JP2014167113A - Method of producing composite material - Google Patents

Method of producing composite material Download PDF

Info

Publication number
JP2014167113A
JP2014167113A JP2014037390A JP2014037390A JP2014167113A JP 2014167113 A JP2014167113 A JP 2014167113A JP 2014037390 A JP2014037390 A JP 2014037390A JP 2014037390 A JP2014037390 A JP 2014037390A JP 2014167113 A JP2014167113 A JP 2014167113A
Authority
JP
Japan
Prior art keywords
polymer
aryl
group
mixture
ionomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014037390A
Other languages
Japanese (ja)
Inventor
Jochen Kerres
ケレス ヨヘン
Thomas Haering
へーリング トーマス
Rima Haering
へーリング リマ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2014167113A publication Critical patent/JP2014167113A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • B01J31/1633Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups covalent linkages via silicon containing groups
    • B01J35/59
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/06Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels
    • B60T1/065Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels employing disc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/24Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
    • F16D55/26Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
    • F16D55/36Brakes with a plurality of rotating discs all lying side by side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/24Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
    • F16D55/26Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
    • F16D55/36Brakes with a plurality of rotating discs all lying side by side
    • F16D55/40Brakes with a plurality of rotating discs all lying side by side actuated by a fluid-pressure device arranged in or one the brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/04Bands, shoes or pads; Pivots or supporting members therefor
    • F16D65/092Bands, shoes or pads; Pivots or supporting members therefor for axially-engaging brakes, e.g. disc brakes
    • F16D65/095Pivots or supporting members therefor
    • F16D65/097Resilient means interposed between pads and supporting members or other brake parts
    • F16D65/0973Resilient means interposed between pads and supporting members or other brake parts not subjected to brake forces
    • F16D65/0974Resilient means interposed between pads and supporting members or other brake parts not subjected to brake forces acting on or in the vicinity of the pad rim in a direction substantially transverse to the brake disc axis
    • F16D65/0977Springs made from sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/18Membrane materials having mixed charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/02Polysilicates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D2055/0004Parts or details of disc brakes
    • F16D2055/0008Brake supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D2055/0004Parts or details of disc brakes
    • F16D2055/0062Partly lined, i.e. braking surface extending over only a part of the disc circumference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D2055/0075Constructional features of axially engaged brakes
    • F16D2055/0091Plural actuators arranged side by side on the same side of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/1316Structure radially segmented
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/134Connection
    • F16D2065/1348Connection resilient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/134Connection
    • F16D2065/1356Connection interlocking
    • F16D2065/1368Connection interlocking with relative movement both radially and axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/134Connection
    • F16D2065/1392Connection elements
    • F16D2065/1396Ancillary resilient elements, e.g. anti-rattle or retraction springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/20Electric or magnetic using electromagnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249969Of silicon-containing material [e.g., glass, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Transportation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite material which has expansibility and a high ion conductivity, especially proton conductivity, even when the operation temperature of an electrochemical cell is set to be higher than 100°C and is used in e.g. membrane fuel cells.SOLUTION: A method of producing a composite material composed of an ionomer and laminar or network functionalized silicates. The ionomer is a polymer consisting of (a) a cation exchange polymer, (b) an anion exchange polymer, (c) a polymer having both cation exchange groups and anion exchange groups in polymer chains or (d) a mixture of (a) and (b) in a mixing ratio of 100% (a) and 100% (b), with the mixture crosslinked ionically and optionally covalently.

Description

アイオノマー膜は、例えば膜燃料電池、電気透析、拡散透析、電気分解(PEM電気分解、塩素アルカリ電気分解)または電気化学処理等の多くの処理に用いられている。しかし、市販の膜には、100℃より高い温度領域においてほとんどの場合膜が乾燥してしまうためにプロトン伝導性が急激に低下するという欠点がある。しかし、100℃より高い温度では燃料電池の温度制御が非常に単純になり、かつ燃料電池反応の触媒が本質的に向上する(触媒に有害となり得る、過電圧が減少し、COの付着がない)ので、100℃より高い温度領域は、アイオノマー膜を用いた燃料電池にとって非常に興味深い。   Ionomer membranes are used in many processes such as membrane fuel cells, electrodialysis, diffusion dialysis, electrolysis (PEM electrolysis, chlor-alkali electrolysis) or electrochemical processes. However, commercially available membranes have the disadvantage that proton conductivity is drastically reduced because the membranes are almost always dried in the temperature range higher than 100 ° C. However, at temperatures higher than 100 ° C., the temperature control of the fuel cell becomes very simple and the catalyst of the fuel cell reaction is essentially improved (it can be harmful to the catalyst, the overvoltage is reduced and there is no CO adhesion) Therefore, the temperature range higher than 100 ° C. is very interesting for a fuel cell using an ionomer membrane.

例えばカルボニル−1,4−フェニレンオキシフェニル−4−スルホン酸端基を有するポリフェニレン等の、100℃より高い温度で良プロトン伝導性を示す膜のわずかな例が、文献から知られている。しかし、これらの膜のプロトン伝導性も130℃より高い温度で急激に低下するし、100℃と130℃との間では良プロトン伝導性である理由も不明である。   Only a few examples of membranes exhibiting good proton conductivity at temperatures above 100 ° C., such as polyphenylene with carbonyl-1,4-phenyleneoxyphenyl-4-sulfonic acid end groups, are known from the literature. However, the proton conductivity of these membranes also drops rapidly at temperatures higher than 130 ° C., and the reason for good proton conductivity between 100 ° C. and 130 ° C. is unknown.

グロットサス(Grotthus)機構に基づき、プロトンの伝導は酸性溶媒中ではプロトンに、アルカリ性溶液中では水酸化イオンに荷電粒子として現れる。実際に電荷の移送を可能にする水素結合が架橋構造として存在する。すなわち、膜中に存在する水が電荷の移送を補助する役割を果す。これらの市販の膜中にこの補助的水がなければ、膜を通した電荷の移送がほとんど発生せず、その機能を失う。フッ素化炭化水素骨格鎖の代わりにリン酸骨格鎖と共に働く、他の新たに開発された方法も補助的架橋形成体として水を必要とする(Altertiら、SSPC9、ブレド、スロベニア、1998年8月17〜21日、拡張要旨集、235頁)。微小なSiO粒子をo.g.膜に付加することにより(Antonucciら、SSPC9、ブレド、スロベニア、1998年8月17〜21日、拡張要旨集、187頁)、プロトンの伝導は140℃まで安定になるが、しかし4.5バールの作動圧力条件下に限られる。作動圧力を上げなければ、やはりこれらの膜は100℃より高い温度で水の架橋を失い、乾燥してしまう。すべてのo.g.膜型の本質的欠点は、最適作動条件下においてさえも最大100℃までの温度での使用にしか適していないという点である。 Based on the Grotthus mechanism, proton conduction appears as protons in acidic solvents and as protons in hydroxide ions in alkaline solutions. In fact, hydrogen bonds that allow charge transport exist as a cross-linked structure. That is, the water present in the membrane plays a role of assisting the charge transfer. Without this auxiliary water in these commercially available membranes, little charge transfer through the membrane occurs and its function is lost. Other newly developed methods that work with phosphate backbones instead of fluorinated hydrocarbon backbones also require water as an auxiliary cross-linker (Alterti et al., SSPC9, Bredo, Slovenia, August 1998). 17-21 days, extended abstracts, p. 235). By adding fine SiO 2 particles to the og membrane (Antonucci et al., SSPC9, Bled, Slovenia, Aug. 17-21, 1998, Extended Abstracts, page 187), proton conduction is stabilized to 140 ° C. But only under operating pressure conditions of 4.5 bar. If the operating pressure is not increased, again these membranes lose water crosslinks at temperatures above 100 ° C. and dry. The essential disadvantage of all og membrane types is that they are only suitable for use at temperatures up to 100 ° C. even under optimal operating conditions.

前記の方法と同様に、Dentonら(米国特許第6,042,958号)は、イオン伝導性ポリマーの複合体および多空孔質基材を作った。ガラス、セラミック材料またはシリカをケイ酸成分として用いた。開示した実施例において、作動温度に関しては、ここでもやはり80℃を超えなかった。   Similar to the method described above, Denton et al. (US Pat. No. 6,042,958) made a composite of ion conducting polymer and a multi-porous substrate. Glass, ceramic material or silica was used as the silicic acid component. In the disclosed examples, the operating temperature again did not exceed 80 ° C.

直接メタノール燃料電池において、水は実際には十分に存在するが、しかし膜を通してメタノールを流すことは著しい能力低下に繋がる。   In direct methanol fuel cells, water is in fact sufficient, but flowing methanol through the membrane leads to a significant loss of capacity.

スルホン化ポリアリールエーテルエーテルケトン膜(欧州特許第0574791B1号)またはスルホン化ポリエーテルスルホン膜とシリカとの新たな複合体が作られたが、1.5(meq/g)もの陽イオン交換容量で膜を流れ、強すぎるので最終的には膜が破壊される。   A new composite of sulfonated polyaryletheretherketone membrane (European Patent No. 0574791B1) or sulfonated polyethersulfone membrane and silica has been made, but with a cation exchange capacity of 1.5 (meq / g) It flows through the membrane and is too strong, so the membrane is eventually destroyed.

この発明に好適な複合体およびそれから作られた膜の利点は、プロトン化窒素塩基がポリマー骨格の1つに存在する場合、有機成分を貯蔵すること、特には架橋構成成分の代表であるプロトン化窒素塩基を層状ケイ酸塩の空孔中へ貯蔵することである。さらに、陽イオンまたは金属水酸化物を意図的に貯蔵し、続いて対応する金属酸化物変換することにより、ルイス酸の特性および膜の空孔の大きさを広範に変えることができる。層状ケイ酸塩をさらに官能化して、組み込まれたアイオノマーと相互作用するか、または官能基にしたがって周囲の媒体に影響を及ぼすかのいずれかとなる。   The advantages of the composites and membranes made therefrom suitable for this invention are that, when a protonated nitrogen base is present in one of the polymer backbones, it stores organic components, in particular protonation that is representative of cross-linking components. Nitrogen base is stored in the pores of the layered silicate. Furthermore, the intentional storage of cations or metal hydroxides, followed by corresponding metal oxide conversion, can vary the properties of the Lewis acid and the size of the pores of the membrane extensively. The layered silicate can be further functionalized to either interact with the incorporated ionomer or affect the surrounding medium according to the functional group.

