JP2014166042A - Power storage system with lead storage battery - Google Patents

Power storage system with lead storage battery Download PDF

Info

Publication number
JP2014166042A
JP2014166042A JP2013035240A JP2013035240A JP2014166042A JP 2014166042 A JP2014166042 A JP 2014166042A JP 2013035240 A JP2013035240 A JP 2013035240A JP 2013035240 A JP2013035240 A JP 2013035240A JP 2014166042 A JP2014166042 A JP 2014166042A
Authority
JP
Japan
Prior art keywords
charging
lead
time
discharge
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013035240A
Other languages
Japanese (ja)
Other versions
JP6179755B2 (en
Inventor
Masaji Miyata
昌時 宮田
Yukio Yoshiyama
行男 吉山
Shigeo Aone
茂雄 青根
Katsura Mitani
桂 三谷
Shinichi Sano
伸一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2013035240A priority Critical patent/JP6179755B2/en
Publication of JP2014166042A publication Critical patent/JP2014166042A/en
Application granted granted Critical
Publication of JP6179755B2 publication Critical patent/JP6179755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a life of a lead storage battery for a power storage system with the lead storage battery.SOLUTION: After charging a lead storage battery 7 utilizing an external power source, discharging to a load system 3 starts at a discharge start time, a provision second SOC at which the discharge is to be stopped and a provision first SOC that is higher than the provision second SOC are set in advance, discharging is continued by adjusting a current so as to reach the provision second SOC at a discharge completion time when the provision first SOC is reached, and charging is started immediately after the discharging.

Description

本発明は、鉛蓄電池を使用して充放電を行う蓄電システムに関する。   The present invention relates to a power storage system that charges and discharges using a lead storage battery.

鉛蓄電池は、その信頼性の高さから、様々な用途に用いられており、近年では、安価な深夜電力を用いて充電を行い、この充電した電力を昼間の主電力又は補助電力として用いることが行われている。
電力会社はピーク需要に対して余力のある発電能力を持ち、日々の天候・気温等の予報を元に需要予測を立て、需要に見合った発電設備・装置を稼動させて電力を供給している。電力需要の落ちる夜間においては、供給側は効率良く動かすために稼動せざるを得ない火力発電設備等があり、また、電力負荷平準化(ピークカット・ボトムアップ)の考え方から、昼間よりも割安な料金で夜間電力を供給し、夜間蓄熱式機器等の普及を図っている。
Lead-acid batteries are used for various applications due to their high reliability. In recent years, lead-acid batteries are charged using inexpensive late-night power, and this charged power is used as daytime main power or auxiliary power. Has been done.
Electric power companies have power generation capacity that can withstand peak demand, make demand forecasts based on daily weather and temperature forecasts, etc., and supply power by operating power generation facilities and equipment that meet demand . At night when power demand falls, the supply side has thermal power generation facilities that must be operated in order to operate efficiently, and it is cheaper than daytime due to the concept of power load leveling (peak cut / bottom up). Nighttime electricity is supplied at a reasonable price, and nighttime heat storage devices are being popularized.

この割安な料金設定となっている深夜電力を貯蔵しておいて、昼間のピーク時に放電を行って相対的に割高な電力の使用を抑えるシステムが開示されている。(特許文献1、2参照)   A system has been disclosed in which the late-night power set at a low price is stored and discharged at the peak of the daytime to suppress the use of relatively expensive power. (See Patent Documents 1 and 2)

特開H03−226233号公報JP H03-226233 A 特開2003−125537号公報JP 2003-125537 A

しかしながら、特許文献1、2のような蓄電システムに設置される蓄電池においては、夜間の充電開始時刻までの時間に行われる放電の制御については検討されていなかった。このため、電力需要の高い日に、昼間の放電開始から早い段階で蓄電池が所定許容量の放電を完了すると、放電完了時刻から深夜電力を利用して充電する充電開始時刻までの間、蓄電池が放電した状態で放置される問題があった。
このような蓄電システムに設置される蓄電池として鉛蓄電池を使用した場合、放電した状態で放置することは、鉛蓄電池の寿命が設計寿命よりも短くなる原因の一つとなっている。これは、蓄電システムに限らず、深い放電と充電を繰り返すサイクル用途の鉛蓄電池が抱える問題でもある。
より詳細に述べると、放電によって電解液中の硫酸が消費されると電解液比重が低下し、金属鉛の溶解度が上昇する。このような状態で長期放置されると正極の鉛格子体が腐食する。腐食の進行にともない、鉛格子体の導電性が低下して内部抵抗値が上昇したり、鉛格子体の膨張応力により鉛格子体と活物質の間に剥離が生じて電池容量が低下して鉛蓄電池の短寿命化につながる。
However, in a storage battery installed in a power storage system such as Patent Documents 1 and 2, the discharge control performed during the time until the charge start time at night has not been studied. For this reason, when the storage battery completes a predetermined allowable amount of discharge at an early stage from the start of daytime discharge on a day with high power demand, the storage battery is charged from the discharge completion time to the charge start time for charging using midnight power. There was a problem of being left in a discharged state.
When a lead storage battery is used as a storage battery installed in such a power storage system, leaving it in a discharged state is one of the causes that the life of the lead storage battery becomes shorter than the design life. This is not only a power storage system, but also a problem of a lead storage battery for cycle use that repeats deep discharge and charging.
More specifically, when sulfuric acid in the electrolytic solution is consumed by discharge, the specific gravity of the electrolytic solution is lowered and the solubility of metallic lead is increased. If left in such a state for a long time, the lead grid of the positive electrode corrodes. As corrosion progresses, the conductivity of the lead grid decreases and the internal resistance increases, and the expansion capacity of the lead grid causes peeling between the lead grid and the active material, reducing the battery capacity. This will shorten the life of lead-acid batteries.

