JP2014167263A - Damping member for rotary machine - Google Patents

Damping member for rotary machine Download PDF

Info

Publication number
JP2014167263A
JP2014167263A JP2013038697A JP2013038697A JP2014167263A JP 2014167263 A JP2014167263 A JP 2014167263A JP 2013038697 A JP2013038697 A JP 2013038697A JP 2013038697 A JP2013038697 A JP 2013038697A JP 2014167263 A JP2014167263 A JP 2014167263A
Authority
JP
Japan
Prior art keywords
gas turbine
blade
turbine rotor
rotor blade
viscoelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013038697A
Other languages
Japanese (ja)
Other versions
JP6151932B2 (en
Inventor
Naoki Onozato
直樹 小野里
Koji Oyama
宏治 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013038697A priority Critical patent/JP6151932B2/en
Publication of JP2014167263A publication Critical patent/JP2014167263A/en
Application granted granted Critical
Publication of JP6151932B2 publication Critical patent/JP6151932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/182Two-dimensional patterned crenellated, notched
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/183Two-dimensional patterned zigzag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • F05D2300/431Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • F05D2300/437Silicon polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the damping performance while securing a seal function and inhibit vibrations of a rotary machine member.SOLUTION: A damping member for a rotary machine includes: a first plate part 11 which contacts with a platform 4A of one gas turbine rotor blade 1A; a second plate part 12 which contacts with a platform 4A of the other gas turbine rotor blade 1B; and a viscoelastic damper 13 disposed between the first plate part 11 and the second plate part 12. A recessed groove 41 is provided on a side surface 4a of one gas turbine 1A, and a part of the viscoelastic damper 10 forms a protruding shape bent along the recessed groove 41.

Description

本発明は、例えばガスタービン等に用いられる回転機械用減衰部材に関する。   The present invention relates to a damping member for a rotary machine used in, for example, a gas turbine.

従来、ガスタービンでは、複数の円板が回転軸の軸方向に配置され、これらの円板の外周に、多数の動翼が円周方向に隣接して植え込まれる。軸方向の前後で隣接する動翼間には、動翼の外側を覆うケーシングに設けられた静翼が配置される。これら動翼及び静翼間を高温の燃焼ガスが流れることにより、動翼と共に回転軸が回転駆動され、例えば圧縮機の駆動及び発電機の駆動が行われる。   Conventionally, in a gas turbine, a plurality of disks are arranged in the axial direction of a rotating shaft, and a large number of rotor blades are implanted adjacent to the outer periphery of these disks in the circumferential direction. Between the moving blades adjacent to each other in the axial direction, a stationary blade provided in a casing covering the outside of the moving blade is disposed. When a high-temperature combustion gas flows between the moving blades and the stationary blades, the rotating shaft is driven to rotate together with the moving blades, and for example, the compressor and the generator are driven.

そして、ガスタービンの回転軸が回転駆動されると、回転軸に設けられた円板が回転駆動される。このとき、円板に設けられた複数の動翼は、回転軸の外側に配設されるケーシングに設けられた複数の静翼間を移動する。これら各翼間を高温の燃焼ガスが流動すると、各翼の後端に渦が発生する。この渦により、各翼にガスタービンの前側及び後側へ押す力が働いたり、隣接する翼方向へ押す力が働いたりすることになり、各翼に振動が生じる。そして、ケーシングに配設される静翼の周波数と動翼の固有の振動数(以下、単に固有振動数という)とが一致し共振して各翼の振動が大きくなり、高サイクル疲労(HCF)が発生するおそれがあった。   And if the rotating shaft of a gas turbine is rotationally driven, the disc provided in the rotating shaft will be rotationally driven. At this time, the plurality of moving blades provided on the disk move between the plurality of stationary blades provided on the casing provided outside the rotating shaft. When hot combustion gas flows between these blades, a vortex is generated at the rear end of each blade. Due to this vortex, a force is applied to each blade toward the front and rear sides of the gas turbine, or a force is applied toward the adjacent blade, causing vibrations in each blade. Then, the frequency of the stationary blade disposed in the casing matches the natural frequency of the moving blade (hereinafter simply referred to as the natural frequency) and resonates to increase the vibration of each blade, resulting in high cycle fatigue (HCF). Could occur.

そこで、このようなガスタービンでは、動翼の振動の低減と、冷却空気の漏れを防ぐことを目的としたシールピンを隣接する動翼同士間に介在させた構造が知られている(例えば、特許文献1参照)。
特許文献1には、回転軸の円周方向に沿い隣接して取り付けられたガスタービン動翼同士の間のシャンクにおける隙間に、翼根側の冷却空気が翼側に漏れ出さないようにするシールピンを介在させる一方、シャンクに円弧状の凹み部を形成し、シャンクをばね系、翼部、プラットホーム、シャンク及び翼根を質量系として、ガスタービン動翼の振動を抑制させるようにした構成について記載されている。
Therefore, in such a gas turbine, a structure is known in which seal pins are interposed between adjacent blades for the purpose of reducing vibrations of the blades and preventing leakage of cooling air (for example, patents). Reference 1).
Patent Document 1 discloses a seal pin that prevents cooling air on the blade root side from leaking to the blade side in a gap in a shank between gas turbine rotor blades attached adjacently along the circumferential direction of the rotating shaft. On the other hand, a configuration is described in which an arc-shaped recess is formed in the shank, and the shank is used as a spring system, the wing part, the platform, the shank, and the blade root as a mass system to suppress vibration of the gas turbine blade. ing.