層状ケイ酸塩(粘土鉱物)は興味深い性質を有する。
・250℃まで水和水を保有した状態にある。
・さらに金属陽イオンおよび金属酸化物をこれらの物質中に貯蔵することが可能であり、これにより内部プロトン伝導性が次の一般系のように引き起こされる。
n+(HO)−>(M−OH)(n−1)++H[有機反応におけるゼオライト、粘土およびヘテロポリ酸( Zeolite, clay and hereropoly acid in organic reactions)、Y.イズミ、K.ウラベ、M.オナカ、1992年、ワインハイム、VCH出版、26頁]。
・ルイス酸空孔を示す層状ケイ酸塩を、塩基ポリマーの塩基基と酸−塩基相互作用によりインターカレートする(interkalieren)ことができる[プラスチックナノ複合材、シンポジウム:発明から革新へ、1998年5月6日ケルンにおける化学工業基金シンポジウム用出版物、(Kunststoffnanokomposite, Symposium:Von derInvention zur Innovation, Publikationzum Symposium des Fonds der Chemishen Industrieam 6. Mai 1998 in Koln)]。この性質により、ある種の層状ケイ酸塩/ポリマー複合材が既に合成されている。したがって、Muhlhauptらがモンモリロナイトとポリプロピレン、モンモリロナイトとポリアミド、およびモンモリロナイトとプレキシガラスの複合材を作っている。これらの複合材により、例えばプレキシガラスはモンモリロナイトとの混合物によって不燃性となる。混合された層状ケイ酸塩が燃焼により発生した熱分解ガスに対するバリアとなるからである。
Layered silicates (clay minerals) have interesting properties.
・ Hydrogen water is retained up to 250 ℃.
It is also possible to store metal cations and metal oxides in these substances, thereby causing internal proton conductivity as in the following general system:
M n + (H 2 O)-> (M-OH) (n-1) + + H + [Zeolite, clay and hereropoly acid in organic reactions, Y. Izumi, K. Urabe, M.M. Onaka, 1992, Weinheim, VCH Publishing, page 26].
・ Layered silicates showing Lewis acid vacancies can be intercalated by base groups and acid-base interactions of base polymers [Plastic nanocomposites, Symposium: From invention to innovation, 1998 Publication for the Symposium on Chemical Industry Fund in Cologne, May 6 (Kunststoffnanokomposite, Symposium: Von der Invention zur Innovation, Publikationzum Symposium des Fonds der Chemishen Industrieam 6. Mai 1998 in Koln)]. Due to this property, certain layered silicate / polymer composites have already been synthesized. Therefore, Muhlhaupt et al. Make composites of montmorillonite and polypropylene, montmorillonite and polyamide, and montmorillonite and plexiglass. With these composites, for example, plexiglass becomes nonflammable by a mixture with montmorillonite. This is because the mixed layered silicate serves as a barrier against the pyrolysis gas generated by combustion.

こうした技術状況を出発点として、本発明の課題は、膨張性(Quellung)を備えると同時に電気化学セルの作動温度を100℃より高くした場合にも、イオン導電性(特にはプロトン伝導性)の高い複合体を提供することである。したがって、本発明の目的は、酸および/または有機塩基と層状ケイ酸塩とを有するイオン伝導複合体であって、その組成が酸−塩基の割合を1乃至99重量%とし、層状ケイ酸塩を99乃至1重量%とすることを特徴とする。   With such a technical situation as a starting point, the object of the present invention is to provide ionic conductivity (particularly proton conductivity) even when the operation temperature of the electrochemical cell is higher than 100 ° C. It is to provide a high complex. Accordingly, an object of the present invention is an ion-conducting complex having an acid and / or organic base and a layered silicate, the composition of which is an acid-base ratio of 1 to 99% by weight, and the layered silicate Is 99 to 1% by weight.

本発明の複合体および複合膜の一例を説明するための図である。It is a figure for demonstrating an example of the composite_body | complex and composite film of this invention.

(a) 酸を陽イオン交換ポリマー(陽イオン交換基−SOH、−COOH、−POを有し、該ポリマーを前記陽イオン交換基の何れか、または前記陽イオン交換基の混合物のみで修飾可能なもの)とすることができる。この場合、該ポリマーは架橋を形成しないかまたは共有的に架橋を形成し得る。一般に、イオン交換容量は、0.1乃至12ミリ当量/gが好ましい。特には0.3乃至8ミリ当量/gが好ましい。さらには0.5乃至2ミリ当量/gが好ましい。ここで、骨格鎖として特に好適なのは熱可塑樹脂である。 (A) a cation exchange polymer (having a cation exchange group —SO 3 H, —COOH, —PO 3 H 2 ), and the polymer is either one of the cation exchange groups or the cation exchange groups; It can be modified only with a mixture). In this case, the polymer may not form a crosslink or may form a crosslink covalently. In general, the ion exchange capacity is preferably 0.1 to 12 meq / g. In particular, 0.3 to 8 meq / g is preferable. Furthermore, 0.5 to 2 meq / g is preferable. Here, a thermoplastic resin is particularly suitable as the skeleton chain.

(b) 酸を有機または無機の低分子酸とすることもできる。無機酸としては、特に硫酸およびリン酸が好ましい。有機酸としては、スルホン酸またはカルボン酸の全ての低分子酸、特にはアミノスルホン酸およびその前駆体としてアミノスルホ塩化物を用いることができる。 (B) The acid may be an organic or inorganic low molecular acid. As the inorganic acid, sulfuric acid and phosphoric acid are particularly preferable. As the organic acid, all low-molecular acids of sulfonic acid or carboxylic acid, particularly aminosulfonic acid and aminosulfochloride as a precursor thereof can be used.

(c) 塩基を陰イオン交換ポリマー(陰イオン交換基−NR (R=H、アルキル、アリール)、ピリジニウムPyrR、イミダゾリウム ImR、ピラゾリウムPyrazR、トリアゾリウム TriRおよび他の有機塩基芳香および/または非芳香族(R=H、アルキル、アリール)を有し、該ポリマーを前記陰イオン交換基の何れか、または前記陰イオン交換基の混合物のみで修飾可能もの)とすることができる。この場合、該ポリマーは架橋を形成しないかまたは共有的に架橋を形成し得る。この場合、陰イオン交換容量は、一般に、1乃至15ミリ当量/gが好ましい。特には3乃至12ミリ当量/gが好ましく、さらには6乃至10ミリ当量/gが好ましい。この場合も骨格鎖としては全ての熱可塑樹脂、特にはポリスルホン、ポリエーテルエーテルケトン、ポリベンズイミダゾールおよびポリビニルピリジンが好ましい。 (C) a base as an anion exchange polymer (anion exchange group —NR 3 + (R═H, alkyl, aryl), pyridinium PyrR + , imidazolium ImR + , pyrazolium PyrazR + , triazolium TriR + and other organic base aromas And / or non-aromatic (R = H, alkyl, aryl), and the polymer can be modified with any of the anion exchange groups or a mixture of the anion exchange groups alone. . In this case, the polymer may not form a crosslink or may form a crosslink covalently. In this case, the anion exchange capacity is generally preferably 1 to 15 meq / g. In particular, 3 to 12 meq / g is preferable, and 6 to 10 meq / g is more preferable. In this case as well, all thermoplastic resins, particularly polysulfone, polyetheretherketone, polybenzimidazole and polyvinylpyridine are preferred as the skeleton chain.

(d) 塩基を有機または無機の低分子塩基とすることができる。有機低分子塩基としては、全てのグアニジン誘導体が特に好ましい。 (D) The base can be an organic or inorganic low molecular weight base. As the organic low molecular base, all guanidine derivatives are particularly preferable.

(e) 酸および塩基の官能基を同一分子内に存在させることができる。これらの分子を低分子または高分子とすることができる。それがポリマーの場合には、(c)の陰イオン交換基と(a)の陽イオン交換基の両方がポリマー鎖上に存在する。 (E) Acid and base functional groups can be present in the same molecule. These molecules can be small molecules or polymers. If it is a polymer, both the anion exchange group of (c) and the cation exchange group of (a) are present on the polymer chain.

(f) 前記(a)乃至(e)の酸および塩基を複合体中で混合することができる。この場合、あらゆる混合比を適用することができる。この場合、この混合にはイオン的架橋に加えて共有的に架橋を形成することができる。 (F) The acid and base of (a) to (e) can be mixed in the complex. In this case, any mixing ratio can be applied. In this case, this mixing can form a crosslink covalently in addition to the ionic crosslink.

(g) 酸も塩基も低分子であるので、非修飾ポリマーもさらに複合体中に含まれる。 (G) Since both acids and bases are small molecules, unmodified polymers are further included in the complex.

(h) 無機活性充填材は、モンモリロナイト、スメクタイト、イライト、セピオライト、パリゴルスカイト、マスコバイト、アレファダイト(Allevardit)、アメサイト、ヘクトライト、タルク、フッ化ヘクトライト、サポナイト、バイデライト、ノントロナイト、スティーブンサイト、ベントナイト、雲母、バーミキュライト、フッ化バーミキュライト、ハロイサイト、フッ素含有合成タルカムパウダーに基づく層状ケイ酸塩または前記層状ケイ酸塩の2以上の混合物である。層状ケイ酸塩を層剥離化(delaminiert)またはピラー化(pillartiert)することができる。特にはモンモリロナイトが好ましい。層状ケイ酸塩の重量比を1乃至80%、好ましくは2乃至30重量%、および特には5乃至20重量%とすることができる。 (H) Inorganic active fillers are montmorillonite, smectite, illite, sepiolite, palygorskite, mascobite, allefardite, amesite, hectorite, talc, fluorinated hectorite, saponite, beidellite, nontronite, stevensite. , Bentonite, mica, vermiculite, vermiculite fluoride, halloysite, layered silicate based on fluorine-containing synthetic talcum powder, or a mixture of two or more of the above layered silicates. The layered silicate can be delaminiert or pillared. Montmorillonite is particularly preferable. The weight ratio of the layered silicate can be 1 to 80%, preferably 2 to 30% by weight and in particular 5 to 20% by weight.

(官能化した層状ケイ酸塩の説明)
層状ケイ酸塩の下には、SiO四面体が2次元の無限の架橋で結び付けられた一般的なケイ酸塩が見られる。(陰イオンに対する実験式は(Si 2−である。)個々の層はその間にある陽イオンにより互いに結合している。その際、天然に存在する層状ケイ酸塩中では陽イオンの大部分はNa、K、Mg、Alおよび/またはCaである。
(Description of functionalized layered silicate)
Below the layered silicate is a common silicate in which the SiO 4 tetrahedra are connected by two-dimensional infinite cross-linking. (The empirical formula for anions is (Si 2 O 5 2− ) n .) The individual layers are bonded to one another by cations in between. In that case, most of the cations in the naturally occurring layered silicate are Na, K, Mg, Al and / or Ca.

層剥離した官能化層状ケイ酸塩の下には、いわゆる官能化剤(Funktionalisierungsmitteln)を用いた転換により隣接する層間距離が広がった層状ケイ酸塩が見られる。層間剥離したケイ酸塩の層厚は、通常5乃至100オングストローム、好ましくは5乃至50オングストロームおよび特には8乃至20オングストロームである。層間距離を広げる(疎水化する)ために、層状ケイ酸塩を(本発明に好適な複合物を作る前に)いわゆる官能疎水化剤により転換する。これはしばしばオニウムイオンまたはオニウム塩とも呼ばれる。
層状ケイ酸塩の陽イオンを有機官能化疎水化剤により転換して、層状ケイ酸塩を直接組み込むそれぞれの官能化された分子またはポリマーの型に応じて、有機残基の型により所望の層間距離が得られることができる。金属イオンの交換を完全にまたは部分的に起こすことができる。好ましくは金属イオンの交換を完全にする。交換可能な金属イオンの量を通常層状ケイ酸塩1gに対するミリ当量(meq)で表し、これをイオン交換容量と呼ぶ。層状ケイ酸塩の陽イオン交換容量は少なくとも0.5であることが好ましく、さらに好ましくは0.8乃至1.3meq/gである。
Underneath the delaminated functionalized layered silicates, layered silicates can be seen in which the distance between adjacent layers is increased by conversion with a so-called functionalizing agent (Funktionalisierungsmitteln). The layer thickness of the delaminated silicate is usually 5 to 100 angstroms, preferably 5 to 50 angstroms and in particular 8 to 20 angstroms. In order to increase the interlaminar distance (hydrophobize), the layered silicate is converted with a so-called functional hydrophobizing agent (before making the composite suitable for the present invention). This is often called an onium ion or onium salt.
Depending on the type of each functionalized molecule or polymer that directly incorporates the layered silicate, the layered silicate cation is converted with an organic functionalized hydrophobizing agent, depending on the type of organic residue desired A distance can be obtained. The exchange of metal ions can occur completely or partially. Preferably, the exchange of metal ions is complete. The amount of exchangeable metal ions is usually expressed in milliequivalents (meq) per 1 g of layered silicate, and this is called the ion exchange capacity. The cation exchange capacity of the layered silicate is preferably at least 0.5, more preferably 0.8 to 1.3 meq / g.