この鉛蓄電池の短寿命化を抑制するための充放電制御方法として、放電後は速やかに充電を開始して鉛格子体の腐食量を抑えることが重要であるが、これまで、蓄電システムに設置された鉛蓄電池の充放電制御において、所定許容量の放電完了後から充電を開始するまでの放置時間が鉛蓄電池の寿命に係ることを検証して、鉛蓄電池に及ぼす悪影響を回避する方法が検討されることはなかった。   As a charge / discharge control method to suppress the shortening of the life of this lead storage battery, it is important to start charging immediately after discharge to suppress the corrosion amount of the lead grid body. In charge / discharge control of a lead-acid battery that has been discharged, the method of verifying that the waiting time from the completion of a predetermined allowable amount of discharge until the start of charging is related to the life of the lead-acid battery is examined, and a method for avoiding adverse effects on the lead-acid battery is studied. It was never done.

本発明の目的は、鉛蓄電池を使用して充放電が行われる蓄電システムにおいて、鉛蓄電池の長寿命化を図ることにある。
本発明の他の目的は、鉛蓄電池を充電する外部電源の時間帯料金が季節や電力供給状況により変動しても、上述した充電開始時刻、放電開始時刻を任意に設定して、相対的に安価な外部電力が供給される時間帯を選択して鉛蓄電池を充電し、相対的に高価な外部電力が供給される時間帯を選択して鉛蓄電池から負荷へ放電することができる蓄電システムを提供することにある。
An object of the present invention is to extend the life of a lead storage battery in a power storage system in which charge and discharge are performed using the lead storage battery.
Another object of the present invention is to set the above-mentioned charging start time and discharge start time arbitrarily even if the time zone charge of the external power source for charging the lead storage battery varies depending on the season and the power supply status, and relatively A power storage system that can select a time zone during which inexpensive external power is supplied to charge the lead storage battery, and select a time zone during which relatively expensive external power is supplied to discharge the lead storage battery to the load. It is to provide.