特開2005−233141号公報JP 2005-233141 A

しかしながら、従来のガスタービンでは、以下のような問題があった。
すなわち、特許文献1では、ガスタービンの実稼働時において、シールピンの位置や運動によって固有振動数にばらつきが生じ、ガスタービン動翼が振動することになり、疲労破壊が生じるという問題があった。
そのため、振動強度に関する設計余裕を大きく設定する必要があり、タービンの設計の自由度が小さくなることから、その点で改善の余地があった。
However, the conventional gas turbine has the following problems.
That is, in Patent Document 1, there is a problem in that the natural frequency varies depending on the position and movement of the seal pin during actual operation of the gas turbine, and the gas turbine rotor blade vibrates, resulting in fatigue failure.
For this reason, it is necessary to set a large design margin for vibration strength, and the degree of freedom in designing the turbine is reduced, so there is room for improvement in that respect.

本発明は、上述する問題点に鑑みてなされたもので、シール機能を確保しつつ、減衰性能を向上させることができ、回転用機械部材の振動を抑制することができる回転機械用減衰部材を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a damping member for a rotating machine that can improve damping performance and can suppress vibration of the rotating machine member while ensuring a sealing function. The purpose is to provide.

上記目的を達成するため、本発明に係る回転機械用減衰部材では、相対振動する一対の回転機械用部材の間に配置される減衰部材本体を備え、該減衰部材本体は、一方の前記回転機械用部材に当接する第1板部と、他方の前記回転機械用部材に当接する第2板部と、これら第1板部及び第2板部の間に介在する粘弾性部材と、を備えることを特徴としている。   In order to achieve the above object, the damping member for a rotary machine according to the present invention includes a damping member body disposed between a pair of rotary machine members that vibrate relatively, and the damping member body includes one of the rotating machines. A first plate that contacts the member, a second plate that contacts the other rotating machine member, and a viscoelastic member interposed between the first and second plates. It is characterized by.

本発明では、回転機械用部材の回転運動によって共振し、その共振によって一対の回転機械用部材同士の間の距離が変動するときに、減衰部材本体には第1板部及び第2板部と回転機械用部材との間で摩擦減衰が生じる。これに加えて、第1板部及び第2板部との間にこれらよりも剛性の低い粘弾性部材が介在しているので、その粘弾性部材が摩擦力によってせん断変形し、粘弾性部材自体に内部減衰が生じることから、回転機械用部材の振動応答レベルを低減させることができる。つまり、減衰部材本体自体の変形に伴い内部減衰が生じるので、運動エネルギーが内部の熱エネルギーに変換されることになる。   In the present invention, when the resonance is caused by the rotational motion of the rotary machine member and the distance between the pair of rotary machine members varies due to the resonance, the damping member main body includes the first plate portion and the second plate portion. Friction damping occurs with the rotating machine member. In addition, since a viscoelastic member having rigidity lower than these is interposed between the first plate portion and the second plate portion, the viscoelastic member undergoes shear deformation due to frictional force, and the viscoelastic member itself Since internal damping occurs, the vibration response level of the rotary machine member can be reduced. That is, since internal damping occurs with the deformation of the damping member body itself, kinetic energy is converted into internal thermal energy.

また、本発明の回転機械用減衰部材では、回転機械用部材に遠心力が作用したり、回転機械用部材が変形したりする場合であっても、減衰部材本体が一定の形状を保持し、動的特性のばらつきを小さくすることができる。
このように、本発明では、効果的に減衰効果を発揮することができるので、回転機械用部材の振動強度に設計余裕を大きく取る必要がなくなるという利点がある。
In the rotating machine damping member of the present invention, even when centrifugal force acts on the rotating machine member or the rotating machine member is deformed, the damping member main body maintains a certain shape, Variations in dynamic characteristics can be reduced.
As described above, the present invention can effectively exhibit a damping effect, and therefore has an advantage that it is not necessary to provide a large design margin for the vibration strength of the rotary machine member.

さらに、一対の回転機械用部材同士の間の距離が変動しても、粘弾性部材が弾性変形することにより、その距離の変動に追従し、第1板部及び第2板部と回転機械用部材との当接状態を保持することができるので、シール機能も確保することができる。   Furthermore, even if the distance between the pair of rotating machine members varies, the viscoelastic member elastically deforms to follow the variation in the distance, and the first plate unit and the second plate unit are used for the rotating machine. Since the contact state with the member can be maintained, a sealing function can be secured.

また、本発明に係る回転機械用減衰部材では、前記一対の回転機械用部材のうちいずれか一方には、前記減衰部材本体側の側面に凹溝が設けられ、前記減衰部材本体は、その一部が前記凹溝に沿って折り曲げられた突形状をなしていることが好ましい。   In the rotating machine damping member according to the present invention, one of the pair of rotating machine members is provided with a concave groove on a side surface on the damping member main body side. It is preferable that the portion has a protruding shape bent along the concave groove.

本発明では、減衰部材本体の突形状部分が一方の回転機械用部材の凹溝に係合して設けられ、減衰部材本体が少なくとも凹溝が形成されている側の回転機械用部材に対して拘束されるので、減衰部材本体の位置のずれを防止することができる。   In the present invention, the projecting portion of the damping member main body is provided to engage with the concave groove of one rotary machine member, and the damping member main body is at least relative to the rotary machine member on the side where the concave groove is formed. Since it is restrained, it is possible to prevent the displacement of the position of the attenuation member main body.

本発明の回転機械用減衰部材によれば、シール機能を確保しつつ、減衰性能を向上させることができ、回転用機械部材の振動を抑制することができる。   According to the damping member for a rotary machine of the present invention, it is possible to improve the damping performance while ensuring the sealing function, and to suppress the vibration of the rotating machine member.