好適な有機官能疎水化剤は、1つまたは複数の有機残基を有するオキソニウム、アンモニウム、ホスホニウムおよびスルホニウムイオンから誘導される。好適な官能疎水化剤としては、一般式Iおよび/またはIIが挙げられる。
ここで、置換基は以下の特徴を有する。
R1、R2、R3、R4は、互いに異なる水素または直鎖、分岐鎖、飽和もしくは不飽和の、1乃至40個、好ましくは1乃至20個の炭素原子を有する炭化水素であり、場合によっては少なくとも1つの官能基を有するか、または2つの残基が互いに結合しており、好ましくは5乃至10個の炭素原子を有し、特には1つまたは複数の窒素原子を有する複素環式残基であり、Xはリンまたは窒素であり、Yは酸素または硫黄であり、nは1乃至5、好ましくは1乃至3のいずれかの整数であり、かつZは1つの陰イオンである。
好適な官能基はヒドロキシル、ニトロまたはスルホ基であり、ここでカルボキシルおよびスルホン酸基が特に好ましい。同様に、スルホ塩化物およびカルボン酸塩化物が特に好ましい。
Suitable organofunctional hydrophobizing agents are derived from oxonium, ammonium, phosphonium and sulfonium ions having one or more organic residues. Suitable functional hydrophobizing agents include general formulas I and / or II.
Here, the substituent has the following characteristics.
R 1, R 2, R 3, R 4 are different hydrogens or linear, branched, saturated or unsaturated hydrocarbons having 1 to 40, preferably 1 to 20 carbon atoms, optionally at least In heterocyclic residues having one functional group or two residues bonded to each other, preferably having 5 to 10 carbon atoms, in particular having one or more nitrogen atoms X is phosphorus or nitrogen, Y is oxygen or sulfur, n is an integer from 1 to 5, preferably 1 to 3, and Z is one anion.
Suitable functional groups are hydroxyl, nitro or sulfo groups, where carboxyl and sulfonic acid groups are particularly preferred. Likewise, sulfochlorides and carboxylic acid chlorides are particularly preferred.

好適な陰イオンZは、プロトンを供給する酸、特には無機酸であり、塩素、臭素、フッ素、ヨウ素等のハロゲン、スルフェート、スルホネート、ホスフェート、ホスホネート、ホスファイトおよびカルボキシレート、特にはアセテートが好ましい。基材として用いられる層状ケイ酸塩は、通常懸濁液の状態に変換される。好ましい懸濁剤は水であり、場合によってはアルコールとの混合物、特には1乃至3個の炭素分子を有する低級アルコールとの混合物である。官能疎水化剤は非水溶性であるので、それを溶解する溶媒が好ましい。特には非プロトン性溶媒である。懸濁剤の更なる例としては、ケトンおよび炭化水素である。通常、水混和性の懸濁剤が好ましい。疎水化剤を層状ケイ酸塩に添加してイオン交換を起こし、それにより層状ケイ酸塩の沈降を防ぐ。イオン交換の副産物として生じる金属塩は好ましくは水溶性であり、したがって結晶固体物質として疎水性層状ケイ酸塩を例えばろ過により分離することができる。イオン交換は反応温度と大幅に独立している。この温度は媒体の結晶化温度より高く、沸点より低いことが望ましい。水系であるので、この温度は0乃至100℃、好ましくは40乃至80℃である。   Preferred anions Z are proton supplying acids, especially inorganic acids, halogens such as chlorine, bromine, fluorine, iodine, sulfates, sulfonates, phosphates, phosphonates, phosphites and carboxylates, especially acetates. . The layered silicate used as a substrate is usually converted into a suspension state. A preferred suspending agent is water, optionally a mixture with an alcohol, in particular with a lower alcohol having 1 to 3 carbon molecules. Since the functional hydrophobizing agent is insoluble in water, a solvent that dissolves it is preferred. In particular, it is an aprotic solvent. Further examples of suspending agents are ketones and hydrocarbons. Usually, a water miscible suspension is preferred. A hydrophobizing agent is added to the layered silicate to cause ion exchange, thereby preventing sedimentation of the layered silicate. The metal salt produced as a by-product of ion exchange is preferably water-soluble, so that the hydrophobic layered silicate as a crystalline solid material can be separated, for example, by filtration. Ion exchange is largely independent of reaction temperature. This temperature is preferably higher than the crystallization temperature of the medium and lower than the boiling point. Since it is aqueous, this temperature is 0 to 100 ° C., preferably 40 to 80 ° C.

陽イオンおよび陰イオン交換ポリマーに対してはアルキルアンモニウムイオンが好ましく、特にカルボン酸塩化物またはスルホン酸塩化物がさらに同じ分子内に官能基として存在する場合に好ましい。アルキルアンモニウムイオンは、市販のヨウ化メチル等の通常のメチル化剤全般である。好適なアンモニウムイオンは、オメガ−アミノカルボン酸であり、特にオメガ−アミノスルホン酸およびオメガ−アルキルアミノスルホン酸が好ましい。オメガ−アミノスルホン酸およびオメガ−アルキルアミノスルホン酸は例えば塩酸、硫酸またはリン酸等の通常の無機酸と共に、またはヨウ化メチル等のメチル化剤から得ることができる。さらに好ましいアンモニウムイオンは、ピリジンおよびラウリルアンモニウムイオンである。疎水化の後、層状ケイ酸塩は通常層間距離が10乃至50オングストローム、好ましくは13乃至40オングストロームとなる。   For cation and anion exchange polymers, alkylammonium ions are preferred, especially when the carboxylic acid chloride or sulfonic acid chloride is further present as a functional group in the same molecule. Alkyl ammonium ions are general methylating agents such as commercially available methyl iodide. The preferred ammonium ions are omega-amino carboxylic acids, especially omega-amino sulfonic acids and omega-alkyl amino sulfonic acids. Omega-amino sulfonic acids and omega-alkyl amino sulfonic acids can be obtained with common inorganic acids such as hydrochloric acid, sulfuric acid or phosphoric acid, or from methylating agents such as methyl iodide. More preferred ammonium ions are pyridine and lauryl ammonium ions. After hydrophobization, the layered silicate usually has an interlayer distance of 10 to 50 angstroms, preferably 13 to 40 angstroms.

疎水化および官能化した層状ケイ酸塩を乾燥させて水を無くす。通常、このように処理した層状ケイ酸塩は、残留含水率0乃至5重量%の水を依然として含有する。次いで、疎水化層状ケイ酸塩を、最大限に乾燥した懸濁剤の懸濁物質として、前記ポリマーと混合し、さらに処理することができる。このポリマーは本発明に好適であり、特に疎水化層状ケイ酸の懸濁液に好適な熱可塑官能化ポリマー(アイオノマー)が得られる。これを既に溶解した形態とすることもできるし、または溶液中の懸濁物質自体にポリマーを入れてもよい。通常、層状ケイ酸塩の割合は、1乃至70重量%である。好ましくは2乃至40%であり、特には5乃至15重量%である。   The hydrophobized and functionalized layered silicate is dried to eliminate water. Usually, the layered silicates thus treated still contain water with a residual moisture content of 0 to 5% by weight. The hydrophobized layered silicate can then be mixed with the polymer and further processed as a suspension of maximally dry suspension. This polymer is suitable for the present invention, and a thermoplastic functionalized polymer (ionomer) suitable for a suspension of hydrophobized layered silicic acid is obtained. This can be in dissolved form or the polymer can be placed in the suspended material itself in solution. Usually, the proportion of layered silicate is 1 to 70% by weight. It is preferably 2 to 40%, particularly 5 to 15% by weight.

(複合体の製造方法)
本発明はさらに複合膜の製造方法に関する。以下にプロトン伝導性の高いプロトン導電性化合物の製造の一例を説明する。
(Production method of composite)
The invention further relates to a method for producing a composite membrane. An example of production of a proton conductive compound having high proton conductivity will be described below.

1) アミノアリールスルホクロライドをテトラヒドロフランに溶解する。その後、対応する量のモンモリロナイトK10を加える。モンモリロナイトをプロトン交換し、乾燥する。その後、数時間攪拌する。攪拌時間はアミノアリールスルホクロライドの分子の大きさおよびモンモリロナイトの陽イオン交換容量に対するアミノ基の比によって決まる。攪拌処理中に、アミノ基をモンモリロナイトの空孔にインターカレートする。ここで、懸濁液としてスルホ塩素化ポリスルホンをテトラヒドロフランに溶解する。熱可塑樹脂のスルホクロライド量は繰返し単位当たり約0.5基である。懸濁液を攪拌し、慎重に脱気し、ガラス板上にフィルムを形成する。室温でテトラヒドロフラン(THF)を蒸発させる。添加したスルホ塩素化ポリスルホンが5乃至10重量%となるようにモンモリロナイトの量を選択する。フィルムを完全に乾燥し、脱塩水中で剥離した後、10%塩酸中において90℃で後処理する。 1) Dissolve aminoarylsulfochloride in tetrahydrofuran. Thereafter, a corresponding amount of montmorillonite K10 is added. Montmorillonite is proton exchanged and dried. Then, it is stirred for several hours. The stirring time depends on the molecular size of aminoarylsulfochloride and the ratio of amino groups to the cation exchange capacity of montmorillonite. During the stirring process, amino groups are intercalated into montmorillonite vacancies. Here, the sulfochlorinated polysulfone is dissolved in tetrahydrofuran as a suspension. The amount of sulfochloride in the thermoplastic resin is about 0.5 groups per repeating unit. The suspension is stirred and carefully degassed to form a film on the glass plate. Tetrahydrofuran (THF) is evaporated at room temperature. The amount of montmorillonite is selected so that the added sulfochlorinated polysulfone is 5 to 10% by weight. The film is completely dried, peeled off in demineralized water and then post-treated at 90 ° C. in 10% hydrochloric acid.

この際、スルホクロライド基は加水分解され、スルホン酸基に変わる。得られた膜をさらに80乃至90℃の熱湯で後処理し、塩酸がもはや検出されないようにする。繰返し単位当たり0.5基のSOClを有するスルホ塩素化ポリスルホンは、加水分解後1.0ミリ当量/グラムの陽イオン交換容量に相当する。アミノアリールスルホクロライドからの付加スルホン酸基により、陽イオン交換容量がその量に応じて著しく上昇し、非水溶性となる。同じ陽イオン交換容量において、スルホン化ポリスルホンを除いて水溶性である。 At this time, the sulfochloride group is hydrolyzed and converted into a sulfonic acid group. The resulting membrane is further post-treated with hot water at 80-90 ° C. so that hydrochloric acid is no longer detected. A sulfochlorinated polysulfone having 0.5 SO 2 Cl per repeating unit corresponds to a cation exchange capacity of 1.0 meq / gram after hydrolysis. The added sulfonic acid group from the aminoarylsulfochloride significantly increases the cation exchange capacity depending on the amount and makes it water-insoluble. At the same cation exchange capacity, it is water soluble except for the sulfonated polysulfone.