本発明のうち、代表的な発明を以下に説明する。
本発明に係る蓄電システムは、鉛蓄電池と、外部電源により鉛蓄電池を充電する充電手段と、鉛蓄電池から負荷へ放電をする放電手段と、前記鉛蓄電池の充電状態(SOC)を検出するSOC検出手段と、前記充電手段と放電手段を管理する制御手段を備えており、前記制御手段は、少なくとも、次の(1)〜(5)の動作を行う制御機能を有することを特徴とする蓄電システム。
(1)予め設定されている放電開始時刻tに至ったとき、前記鉛蓄電池から負荷への放電を所定の許容電流値以下になるよう、前記放電手段を制御する機能
(2)前記SOC検出手段が規定第1SOCを検出したときに、当該検出時刻t2から、前記充電手段を動作させるために予め設定されている充電開始時刻tまでの時間Trを求めて、鉛蓄電池から負荷への放電を、前記時刻t2における鉛蓄電池の規定第1SOCとそれより小さい規定第2SOCの差から許容放電量を計算する機能
(3)検出時刻t以降から充電開始時刻tまでの放電が、前記許容放電量を前記時間Tで除して計算される調整電流値以下になるよう、前記放電手段を制御する機能
(4)前記充電開始時刻t3に至ったとき、前記放電手段による鉛蓄電池の放電を停止するとともに前記充電手段による鉛蓄電池の充電を開始するよう、前記放電手段と前記充電手段を制御する機能
(5)予め設定された充電終了時刻tに至ったとき、前記充電手段による前記鉛蓄電池の充電を停止するよう前記充電手段を制御するとともに上記(1)の制御機能を動作させる機能
上記において、鉛蓄電池を充電する外部電源を、電力会社から供給される商用電源に設定することができる。また、放電開始時刻t、充電開始時刻t、充電終了時刻t、第1、第2のSOCを任意に設定できるようにするのが好ましい。
Among the present inventions, representative inventions will be described below.
The power storage system according to the present invention includes a lead storage battery, a charging unit that charges the lead storage battery with an external power source, a discharging unit that discharges the lead storage battery to a load, and an SOC detection that detects a state of charge (SOC) of the lead storage battery. And a control means for managing the charging means and the discharging means, and the control means has at least a control function for performing the following operations (1) to (5): .
(1) A function of controlling the discharging means so that the discharge from the lead storage battery to the load becomes a predetermined allowable current value or less when the preset discharge start time t 1 is reached (2) The SOC detection when the means detects the specified first SOC, from the detection time t 2, the said seek time T r of the charging to the start time t 3 when set in advance in order to operate the charging unit, the load from the lead-acid battery discharge, discharge from the time t function of calculating the allowable discharge amount from the difference between the prescribed first 1SOC a small prescribed first 2SOC than that of lead-acid batteries in 2 (3) detection time t 2 later until the charging start time t 3 of the allowable to discharge amount becomes below the regulated current value which is calculated by dividing the time T, function (4) for controlling the discharging means when said leading to charging start time t 3, lead by the discharging means Release of storage battery To start charging the lead-acid battery by the charging means is stopped and when it reaches the function (5) charging end time t 4 when preset to control said charging means and said discharging means, said by the charging means Function for controlling the charging means to stop the charging of the lead-acid battery and operating the control function of (1) above In the above, setting the external power source for charging the lead-acid battery to a commercial power source supplied from an electric power company Can do. Further, it is preferable that the discharge start time t 1 , the charge start time t 3 , the charge end time t 4 , and the first and second SOCs can be arbitrarily set.

本発明のうち、代表的な発明によって得られる効果を簡単に説明すれば以下のとおりである。
本発明によれば、外部電源を用いて鉛蓄電池を充電し、規定のSOC(State Of Charge)まで負荷へ放電して、その時点から充電開始時刻tに至るまでの間、調整電流値以下で放電を継続する制御手段を備えることにより、極板を構成する格子の腐食を抑制することができるので、鉛蓄電池による長寿命の蓄電システムを実現することが可能となる。
また、上述した放電開始時刻t、充電開始時刻t、充電終了時刻t、第1、第2のSOCを任意に設定することができるようにした場合は、季節や電力供給状況により外部電源の時間帯料金が変動した場合にも、相対的に安価な電力料金の時間帯を選択して電力を貯蔵し、相対的に高価な電力料金の時間帯に負荷へ放電する鉛蓄電池による蓄電システムを実現することが可能となる。
The effects obtained by the representative inventions of the present invention will be briefly described as follows.
According to the present invention, to charge the lead-acid battery using an external power source, and discharged to the load to the provisions of the SOC (State Of Charge), until reaching the charging start time t 3 from that point, the following adjustment current value By providing the control means for continuing the discharge, corrosion of the grid constituting the electrode plate can be suppressed, so that a long-life power storage system using a lead storage battery can be realized.
Further, when the discharge start time t 1 , the charge start time t 3 , the charge end time t 4 , and the first and second SOCs can be arbitrarily set, the external time depends on the season and the power supply status. Even when the power supply time zone fee fluctuates, electricity is stored by a lead-acid battery that selects a relatively inexpensive electricity fee time zone to store the power and discharges it to the load during the relatively expensive electricity fee time zone A system can be realized.

鉛蓄電池による蓄電システムの、SOCが30%%〜100%の範囲における充放電サイクル試験において、放電終了時刻から充電開始時刻までの放置時間と極板格子の腐食速度の関係を示す曲線図である(放置時間0の場合が本発明の一実施形態)。FIG. 6 is a curve diagram showing the relationship between the standing time from the discharge end time to the charge start time and the corrosion rate of the electrode plate grid in the charge / discharge cycle test of the power storage system using the lead storage battery in the SOC range of 30% to 100%. (The case where the leaving time is 0 is one embodiment of the present invention). 本発明の一実施形態である蓄電システムの簡易ブロック図である。It is a simple block diagram of the electrical storage system which is one Embodiment of this invention. 本発明の一実施形態における蓄電システムの制御手段の例について概要を示したフローチャートである。It is the flowchart which showed the outline | summary about the example of the control means of the electrical storage system in one Embodiment of this invention. 本発明の一実施形態である蓄電システムの運用を示したタイムチャートである。It is the time chart which showed the operation | movement of the electrical storage system which is one Embodiment of this invention. 鉛蓄電池による蓄電システムの、SOCが30%〜100%の範囲における充放電サイクル試験において、放電終了時刻から充電開始時刻までの放置時間と鉛蓄電池の寿命までのサイクル数の関係を示す曲線図である(放置時間0の場合が本発明の一実施形態)。In the charge / discharge cycle test in the SOC range of 30% to 100% of the storage system using the lead storage battery, it is a curve diagram showing the relationship between the standing time from the discharge end time to the charge start time and the number of cycles until the life of the lead storage battery There is one case (one embodiment of the present invention when the standing time is 0).