本発明の第1の実施の形態によるガスタービン動翼を前縁側から見た斜視図である。It is the perspective view which looked at the gas turbine rotor blade by the 1st Embodiment of this invention from the front edge side. 図1に示すガスタービン動翼を後縁側から見た斜視図である。It is the perspective view which looked at the gas turbine rotor blade shown in FIG. 1 from the trailing edge side. ガスタービン動翼が隣接した状態を示す側面図である。It is a side view showing the state where the gas turbine rotor blade was adjacent. 図3に示す粘弾性ダンパの拡大図である。It is an enlarged view of the viscoelastic damper shown in FIG. 第2の実施の形態によるガスタービン動翼の概略構成を示す側面図である。It is a side view which shows schematic structure of the gas turbine rotor blade by 2nd Embodiment. 図5のインテグラルシュラウドの拡大斜視図であって、粘弾性ダンパが外れた状態を示す図である。FIG. 6 is an enlarged perspective view of the integral shroud of FIG. 5, showing a state in which the viscoelastic damper is removed. 隣接する一対のインテグラルシュラウドを径方向の外側から見た図である。It is the figure which looked at a pair of adjacent integral shrouds from the outside in the radial direction. 図7に示すA−A線断面図である。It is the sectional view on the AA line shown in FIG.

以下、本発明の実施の形態による回転機械用減衰部材について、図面に基づいて説明する。かかる実施の形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。   Hereinafter, a damping member for a rotary machine according to an embodiment of the present invention will be described based on the drawings. This embodiment shows one aspect of the present invention, and does not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention.

(第1の実施の形態)
図1に示すように、本実施の形態のガスタービン動翼1(回転機械用部材)が適用されるガスタービンは、発電プラント等で用いられているものである。例えば、このようなガスタービンは、圧縮機、燃焼器及びタービンにより構成され、圧縮機で圧縮された圧縮空気が燃焼器で燃料とともに燃焼され、燃焼ガスがタービンに導入されてタービンが駆動される。タービンの動力により圧縮機を作動させ、発電機で発電される。
(First embodiment)
As shown in FIG. 1, the gas turbine to which the gas turbine rotor blade 1 (rotary machine member) of the present embodiment is applied is used in a power plant or the like. For example, such a gas turbine includes a compressor, a combustor, and a turbine. Compressed air compressed by the compressor is combusted with fuel in the combustor, and combustion gas is introduced into the turbine to drive the turbine. . The compressor is operated by the power of the turbine, and power is generated by the generator.

図1及び図2に示すように、タービンの回転軸側には、ガスタービン動翼1が軸方向(タービンの回転軸方向)に沿って多段にわたって設けられる。ガスタービン動翼1は回転軸側に保持されるクリスマスツリー型の翼根2を有している。また、ガスタービン動翼1は、高温ガスに曝される翼部5と、この翼部5を支持するプラットホーム4と、プラットホーム4と翼根2とを連結するシャンク3と、を備えている。翼根2は、図示しない円板に埋め込まれて、ガスタービン動翼1を支持している。   As shown in FIGS. 1 and 2, the gas turbine rotor blade 1 is provided in multiple stages along the axial direction (the rotational axis direction of the turbine) on the rotating shaft side of the turbine. The gas turbine rotor blade 1 has a Christmas tree type blade root 2 held on the rotating shaft side. Further, the gas turbine rotor blade 1 includes a blade portion 5 that is exposed to high-temperature gas, a platform 4 that supports the blade portion 5, and a shank 3 that connects the platform 4 and the blade root 2. The blade root 2 is embedded in a disk (not shown) and supports the gas turbine blade 1.

図3に示すように、隙間Sをあけて隣接するガスタービン動翼1の一方を第1ガスタービン動翼1Aとし、もう一方を第2ガスタービン動翼1Bとする。ガスタービン動翼1A、1Bのプラットホーム4A、4Bのそれぞれの一側面4a(回転軸の円周方向における一側面)には、後述する粘弾性ダンパ10の一部を収容する凹溝41が設けられている。   As shown in FIG. 3, one of the adjacent gas turbine rotor blades 1 with a gap S therebetween is defined as a first gas turbine rotor blade 1A, and the other is defined as a second gas turbine rotor blade 1B. On one side surface 4a (one side surface in the circumferential direction of the rotating shaft) of each of the platforms 4A and 4B of the gas turbine rotor blades 1A and 1B, a concave groove 41 for accommodating a part of the viscoelastic damper 10 described later is provided. ing.

この凹溝41により、ガスタービン動翼1の翼部5側を流動する高温の燃焼ガスが翼根2側へ流れ込むのを防いでいると共に、ガスタービン動翼1の内部を通ってこれらガスタービン動翼1を冷却する冷却媒体である冷却空気が翼根2側から翼部5側へ漏れ出すのを防いでいる。   The concave grooves 41 prevent high-temperature combustion gas flowing on the blade portion 5 side of the gas turbine rotor blade 1 from flowing into the blade root 2 side, and pass through the gas turbine rotor blade 1 to pass through these gas turbines. Cooling air that is a cooling medium for cooling the moving blade 1 is prevented from leaking from the blade root 2 side to the blade portion 5 side.