2) 0.9ミリ当量/グラムの陽イオン交換容量(IEC)を有するスルホン化ポリエーテルエーテルケトンを高温(T>80℃)のN−メチルピロチドン(NMP)に溶解する。この成分をスルホ塩素化した形態はTHFに不溶である。高分子スルホン酸およびその塩は、THFに全くまたはほとんど不溶である。ここで、この溶液にアミノスルホン酸を積載したモンモリロナイトK10のNMP懸濁液を加える。スルホン酸基は表面付近にあり、一方アミノ基はモンモリロナイトの空孔内にある。固形分がポリマー量の2乃至20重量%となるように、懸濁液の組合せを再び選択する。これはどの使用範囲で膜が必要であるかにより決まる。80乃至150℃の温度で、膜を炉内で乾燥する。膜をガラス板から剥離し、脱塩水内で12時間90℃で後処理する。 2) Dissolve the sulfonated polyetheretherketone having a cation exchange capacity (IEC) of 0.9 meq / gram in N-methylpyrotidone (NMP) at high temperature (T> 80 ° C.). The sulfochlorinated form of this component is insoluble in THF. The polymeric sulfonic acid and its salts are completely or almost insoluble in THF. Here, an NMP suspension of montmorillonite K10 loaded with aminosulfonic acid is added to this solution. The sulfonic acid group is near the surface, while the amino group is in the pores of montmorillonite. The suspension combination is again selected so that the solids are between 2 and 20% by weight of the polymer amount. This depends on the range of use in which the membrane is required. The membrane is dried in an oven at a temperature of 80 to 150 ° C. The membrane is peeled from the glass plate and post-treated at 90 ° C. for 12 hours in demineralized water.

3)スルホ塩素化ポリスルホンおよびアミノ化ポリスルホンをTHFに溶解する。その後、10重量%のモンモリロナイトK10(乾燥しプロトン化した形態)を加える。懸濁液を攪拌し、脱気して前記の膜を得る。ガラス板から剥離した後、膜を希塩酸中で80℃で後処理する。この場合もスルホクロライド基はスルホン酸に加水分解される。次いで、膜をさらに脱塩水で処理して、膜から完全に塩酸を除去する。 3) Dissolve sulfochlorinated polysulfone and aminated polysulfone in THF. 10% by weight of montmorillonite K10 (dried and protonated form) is then added. The suspension is stirred and degassed to obtain the membrane. After peeling from the glass plate, the membrane is post-treated at 80 ° C. in dilute hydrochloric acid. Again, the sulfochloride group is hydrolyzed to sulfonic acid. The membrane is then further treated with demineralized water to completely remove hydrochloric acid from the membrane.

本発明による複合体の以下のような驚くべき特性が分かった。
・複合体は、100℃よりはるかに高い温度で非常に高いイオン導電性を示す。特に、この温度域においても複合体のプロトン伝導性は非常に良好である。これは、一方では粘土鉱物の保水特性に、他方では粘土鉱物の固有プロトン導電性に起因するものである。プロトン導電性が良好であることにより、この複合体を前記の温度域で燃料電池膜に適用することができる。
・空孔中でポリマー分子およびゼオライト等の粘土鉱物が相互に作用することができるので、空孔をケイ酸塩に設けることにより複合膜の化学的、機械的および熱的安定性が著しく向上する。特に、アイオノマー混合物を含有する塩基性ポリマーおよび塩基性ポリマー成分を、ケイ酸塩のルイス酸空孔中の塩基性基の相互作用によりインターカレートすることが可能である。これにより酸性ケイ酸塩と塩基性ポリマー鎖との間のイオン的架橋が形成され、これは系のpHに依存せず、特に複合膜が強酸または強塩基媒質中に置かれた場合、機械的、化学的および熱的安定性の向上に寄与する。
The following surprising properties of the composite according to the invention have been found:
The composite exhibits very high ionic conductivity at temperatures much higher than 100 ° C. In particular, even in this temperature range, the proton conductivity of the composite is very good. This is due to the water retention properties of the clay mineral on the one hand and to the intrinsic proton conductivity of the clay mineral on the other hand. Due to the good proton conductivity, this composite can be applied to the fuel cell membrane in the above temperature range.
・ Polymer molecules such as zeolite and clay minerals can interact with each other in the pores, so the chemical, mechanical and thermal stability of the composite membrane is significantly improved by providing pores in the silicate. . In particular, it is possible to intercalate the basic polymer and basic polymer component containing the ionomer mixture by the interaction of basic groups in the Lewis acid vacancies of the silicate. This forms an ionic bridge between the acid silicate and the basic polymer chain, which does not depend on the pH of the system, especially when the composite membrane is placed in a strong acid or base medium. Contributes to improving chemical and thermal stability.

・DMFCに適用すると、本発明に好適な複合膜は、膜に対するメタノール浸透性およびガス拡散性が低下する。この際、次のようにして膜のメタノール透過性および選択透過性を意図的に調整することができる。
・層状−/網状ケイ酸塩の型。
・複合体中のケイ酸塩の重量割合。
・ケイ酸塩の空孔中へのスペーサー分子(Spacermolekulen)および二官能分子の意図的導入。この際、スペーサー分子と透過分子との相互作用の型および強度は、膜の露出している官能基と透過分子の官能基の型によって決まる。ベントナイト表面上のアルカリベントナイトに対する交換において、例えばアミノスルホン酸またはアミノカルボン酸とアミン官能物(Aminfunktion)を組み合わせる。第2官能基は、ポリマーとの反応またはプロトン移送電気膜法に使用可能である。
-When applied to DMFC, the composite membrane suitable for the present invention has reduced methanol permeability and gas diffusibility to the membrane. At this time, methanol permeability and selective permeability of the membrane can be intentionally adjusted as follows.
Layered- / reticulated silicate type.
The weight percentage of silicate in the complex.
Intentional introduction of spacer molecules and bifunctional molecules into silicate vacancies. At this time, the type and strength of the interaction between the spacer molecule and the permeable molecule are determined by the type of the functional group exposed in the membrane and the type of the functional group of the permeable molecule. In exchange for alkali bentonite on the bentonite surface, for example, amino sulfonic acid or amino carboxylic acid and an amine function (Aminfunktion) are combined. The second functional group can be used in a reaction with a polymer or a proton transfer electromembrane method.

・本発明に好適な膜は、従来のアイオノマー膜に比べて、付着物(菌類および細菌によるアイオノマー膜の微生物的腐食)が非常に少なく、アイオノマー膜中のケイ酸塩(モンモリロナイト)の2乃至5重量%である。複合体に混合した粘土鉱物がこの原因である。微生物分解、特に菌類による分解を非常に遅延させることで、粘土鉱物が土壌改良剤として作用することは、すでに長年にわたり知られている。驚くべきことに、粘土鉱物のこの特性は粘土鉱物含有膜にも効果を発揮する。本発明に好適な複合物のこの特性により、水処理および廃水処理分野における膜分離技術、およびいかなる酸化環境、例えばヒドロキシラジカルおよび/または過酸化水素を含有する環境にも適用が可能となる。
・本発明に好適な粘土鉱物を構成するシリカ化合(silicatischen)ルイス酸の触媒特性を本発明に好適な複合物にも用いることができる。
The membrane suitable for the present invention has very little deposits (microbial corrosion of the ionomer membrane by fungi and bacteria) compared to the conventional ionomer membrane, and 2 to 5 of silicate (montmorillonite) in the ionomer membrane. % By weight. This is caused by clay minerals mixed in the composite. It has already been known for many years that clay minerals act as soil conditioners by delaying microbial degradation, in particular by fungi. Surprisingly, this property of clay minerals also works for clay mineral-containing films. This property of the composite suitable for the present invention allows it to be applied to membrane separation techniques in the water treatment and wastewater treatment field and to any oxidizing environment, for example an environment containing hydroxy radicals and / or hydrogen peroxide.
The catalytic properties of the silica compound Lewis acid that constitutes the clay mineral suitable for the present invention can also be used in the composite suitable for the present invention.

(実施例)
1.スルホン化ポリエーテルエーテルケトン(スルホン化率70%)を5重量%のモンモリロナイトとDMAc中に溶解し、溶剤を蒸発させて厚さ50μmの膜を得る。この膜を菌類で汚染した水性培地に入れる。菌類による分解は検出されない。モンモリロナイトの入っていないコントロールでは、非常に繁殖が起こり、かつ分解される。
(Example)
1. Sulfonated polyetheretherketone (sulfonation rate 70%) is dissolved in 5% by weight of montmorillonite and DMAc, and the solvent is evaporated to obtain a film having a thickness of 50 μm. The membrane is placed in an aqueous medium contaminated with fungi. Degradation by fungi is not detected. In the control without montmorillonite, breeding occurs and is degraded.

2.a)塩の形態のスルホン化ポリスルホンおよびポリビニルピリジンを、最終容量として1ミリ当量[H+]/gの全混合物が得られるような比で混合する。両方のポリマーをDMAcに溶解して膜を得る。得られた膜の比抵抗は33[Ω×cm]である。
b)2.aと同じ混合物に8重量%の活性化モンモリロナイトをさらに加え、2.aと同様にして膜を得る。比抵抗は27.7[Ω×cm]である。
2. a) The sulfonated polysulfone in salt form and polyvinylpyridine are mixed in a ratio such that a final mixture of 1 milliequivalent [H +] / g total mixture is obtained. Both polymers are dissolved in DMAc to obtain a membrane. The specific resistance of the obtained film is 33 [Ω × cm].
b) 2. 1. Add 8% by weight of activated montmorillonite to the same mixture as a. A film is obtained in the same manner as a. The specific resistance is 27.7 [Ω × cm].

3.DMAcに溶解したポリベンズイミダゾールを10重量%の活性化モンモリロナイトと混合し、層状ケイ酸塩を入れないものをコントロールとする。両方の混合物からそれぞれ膜を作り、インピーダンス分光法により抵抗を測定する。層状ケイ酸塩の入っていないものは抵抗値が588[Ω×cm]であり、層状ケイ酸塩の入っているものは276[Ω×cm]である。
<1>
酸および/または有機塩基と層状/網状ケイ酸塩とを含有するプロトン導電性複合体であって、酸−塩基複合物の割合が1乃至99重量%であり、層状/網状ケイ酸塩の割合が99乃至1重量%であることを特徴とする複合体。
<2>
複合体および複合体混合膜の製造方法であって、アイオノマー溶液またはアイオノマー前駆体の溶液を層状もしくは網状ケイ酸塩、または両者の混合物と混合し、得られた懸濁液から溶剤を蒸発させることを特徴とする方法。ここで、アイオノマーは、(a)陽イオン交換ポリマー(陽イオン交換基−SOH、−COOH、−POを有し、該ポリマーを前記陽イオン交換基の何れか、または前記陽イオン交換基の混合物のみで修飾可能なもの)。ここで、該ポリマーは架橋を形成しないかまたは共有的に架橋を形成し得る。ここで、ポリマー骨格鎖は、ビニルポリマー、アリール主鎖ポリマー、ポリチアゾール、ポリピラゾール、ポリピロール、ポリアニリン、ポリチオフェンまたはこれらの任意の混合物とすることができる。
(b)陰イオン交換ポリマー(陰イオン交換基−NR (R=H、アルキル、アリール)、ピリジニウムPyrR、イミダゾリウム ImR、ピラゾリウムPyrazR、トリアゾリウム TriRおよび他の有機塩基芳香および/または非芳香族基(R=H、アルキル、アリール)を有し、該ポリマーを前記陰イオン交換基の何れか、または前記陰イオン交換基の混合物のみで修飾可能なもの)。ここで、該ポリマーは架橋を形成しないかまたは共有的に架橋を形成し得る。ここで、ポリマー骨格鎖は、ビニルポリマー、アリール主鎖ポリマー、ポリチアゾール、ポリピラゾール、ポリピロール、ポリアニリン、ポリチオフェンまたはこれらの任意の混合物とすることができる。
(c)ポリマー鎖上に(a)の陰イオン交換基と(b)の陽イオン交換基との両方を有するポリマー。ここで、ポリマー骨格鎖は、ビニルポリマー、アリール主鎖ポリマー、ポリチアゾール、ポリピラゾール、ポリピロール、ポリアニリン、ポリチオフェンまたはこれらの任意の混合物とすることができる。
(d)(a)と(b)の混合物であって、混合比が(a)100%から(b)100%にまで達することができる。ここで、該混合物はイオン的架橋に加えて、さらに共有的に架橋を形成している。ここで、ポリマー骨格鎖は、ビニルポリマー、アリール主鎖ポリマー、ポリチアゾール、ポリピラゾール、ポリピロール、ポリアニリン、ポリチオフェンまたはこれらの任意の混合物とすることができる。
ここで、アイオノマーの前駆体としては、(a)陽イオン交換樹脂の前駆体。
(a1)CoHal−、CONR−またはCOOR−基(R=H、アルキル、アリールであり、Hal=F、Cl、Br、I)を有するポリマー。
(a2)SOHal−、SONR−またはSOOR−基(R=H、アルキル、アリールであり、Hal=F、Cl、Br、I)を有するポリマー。
(a3)POHal−、PO(NR−またはPO(OR)−基(R=H、アルキル、アリールであり、Hal=F、Cl、Br、I)を有するポリマー。
(b)陰イオン交換樹脂の前駆体(NR−基(R=H、アルキル、アリール)、ピリジルPyr、イミダゾイル Im、ピラゾリル Pyraz、トリアゾリルTriおよび/または他の有機塩基芳香および/または非芳香基を有する)。ここで、無機成分は、層状ケイ酸塩もしくは網状ケイ酸塩またはこれらの任意の混合物とすることができる。
<3>
a)層状ケイ酸塩(フィロケイ酸塩)群の中で、一般にベントナイト群、特にはモンモリロナイト/バイデライト系、さらにはモンモリロナイトが好適であることを特徴とする前記<2>記載の方法。
b)ピラー化(pillartierte)層状ケイ酸塩を用いることを特徴とする前記<2>記載の方法。
<4>
a)網状ケイ酸塩(テクトケイ酸塩)群の中で、一般にゼオライト群、特にはクリノプチロライトが好適であることを特徴とする前記<2>記載の方法。
b)ピラー化網状ケイ酸塩を用いることを特徴とする前記<2>記載の方法。
<5>
天然層状ケイ酸塩および合成層状ケイ酸塩の両者を用いることを特徴とする、前記<2>乃至<4>の何れか1項に記載の方法。
<6>
塩基成分がイミダゾール、ビニルイミダゾール、ピラゾール、オキサゾール、カルバゾール、インドール、イソインドール、デヒドロオキサゾール、イソオキサゾール、チアゾール、ベンゾチアゾール、イソチアゾール、ベンゾイミダゾール、イミダゾリジン、インダゾール、4,5−ジヒドロピラゾール、1,2,3−オキサジアゾ−ル、フラザン、1,2,3−チアジアゾール、1,2,4−チアジアゾール、1,2,3−ベンゾトリアゾール、1,2,4−トリアゾール、テトラゾール、ピロール、アニリン、ピロリジンまたはピラゾール基を有することを特徴とする前記<2>記載の方法。
<7>
アイオノマーとして酸−塩基混合物(d)が、ならびに合成および天然起源の両方の粘土鉱物モンモリロナイトが好適であり、かつそれが官能化されている事を特徴とする前記<2>記載の方法。
<8>
アイオノマーとして酸−塩基混合物(d)が、およびゼオライトとしてクリノプチロライトが好適であることを特徴とする前記<2>記載の方法。
<9>
酸ポリマーのポリマー骨格鎖を、アリール主鎖ポリマー群より選択したことを特徴とする、前記<2>乃至<8>のいずれか1項に記載の方法。該アリール主鎖ポリマーの取り得る構造は次式の通りである。
上式の構造から、取り得る合成アリール主鎖ポリマーは、− ポリエーテルエーテルケトン PEEK Victrex(登録商標)([R−R−R−R−R]n;x=1、R=H)
− ポリエーテルスルホン PSU Udel(登録商標)([R−R−R−R−R−R]n;R:x=1、R=H)
− ポリエーテルスルホン PES VICTREX(登録商標)([R−R−R−R]n;R:x=1、R=H)
− ポリフェニルスルホン RADEL R(登録商標)([(R−R−R−R−R]n;R:x=2、R=H)
− ポリエーテルエーテルスルホンRADEL A(登録商標)([R−R−R−R−R]n−[R−R−R−R]m;R:x=1、R=H、n/m=0.18)
− ポリフェニレンスルフィドPPS([R−R]n;R:x=1、R=H)−ポリフェリレンオキシド PPO([R−R]n;R=CH
である。
<10>
塩基ポリマーのポリマー骨格鎖をアリール主鎖ポリマー群〔化2〕またはヘトアリール(Hetaryl)主鎖ポリマーから選択したことを特徴とする、前記<2>記載の方法。ヘトアリール主鎖ポリマーの取り得る構造は次式の通りである。
式中のポリマーの構造は、1 イミダゾール、2ベンズイミダゾール、3 ピラゾール、4 ベンズピラゾール、5オキサゾール、6 ベンズオキサゾール、7 チアゾール、8 ベンズチアゾール、9 トリアゾール、10 ベンズトリアゾール、11 ピリジン、12 ビピリジル、13 フタル酸イミドである。
本発明に好適なヘトアリールポリマーとしては、以下のものが考えられる。
− ポリイミダゾール、ポリベンズイミダゾール−ポリピラゾール、ポリベンズピラゾール− ポリオキサゾール、ポリベンズオキサゾール−ポリチアゾール、ポリベンズチアゾール− ポリチオフェン、ポリベンズチオフェン−ポリピリジン− ポリイミド
<11>
酸−塩基混合物において、前記<9>〔化2〕記載の酸ポリマーを前記<10>〔化3〕および前記<6>記載の塩基ポリマーと組み合わせることを特徴とする、前記<2>乃至<10>に記載の方法。
<12>
非イオン伝導性複合体および複合体混合膜であって、前記<1>乃至<11>において20乃至98重量%の基ポリマーおよび2乃至80重量%の層状/網状ケイ酸塩を膜用途および膜分離法に用いることにより入手可能な非イオン伝導性複合体および複合体混合膜。
<13>
−40℃乃至200℃の温度で膜燃料電池(H燃料電池または直接メタノール燃料電池)に組み込んだ、前記<1>乃至<11>のいずれか1項に記載の複合体および複合体混合膜。
<14>
透析、拡散透析、ガス分離、浸透気化、浸透抽出、精密ろ過、限外ろ過、ナノろ過および逆浸透等の(電気)膜分離法に複合体および複合体混合膜を組み込んだことを特徴とする、前記<2>乃至<12>のいずれか1項に記載の方法。
<15>
触媒膜として、または膜反応装置に組み込んだことを特徴とする、<1>乃至<12>のいずれか1項に記載の複合体および複合体混合膜。
<16>
平面構造体、特には膜、箔、電極の被覆のための、前記<1>乃至<12>のいずれか1項に記載の複合体。
<17>
有機成分および本発明に好適なケイ酸塩成分を−40℃乃至300℃の温度において溶剤中で、または場合によっては溶剤無しで互いに接触させることを特徴とする、前記<2>に記載の複合体の製造方法。
<18>
400℃まで温度安定性を有する、前記<1>乃至<17>のいずれか1項に記載のプロトン伝導体を含有する複合体。
<19>
前記<2>、<6>、<9>、<10>および<11>に記載の対応する混合物または単独の成分であって、溶液または懸濁液または溶剤フリーであるケイ酸塩成分と共に存在する混合物または成分で膜が被覆されていることを特徴とする、前記<16>記載の複合膜または複合体の製造。
<20>
請求項<2>、<6>、<9>、<10>および<11>の溶液または懸濁液または溶剤フリーであるケイ酸塩成分自体もしくは成分の混合物で被覆したことを特徴とする、前記<16>記載の複合膜または複合体の製造。
<21>
膜ならびに透析、拡散透析、ガス分離、浸透気化、浸透抽出、精密ろ過、限外ろ過、ナノろ過および逆浸透等の(電気)膜分離法に組込み、かつ微生物分解または酸化腐食に対して安定であることを特徴とする複合体の製造。
<22>
複合体から製造した膜の選択透過性を変えるための前記<1>乃至<21>のいずれか1項に記載の複合体の製造。
<23>
無機成分を少なくとも2つの異なる塩基成分と混合することを特徴とする、前記<1>乃至<22>のいずれか1項に記載の複合体の製造。ここで、塩基成分を高分子または低分子とすることができる。
<24>
型を共有する任意の型に前記複合体を組込むことを特徴とする方法。
3. Polybenzimidazole dissolved in DMAc is mixed with 10% by weight of activated montmorillonite, and the one without layered silicate is used as a control. Membranes are made from both mixtures and the resistance is measured by impedance spectroscopy. Those without layered silicate have a resistance value of 588 [Ω × cm], and those with layered silicate have 276 [Ω × cm].
<1>
Proton conductive composite containing an acid and / or organic base and a layered / reticulated silicate, wherein the proportion of the acid-base complex is 1 to 99% by weight, and the proportion of the layered / reticulated silicate Is 99 to 1% by weight.
<2>
A method for producing a composite and composite mixed film, comprising mixing an ionomer solution or a solution of an ionomer precursor with a layered or reticulated silicate, or a mixture of both, and evaporating the solvent from the resulting suspension. A method characterized by. Here, the ionomer includes (a) a cation exchange polymer (having a cation exchange group —SO 3 H, —COOH, —PO 3 H 2 , and the polymer is added to any one of the cation exchange groups or the cation exchange group. Those that can be modified only with a mixture of ion exchange groups). Here, the polymer does not form crosslinks or can form crosslinks covalently. Here, the polymer backbone can be a vinyl polymer, an aryl main chain polymer, polythiazole, polypyrazole, polypyrrole, polyaniline, polythiophene or any mixture thereof.
(B) anion exchange polymers (anion exchange groups —NR 3 + (R═H, alkyl, aryl), pyridinium PyrR + , imidazolium ImR + , pyrazolium PyrazR + , triazolium TriR + and other organic base fragrances and / or Or a non-aromatic group (R = H, alkyl, aryl), and the polymer can be modified only with any of the anion exchange groups or a mixture of the anion exchange groups). Here, the polymer does not form crosslinks or can form crosslinks covalently. Here, the polymer backbone can be a vinyl polymer, an aryl main chain polymer, polythiazole, polypyrazole, polypyrrole, polyaniline, polythiophene or any mixture thereof.
(C) A polymer having both the anion exchange group of (a) and the cation exchange group of (b) on the polymer chain. Here, the polymer backbone can be a vinyl polymer, an aryl main chain polymer, polythiazole, polypyrazole, polypyrrole, polyaniline, polythiophene or any mixture thereof.
(D) A mixture of (a) and (b), wherein the mixing ratio can reach from (a) 100% to (b) 100%. Here, in addition to the ionic crosslinking, the mixture further forms a covalent crosslinking. Here, the polymer backbone can be a vinyl polymer, an aryl main chain polymer, polythiazole, polypyrazole, polypyrrole, polyaniline, polythiophene or any mixture thereof.
Here, as an ionomer precursor, (a) a precursor of a cation exchange resin.
(A1) CoHal-, CONR 2 - or COOR- group (R = H, alkyl, aryl, Hal = F, Cl, Br , I) a polymer having a.
(A2) A polymer having SO 2 Hal—, SO 2 NR 2 — or SO 2 OR— groups (R = H, alkyl, aryl, Hal = F, Cl, Br, I).
(A3) A polymer having PO 3 Hal 2 —, PO 3 (NR 2 ) 2 — or PO 3 (OR) 2 — groups (R = H, alkyl, aryl, Hal = F, Cl, Br, I) .
(B) a precursor of an anion exchange resin (NR 2 - group (R = H, alkyl, aryl), pyridyl Pyr, imidazolyl Im, pyrazolyl Pyraz, triazolyl Tri and / or other organic bases aromatic and / or nonaromatic groups Have). Here, the inorganic component can be a layered silicate or a reticulated silicate or any mixture thereof.
<3>
a) The method according to <2>, wherein among the layered silicate (phyllosilicate) group, a bentonite group, particularly a montmorillonite / biderite system, and further montmorillonite are suitable.
b) The method according to <2>, wherein a pillared layered silicate is used.
<4>
a) The method according to the item <2>, wherein the group of reticulated silicates (tectosilicates) is generally preferably a zeolite group, particularly clinoptilolite.
b) The method according to <2>, wherein a pillared reticulated silicate is used.
<5>
The method according to any one of <2> to <4>, wherein both a natural layered silicate and a synthetic layered silicate are used.
<6>
Base component is imidazole, vinylimidazole, pyrazole, oxazole, carbazole, indole, isoindole, dehydrooxazole, isoxazole, thiazole, benzothiazole, isothiazole, benzimidazole, imidazolidine, indazole, 4,5-dihydropyrazole, 1, 2,3-oxadiazol, furazane, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,3-benzotriazole, 1,2,4-triazole, tetrazole, pyrrole, aniline, pyrrolidine Or it has a pyrazole group, The method of said <2> characterized by the above-mentioned.
<7>
The process according to <2>, wherein the acid-base mixture (d) as an ionomer and the clay mineral montmorillonite of both synthetic and natural origin are suitable and functionalized.
<8>
The method according to <2>, wherein the acid-base mixture (d) is suitable as the ionomer and clinoptilolite is suitable as the zeolite.
<9>
The method according to any one of <2> to <8>, wherein the polymer backbone of the acid polymer is selected from the aryl main chain polymer group. A possible structure of the aryl main chain polymer is as follows.
From the structure of the above formula, possible synthetic aryl main chain polymers are: -polyetheretherketone PEEK Victrex® ([R 5 -R 2 -R 5 -R 2 -R 7 ] n; x = 1, R 4 = H)
- polyethersulfone PSU Udel (registered trademark) ([R 1 -R 5 -R 2 -R 6 -R 2 -R 5] n; R 2: x = 1, R 4 = H)
- polyethersulfone PES VICTREX (TM) ([R 2 -R 6 -R 2 -R 5] n; R 2: x = 1, R 4 = H)
- polyphenylsulfone RADEL R (TM) ([(R 2) 2 -R 5 -R 2 -R 6 -R 2] n; R 2: x = 2, R 4 = H)
- polyetherethersulfone RADEL A (TM) ([R 5 -R 2 -R 5 -R 2 -R 6] n- [R 5 -R 2 -R 6 -R 2] m; R 2: x = 1, R 4 = H, n / m = 0.18)
- polyphenylene sulfide PPS ([R 2 -R 8] n; R 2: x = 1, R 4 = H) - poly ferri alkylene oxide PPO ([R 2 -R 5] n; R 4 = CH 3)
It is.
<10>
The method according to <2> above, wherein the polymer backbone of the base polymer is selected from an aryl main chain polymer group [Chemical Formula 2] or a hetaryl main chain polymer. A possible structure of the hetaryl main chain polymer is as follows.
The structure of the polymer in the formula is 1 imidazole, 2 benzimidazole, 3 pyrazole, 4 benzpyrazole, 5 oxazole, 6 benzoxazole, 7 thiazole, 8 benzthiazole, 9 triazole, 10 benztriazole, 11 pyridine, 12 bipyridyl, 13 Phthalimide.
As the hetaryl polymer suitable for the present invention, the following may be considered.
-Polyimidazole, polybenzimidazole-polypyrazole, polybenzpyrazole- polyoxazole, polybenzoxazole-polythiazole, polybenzthiazole-polythiophene, polybenzthiophene-polypyridine-polyimide <11>
In the acid-base mixture, the acid polymer described in <9> [Chemical Formula 2] is combined with the base polymer described in <10> [Chemical Formula 3] and <6> above, <2> to <10>.
<12>
Nonionic conductive composite and composite mixed film, wherein in <1> to <11>, 20 to 98% by weight of the base polymer and 2 to 80% by weight of the layered / network silicate are used for the film and the film Nonionic conductive composites and composite mixed membranes that can be obtained by use in separation methods.
<13>
Incorporated in -40 ℃ to membrane fuel cell at a temperature of 200 ° C. (H 2 fuel cells or direct methanol fuel cell), complexes and complex mixed film according to any one of the <1> to <11> .
<14>
It is characterized by incorporating composites and composite mixed membranes into (electric) membrane separation methods such as dialysis, diffusion dialysis, gas separation, pervaporation, osmotic extraction, microfiltration, ultrafiltration, nanofiltration and reverse osmosis. The method according to any one of <2> to <12>.
<15>
<1> thru | or <12> any one of <1> thru | or <12> characterized by including as a catalyst membrane or a membrane reaction apparatus.
<16>
The complex according to any one of <1> to <12>, for covering a planar structure, particularly a film, a foil, and an electrode.
<17>
The composite according to the above <2>, wherein the organic component and the silicate component suitable for the present invention are brought into contact with each other at a temperature of −40 ° C. to 300 ° C. in a solvent or optionally without a solvent. Body manufacturing method.
<18>
The composite containing the proton conductor according to any one of <1> to <17>, which has temperature stability up to 400 ° C.
<19>
<2>, <6>, <9>, <10> and a corresponding mixture or a single component according to <11>, which is present together with a silicate component which is solution or suspension or solvent free The production of the composite membrane or composite according to <16>, wherein the membrane is coated with a mixture or a component to be produced.
<20>
It is coated with the solution or suspension of claim <2>, <6>, <9>, <10> and <11> or the silicate component itself or a mixture of components which is solvent-free. Production of the composite membrane or composite according to <16>.
<21>
Built into membranes and (electrical) membrane separation methods such as dialysis, diffusion dialysis, gas separation, pervaporation, osmotic extraction, microfiltration, ultrafiltration, nanofiltration and reverse osmosis, and stable against microbial degradation or oxidative corrosion Manufacture of composites characterized by being.
<22>
The production of a complex according to any one of <1> to <21>, wherein the permselectivity of a membrane produced from the complex is changed.
<23>
The production of the complex according to any one of <1> to <22>, wherein the inorganic component is mixed with at least two different base components. Here, the base component can be a polymer or a low molecule.
<24>
Incorporating the complex into any mold that shares the mold.

Claims (2)

複合体を製造する方法であって、以下の成分(A)〜(D)を用意するステップと、前記成分(A)〜(D)を−40℃乃至300℃の温度において互いに接触させるステップと、を含むことを特徴とする方法。
む方法。
(A)ポリマー、(B)酸、(C)有機塩基、並びに(D)官能化した層状または網状ケイ酸塩を含む複合体であって、酸、塩基、並びに層状または網状ケイ酸塩の合計量を基準として、酸および塩基の混合物の割合が1乃至99重量%であり、層状または網状ケイ酸塩の割合が99乃至1重量%であり、
前記複合体が、
i)(E)非修飾ポリマーと、低分子の酸および塩基とをさらに含むか、または、
ii)(F)アイオノマーまたはアイオノマー前駆体であって、
該アイオノマーは、
(a)陽イオン交換基−SOH、−COOHおよび/または−POを有するものであり、架橋を形成しないかまたは共有的に架橋を形成するものであり、ポリマー骨格鎖がビニルポリマー、アリール主鎖ポリマー、ポリチアゾール、ポリピラゾール、ポリピロール、ポリアニリン、ポリチオフェンまたはこれらの任意の混合物である、陽イオン交換ポリマー、
(b)陰イオン交換基−NR (R=H、アルキル、アリール)、ピリジニウムPyrR、イミダゾリウム ImR、ピラゾリウムPyrazR、トリアゾリウム TriRを有するものであり、架橋を形成しないかまたは共有的に架橋を形成するものであり、ポリマー骨格鎖がビニルポリマー、アリール主鎖ポリマー、ポリチアゾール、ポリピラゾール、ポリピロール、ポリアニリン、ポリチオフェンまたはこれらの任意の混合物である、陰イオン交換ポリマー、
(c)ポリマー鎖上に(b)の陰イオン交換基と(a)の陽イオン交換基との両方を有し、ポリマー骨格鎖がビニルポリマー、アリール主鎖ポリマー、ポリチアゾール、ポリピラゾール、ポリピロール、ポリアニリン、ポリチオフェンまたはこれらの任意の混合物である、ポリマー、および
(d)イオン的架橋に加えて共有的に架橋を形成しており、ポリマー骨格鎖がビニルポリマー、アリール主鎖ポリマー、ポリチアゾール、ポリピラゾール、ポリピロール、ポリアニリン、ポリチオフェンまたはこれらの任意の混合物である、(a)と(b)の混合物、
からなる群より選択されており、
該アイオノマー前駆体は、
(I)陽イオン交換ポリマーの前駆体、
(Ia)CoHal−、CONR−またはCOOR−基(R=H、アルキル、アリールであり、Hal=F、Cl、Br、I)を有するポリマー、
(Ib)SOHal−、SONR−またはSOOR−基(R=H、アルキル、アリールであり、Hal=F、Cl、Br、I)を有するポリマー、
(Ic)POHal−、PO(NR−またはPO(OR)−基(R=H、アルキル、アリールであり、Hal=F、Cl、Br、I)を有するポリマー、
(II)NR−基(R=H、アルキル、アリール)、ピリジル Pyr、イミダゾイル Im、ピラゾリル Pyraz、トリアゾリルTriを含む陰イオン交換樹脂の前駆体、
からなる群より選択されている、
アイオノマーまたはアイオノマー前駆体をさらに含む。
A method for producing a composite, comprising: preparing the following components (A) to (D); and bringing the components (A) to (D) into contact with each other at a temperature of −40 ° C. to 300 ° C. A method comprising the steps of:
Method.
A composite comprising (A) a polymer, (B) an acid, (C) an organic base, and (D) a functionalized layered or networked silicate, the sum of the acid, base, and the layered or networked silicate Based on the amount, the proportion of the acid and base mixture is 1 to 99% by weight, the proportion of the layered or reticulated silicate is 99 to 1% by weight,
The complex is
i) further comprising (E) an unmodified polymer and a low molecular acid and base, or
ii) (F) an ionomer or ionomer precursor, comprising:
The ionomer is
(A) It has a cation exchange group —SO 3 H, —COOH and / or —PO 3 H 2 , does not form a crosslink or forms a crosslink covalently, and the polymer backbone is vinyl A cation exchange polymer that is a polymer, aryl backbone polymer, polythiazole, polypyrazole, polypyrrole, polyaniline, polythiophene or any mixture thereof,
(B) anion-exchange group -NR 3 + (R = H, alkyl, aryl), pyridinium Pyrr +, imidazolium ImR +, pyrazolium PyrazR +, are those having a triazolium TRIR +, or covalently does not form a bridge An anion exchange polymer wherein the polymer backbone is a vinyl polymer, an aryl backbone polymer, polythiazole, polypyrazole, polypyrrole, polyaniline, polythiophene or any mixture thereof,
(C) having both the anion exchange group of (b) and the cation exchange group of (a) on the polymer chain, and the polymer backbone chain is a vinyl polymer, an aryl main chain polymer, polythiazole, polypyrazole, polypyrrole A polymer, which is a polyaniline, polythiophene or any mixture thereof, and (d) a covalent bridge in addition to the ionic bridge, wherein the polymer backbone is a vinyl polymer, an aryl backbone polymer, a polythiazole, A mixture of (a) and (b), which is polypyrazole, polypyrrole, polyaniline, polythiophene or any mixture thereof,
Selected from the group consisting of
The ionomer precursor is
(I) a precursor of a cation exchange polymer,
(Ia) CoHal-, CONR 2 - or COOR- group (R = H, alkyl, aryl, Hal = F, Cl, Br , I) polymers having,
(Ib) SO 2 Hal-, SO 2 NR 2 - or SO 2 OR- group (R = H, alkyl, aryl, Hal = F, Cl, Br , I) polymers having,
(Ic) Polymers having PO 3 Hal 2 —, PO 3 (NR 2 ) 2 — or PO 3 (OR) 2 — groups (R = H, alkyl, aryl, Hal = F, Cl, Br, I) ,
(II) NR 2 - group (R = H, alkyl, aryl), pyridyl Pyr, imidazolyl Im, pyrazolyl Pyraz, the precursor of the anion-exchange resin containing triazolyl Tri,
Selected from the group consisting of,
Further comprising an ionomer or an ionomer precursor.
前記層状または網状ケイ酸塩成分を用意する間に、前記層状または網状ケイ酸塩を少なくとも2つの異なる塩基成分と混合することを特徴とする、請求項1に記載の複合体の製造方法。   The method for producing a composite according to claim 1, wherein the layered or reticulated silicate component is mixed with at least two different base components while the layered or reticulated silicate component is prepared.
JP2014037390A 1999-04-30 2014-02-27 Method of producing composite material Pending JP2014167113A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19919881.0 1999-04-30
DE19919881A DE19919881A1 (en) 1999-04-30 1999-04-30 Thermally stable proton conductive composite, for use in e.g. fuel cells, membrane separation, catalysis, electrolysis or electrochemical processes, comprises acid and/or organic base and layered and/or framework silicate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012034502A Division JP2012149259A (en) 1999-04-30 2012-02-20 Composite and composite membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017044440A Division JP2017125205A (en) 1999-04-30 2017-03-08 Manufacturing method of complex

Publications (1)

Publication Number Publication Date
JP2014167113A true JP2014167113A (en) 2014-09-11

Family

ID=7906530

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2001501354A Pending JP2003501516A (en) 1999-04-30 2000-05-02 Composites and composite membranes
JP2012034502A Pending JP2012149259A (en) 1999-04-30 2012-02-20 Composite and composite membrane
JP2014037390A Pending JP2014167113A (en) 1999-04-30 2014-02-27 Method of producing composite material
JP2017044440A Pending JP2017125205A (en) 1999-04-30 2017-03-08 Manufacturing method of complex

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2001501354A Pending JP2003501516A (en) 1999-04-30 2000-05-02 Composites and composite membranes
JP2012034502A Pending JP2012149259A (en) 1999-04-30 2012-02-20 Composite and composite membrane

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017044440A Pending JP2017125205A (en) 1999-04-30 2017-03-08 Manufacturing method of complex

Country Status (14)

Country Link
US (4) US7049020B2 (en)
EP (2) EP1177247B1 (en)
JP (4) JP2003501516A (en)
KR (1) KR100858131B1 (en)
CN (1) CN1320038C (en)
AT (1) ATE368703T1 (en)
AU (1) AU780722B2 (en)
BR (1) BR0010171B1 (en)
CA (1) CA2369703C (en)
DE (2) DE19919881A1 (en)
ES (1) ES2293901T3 (en)
IL (2) IL146209A0 (en)
WO (1) WO2000074827A2 (en)
ZA (1) ZA200109819B (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919881A1 (en) 1999-04-30 2000-11-02 Univ Stuttgart Thermally stable proton conductive composite, for use in e.g. fuel cells, membrane separation, catalysis, electrolysis or electrochemical processes, comprises acid and/or organic base and layered and/or framework silicate
DE10021106A1 (en) * 2000-05-02 2001-11-08 Univ Stuttgart Polymeric membranes
DE10024575A1 (en) * 2000-11-02 2001-11-22 Univ Stuttgart Covalently crosslinked polymer or membrane, used e.g. in fuel cells, batteries or separation processes, comprises reacting polymers with chlorosulphonyl or sulfinate groups with bifunctional crosslinker, e.g. dihalo-alkane
NL1017412C2 (en) * 2001-02-21 2002-08-22 Tno Method for protecting surfaces against biological fouling.
US20040137296A1 (en) * 2001-05-18 2004-07-15 Werner Schunk Fuel cell
DE10295737B4 (en) * 2001-05-21 2018-05-09 Thomas Häring Covalently cross-linked composite, covalent cross-linked composite membrane, process for their preparation and use of the membranes
EP1284518A1 (en) * 2001-08-16 2003-02-19 Samsung Electronics Co., Ltd. Reinforced composite ionic conductive polymer membrane and fuel cell adopting the same
KR100407793B1 (en) * 2001-09-04 2003-12-01 한국과학기술연구원 proton exchange composite membranes and composite solutions having selectivity, its preparation and fuel cell comprising the same
DE10209774A1 (en) * 2002-02-28 2004-07-29 Universität Stuttgart - Institut für Chemische Verfahrenstechnik Composites and composite membranes
WO2003081707A1 (en) * 2002-03-25 2003-10-02 Matsushita Electric Industrial Co., Ltd. Electrolyte membrane/electrode union for fuel cell and process for producing the same
US20040018410A1 (en) * 2002-06-10 2004-01-29 Hongli Dai Additive for direct methanol fuel cells
KR100477897B1 (en) * 2002-07-10 2005-03-18 광주과학기술원 Method for preparation of anion-exchange membranes containing pyridinium and its derivatives as anion-exchanger and device containing them
JP3878521B2 (en) * 2002-07-18 2007-02-07 本田技研工業株式会社 Proton conducting polymer solid electrolyte and method for producing the same
US6630265B1 (en) * 2002-08-13 2003-10-07 Hoku Scientific, Inc. Composite electrolyte for fuel cells
BR0314914A (en) * 2002-10-22 2005-08-16 Lg Chemical Ltd Proton exchange membrane fuel cell using laminar silicate mineral solid electrolyte membrane and an intercalating compound
JP4045918B2 (en) 2002-10-23 2008-02-13 トヨタ自動車株式会社 Proton conducting membrane and method for producing the same
KR100481591B1 (en) * 2002-11-13 2005-04-08 주식회사 협진아이엔씨 Polyelectrolyte nanocomposite membrane and the preparation method thereof and the fuel cell using the prepared polyelectrolyte nanocomposite membrane
RU2230400C1 (en) * 2002-11-18 2004-06-10 Закрытое акционерное общество "Индепендент Пауэр Технолоджис" "ИПТ" Air-spirit fuel cell
JP4107116B2 (en) 2003-03-14 2008-06-25 トヨタ自動車株式会社 Proton conducting material, proton conducting material membrane, and fuel cell
FR2853306B1 (en) * 2003-04-02 2005-06-10 Commissariat Energie Atomique COMPOSITE MATERIAL BASED ON BOROPHOSPHOSILICATE, WHICH MAY PARTICULARLY CONSTITUTE AN ELECTROLYTIC MENBRANE AND METHOD OF MANUFACTURE.
CN100416708C (en) * 2003-04-25 2008-09-03 积水化学工业株式会社 Proton-conductive film, process for producing the same, and fuel cell empolying the proton-conductive film
US6962959B2 (en) * 2003-08-28 2005-11-08 Hoku Scientific, Inc. Composite electrolyte with crosslinking agents
KR100528345B1 (en) * 2003-08-29 2005-11-15 삼성에스디아이 주식회사 Polymer Nano-Composite membrane and fuel cell adopting the same
DE102004001974A1 (en) * 2004-01-13 2005-08-04 Basf Ag A composite membrane
WO2005090480A1 (en) * 2004-03-23 2005-09-29 Mitsubishi Gas Chemical Co., Inc. Solid polyelectrolyte, solid-polymer gel film, solid polyelectrolyte film, and fuel cell
FR2869032B1 (en) * 2004-04-15 2006-06-02 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF PROTON-CONDUCTIVE CLAY PARTICLES AND MATERIAL COMPRISING SUCH PARTICLES
US7604746B2 (en) * 2004-04-27 2009-10-20 Mcmaster University Pervaporation composite membranes
JP4716706B2 (en) * 2004-10-20 2011-07-06 日産自動車株式会社 PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP2006290723A (en) * 2004-11-17 2006-10-26 Cci Corp Intercalation compound, its production method, and composite material
JP4936673B2 (en) * 2005-02-10 2012-05-23 株式会社東芝 Polymer electrolyte membrane and direct methanol fuel cell
CN100478384C (en) * 2005-02-22 2009-04-15 中国科学院化学研究所 Functional polyolefin/montmorillonite nano-composite material and its preparation method
JP4925091B2 (en) * 2005-02-25 2012-04-25 日産自動車株式会社 PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP4611072B2 (en) * 2005-03-25 2011-01-12 シーシーアイ株式会社 Method for producing intercalation compound
JP4747647B2 (en) * 2005-04-12 2011-08-17 株式会社カネカ POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
CN100402134C (en) * 2005-04-26 2008-07-16 哈尔滨工业大学 Method for preparing polymer/montmorillnoite nano composite hydrophilic membrance
US20060258875A1 (en) * 2005-05-10 2006-11-16 Clementine Reyes Methods for manufacturing supported nanocatalysts and methods for using supported nanocatalysts
KR100696521B1 (en) * 2005-05-25 2007-03-19 삼성에스디아이 주식회사 Proton conducting inorganic material, polymer nano-composite membrane including the same, and fuel cell adopting the same
KR100708713B1 (en) * 2005-09-24 2007-04-17 삼성에스디아이 주식회사 Nanocomposite, naocomposite electrolyte membrane, and fuel cell using the same
DE102005056564B4 (en) * 2005-11-25 2009-11-12 Gkss-Forschungszentrum Geesthacht Gmbh Polymer electrolyte membrane with coordination polymer, process for its preparation and use in a fuel cell
KR100791780B1 (en) * 2005-12-31 2008-01-03 성균관대학교산학협력단 Acid/base/inorganic polyelectrolyte type composite membrane for fuel cell and method for producing the same
US8097229B2 (en) * 2006-01-17 2012-01-17 Headwaters Technology Innovation, Llc Methods for manufacturing functionalized inorganic oxides and polymers incorporating same
KR100846478B1 (en) 2006-05-16 2008-07-17 삼성에스디아이 주식회사 Supported Catalyst, manufacturing method thereof, and fuel cell using the same
CN100386365C (en) * 2006-05-30 2008-05-07 武汉理工大学 Inorganic mineral-proton conduction resin intercalation composite proton exchange membrane, and its preparing method
KR100803199B1 (en) * 2006-09-18 2008-02-14 삼성에스디아이 주식회사 Electrolyte membrane using nanocomposite ion complex, and fuel cell employing the same
EP2185271B1 (en) 2007-08-25 2016-10-12 De Montfort University Antimicrobial agent and/or catalyst for chemical reactions
JP2009256654A (en) * 2008-03-27 2009-11-05 Sumitomo Chemical Co Ltd Polymer electrolyte composition
PT2376215T (en) * 2008-12-11 2019-01-17 Univ California Filtration membrane
AU2010286605B2 (en) 2009-08-26 2015-08-13 Evoqua Water Technologies Pte. Ltd. Ion exchange membranes
CN101698137B (en) * 2009-10-29 2011-06-29 浙江大学 Method for preparing polyelectrolyte complex/bentonite hybrid pervaporation membrane
CN101804305B (en) * 2010-04-30 2013-05-15 北京碧水源膜科技有限公司 Conductive reinforced tubular porous body composite film, preparation method thereof, and use thereof in waste water dephosphorization
EP2627436B1 (en) 2010-10-15 2018-01-17 Evoqua Water Technologies LLC Process for making a monomer solution for making cation exchange membranes
EP2627447B1 (en) 2010-10-15 2019-12-11 Evoqua Water Technologies LLC Anion exchange membranes and process for making
DE102011076590A1 (en) 2011-05-27 2012-11-29 Wacker Chemie Ag Polymer films based on polyazoles
CN103566780B (en) * 2012-07-27 2015-06-10 清华大学 Preparation method of fluorine substituted polyarylether compound anion electrolyte membrane
CN102863636B (en) * 2012-09-19 2014-07-23 清华大学 Method for preparing fluorine-containing polyarylether composite anion-exchange membrane by in-situ polymerization process
AU2013325234B2 (en) 2012-10-04 2017-09-28 Evoqua Water Technologies Llc High-performance Anion exchange membranes and methods of making same
ES2816948T3 (en) 2012-10-11 2021-04-06 Evoqua Water Tech Llc Coated ion exchange membranes
RU2673883C2 (en) 2012-10-12 2018-12-03 Дзе Риджентс Оф Дзе Юниверсити Оф Калифорния Polyaninine membranes, uses thereof and methods of increasing hydrophilicity of membranes
EP2724773A1 (en) * 2012-10-25 2014-04-30 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Nanosieve composite membrane
RU2673534C2 (en) 2013-05-15 2018-11-27 Дзе Риджентс Оф Дзе Юниверсити Оф Калифорния Polyaniline membranes formed by phase inversion for forward osmosis applications
US9302995B2 (en) 2013-06-10 2016-04-05 The United States Of America, As Represented By The Secretary Of The Navy Electrically conducting oligo(pyrazoles)
EP3129132B1 (en) 2014-04-08 2021-07-28 The Regents of The University of California Polyaniline-based chlorine resistant hydrophilic filtration membranes
KR20160067720A (en) * 2014-12-04 2016-06-14 주식회사 엘지화학 Polymer and polymer electrolyte membrane using the same
US10312542B2 (en) 2014-12-04 2019-06-04 Lg Chem, Ltd. Halogenated compound, polymer comprising same, and polymer electrolyte membrane comprising same
CN107004880B (en) 2014-12-04 2020-07-28 株式会社Lg化学 Polymer electrolyte membrane
EP3228643B1 (en) 2014-12-04 2019-10-09 LG Chem, Ltd. Polymer and polymer electrolyte membrane comprising same
CN107108402A (en) * 2014-12-17 2017-08-29 阿卜杜拉国王科技大学 Xylene isomerization
CN105148749B (en) * 2015-08-20 2018-04-10 中国科学技术大学 A kind of diffusion dialysis film and preparation method thereof
CN105226302B (en) * 2015-09-24 2017-07-25 北京化工大学 Extra electric field aids in polybenzimidazoles and atlapulgite composite membrane and preparation method thereof
CN109517384A (en) * 2017-09-20 2019-03-26 四川东邦碳纤维材料有限公司 A kind of battery frame body material and battery framework prepared therefrom
CN109666158B (en) * 2017-10-17 2023-04-07 厦门逍扬运动科技有限公司 Hybrid dynamic polymer and application thereof
JP2021507015A (en) 2017-12-14 2021-02-22 アメリカ合衆国 Conductive poly (pyrazole)
CN109758917B (en) * 2018-09-18 2021-07-02 张伟 Preparation method of divalent cation selective ion exchange membrane
CN111137902B (en) * 2018-11-05 2022-06-07 清华大学 H-Si-O system material, negative electrode active material and preparation method thereof, electrochemical cell negative electrode material and electrochemical cell
CN111162301B (en) * 2018-11-07 2021-08-20 清华大学 Modified proton exchange membrane and preparation method thereof, binder, fuel cell and water electrolysis device
CN109768321A (en) * 2019-03-22 2019-05-17 广州大学 A kind of lithium battery solid electrolyte and preparation method thereof based on the pillared clay of aluminium
CN113750822B (en) * 2021-09-28 2023-06-30 太原理工大学 Preparation method and application of mixed matrix composite membrane based on polyaniline intercalation modified acid-activated montmorillonite
CN114220984B (en) * 2022-02-21 2022-05-20 长沙理工大学 SPEEK/modified bentonite composite ion exchange membrane and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110495A (en) * 1978-02-20 1979-08-29 Mita Industrial Co Ltd Conductive composition
JPS54110849A (en) * 1978-02-18 1979-08-30 Mita Industrial Co Ltd Photoconductive composition for electric responsive recording material
JPS55131033A (en) * 1979-03-30 1980-10-11 Mitsubishi Petrochem Co Ltd Resin composition for wrapping material
JPH01138237A (en) * 1987-08-04 1989-05-31 Kao Corp Composite film of conjugated polymer and cation exchanger and its production
JPH0693114A (en) * 1992-06-13 1994-04-05 Hoechst Ag Polyelectrolyte film and its preparation
JPH07118524A (en) * 1993-09-03 1995-05-09 Nitto Chem Ind Co Ltd Conductive composition, conductor, and its preparation
JPH0948856A (en) * 1995-08-04 1997-02-18 Mitsubishi Chem Corp Production of crystalline thermoplastic resin composition
WO1997019480A1 (en) * 1995-11-22 1997-05-29 California Institute Of Technology New polymer material for electrolytic membranes in fuel cells
JPH09251857A (en) * 1996-03-15 1997-09-22 Agency Of Ind Science & Technol Solid ion conductor
JPH09295810A (en) * 1996-02-27 1997-11-18 Du Pont Kk Composite material and its production and composite material-containing resin composition and its production
JP2003501516A (en) * 1999-04-30 2003-01-14 へーリング トーマス Composites and composite membranes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB980185A (en) * 1960-08-26 1965-01-13 American Cyanamid Co Ion-exchange compositions
US4557856A (en) * 1978-02-18 1985-12-10 Mita Industrial Co., Ltd. Electrically conductive composition for electro-responsive recording materials
DE3407149A1 (en) * 1984-02-28 1985-08-29 Basf Ag, 6700 Ludwigshafen ORGANIC POLYMER MEMBRANES CONTAINING CRYSTALLINE CARRIER COMPOUNDS, THEIR PRODUCTION AND USE
ES2052648T3 (en) * 1987-08-04 1994-07-16 Kao Corp A CONJUGATED POLYMER CATION EXCHANGER COMPOSED MEMBRANE AND ITS PREPARATION PROCESS.
US5658460A (en) * 1996-05-07 1997-08-19 The Dow Chemical Company Use of inorganic ammonium cation salts to maintain the flux and salt rejection characteristics of reverse osmosis and nanofiltration membranes during drying
DE19632285A1 (en) * 1996-08-09 1998-02-19 Hoechst Ag Proton conductor with a temperature resistance in a wide range and good proton conductivities
GB9708365D0 (en) * 1997-04-25 1997-06-18 Johnson Matthey Plc Proton conducting membranes
US6495209B1 (en) * 1998-02-20 2002-12-17 Lynntech, Inc. Process of making a composite membrane
DE19817376A1 (en) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Ion exchange membranes and polymer blends, useful for fuel cells, gas separation, pervaporation and reverse osmosis
US6908604B2 (en) * 1999-05-17 2005-06-21 Exxonmobil Chemical Patents Inc. Macrostructures of porous inorganic material and process for their preparation
US6610770B1 (en) * 1999-10-04 2003-08-26 Elementis Specialties, Inc. Organoclay/polymer compositions with flame retardant properties
US6982303B2 (en) * 2000-05-19 2006-01-03 Jochen Kerres Covalently cross-linked polymers and polymer membranes via sulfinate alkylation
US6403721B1 (en) * 2000-09-29 2002-06-11 Solvay Engineered Polymers Engineered polyolefin materials with enhanced surface durability

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110849A (en) * 1978-02-18 1979-08-30 Mita Industrial Co Ltd Photoconductive composition for electric responsive recording material
JPS54110495A (en) * 1978-02-20 1979-08-29 Mita Industrial Co Ltd Conductive composition
JPS55131033A (en) * 1979-03-30 1980-10-11 Mitsubishi Petrochem Co Ltd Resin composition for wrapping material
JPH01138237A (en) * 1987-08-04 1989-05-31 Kao Corp Composite film of conjugated polymer and cation exchanger and its production
JPH0693114A (en) * 1992-06-13 1994-04-05 Hoechst Ag Polyelectrolyte film and its preparation
JPH07118524A (en) * 1993-09-03 1995-05-09 Nitto Chem Ind Co Ltd Conductive composition, conductor, and its preparation
JPH0948856A (en) * 1995-08-04 1997-02-18 Mitsubishi Chem Corp Production of crystalline thermoplastic resin composition
WO1997019480A1 (en) * 1995-11-22 1997-05-29 California Institute Of Technology New polymer material for electrolytic membranes in fuel cells
JPH09295810A (en) * 1996-02-27 1997-11-18 Du Pont Kk Composite material and its production and composite material-containing resin composition and its production
JPH09251857A (en) * 1996-03-15 1997-09-22 Agency Of Ind Science & Technol Solid ion conductor
JP2003501516A (en) * 1999-04-30 2003-01-14 へーリング トーマス Composites and composite membranes
JP2012149259A (en) * 1999-04-30 2012-08-09 Thomas Haering Composite and composite membrane

Also Published As

Publication number Publication date
EP1870429A2 (en) 2007-12-26
AU5063500A (en) 2000-12-28
JP2012149259A (en) 2012-08-09
WO2000074827A3 (en) 2001-03-29
EP1177247A2 (en) 2002-02-06
WO2000074827A8 (en) 2002-01-24
BR0010171A (en) 2002-01-15
IL146209A (en) 2012-01-31
ATE368703T1 (en) 2007-08-15
US7049020B2 (en) 2006-05-23
ES2293901T3 (en) 2008-04-01
US20100092833A1 (en) 2010-04-15
KR20020012192A (en) 2002-02-15
IL146209A0 (en) 2002-07-25
US20060172084A1 (en) 2006-08-03
US9675939B2 (en) 2017-06-13
CA2369703C (en) 2008-03-25
EP1870429A3 (en) 2008-04-02
CN1320038C (en) 2007-06-06
KR100858131B1 (en) 2008-09-10
US7674505B2 (en) 2010-03-09
US20020094466A1 (en) 2002-07-18
DE19919881A1 (en) 2000-11-02
US8110517B2 (en) 2012-02-07
AU780722B2 (en) 2005-04-14
CN1358212A (en) 2002-07-10
JP2017125205A (en) 2017-07-20
ZA200109819B (en) 2003-02-26
BR0010171B1 (en) 2015-02-24
CA2369703A1 (en) 2000-12-14
US20120248031A1 (en) 2012-10-04
WO2000074827A2 (en) 2000-12-14
DE50014531D1 (en) 2007-09-13
JP2003501516A (en) 2003-01-14
EP1177247B1 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP2017125205A (en) Manufacturing method of complex
JP3688201B2 (en) Engineering ionomer blends and engineering ionomer blend membranes
US6982303B2 (en) Covalently cross-linked polymers and polymer membranes via sulfinate alkylation
US9126147B2 (en) Modification of drawn film
Shukla et al. Temperature resistant phosphorylated graphene oxide-sulphonated polyimide composite cation exchange membrane for water desalination with improved performance
AU2006202592A1 (en) Polymers and polymer membranes covalently cross-linked by sulphinate alkylation
JP5937856B2 (en) Covalently crosslinked polymers and polymer membranes via sulfinate alkylation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150610

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170315

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170407