以下、図面を参照して本発明の鉛蓄電池による蓄電システム(電力貯蔵システム)の一実施形態について説明する。
鉛蓄電池は放電を終了した状態で放置された場合、極板の集電体である鉛格子の腐食が促進される。このことを確認するために公称電圧12V(6セル)、容量50Ahの蓄電池を作製して、SOCが30%〜100%の範囲で充放電サイクル試験を行い、放電終了時から充電開始までの放置時間の長短による正極板の鉛格子の腐食量を測定した。なお、充放電サイクル試験条件を、
放電:0.2CA、終止DOD70%(SOC30%)
充電:次に示す(1)から(4)のステップを行う多段充電
(1)定電流0.2CA、電圧値2.42V/セルまで充電
(2)定電流0.1CA、電圧値2.42V/セルまで充電
(3)定電流0.05CA、電圧値2.42V/セルまで充電
(4)定電流0.02CA、電圧値2.42V/セルで充電を行いトータルの充電量が放電量の102%に到達した時点で充電終了
としてサイクル試験を行い、放電終了時刻から充電開始時刻までの放置時間を、0hr(実施例)、1hr、2hr、3hr、4hr、6hr、8hrとして、1000サイクル終了時点の正極板の鉛格子体腐食速度を測定した結果を図1に示す。
ここで、正極板の鉛格子体腐食速度は、放置時間毎に1000サイクル終了後の正極板の鉛格子体腐食量を測定して腐食速度とした。測定方法について示すと、まず1000サイクル終了後の蓄電池を解体し、鉛格子体の一部を切り出して測定用サンプルとする。次に鉛格子体腐食層のみを溶解する溶液(水3000gに水酸化ナトリウム100g、塩酸ヒドラジン10gおよびマンニトール20gを混合したもの)に浸漬し、鉛格子体の腐食層を溶解する。最後に鉛格子体腐食層の溶解前後の重量変化を測定して鉛格子の腐食量を求めた。
図1より、放置時間が長くなるにつれて単位サイクル当りの極板格子の腐食量が大きくなることが判る。特に、放置時間が4hrを超えたところから腐食量が急激に大きくなる。この結果から、放電後の放置時間を短くすることにより極板格子の腐食を抑制することができ、鉛蓄電池の劣化の進行を抑えて長寿命化を図ることができる。
Hereinafter, an embodiment of a power storage system (power storage system) using a lead storage battery of the present invention will be described with reference to the drawings.
When the lead storage battery is left in a state where the discharge has been completed, corrosion of the lead grid, which is the current collector of the electrode plate, is promoted. In order to confirm this, a storage battery with a nominal voltage of 12 V (6 cells) and a capacity of 50 Ah was prepared, and a charge / discharge cycle test was conducted in the SOC range of 30% to 100%. The corrosion amount of the lead grid of the positive electrode plate was measured according to the length of time. The charge / discharge cycle test conditions are
Discharge: 0.2CA, end DOD 70% (SOC 30%)
Charging: Multistage charging in which the following steps (1) to (4) are performed. (1) Charging to a constant current of 0.2 CA and a voltage value of 2.42 V / cell (2) Constant current of 0.1 CA and a voltage value of 2.42 V (3) Charge to a constant current of 0.05 CA and a voltage value of 2.42 V / cell. (4) Charge at a constant current of 0.02 CA and a voltage value of 2.42 V / cell. A cycle test is performed at the time when the charge reaches 102%, and the cycle test is performed at the end of charging. The remaining time from the discharge end time to the charge start time is set to 0 hr (Example), 1 hr, 2 hr, 3 hr, 4 hr, 6 hr, 8 hr. The results of measuring the lead grid corrosion rate of the positive electrode plate at that time are shown in FIG.
Here, the lead grid corrosion rate of the positive electrode plate was determined by measuring the lead grid corrosion amount of the positive electrode plate after the end of 1000 cycles for each standing time. Regarding the measurement method, first, the storage battery after 1000 cycles is disassembled, and a part of the lead grid is cut out to obtain a measurement sample. Next, it is immersed in a solution for dissolving only the lead lattice corroded layer (3000 g of water mixed with 100 g of sodium hydroxide, 10 g of hydrazine hydrochloride and 20 g of mannitol) to dissolve the corroded layer of the lead lattice. Finally, the amount of corrosion of the lead lattice was determined by measuring the weight change before and after the dissolution of the lead lattice corrosion layer.
FIG. 1 shows that the amount of corrosion of the electrode plate lattice per unit cycle increases as the standing time increases. In particular, the amount of corrosion suddenly increases when the standing time exceeds 4 hours. From this result, it is possible to suppress the corrosion of the electrode plate lattice by shortening the standing time after the discharge, and to suppress the progress of the deterioration of the lead storage battery, thereby extending the life.