第1ガスタービン動翼1Aの凹溝41は、側面視で翼部5A側から翼根2側に向ってプラットホーム4Aの内部に切り込んで延びる一対の第1壁41aと、この第1壁41aに連続し、プラットホーム4Aの側面4aと略平行に下方に延びる第2壁41bとからなる(図4参照)。
ただし、この凹溝41内に配設される粘弾性ダンパ10が翼根2側に配置されたときでも、粘弾性ダンパ10が凹溝41内の各壁41a,41b、及び隣接する第2ガスタービン動翼1Bのプラットホーム4Bの側面4bに接する。そのため、隣接する第1ガスタービン動翼1Aと第2ガスタービン動翼1Bとが直接接触することが無く隙間Sが形成され、第1ガスタービン動翼1Aの振動が粘弾性ダンパ10を介して隣接する第2ガスタービン動翼1Bに伝搬したり、逆に、第2ガスタービン1Bの振動が粘弾性ダンパ10を介して第1ガスタービン動翼1Aに伝搬したりする。
The concave groove 41 of the first gas turbine rotor blade 1A has a pair of first walls 41a extending from the blade portion 5A side toward the blade root 2 side in the side view and extending into the platform 4A, and the first wall 41a. The second wall 41b is continuous and extends downward in parallel with the side surface 4a of the platform 4A (see FIG. 4).
However, even when the viscoelastic damper 10 disposed in the concave groove 41 is disposed on the blade root 2 side, the viscoelastic damper 10 has the walls 41a and 41b in the concave groove 41 and the adjacent second gas. It contacts the side surface 4b of the platform 4B of the turbine rotor blade 1B. Therefore, the adjacent first gas turbine rotor blade 1A and the second gas turbine rotor blade 1B are not in direct contact with each other so that a gap S is formed, and the vibration of the first gas turbine rotor blade 1A passes through the viscoelastic damper 10. Propagating to the adjacent second gas turbine rotor blade 1B, or conversely, vibration of the second gas turbine 1B propagates to the first gas turbine rotor blade 1A via the viscoelastic damper 10.

タービンの回転軸が回転し第1ガスタービン動翼1A及び第2ガスタービン動翼1Bが駆動されているときは、凹溝41に設けられた粘弾性ダンパ10に遠心力、即ち翼部5A側への力が加わるとともに、このとき、これら第1ガスタービン動翼1A及び第2ガスタービン動翼1Bは振動している。   When the rotating shaft of the turbine rotates and the first gas turbine blade 1A and the second gas turbine blade 1B are driven, centrifugal force, that is, the blade portion 5A side is applied to the viscoelastic damper 10 provided in the groove 41. At this time, the first gas turbine rotor blade 1A and the second gas turbine rotor blade 1B vibrate.

具体的には、第1ガスタービン動翼1Aと第2ガスタービン動翼1Bとが離れる方向に振動したり、接触する方向に振動したりしている。
図4に示すように、隣接する第1ガスタービン動翼1Aと第2ガスタービン動翼1Bとが離れる方向に振動するときには、粘弾性ダンパ10が変形する。この際に、粘弾性ダンパ10の端部の位置が高さ方向Hの内側に向かう方向(図4の矢印E2方向)にずれて、動翼1A、1Bと粘弾性ダンパ10との間で摩擦減衰が作用する。さらに、粘弾性ダンパ10そのものが変形するので、内部減衰も得られる。
Specifically, the first gas turbine rotor blade 1A and the second gas turbine rotor blade 1B vibrate in a direction away from each other, or vibrate in a contact direction.
As shown in FIG. 4, when the adjacent first gas turbine blade 1 </ b> A and second gas turbine blade 1 </ b> B vibrate away from each other, the viscoelastic damper 10 is deformed. At this time, the position of the end portion of the viscoelastic damper 10 is shifted in the direction toward the inner side in the height direction H (the direction of arrow E2 in FIG. 4), and friction occurs between the moving blades 1A and 1B and the viscoelastic damper 10. Attenuation works. Furthermore, since the viscoelastic damper 10 itself is deformed, internal damping is also obtained.

また、隣接する第1ガスタービン動翼1Aと第2ガスタービン動翼1Bとが近接する方向に振動するときには、粘弾性ダンパ10が変形する。この際に、粘弾性ダンパ10の端部の位置が高さ方向Hの外側に向かう方向(図4の矢印E1方向)にずれて、動翼1A、1Bと粘弾性ダンパ10との間で摩擦減衰が作用する。さらに、粘弾性ダンパ10そのものが変形するので、内部減衰も得られる。よって、第1ガスタービン動翼1Aは翼根2で図示しない円板に支持される一方、隣接する第2ガスタービン動翼1Bとの間に介在する粘弾性ダンパ10でも支持される。   Further, when the adjacent first gas turbine blade 1A and second gas turbine blade 1B vibrate in the approaching direction, the viscoelastic damper 10 is deformed. At this time, the position of the end portion of the viscoelastic damper 10 is shifted in the direction toward the outer side in the height direction H (the direction of arrow E1 in FIG. 4), and friction occurs between the moving blades 1A and 1B and the viscoelastic damper 10. Attenuation works. Furthermore, since the viscoelastic damper 10 itself is deformed, internal damping is also obtained. Therefore, the first gas turbine rotor blade 1A is supported by a disk (not shown) by the blade root 2, and is also supported by the viscoelastic damper 10 interposed between the adjacent second gas turbine rotor blade 1B.

図2及び図4に示すように、相対振動する一対のガスタービン動翼1A、1Bの間に配置される粘弾性ダンパ10(減衰部材本体)は、一方の第1ガスタービン動翼1Aに当接する第1板部11と、他方の第2ガスタービン動翼1Bに当接する第2板部12と、これら第1板部11及び第2板部12との間に介在する粘弾性部材13と、を備えている。   As shown in FIGS. 2 and 4, a viscoelastic damper 10 (attenuating member main body) disposed between a pair of gas turbine blades 1A and 1B that vibrate relatively contacts one first gas turbine blade 1A. A first plate portion 11 that is in contact, a second plate portion 12 that is in contact with the other second gas turbine blade 1B, and a viscoelastic member 13 that is interposed between the first plate portion 11 and the second plate portion 12; It is equipped with.

粘弾性ダンパ10は、高さ方向Hの中央に位置する第1当接部10aと、この第1当接部10aの両端から延伸する一対の傾斜部10bと、この傾斜部10bの第1当接部10aの反対側に前記第1当接部10aと平行に延びる先端に一対の第2当接部10cと、からなり、断面がハット形状を呈している。第1当接部10aと第2当接部10cは、前記隙間Sを形成するプラットホーム4の側面4a、4bに沿うように形成されている。   The viscoelastic damper 10 includes a first contact portion 10a located at the center in the height direction H, a pair of inclined portions 10b extending from both ends of the first contact portion 10a, and a first contact of the inclined portion 10b. The cross section has a hat shape with a pair of second contact portions 10c at the tip extending in parallel with the first contact portion 10a on the opposite side of the contact portion 10a. The first contact portion 10a and the second contact portion 10c are formed along the side surfaces 4a and 4b of the platform 4 that form the gap S.

粘弾性ダンパ10は、第1当接部10aと一対の傾斜部10bにより形成される突形状部Tが第1ガスタービン動翼1Aのプラットホーム4Aの凹溝41内に係合することで位置決めされて、一対の第2当接部10cが第1ガスタービン動翼1Aのプラットホーム4Aと第2ガスタービン動翼1Bのプラットホーム4Bとの間の隙間Sに挟持された状態で介在されている。   The viscoelastic damper 10 is positioned by engaging a projecting shape portion T formed by the first contact portion 10a and the pair of inclined portions 10b into the groove 41 of the platform 4A of the first gas turbine rotor blade 1A. Thus, the pair of second abutting portions 10c are interposed in a state of being sandwiched by the gap S between the platform 4A of the first gas turbine rotor blade 1A and the platform 4B of the second gas turbine rotor blade 1B.

第1板部11と第2板部12は、金属製の平らな板状の部材を高さ方向(図2及び図4で矢印Hで示す)に沿って前記ハット形状に折り曲げられて形成されたものである。   The first plate portion 11 and the second plate portion 12 are formed by bending a metal flat plate-like member into the hat shape along the height direction (indicated by an arrow H in FIGS. 2 and 4). It is a thing.

粘弾性部材13は、例えば、フッ素ゴム、シリコンゲル、グラファイトファイバー等の第1板部11及び第2板部12の部材よりも剛性が小さく、柔らかい材質のものが用いられている。なお、粘弾性部材13は、固着されることに制限されず、固着されなくても良い。   The viscoelastic member 13 is made of a soft material having a lower rigidity than the members of the first plate portion 11 and the second plate portion 12 such as fluorine rubber, silicon gel, and graphite fiber. The viscoelastic member 13 is not limited to being fixed, and may not be fixed.

次に、上述した構成のガスタービン動翼1の作用について、図面に基づいて具体的に説明する。
図1に示すように、本実施の形態では、タービンの回転軸が回転し第1ガスタービン動翼1A及び第2ガスタービン動翼1Bが駆動されているときは、凹溝41に係合される粘弾性ダンパ10に遠心力、即ち翼部5A側への力が加わり、凹溝41内で翼部5A側に張り付いている。このとき、これら第1ガスタービン動翼1A及び第2ガスタービン動翼1Bは振動している。詳しくは、第1ガスタービン動翼1Aと第2ガスタービン動翼1Bとが離れる方向に振動したり、接触する方向に振動したりしている。
Next, the operation of the gas turbine rotor blade 1 having the above-described configuration will be specifically described based on the drawings.
As shown in FIG. 1, in this embodiment, when the rotating shaft of the turbine rotates and the first gas turbine rotor blade 1A and the second gas turbine rotor blade 1B are driven, they are engaged with the concave groove 41. A centrifugal force, that is, a force toward the wing portion 5A is applied to the viscoelastic damper 10, and the viscoelastic damper 10 sticks to the wing portion 5A side in the concave groove 41. At this time, the first gas turbine blade 1A and the second gas turbine blade 1B vibrate. Specifically, the first gas turbine rotor blade 1 </ b> A and the second gas turbine rotor blade 1 </ b> B vibrate in a direction away from each other or vibrate in a contact direction.

このとき、ガスタービンの回転運動によって共振し、その共振によって一対のガスタービン動翼1A、1B同士の間の距離が変動するときに、粘弾性ダンパ10には第1板部11及び第2板部12とガスタービン動翼1A、1Bとの間で摩擦減衰が生じる。   At this time, when the distance between the pair of gas turbine rotor blades 1A and 1B fluctuates due to the rotational motion of the gas turbine, the first plate portion 11 and the second plate are provided in the viscoelastic damper 10. Friction damping occurs between the section 12 and the gas turbine rotor blades 1A, 1B.

これに加えて、第1板部11及び第2板部12との間にこれらよりも剛性の低い粘弾性部材13が介在しているので、その粘弾性部材13が摩擦力によってせん断変形し、粘弾性部材13自体に内部減衰が生じることから、ガスタービン動翼1の振動応答レベルを低減させることができるという効果が得られる。つまり、粘弾性ダンパ10自体の変形に伴い内部減衰が生じるので、運動エネルギーが内部の熱エネルギーに変換されることになる。   In addition to this, since the viscoelastic member 13 having rigidity lower than these is interposed between the first plate portion 11 and the second plate portion 12, the viscoelastic member 13 is shear-deformed by a frictional force, Since internal damping occurs in the viscoelastic member 13 itself, an effect that the vibration response level of the gas turbine rotor blade 1 can be reduced is obtained. That is, since internal damping occurs with deformation of the viscoelastic damper 10 itself, kinetic energy is converted into internal thermal energy.

また、本実施の形態のタービンでは、ガスタービン動翼1に遠心力が作用したり、ガスタービン動翼1が変形したりする場合であっても、粘弾性ダンパ10が一定の形状を保持し、動的特性のばらつきを小さくすることができる。
このように、本実施の形態では、効果的に減衰効果を発揮することができるので、ガスタービン動翼1の振動強度に設計余裕を大きく取る必要がなくなるという利点がある。
In the turbine of the present embodiment, the viscoelastic damper 10 maintains a constant shape even when centrifugal force acts on the gas turbine rotor blade 1 or the gas turbine rotor blade 1 is deformed. Therefore, variation in dynamic characteristics can be reduced.
Thus, in this embodiment, since the damping effect can be effectively exhibited, there is an advantage that it is not necessary to take a large design margin for the vibration strength of the gas turbine rotor blade 1.

さらに、一対のガスタービン動翼1A、1B同士の間の距離が変動しても、粘弾性ダンパ10の粘弾性部材13が弾性変形することにより、その距離の変動に追従し、第1板部11及び第2板部12とガスタービン動翼1A、1Bとの当接した状態を保持することができるので、シール機能も確保することができる。   Furthermore, even if the distance between the pair of gas turbine rotor blades 1A and 1B varies, the viscoelastic member 13 of the viscoelastic damper 10 elastically deforms to follow the variation in the distance, and the first plate portion 11 and the second plate portion 12 and the gas turbine rotor blades 1A and 1B can be kept in contact with each other, and therefore a sealing function can be secured.

また、ガスタービン動翼1のプラットホーム4の一方の側面4aの凹溝41には、粘弾性ダンパ10の突形状部Tが係合し、粘弾性ダンパ10がガスタービン動翼1に対して拘束されるので、粘弾性ダンパ10の位置のずれを防止することができる。   Further, the protruding portion T of the viscoelastic damper 10 is engaged with the concave groove 41 on one side surface 4 a of the platform 4 of the gas turbine rotor blade 1, and the viscoelastic damper 10 is restrained with respect to the gas turbine rotor blade 1. Therefore, the position shift of the viscoelastic damper 10 can be prevented.

上述した本実施の形態による回転機械用減衰部材では、シール機能を確保しつつ、減衰性能を向上させることができ、ガスタービン動翼1A、1Bの振動を抑制することができる。   In the damping member for a rotating machine according to the above-described embodiment, the damping performance can be improved while ensuring the sealing function, and the vibration of the gas turbine rotor blades 1A and 1B can be suppressed.

次に、本発明の回転機械用減衰部材による他の実施の形態について、添付図面に基づいて説明するが、上述の第1の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第1の実施の形態と異なる構成について説明する。   Next, another embodiment of the damping member for a rotary machine according to the present invention will be described with reference to the accompanying drawings. The same reference numerals are used for the same or similar members and parts as those in the first embodiment. A description will be omitted, and a configuration different from that of the first embodiment will be described.

(第2の実施の形態)
図5乃至図7の符号6(6A、6B)は翼部5(5A、5B)の翼先端5aに設けられるインテグラルシュラウド(回転機械用部材)を示している。第2の実施の形態による回転機械用減衰部材は、隣接する翼部5A、5Bの翼先端5aに設けられるインテグラルシュラウド6A、6B同士の間の接触面(側面6a、6b)に粘弾性ダンパ30(減衰部材本体)を設けた構成である。つまり、粘弾性ダンパ30は、一対のインテグラルシュラウド6A、6Bに挟持されている。このインテグラルシュラウド6A、6Bは、ガスタービンの回転運動によって、ガスタービン動翼1とともに遠心力が作用している。
(Second Embodiment)
Reference numerals 6 (6A, 6B) in FIGS. 5 to 7 denote integral shrouds (rotary machine members) provided at the blade tips 5a of the blade portions 5 (5A, 5B). The damping member for a rotary machine according to the second embodiment has viscoelastic dampers on contact surfaces (side surfaces 6a and 6b) between the integral shrouds 6A and 6B provided at the blade tips 5a of the adjacent blade portions 5A and 5B. 30 (attenuation member main body) is provided. That is, the viscoelastic damper 30 is sandwiched between the pair of integral shrouds 6A and 6B. The integral shrouds 6A and 6B are subjected to centrifugal force together with the gas turbine rotor blade 1 by the rotational motion of the gas turbine.

図6及び図8に示すように、隙間S(図7参照)をあけて隣接する一方のインテグラルシュラウド6Aの一側面6a(回転軸の円周方向における一側面)には、粘弾性ダンパ30を収容する凹溝61が設けられている。この凹溝61は、上述した第1の実施の形態のプラットホーム4に設けられる凹溝41と寸法は異なるものの同様の形状であるので、詳しい説明は省略する。そして、インテグラルシュラウド6Aの他方の側面6bは、凹溝のない平坦面に形成されている。そして、粘弾性ダンパ30は、図8に示す上述した第1の実施の形態の粘弾性ダンパ10と同様であり、一対の第1板部31、第2板部32同士の間に粘弾性部材33が挟持された構成をなし、その形状は、前記凹溝61に係合可能な突形状(突形状部T)をなしている。   As shown in FIGS. 6 and 8, a viscoelastic damper 30 is provided on one side surface 6a (one side surface in the circumferential direction of the rotating shaft) of one of the integral shrouds 6A adjacent with a gap S (see FIG. 7). A recessed groove 61 is provided to accommodate the. The concave groove 61 has the same shape as the concave groove 41 provided in the platform 4 of the first embodiment described above, although the size is different, and detailed description thereof is omitted. The other side surface 6b of the integral shroud 6A is formed on a flat surface without a concave groove. The viscoelastic damper 30 is the same as the viscoelastic damper 10 of the first embodiment shown in FIG. 8, and a viscoelastic member is interposed between the pair of first plate portion 31 and second plate portion 32. 33 is sandwiched, and the shape thereof is a protruding shape (protruding shape portion T) that can be engaged with the concave groove 61.

第2の実施の形態では、タービン翼に変動力が作用した場合、粘弾性ダンパ30とインテグラルシュラウド6との間で滑り摩擦が生じる。さらに、上述した第1の実施の形態と同様に粘弾性ダンパ30の変形に伴い、粘弾性ダンパ30内の粘弾性部材13で内部減衰が生じ、運動エネルギーが内部の熱エネルギーに変換されることになる。
また、粘弾性ダンパ30を組み替えることで、減衰性能を調整することも可能である。
In the second embodiment, when a fluctuating force acts on the turbine blade, sliding friction occurs between the viscoelastic damper 30 and the integral shroud 6. Further, as in the first embodiment described above, accompanying the deformation of the viscoelastic damper 30, internal damping occurs in the viscoelastic member 13 in the viscoelastic damper 30, and kinetic energy is converted into internal thermal energy. become.
Further, the damping performance can be adjusted by rearranging the viscoelastic damper 30.

以上、本発明による回転機械用減衰部材の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although embodiment of the damping member for rotary machines by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.

例えば、本実施の形態では、回転機械用部材としてガスタービン動翼1やインテグラルシュラウド6を適用対象としているが、これに限定されることはなく、回転機械用部材であれば他の対象に適用することも可能である。   For example, in the present embodiment, the gas turbine rotor blade 1 and the integral shroud 6 are applied as the rotating machine member, but the present invention is not limited to this. It is also possible to apply.

また、第1板部11(31)及び第2板部12(32)のうち少なくとも一方と、回転機械用部材との間に上述した粘弾性部材とは別で粘弾性材料を設ける構成とすることも可能である、この場合、さらに減衰効果を高めることができる。   Moreover, it is set as the structure which provides a viscoelastic material separately from the viscoelastic member mentioned above between at least one among the 1st board part 11 (31) and the 2nd board part 12 (32), and the member for rotary machines. In this case, the attenuation effect can be further enhanced.

さらに、上述した実施の形態の粘弾性ダンパ10、30では、一層の粘弾性部材13、33が一対の第1板部11(31)、第2板部12(32)同士の間に挟持されているが、このような積層構造に制限されることはなく、例えば複数の粘弾性部材13と板部とが交互に積層された構造とすることも可能である。   Furthermore, in the viscoelastic dampers 10 and 30 according to the above-described embodiments, one layer of the viscoelastic members 13 and 33 is sandwiched between the pair of the first plate portion 11 (31) and the second plate portion 12 (32). However, the present invention is not limited to such a laminated structure, and for example, a structure in which a plurality of viscoelastic members 13 and plate portions are alternately laminated may be employed.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施の形態を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with well-known constituent elements without departing from the spirit of the present invention, and the above-described embodiments may be appropriately combined.

1、1A、1B ガスタービン動翼(回転機械用部材)
2 翼根
3 シャンク
4、4A、4B プラットホーム
4a、4b 側面
5、5A、5B 翼部
6、6A、6B インテグラルシュラウド(回転機械用部材)
6a、6b 側面
10、30 粘弾性ダンパ(減衰部材本体)
11、31 第1板部
12、32 第2板部
13、33 粘弾性部材
S 隙間
T 突形状部
1, 1A, 1B Gas turbine blade (member for rotating machinery)
2 Blade root 3 Shank 4, 4A, 4B Platform 4a, 4b Side surface 5, 5A, 5B Wing part 6, 6A, 6B Integral shroud (member for rotating machine)
6a, 6b Side surface 10, 30 Viscoelastic damper (damping member body)
11, 31 1st plate part 12, 32 2nd plate part 13, 33 Viscoelastic member S Crevice T Projection shape part

Claims (2)

相対振動する一対の回転機械用部材の間に配置される減衰部材本体を備え、
該減衰部材本体は、
一方の前記回転機械用部材に当接する第1板部と、
他方の前記回転機械用部材に当接する第2板部と、
これら第1板部及び第2板部の間に介在する粘弾性部材と、
を備えることを特徴とする回転機械用減衰部材。
A damping member body disposed between a pair of rotating machine members that vibrate relatively,
The damping member body is
A first plate portion in contact with one of the rotary machine members;
A second plate portion in contact with the other rotary machine member;
A viscoelastic member interposed between the first plate portion and the second plate portion;
A damping member for a rotating machine, comprising:
前記一対の回転機械用部材のうちいずれか一方には、前記減衰部材本体側の側面に凹溝が設けられ、
前記減衰部材本体は、その一部が前記凹溝に沿って折り曲げられた突形状をなしていることを特徴とする請求項1に記載の回転機械用減衰部材。
Either one of the pair of rotating machine members is provided with a concave groove on a side surface on the damping member main body side,
2. The damping member for a rotary machine according to claim 1, wherein a part of the damping member main body has a protruding shape bent along the concave groove.
JP2013038697A 2013-02-28 2013-02-28 Damping member for rotating machinery Expired - Fee Related JP6151932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038697A JP6151932B2 (en) 2013-02-28 2013-02-28 Damping member for rotating machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038697A JP6151932B2 (en) 2013-02-28 2013-02-28 Damping member for rotating machinery

Publications (2)

Publication Number Publication Date
JP2014167263A true JP2014167263A (en) 2014-09-11
JP6151932B2 JP6151932B2 (en) 2017-06-21

Family

ID=51617068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038697A Expired - Fee Related JP6151932B2 (en) 2013-02-28 2013-02-28 Damping member for rotating machinery

Country Status (1)

Country Link
JP (1) JP6151932B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145553A (en) * 2015-02-09 2016-08-12 三菱日立パワーシステムズ株式会社 Vibration reduction structure, rotor blade row, and rotary machine
KR20180053987A (en) * 2016-11-14 2018-05-24 두산중공업 주식회사 Structure for turbine's damper
WO2020252226A1 (en) * 2019-06-13 2020-12-17 The Regents Of The University Of Michigan Vibration absorber dampers for integrally bladed rotors and other cyclic symmetric structures
FR3126446A1 (en) * 2021-09-01 2023-03-03 Safran Aircraft Engines Deformable shock absorber for turbine engine moving wheel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040253115A1 (en) * 2003-06-10 2004-12-16 Rolls-Royce Plc Damped aerofoil structure
JP2005233141A (en) * 2004-02-23 2005-09-02 Mitsubishi Heavy Ind Ltd Moving blade and gas turbine using same
JP2005256786A (en) * 2004-03-12 2005-09-22 Mitsubishi Heavy Ind Ltd Rotary machine and coupling method for rotary machine
JP2008002460A (en) * 2006-06-23 2008-01-10 Snecma Sector of compressor guide vanes assembly or sector of turbomachine nozzle assembly
JP2011530038A (en) * 2008-08-06 2011-12-15 スネクマ Vibration damping device for turbomachine blade attachment, related turbomachine, and related engines
JP2011252468A (en) * 2010-06-04 2011-12-15 Hitachi Ltd Turbine moving blade
JP2012102659A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Moving blade body
JP2012107730A (en) * 2010-11-19 2012-06-07 Eagle Industry Co Ltd Sealing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040253115A1 (en) * 2003-06-10 2004-12-16 Rolls-Royce Plc Damped aerofoil structure
JP2005233141A (en) * 2004-02-23 2005-09-02 Mitsubishi Heavy Ind Ltd Moving blade and gas turbine using same
JP2005256786A (en) * 2004-03-12 2005-09-22 Mitsubishi Heavy Ind Ltd Rotary machine and coupling method for rotary machine
JP2008002460A (en) * 2006-06-23 2008-01-10 Snecma Sector of compressor guide vanes assembly or sector of turbomachine nozzle assembly
JP2011530038A (en) * 2008-08-06 2011-12-15 スネクマ Vibration damping device for turbomachine blade attachment, related turbomachine, and related engines
JP2011252468A (en) * 2010-06-04 2011-12-15 Hitachi Ltd Turbine moving blade
JP2012102659A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Moving blade body
JP2012107730A (en) * 2010-11-19 2012-06-07 Eagle Industry Co Ltd Sealing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145553A (en) * 2015-02-09 2016-08-12 三菱日立パワーシステムズ株式会社 Vibration reduction structure, rotor blade row, and rotary machine
KR20180053987A (en) * 2016-11-14 2018-05-24 두산중공업 주식회사 Structure for turbine's damper
KR101888262B1 (en) * 2016-11-14 2018-08-13 두산중공업 주식회사 Structure for turbine's damper
WO2020252226A1 (en) * 2019-06-13 2020-12-17 The Regents Of The University Of Michigan Vibration absorber dampers for integrally bladed rotors and other cyclic symmetric structures
US11391175B2 (en) 2019-06-13 2022-07-19 The Regents Of The University Of Michigan Vibration absorber dampers for integrally bladed rotors and other cyclic symmetric structures
FR3126446A1 (en) * 2021-09-01 2023-03-03 Safran Aircraft Engines Deformable shock absorber for turbine engine moving wheel
WO2023031556A1 (en) * 2021-09-01 2023-03-09 Safran Aircraft Engines Damping device for a rotor wheel of an aircraft turbine engine, rotor wheel for an aircraft turbine engine, turbine engine for an aircraft, and method for manufacturing a damping device

Also Published As

Publication number Publication date
JP6151932B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
KR101271363B1 (en) Turbine blade and gas turbine
JP5543032B2 (en) Blade arrangement and gas turbine having the blade arrangement
US7481614B2 (en) Moving blade and gas turbine using the same
JP5965616B2 (en) Turbine blade combination damper and seal pin and related methods
JP5329334B2 (en) Vibration damper
JP6827736B2 (en) Damper pins for turbine blades
JP6151932B2 (en) Damping member for rotating machinery
JP2013151936A (en) Retrofittable interstage angled seal
JP2017048791A (en) Damper pin for damping adjacent turbine blades
JP5675282B2 (en) Rotor body and rotating machine
JP2017053346A (en) Damper pin for turbine blades
JP5863894B2 (en) Rotor body and rotating machine
JP6272044B2 (en) Rotor body seal structure, rotor body and rotating machine
JP6278448B2 (en) Liquid damper and rotary machine blade provided with the same
JP6270531B2 (en) Rotor body and rotating machine
JP2017082758A (en) Slotted damper pin for turbine blade
JP5501609B2 (en) Turbine blade and gas turbine
JP6177142B2 (en) Vibration suppression device and turbine
JP5501610B2 (en) Turbine blade and gas turbine
JP6138468B2 (en) Blade vibration damping structure
JP5501611B2 (en) Turbine blade and gas turbine
JP6256836B2 (en) Rotating machine blade and rotating machine
KR101187893B1 (en) Air foil bearing
JP6430459B2 (en) Turbine sealing structure
KR20080089838A (en) Air foil bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170526

R150 Certificate of patent or registration of utility model

Ref document number: 6151932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees