換用電磁弁30への通電オンにより油圧ダンパ20の減衰係数を高い減衰係数CHに設定し、各減衰力切換用電磁弁30への通電オフにより油圧ダンパ20の減衰係数を低い減衰係数CLに設定することも可能である。   In the first to third embodiments, the case where each damping force switching electromagnetic valve 30 is a normally closed solenoid valve has been described. However, the present invention is not limited thereto, and a normal open solenoid valve opposite to the above is used. The damping coefficient of the hydraulic damper 20 is set to a high damping coefficient CH by turning on the energization of each damping force switching electromagnetic valve 30, and the damping coefficient of the hydraulic damper 20 is lowered to a low damping by turning off the energization of each damping force switching electromagnetic valve 30. It is also possible to set the coefficient CL.

また、地震感震器付きブレーカ80の電源スイッチは、ノーマルクローズ型の電源スイッチでも良いし、ノーマルオープン型の電源スイッチでも良い。   Further, the power switch of the breaker with seismic device 80 may be a normally closed type power switch or a normally open type power switch.

また、上記実施形態1〜3では、各減衰力切換用電磁弁30が各油圧ダンパ20に設けられた構成を用いて説明したが、これに限らず、各減衰力切換用電磁弁30と各油圧ダンパ20とが別個に設けられた構成のものでも良い。   In the first to third embodiments, the damping force switching electromagnetic valve 30 has been described using the configuration provided in each hydraulic damper 20. However, the present invention is not limited to this, and each damping force switching electromagnetic valve 30 and each The thing of the structure provided with the hydraulic damper 20 separately may be sufficient.

なお、上記各実施の形態は、コンピュータを用いた例を示したが、これに限らず、感震器が振動を検知した際に、感震器のスイッチにより減衰力切換用電磁弁30に必要な電流を流すように回路構成することで、コンピュータを用いない更なるコストを低減したシステムを構築できる。このシステムにさらに上記地震感震器付きブレーカ80を用いることもできる。   In addition, although each said embodiment showed the example using a computer, it is not restricted to this, When a seismic device detects a vibration, it is required for the solenoid valve 30 for damping force switching by the switch of a seismic device. By constructing the circuit so that a large current flows, it is possible to construct a system that does not use a computer and that further reduces costs. In addition, the above-described breaker with seismic device 80 can be used in this system.

10、10A、10B 減衰力切換免震システム
20(20〜20) 油圧ダンパ
22 シリンダ
24 ピストンロッド
30(30〜30) 減衰力切換用電磁弁
40 低加速度用感震器
50 高加速度用感震器
60 制御回路
62(62〜62)、82(82〜82) 信号線
70 電源
80 地震感震器付きブレーカ
10, 10A, 10B Damping force switching seismic isolation system 20 (20 1 to 20 n ) Hydraulic damper 22 Cylinder 24 Piston rod 30 (30 1 to 30 n ) Damping force switching solenoid valve 40 Low acceleration seismometer 50 High acceleration Seismic device 60 control circuit 62 (62 1 to 62 n ), 82 (82 1 to 82 n ) signal line 70 power supply 80 breaker with seismic device

Claims (5)

構造物に入力された加速度を減衰させる減衰力を発生させるダンパと、
前記ダンパの減衰力を切換える減衰力切換用電磁弁と、
地震による振動が所定の振動状態になったときに地震検知信号を出力する感震器と、
前記感震器より地震検知信号が入力されると、前記減衰力切換用電磁弁を切換える切換信号を出力する出力手段と、
を備えたことを特徴とする減衰力切換免震システム。
A damper that generates a damping force that attenuates the acceleration input to the structure;
A damping force switching solenoid valve for switching the damping force of the damper;
A seismometer that outputs an earthquake detection signal when the vibration caused by the earthquake reaches a predetermined vibration state;
When an earthquake detection signal is input from the seismic device, output means for outputting a switching signal for switching the damping force switching electromagnetic valve;
A damping force switching seismic isolation system characterized by comprising:
前記感震器は、第1の振動状態となったときに第1の地震検知信号を出力する第1の感震器と、前記第1の振動状態より大きな第2に振動状態となったきに、第2の地震検知信号を出力する第2の感震器とを有し、
前記出力手段は、前記第1の地震検知信号が入力された際には前記ダンパに低い減衰力を発生させる第1の切換信号を出力し、前記第2の地震検知信号が入力された際には前記ダンパに前記低い減衰力より高い減衰力を発生させる第2の切換信号を出力することを特徴とする請求項1に記載の減衰力切換免震システム。
The seismoscope is configured to output a first seismic detection signal when the first vibration state is reached, and a second vibration state that is larger than the first vibration state. And a second seismoscope that outputs a second earthquake detection signal,
The output means outputs a first switching signal that causes the damper to generate a low damping force when the first earthquake detection signal is input, and when the second earthquake detection signal is input. 2. The damping force switching seismic isolation system according to claim 1, wherein the damper outputs a second switching signal that causes the damper to generate a damping force higher than the low damping force.
前記減衰力切換用電磁弁は、非通電時に減衰力がハード状態となり、通電時に前記ハード状態より低い減衰力を発生するソフト状態となり、
前記感震器は、前記所定の振動状態より大きな第2の振動状態となったとき、前記ダンパへの通電を遮断する電源スイッチ切換手段を有することを特徴とする請求項1に記載の減衰力切換免震システム。
The damping force switching electromagnetic valve is in a soft state in which the damping force is in a hard state when not energized, and generates a damping force lower than that in the hard state when energized,
2. The damping force according to claim 1, wherein the seismic device has a power switch switching unit that cuts off power to the damper when the second vibration state is greater than the predetermined vibration state. Switching seismic isolation system.
構造物に入力された加速度を減衰させる減衰力を発生させるダンパと、
前記ダンパに設けられ、非通電時には減衰力をハード状態とし、通電時には前記ハード状態より低い減衰力を発生するソフト状態とする減衰力切換用電磁弁と、
地震による振動が第1の振動状態になったときに通電する第1の感震器と、
地震による振動が前記第1の振動状態より大きな第2の振動状態となったときに通電を遮断する第2の感震器と、
を備えたことを特徴とする減衰力切換免震システム。
A damper that generates a damping force that attenuates the acceleration input to the structure;
A damping force switching solenoid valve that is provided in the damper and is in a hard state when de-energized and in a soft state that generates a lower damping force than the hard state when energized;
A first seismic device that is energized when vibration caused by an earthquake enters a first vibration state;
A second seismic device that interrupts energization when vibration caused by an earthquake becomes a second vibration state larger than the first vibration state;
A damping force switching seismic isolation system characterized by comprising:
前記感震器は、重力により錘が落下することで、スイッチを切換える重力式の感震器であることを特徴とする請求項1乃至4何れかに記載の減衰力切換免震システム。   The damping force switching seismic isolation system according to any one of claims 1 to 4, wherein the seismic device is a gravity type seismic device that switches a switch when a weight falls due to gravity.
JP2013039573A 2013-02-28 2013-02-28 Attenuation force change-over seismic base isolation system Pending JP2014167331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039573A JP2014167331A (en) 2013-02-28 2013-02-28 Attenuation force change-over seismic base isolation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039573A JP2014167331A (en) 2013-02-28 2013-02-28 Attenuation force change-over seismic base isolation system

Publications (1)

Publication Number Publication Date
JP2014167331A true JP2014167331A (en) 2014-09-11

Family

ID=51617114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039573A Pending JP2014167331A (en) 2013-02-28 2013-02-28 Attenuation force change-over seismic base isolation system

Country Status (1)

Country Link
JP (1) JP2014167331A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208231A (en) * 2005-01-28 2006-08-10 Atech:Kk Simple seismometer
JP2007331288A (en) * 2006-06-16 2007-12-27 Bridgestone Corp Method of manufacturing bead for tire and equipment for manufacturing the same
JP2009019383A (en) * 2007-07-11 2009-01-29 Taisei Corp Base-isolating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208231A (en) * 2005-01-28 2006-08-10 Atech:Kk Simple seismometer
JP2007331288A (en) * 2006-06-16 2007-12-27 Bridgestone Corp Method of manufacturing bead for tire and equipment for manufacturing the same
JP2009019383A (en) * 2007-07-11 2009-01-29 Taisei Corp Base-isolating system

Similar Documents

Publication Publication Date Title
JP5165944B2 (en) Seismic isolation system
WO2009123656A1 (en) Resonance frequency tuning in an energy absorbing device
Fujita et al. Intelligent seismic isolation system using air bearings and earthquake early warning
TW200907195A (en) Vibration isolation device, arithmetic apparatus, exposure apparatus, and device manufacturing method
US20160289958A1 (en) Object, Such as a Building, Provided with a System for Preventing Damage from Earthquakes to the Object
JP5223264B2 (en) Seismic isolation system, control system for variable damper device
Chan et al. A smart mechatronic base isolation system using earthquake early warning
EP2093454A1 (en) Vibration energy absorber
JP5096908B2 (en) Vibration control device
JPH11350422A (en) Vibration energy conversion-supply type bridge damping structure
JP5901348B2 (en) Seismic isolation structure
JP2006045885A (en) Vibration control method and vibration control system using real-time earthquake information
JP2014167331A (en) Attenuation force change-over seismic base isolation system
JP2015068151A (en) Method and device for controlling vibration of base isolated building
JP2004036164A (en) Method and device for controlling vibration of structure
JP2011174509A (en) Damping device
JP2006151565A (en) Crane, remodeling method thereof, and base isolating method for crane
KR20180079845A (en) Lead rubber bearing using magnetorheological damper and toggle brace
JP5653600B2 (en) Seismic isolation system and control method of seismic isolation system
JP2001003982A (en) Non-resonant semi-active base isolating structure and base isolating method
JPH11270184A (en) Base isolating device
JP4953713B2 (en) Seismic isolation system
JP2005048549A (en) Base isolation fluid damper device
JP2010133158A (en) Method and device for adjusting natural period of base-isolated foundation device
Balachandar et al. Control of vibrations in building due to seismic force using tuned mass damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228