図2は、鉛蓄電池蓄電システムの簡易ブロック図である。鉛蓄電池による蓄電システムは、外部電源1と負荷設備3の間に補助電源として接続され、図示しないマイクロコンピュータにより制御される制御装置5により充放電を制御される。鉛蓄電池7のSOCは、SOC管理用の電流検出器6によって充放電時に流れた電流が検出され、制御装置5で積算して管理される。   FIG. 2 is a simplified block diagram of a lead storage battery power storage system. The power storage system using a lead storage battery is connected as an auxiliary power source between the external power source 1 and the load facility 3, and charging / discharging is controlled by a control device 5 controlled by a microcomputer (not shown). The SOC of the lead storage battery 7 is detected by the current detector 6 for SOC management during the charge / discharge, and is integrated and managed by the control device 5.

充放電制御は、図3に示すフローチャートに従って、図示しないマイクロコンピュータにより制御される制御装置5が実施する。制御装置5を制御するコンピュータプログラムでは、満充電状態で待機している鉛蓄電池7が放電開始設定時刻になると(S10)、鉛蓄電池から負荷への放電を所定の許容電流値以下になるよう、放電手段の制御を行い、負荷設備7に対して通常放電が開始される(S20)。上記所定の許容電流値は、大電流放電によって鉛蓄電池の寿命が短くならないように3CA以下に設定すれば良い。本例では、許容電流値を0.4CAに設定して鉛蓄電池の発熱を抑え、鉛蓄電池7の早期劣化、電槽の変形、端子の脱落等の発生を防止している。上記通常放電は、負荷設備3への定電流放電、あるいは負荷設備3の電力需要に対して一定割合を出力する等、蓄電システムの利用者が、予め制御装置5を制御する図示しないマイクロコンピュータに、任意に設定して運用することができる。本例では、負荷設備3の電力需要の一部を供給するように設定している。   The charge / discharge control is performed by the control device 5 controlled by a microcomputer (not shown) according to the flowchart shown in FIG. In the computer program for controlling the control device 5, when the lead storage battery 7 waiting in the fully charged state reaches the discharge start set time (S10), the discharge from the lead storage battery to the load is less than a predetermined allowable current value. The discharge means is controlled, and normal discharge is started with respect to the load facility 7 (S20). The predetermined allowable current value may be set to 3 CA or less so that the life of the lead storage battery is not shortened by the large current discharge. In this example, the allowable current value is set to 0.4 CA to suppress the heat generation of the lead storage battery, and the occurrence of early deterioration of the lead storage battery 7, deformation of the battery case, dropping of the terminal, and the like is prevented. The normal discharge is a constant current discharge to the load facility 3 or a constant ratio with respect to the power demand of the load facility 3 or the like. , Can be set and operated arbitrarily. In this example, it is set to supply a part of the power demand of the load facility 3.

S40では、鉛蓄電池の現在時刻tn時点のSOCと、運用前に設定した規定第1SOCとの大小を判定して、tn時点の鉛蓄電池のSOCが規定第1SOCより大きいときは、鉛蓄電池の放電容量に余裕があるので、S30でtnが予め設定した充電開始時刻tか否かを判定して、tnが充電開始時刻t前であれば継続して放電を行い、充電開始時刻tであれば放電を終了する。tn時点の鉛蓄電池のSOCが規定第1SOC以下となったときは、S50で調整電流値Iaを算出し、調整電流値I以下の電流で予め設定した充電開始時刻tまで継続して放電を行う。
調整電流値Iaは、規定第1SOCとこれより小さい値で予め設定した規定第2SOCとの差分を鉛蓄電池の残容量Cr(Ah)とし、規定第1SOCを検出した検出時刻tと充電開始時刻tとの差をTr(h)として、調整電流値Iaは、式(1)で算出され、充電開始時刻tまで継続して調整電流値Ia以下の電流で放電が行われる。ここで、残容量Crは、放電を開始する時点で、制御装置5を制御するマイクロコンピュータ内のSOCの値を100%にリセットしておき、電流検出器6で検出した電流を制御装置5で積算した放電量との差分により計算される。
a=Cr/Tr ・・・式(1)
S60では、S50で計算した調整電流値Ia以下の電流で負荷設備3へ充電開始時刻tまで継続して放電し、充電開始時刻tに至ったとき、放電を終了し、充電を開始する(S80)。
In S40, and the SOC of the current time t n the time of the lead-acid battery, to determine the magnitude of the prescribed first 1SOC set in pre-production, when the SOC of the lead-acid battery of t n point in time is greater than the prescribed first 1SOC is, the lead-acid battery since the discharge capacity can afford, to determine whether the charging start time t 3 whether the t n previously set in S30, t n performs discharge continuously if the charging start time t 3 before the charge if the start time t 3 to end the discharge. When SOC of the lead storage battery of t n time is equal to or less than the prescribed first 1SOC calculates an adjustment current I a at S50, is continued until the charging start time t 3 when preset by adjusting the current value I a following current To discharge.
Adjustment current I a are defined first and 1SOC therewith and from the preset small value defining the remaining capacity difference between the lead-acid battery of the first 2SOC C r (Ah), charging and detection time t 2 that has detected the prescribed first 1SOC the difference between the starting time t 3 as T r (h), the adjustment current I a is calculated by equation (1), a discharge adjustment current I a following current continues until the charging start time t 3 Done. Here, the remaining capacity C r is obtained by resetting the SOC value in the microcomputer that controls the control device 5 to 100% at the time of starting discharging, and the current detected by the current detector 6 is controlled by the control device 5. It is calculated by the difference with the discharge amount integrated in step (b).
I a = C r / T r Formula (1)
In S60, and the discharge continues until the charging start time t 3 to the load equipment 3 at the calculated adjusted current value I a following current S50, when reached the charging start time t 3, and the discharge end, start charging (S80).

具体的な実施の一例を図4のタイムチャートで説明すると、放電開始時刻tが7時、充電開始時刻tが23時、充電終了時刻tが7時、規定第1SOCが35%、規定第2SOCが30%に設定され、安価な夜間電力を利用して鉛蓄電池を充電し、昼間の電力需要時に負荷設備へ放電を行う、SOCが30〜100%の範囲で運用される鉛蓄電池による蓄電システムとした。充放電制御方法は、7時から放電を開始して、例えば、18時に規定第1SOC35%に達したとき、規定第2SOCとの差は5%なので鉛蓄電池容量をC(Ah)とすると、Cr=0.05C(Ah)であり、充電開始時刻までの時間Tr=5(h)より、調整電流値Ia(A)は式(1)を用いて次のように求められる。
a=Cr/Tr=0.05C(Ah)/5(h)=0.01C(A)・・・(式1)
この場合、18時に第1SOCに達して通常放電を終了し、18時から充電開始時刻23時まで調整電流値Iaで継続放電して、調整電流値Ia以下による放電後、鉛蓄電池を放電状態で放置することなく直ちに充電を開始することができる。
尚、放電開始時刻tは、充電終了時刻tと同じであっても、充電終了時刻tより遅い時刻であっても良い。放電開始時刻tが充電終了時刻tより遅い時刻であって、その間、放電が行なわれなくても、鉛蓄電池は充電状態にあるので劣化が進むことはない。
An example of a specific implementation will be described with reference to the time chart of FIG. 4. The discharge start time t 1 is 7:00, the charge start time t 3 is 23:00, the charge end time t 4 is 7:00, the specified first SOC is 35%, Lead acid battery that is operated in the range of 30 to 100% SOC, where the specified second SOC is set to 30%, the lead acid battery is charged using cheap nighttime electric power, and is discharged to the load equipment during the daytime power demand The electricity storage system by The charge / discharge control method starts discharging at 7 o'clock. For example, when the specified first SOC is 35% at 18 o'clock, the difference from the specified second SOC is 5%, so if the lead storage battery capacity is C (Ah), C Since r = 0.05C (Ah), and the time T r = 5 (h) until the charging start time, the adjustment current value I a (A) is obtained as follows using the equation (1).
Ia = Cr / Tr = 0.05C (Ah) / 5 (h) = 0.01C (A) (Formula 1)
In this case, 18:00 reached the first 1SOC exit normal discharge, from 18 am to charging start time 23 continuously discharged at regulated current value I a, after the discharge due to the following adjustment current value I a, the lead-acid battery discharge Charging can be started immediately without leaving it in the state.
The discharge starting time t 1 may be the same as the charging end time t 4, it may be a time later than the charging end time t 4. A discharge start time t 1 is a time later than the end of charging time t 4, during which time, even without discharge is carried out, lead-acid batteries will not be proceed deterioration because it is in the state of charge.

図5に、放電終了時刻から充電開始時刻までの放置時間を変化させたときの、極板格子腐食速度から算出した鉛蓄電池の寿命を、放置時間0(実施例)のときを100%として相対的に示す。
図5より、放電後の放置時間が長くなるにつれて鉛蓄電池の寿命が短くなっている。本例の実施により、放電後に鉛蓄電池を放置することなく充電を開始することができるので、鉛蓄電池の劣化が抑えられ、鉛蓄電池による長寿命の蓄電システムを実現することができる。
In FIG. 5, the life of the lead storage battery calculated from the electrode plate corrosion rate when the standing time from the discharge end time to the charging start time is changed is relative to the case where the standing time is 0 (Example) as 100%. Indicate.
From FIG. 5, the life of the lead-acid battery is shortened as the standing time after discharge becomes longer. By implementing this example, charging can be started without leaving the lead storage battery after discharging, so that deterioration of the lead storage battery can be suppressed and a long-life power storage system using the lead storage battery can be realized.

本発明は、バックアップ電源用途、電力負荷平準化用途など、サイクル利用する蓄電システムとして利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used as a power storage system that uses a cycle, such as a backup power supply application and a power load leveling application.

1 外部電源
2 高圧負荷開閉器
3 負荷設備
4 インバータ
5 制御装置
6 電流検出器
7 鉛蓄電池
DESCRIPTION OF SYMBOLS 1 External power supply 2 High voltage load switch 3 Load equipment 4 Inverter 5 Control device 6 Current detector 7 Lead acid battery

Claims (3)

鉛蓄電池と、外部電源により鉛蓄電池を充電する充電手段と、鉛蓄電池から負荷へ放電をする放電手段と、前記鉛蓄電池の充電状態(SOC)を検出するSOC検出手段と、前記充電手段と放電手段を管理する制御手段を備えており、前記制御手段は、少なくとも、次の(1)〜(5)の動作を行う制御機能を有することを特徴とする蓄電システム。
(1)予め設定されている放電開始時刻tに至ったとき、鉛蓄電池から負荷への放電を所定の許容電流値以下になるよう、前記放電手段を制御する機能
(2)前記SOC検出手段が規定第1SOCを検出したときに、当該検出時刻tから、前記充電手段を動作させるために予め設定されている充電開始時刻tまでの時間Tを求めて、鉛蓄電池から負荷への放電を、前記時刻tにおける鉛蓄電池の規定第1SOCとそれより小さい規定第2SOCの差から許容放電量を計算する機能
(3)検出時刻t以降から充電開始時刻tまでの放電が、前記許容放電量を前記時間Trで除して計算される調整電流値以下になるよう、前記放電手段を制御する機能
(4)前記充電開始時刻tに至ったとき、前記放電手段による前記鉛蓄電池の放電を停止するとともに、前記充電手段による前記鉛蓄電池の充電を開始するよう、前記放電手段と前記充電手段を制御する機能
(5)予め設定された充電終了時刻tに至ったとき、前記充電手段による前記鉛蓄電池の充電を停止するよう前記充電手段を制御するとともに上記(1)の制御機能を動作させる機能
Lead storage battery, charging means for charging the lead storage battery with an external power source, discharging means for discharging from the lead storage battery to the load, SOC detecting means for detecting the state of charge (SOC) of the lead storage battery, and the charging means and discharging A power storage system comprising control means for managing the means, wherein the control means has at least a control function for performing the following operations (1) to (5).
(1) A function of controlling the discharging means so that the discharge from the lead storage battery to the load is less than or equal to a predetermined allowable current value when the preset discharge start time t 1 is reached. (2) The SOC detecting means. when There detecting a prescribed first SOC, the the detection time t 2, the said seek time T r until the charging start time t 3 when set in advance in order to operate the charging unit, to the load from the lead-acid battery discharge, discharge from the time t function of calculating the allowable discharge amount from the difference between the prescribed first 1SOC a small prescribed first 2SOC than that of lead-acid batteries in 2 (3) detection time t 2 later until the charging start time t 3, the allowable discharge amount so as to be less than the adjusted current value calculated by dividing the time Tr, function (4) for controlling the discharging means when said leading to charging start time t 3, the by the discharging means lead Electricity storage Of stops the discharge, to start charging of the lead-acid battery by the charging means, when reached to the function (5) charging end time t 4 when preset to control said charging means and said discharging means, wherein A function of controlling the charging means so as to stop the charging of the lead storage battery by the charging means and operating the control function of (1) above
前記外部電源が、電力会社から供給される商用電源であり、前記充電開始時刻tが相対的に低廉な電力使用料金が適用される時間帯に設定されることを特徴とする請求項1記載の鉛蓄電池蓄電システム。 The external power source is a commercial power source supplied from the electric power company, according to claim 1, characterized in that the charging start time t 3 is set to a time period relatively inexpensive power rate is applied Lead-acid battery power storage system. 前記規定第1、第2SOCの値と、前記放電開始時刻tと、前記充電開始時刻tと、前記充電終了時刻tを任意に設定することができることを特徴とする請求項1、2何れかに記載の鉛蓄電池蓄電システム。 The prescribed first, the value of the 2SOC, and the discharge starting time t 1, claim 2, wherein a charging start time t 3, characterized in that the charging end time t 4 can be set arbitrarily The lead acid battery electrical storage system in any one.
JP2013035240A 2013-02-26 2013-02-26 Power storage system using lead-acid battery Expired - Fee Related JP6179755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035240A JP6179755B2 (en) 2013-02-26 2013-02-26 Power storage system using lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035240A JP6179755B2 (en) 2013-02-26 2013-02-26 Power storage system using lead-acid battery

Publications (2)

Publication Number Publication Date
JP2014166042A true JP2014166042A (en) 2014-09-08
JP6179755B2 JP6179755B2 (en) 2017-08-16

Family

ID=51616185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035240A Expired - Fee Related JP6179755B2 (en) 2013-02-26 2013-02-26 Power storage system using lead-acid battery

Country Status (1)

Country Link
JP (1) JP6179755B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212049A (en) * 2016-05-23 2017-11-30 株式会社デンソー Charge control device
KR102209377B1 (en) * 2019-08-16 2021-02-01 주식회사 한국아트라스비엑스 How to remove residues from lead-acid battery lugs using Etching solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111391663A (en) * 2020-04-27 2020-07-10 成都明然智能科技有限公司 Charging method, charging system and electric automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125537A (en) * 2001-10-11 2003-04-25 Hokuriku Electric Power Co Inc:The Discharging method for secondary battery for power storage
JP2013007890A (en) * 2011-06-24 2013-01-10 Ricoh Co Ltd Image forming apparatus, and power supply control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125537A (en) * 2001-10-11 2003-04-25 Hokuriku Electric Power Co Inc:The Discharging method for secondary battery for power storage
JP2013007890A (en) * 2011-06-24 2013-01-10 Ricoh Co Ltd Image forming apparatus, and power supply control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212049A (en) * 2016-05-23 2017-11-30 株式会社デンソー Charge control device
KR102209377B1 (en) * 2019-08-16 2021-02-01 주식회사 한국아트라스비엑스 How to remove residues from lead-acid battery lugs using Etching solution

Also Published As

Publication number Publication date
JP6179755B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
US8938323B2 (en) Power storage system and method of controlling the same
JP6067619B2 (en) Energy storage system for uninterruptible power supply with battery and operation method thereof
JP5179047B2 (en) Storage device abnormality detection device, storage device abnormality detection method, and abnormality detection program thereof
JP5423925B1 (en) Method and apparatus for refresh charging assembled battery comprising lead-acid battery
EP2452413B1 (en) Battery charging method and apparatus
US7633265B2 (en) Secondary-battery management apparatuses, secondary-battery management method, and secondary-battery management program
JP5583781B2 (en) Power management system
JP4691140B2 (en) Charge / discharge system and portable computer
JP5966583B2 (en) Power control device
WO2010001605A1 (en) Life span estimation method for a lead acid battery and a power supply system
CN111527643B (en) Method for managing the state of charge of a battery to be rested
JP5619744B2 (en) Method and apparatus for detecting state of power storage device
JP5503403B2 (en) Charge / discharge control method and charge / discharge control device for power storage device
JP2012253975A (en) Charging/discharging control method for alkali storage battery, and charging/discharging system
CN111557067A (en) Power storage device, power storage system, power supply system, and method for controlling power storage device
JP6179755B2 (en) Power storage system using lead-acid battery
JP2015010962A (en) Method for determining degradation of storage battery and device for determining degradation of storage battery
JPWO2015059873A1 (en) Power management equipment
JP2004120857A (en) Power supply
JP2017168361A (en) Secondary battery device, charge control device, and charge control method
JP2016058373A (en) Information processing unit, information processing method and program
JP2014011005A (en) Power storage device
JP5009258B2 (en) Storage battery capacity estimation device and storage battery capacity estimation method
JP6265010B2 (en) Power storage system
JP2008251291A (en) Control method of sodium-sulfur battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R151 Written notification of patent or utility model registration

Ref document number: 6179755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees