JP2014165970A - Insulation structure of electrical equipment - Google Patents

Insulation structure of electrical equipment Download PDF

Info

Publication number
JP2014165970A
JP2014165970A JP2013032986A JP2013032986A JP2014165970A JP 2014165970 A JP2014165970 A JP 2014165970A JP 2013032986 A JP2013032986 A JP 2013032986A JP 2013032986 A JP2013032986 A JP 2013032986A JP 2014165970 A JP2014165970 A JP 2014165970A
Authority
JP
Japan
Prior art keywords
barrier
tank
conductor part
conductor
conductor portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013032986A
Other languages
Japanese (ja)
Inventor
Yuichi Ohashi
優一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Toko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Toko Co Ltd filed Critical Takaoka Toko Co Ltd
Priority to JP2013032986A priority Critical patent/JP2014165970A/en
Publication of JP2014165970A publication Critical patent/JP2014165970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Patch Boards (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation structure of electrical equipment capable of improving an insulation performance by reducing a conductor part area having an electric field strength equal to or more than 90% and equal to or less than 100% of a maximum electric field strength, and extending a creepage destruction path on the barrier, when the barrier is inserted between a conductor part of an opening/closing device housing a disconnector or the like within a tank and the tank opposing the conductor part.SOLUTION: Between an end portion including a conductor part curved surface 1a to which a high voltage is being applied and a tank 3 opposing a conductor part 1, a circular insulation material is inserted as a circular uneven barrier 2. In the barrier 2, a surface shape opposing the conductor part 1 has a concave or convex apex at a position of a center axis of the conductor part 1, and unevenness is repeated radially from the center axis. A height of the convex part is fixed or made higher gradually as it is separated from the center axis, the convex part does not touch the conductor part 1, the surface shape opposing the tank 3 is made smooth and an end portion has a curved surface.

Description

本発明は、電気機器の絶縁構造に関するものである。   The present invention relates to an insulating structure of an electric device.

ガス絶縁開閉装置の内部構造の一例を説明する。図5に示すガス絶縁開閉装置は、電力系統とケーブルヘッド12を介して接続され、タンク3内には断路器8、遮断器9、接地開閉器10、避雷器11などが配置・収納されている。タンク3内の絶縁媒体として、主に不活性気体であるSF6ガスが使用されている。   An example of the internal structure of the gas insulated switchgear will be described. The gas-insulated switchgear shown in FIG. 5 is connected to the power system via a cable head 12, and a disconnector 8, a breaker 9, a ground switch 10, a lightning arrester 11, etc. are arranged and stored in the tank 3. . As the insulating medium in the tank 3, SF6 gas, which is an inert gas, is mainly used.

しかし、SF6ガスは、地球温暖化係数がCO2に対して約23900倍高い。その為、開閉装置の絶縁媒体は、乾燥空気といった環境負荷の少ない絶縁性気体に代替されつつある。   However, SF6 gas has a global warming potential approximately 23900 times higher than CO2. Therefore, the insulating medium of the switchgear is being replaced with an insulating gas having a low environmental load such as dry air.

大気圧力下において、乾燥空気を絶縁媒体とする開閉装置は、SF6ガスを絶縁媒体とする開閉装置よりも、乾燥空気がSF6ガスの約1/3の絶縁性能である為、断路器8や遮断器9といった導体部とタンク3間の絶縁距離を大きくする必要がある。その結果、ガス絶縁開閉装置のタンク3の体積が大きくなってしまう。   Under atmospheric pressure, switchgear using dry air as insulation medium has insulation performance about 1/3 that of SF6 gas compared to switchgear using SF6 gas as insulation medium. It is necessary to increase the insulation distance between the conductor portion such as the vessel 9 and the tank 3. As a result, the volume of the tank 3 of the gas insulated switchgear becomes large.

ガス絶縁開閉装置の体積が大きくなると、コストや土地が余計に必要となる。そこで、ガス絶縁開閉装置の体積が大きくなることを抑制する為に、タンク3内に封入する乾燥空気などの絶縁性気体の圧力を高くすることや、特許文献1にある様に導体部とタンクとの間に、導体部を覆うような絶縁性のあるバリアを挿入することといった手法によって、絶縁距離を小さくする工夫をしているが、加工面、コスト面から実現は容易ではない。   If the volume of the gas-insulated switchgear is increased, extra costs and land are required. Therefore, in order to suppress an increase in the volume of the gas insulated switchgear, the pressure of an insulating gas such as dry air sealed in the tank 3 is increased, or the conductor part and the tank as disclosed in Patent Document 1 are used. Although an attempt is made to reduce the insulation distance by inserting an insulating barrier that covers the conductor portion between them, it is not easy to realize in terms of processing and cost.

特許第4632959号Patent No. 4632959

タンク内に配置・収納された断路器や遮断器などの導体部には、高電圧が印加されている。高電圧が印加されている導体部の先端部が曲面で、それと対向する接地側であるタンクが平坦の場合、球状同士で対向した場合よりも不平等電界となっていることが多い。   A high voltage is applied to conductors such as a disconnector and a circuit breaker disposed and accommodated in the tank. When the tip of the conductor portion to which a high voltage is applied is a curved surface and the tank on the ground side facing it is flat, the electric field is often unequal compared to the case where they face each other in a spherical shape.

一般的に絶縁破壊が発生する弱点部となる最大電界強度の90%以上100%以下の電界強度となる導体部表面の面積(S90)(報告例として電力中央研究所報告T99047(平成12年5月)など)は、導体部表面の近傍空間が不平等電界となるほど広い。   In general, the surface area of the conductor part where the electric field strength is 90% or more and 100% or less of the maximum electric field strength, which is the weak point where dielectric breakdown occurs (S90). Moon) etc.) is so wide that the space near the surface of the conductor portion becomes an unequal electric field.

また、絶縁性のあるバリアを導体とタンク間に挿入する場合、バリアの形状によっては、バリア上の沿面破壊や、タンクや他の導体などのバリア以外の部分への電界の集中により絶縁性能の低下を招く場合もある。   In addition, when an insulating barrier is inserted between the conductor and the tank, depending on the shape of the barrier, insulation performance may be reduced due to creepage damage on the barrier or concentration of the electric field on parts other than the barrier, such as the tank and other conductors. In some cases, it may cause a decrease.

そこで、バリア挿入時に、最大電界強度の90%以上100%以下の電界強度となる導体部の面積を減らすとともに、加えて、バリア上の沿面破壊経路を延長させ、絶縁性能の向上を図ることができる電気機器の絶縁構造を提供する。   Therefore, when the barrier is inserted, the area of the conductor portion where the electric field intensity is 90% or more and 100% or less of the maximum electric field intensity is reduced, and in addition, the creeping path on the barrier is extended to improve the insulation performance. Provide an insulating structure for electrical equipment that can be used.

高電圧が印加されている断路器などの導体部の曲面を有する端部と、導体部に対向した接地側となるタンク内側の平面との間に、導体部と対向する面に凹凸のある円形状の絶縁材料をバリアとして挿入する。   A circle with a concavity and convexity on the surface facing the conductor part between the curved end of the conductor part such as a disconnector to which a high voltage is applied and the plane inside the tank on the ground side facing the conductor part A shaped insulating material is inserted as a barrier.

このバリアの導体部に対向する表面形状は、導体部の中心軸の位置に凹凸どちらかの頂点を有し、中心軸から放射状に凹凸を繰り返す。バリアの端部は曲面を有する。凸部の高さは一定か、あるいは中心軸から離れるほど高くする。ただし、バリアの凸部は、導体部に触れない。このバリアのタンクに対向する表面は、平滑とする。   The surface shape facing the conductor portion of the barrier has a vertex of either the unevenness at the position of the central axis of the conductor portion, and the unevenness is repeated radially from the central axis. The end of the barrier has a curved surface. The height of the convex portion is constant or is increased as the distance from the central axis increases. However, the convex part of the barrier does not touch the conductor part. The surface of the barrier facing the tank is smooth.

バリア凸部の頂点から隣り合う頂点までのタンク内側接地面と平行方向の距離は、導体部の半径程度とする。バリア表面の凹凸は2回以上繰返し、バリアの半径は導体部の半径の1.1倍以上2倍未満程度とする。以下、この形状のバリアを円形凹凸バリアと称する。この円形凹凸バリアの比誘電率は、2から6の範囲程度である。   The distance in parallel with the tank inner ground plane from the vertex of the barrier convex portion to the adjacent vertex is about the radius of the conductor portion. The barrier surface irregularities are repeated two or more times, and the radius of the barrier should be about 1.1 to less than twice the radius of the conductor. Hereinafter, this shape of the barrier is referred to as a circular uneven barrier. The relative dielectric constant of this circular uneven barrier is about 2 to 6.

円形凹凸バリアの取り付け方法は、導体部と対向するタンクの中心軸にネジ穴加工を施し、バリアの平滑な表面の中心から伸びた絶縁性のスタッドを用いてタンクに固定する。円形凹凸バリアの挿入位置により、スタッドの長さを変える。スタッドは円形凹凸バリアから取り外すことも可能なように、円形凹凸バリアの厚みに対して貫通しない程度のネジ穴加工を施す。   In the method of attaching the circular concavo-convex barrier, screw hole processing is performed on the central axis of the tank facing the conductor portion, and the tank is fixed to the tank using an insulating stud extending from the center of the smooth surface of the barrier. The length of the stud is changed depending on the insertion position of the circular uneven barrier. The studs are threaded so as not to penetrate the thickness of the circular uneven barrier so that the stud can be removed from the circular uneven barrier.

本発明によれば、導体部の端部と導体部に対向した接地側となるタンク内側の平面との間に円形凹凸バリアを取り付けることにより、弱点部となる導体部表面の最大電界の90%以上100%以下の電界強度となる表面積が、バリアがない状態の導体部表面よりも削減できる。   According to the present invention, by attaching a circular uneven barrier between the end of the conductor part and the plane inside the tank on the ground side facing the conductor part, 90% of the maximum electric field on the surface of the conductor part serving as the weak point part The surface area at which the electric field strength is 100% or less can be reduced as compared with the surface of the conductor portion without the barrier.

加えて、円形凹凸バリアの表面は凹凸のある表面形状であるため、沿面破壊距離が伸びる効果も期待できる。   In addition, since the surface of the circular concavo-convex barrier has a concavo-convex surface shape, an effect of extending the creeping fracture distance can be expected.

したがって、導電部とタンク間の絶縁性能を向上させ、導電部とタンク間の絶縁のための距離を短縮化することができる。   Therefore, the insulation performance between the conductive part and the tank can be improved, and the distance for insulation between the conductive part and the tank can be shortened.

本発明の実施形態における断路器などの導体部のバリア取り付け側面断面構造図である。It is a barrier attachment side surface sectional view of conductor parts, such as a disconnector in an embodiment of the present invention. 本発明の実施形態におけるバリアの説明図である。It is explanatory drawing of the barrier in embodiment of this invention. 本発明の実施形態におけるバリア取り付け方法の説明図である。It is explanatory drawing of the barrier attachment method in embodiment of this invention. 本発明の実施形態における電界分布の説明図である。It is explanatory drawing of the electric field distribution in embodiment of this invention. 従来のガス絶縁装置のタンク内構造図である。It is a tank internal structure figure of the conventional gas insulation apparatus. 従来の実施形態における電界分布の説明図である。It is explanatory drawing of the electric field distribution in conventional embodiment.

図5に示すように事故電流などを遮断するガス絶縁開閉装置は、断路器8、遮断器9、接地開閉器10、避雷器11、ケーブルヘッド12などが配置・収納されて、乾燥空気などの絶縁性気体が封入されている。   As shown in FIG. 5, the gas-insulated switchgear that cuts off the accident current and the like is provided with a disconnector 8, a breaker 9, a ground switch 10, a lightning arrester 11, a cable head 12, and the like to insulate dry air or the like. Sexual gas is enclosed.

ガス絶縁開閉装置のタンク3内に配置・収納された導体部1には高電圧が印加されており、高電圧の印加された導体部1と接地されたタンク3間は、ある間隔の絶縁距離によって隔たれ、その間を絶縁するための乾燥空気などの絶縁性気体がタンク3内に充填されている。   A high voltage is applied to the conductor portion 1 disposed and housed in the tank 3 of the gas insulated switchgear, and a certain insulation distance is provided between the conductor portion 1 to which the high voltage is applied and the grounded tank 3. The tank 3 is filled with an insulating gas, such as dry air, that is separated by a gap between the two.

図1に示す高電圧が印加された断路器などの導体部1の端部となる導体部曲面1a近傍は高電界になっているので、導体部曲面1a先端と接地側となるタンク3の間で絶縁破壊しないようにしなければならない。   Since the vicinity of the conductor curved surface 1a, which is the end of the conductor 1 such as a disconnector to which a high voltage is applied as shown in FIG. 1, is a high electric field, there is a gap between the tip of the conductor curved surface 1a and the tank 3 on the ground side. In order not to break down the insulation.

そのため、導体部1とタンク3の間に、円形凹凸バリア2を取り付ける。円形凹凸バリア2の導体部に対向する表面形状は、図1の2aの様に導体部1の中心軸の位置に凹部の頂点を有し、あるいは、凸部の頂点を有し、中心軸から放射状に凹凸を繰り返す。円形凹凸バリア2の端部は曲面を有する。凸部の高さは一定か、あるいは中心軸から離れるほど高くする。ただし、円形凹凸バリア2の凸部は、導体部1に触れない。円形凹凸バリア2のタンク3に対向する表面形状は、平滑とする。   Therefore, a circular uneven barrier 2 is attached between the conductor portion 1 and the tank 3. The surface shape facing the conductor portion of the circular uneven barrier 2 has a concave vertex at the position of the central axis of the conductor portion 1 as shown in 2a of FIG. Repeated irregularities radially. The end of the circular uneven barrier 2 has a curved surface. The height of the convex portion is constant or is increased as the distance from the central axis increases. However, the convex part of the circular uneven barrier 2 does not touch the conductor part 1. The surface shape of the circular uneven barrier 2 facing the tank 3 is smooth.

図2に示すように円形凹凸バリア2凸部の頂点から隣り合う頂点までの接地面と平行方向の距離xは、導体部1の半径程度とする。円形凹凸バリア2表面の凹凸は2回以上繰返し、円形凹凸バリア2の半径φAは導体部1の半径の1.1倍以上2倍未満程度とする。この円形凹凸バリアの比誘電率は、2から6の範囲程度である。   As shown in FIG. 2, the distance x in the direction parallel to the ground plane from the apex of the convex portion of the circular uneven barrier 2 to the adjacent apex is about the radius of the conductor portion 1. The unevenness on the surface of the circular uneven barrier 2 is repeated twice or more, and the radius φA of the circular uneven barrier 2 is 1.1 times or more and less than 2 times the radius of the conductor portion 1. The relative dielectric constant of this circular uneven barrier is about 2 to 6.

円形凹凸バリア2の取り付け方法を以下に説明する。図3に示すように導体部1の中心軸と対向するタンク3にネジ穴加工を施しメネジ5を設ける。円形凹凸バリア2の平滑な表面2bの中心にネジ穴加工を施しメネジ5を設ける。絶縁性のスタッド6を用いて円形凹凸バリア2とタンク3を固定する。円形凹凸バリア2の挿入位置により、スタッド6の長さを変える。円形凹凸バリア2の挿入位置は、導体部1とタンク3の中間にあることが望ましいが、中間以外でも良い。円形凹凸バリア2の厚みに対して貫通しない程度のネジ穴加工を施す。   A method for attaching the circular uneven barrier 2 will be described below. As shown in FIG. 3, a threaded hole is formed in the tank 3 facing the central axis of the conductor portion 1 to provide a female screw 5. A screw hole is machined in the center of the smooth surface 2b of the circular uneven barrier 2 to provide a female screw 5. The circular uneven barrier 2 and the tank 3 are fixed using an insulating stud 6. The length of the stud 6 is changed depending on the insertion position of the circular uneven barrier 2. The insertion position of the circular uneven barrier 2 is preferably in the middle of the conductor portion 1 and the tank 3, but may be other than the middle. A screw hole is processed so as not to penetrate the thickness of the circular uneven barrier 2.

従来のように、導体部1とタンク3の間に絶縁性気体のみが存在する場合、導体部1に電圧が印加されると、導体部1とタンク3間は図6に示すような電界分布となる。図6は軸対称である。   When only an insulating gas exists between the conductor 1 and the tank 3 as in the prior art, when a voltage is applied to the conductor 1, the electric field distribution between the conductor 1 and the tank 3 as shown in FIG. It becomes. FIG. 6 is axisymmetric.

一方、導体部1とタンク3の間に円形凹凸バリア2を挿入する場合、導体部1に電圧が印加されると、導体部1とタンク3間は図4に示すような電界分布となる。図4は軸対称である。   On the other hand, when the circular uneven barrier 2 is inserted between the conductor 1 and the tank 3, when a voltage is applied to the conductor 1, the electric field distribution between the conductor 1 and the tank 3 is as shown in FIG. FIG. 4 is axisymmetric.

実施例として、図4と図6の解析結果を示す。1000kVが印加されている断路器などの導体部1の端部と、導体部1に対向した接地側となるタンク3内側の平面との中間に、中心軸に凹部を有し凹凸の繰り返し数が2.5回であり、比誘電率が2の円形凹凸バリア2を挿入した条件でシミュレーションを行った。この結果、最大電界強度13は28.8kV/mmから31.4kV/mmへ9%程度高くなるが、弱点部となる導体部1表面の最大電界の90%以上100%以下の電界強度となる表面積4が、バリアがない状態の導体部1表面よりも34%程度削減できた。   As an example, the analysis results of FIGS. 4 and 6 are shown. Between the end of the conductor part 1 such as a disconnector to which 1000 kV is applied and the plane inside the tank 3 on the ground side facing the conductor part 1, the center axis has a concave part, and the number of concave and convex repetitions is The simulation was performed under the condition that the circular uneven barrier 2 having a relative dielectric constant of 2 was inserted 2.5 times. As a result, the maximum electric field strength 13 increases by about 9% from 28.8 kV / mm to 31.4 kV / mm, but the surface area 4 has an electric field strength of 90% or more and 100% or less of the maximum electric field on the surface of the conductor portion 1 which is the weak point. However, it was reduced by about 34% from the surface of the conductor part 1 in the state without a barrier.

加えて、円形凹凸バリア2を凹凸のある表面形状とすることで、沿面破壊距離が凹凸の分伸び、絶縁性能が向上する効果もある。   In addition, by making the circular concavo-convex barrier 2 have a concavo-convex surface shape, there is an effect that the creeping fracture distance is extended by the concavo-convex portion and the insulation performance is improved.

1 導体部
1a 導体部曲面
2 円形凹凸バリア
2a 放射状に凹凸を繰り返す表面
2b 平滑な表面
3 タンク
4 最大電界の90%以上100%以下の電界強度となる表面積
5 メネジ
6 スタッド
7 電界強度
8 断路器
9 遮断器
10 接地開閉器
11 避雷器
12 ケーブルヘッド
13 最大電界強度の発生部
DESCRIPTION OF SYMBOLS 1 Conductor part 1a Conductor part curved surface 2 Circular uneven surface 2a Surface which repeats unevenness radially 2b Smooth surface 3 Tank 4 Surface area which becomes electric field strength 90% or more and 100% or less of the maximum electric field 5 Female screw 6 Stud 7 Electric field strength 8 Disconnector 9 Circuit Breaker 10 Ground Switch 11 Arrester 12 Cable Head 13 Maximum Electric Field Strength Generator

Claims (4)

曲面を有する導体部端部と、前記導体部に対向したタンク内側の平面との間に、前記導体部と対向する面に凹凸があり、前記導体部の中心軸の位置に凹凸どちらかの頂点を有し、前記中心軸から放射状に凹凸を繰り返し、前記タンクと対向する面が平滑である、円形状のバリアを挿入したことを特徴とする電気機器の絶縁構造。 Between the end portion of the conductor portion having a curved surface and the plane inside the tank facing the conductor portion, the surface facing the conductor portion has irregularities, and the apex of the irregularities at the position of the central axis of the conductor portion An insulating structure for an electrical device, comprising: a circular barrier having a flat surface and a flat surface facing the tank, the surface being opposed to the tank. 前記バリアの凸部の高さは一定であるか、あるいは、前記中心軸から離れるにつれて高くなるが、前記導体部に触れないことを特徴とする、請求項1に記載の電気機器の絶縁構造。 2. The insulating structure for an electric device according to claim 1, wherein the height of the convex portion of the barrier is constant or increases as the distance from the central axis increases, but does not touch the conductor portion. 前記バリアの凸部の頂点から隣り合う頂点までの接地面と平行方向をなす距離が前記導体部の半径程度であり、表面の凹凸は2回以上繰返し、前記バリアの半径は導体部の半径の1.1倍以上2倍未満程度であることを特徴とする、請求項1または請求項2に記載の電気機器の絶縁構造。 The distance in the direction parallel to the ground plane from the vertex of the convex portion of the barrier to the adjacent vertex is about the radius of the conductor portion, the surface irregularities are repeated twice or more, and the radius of the barrier is the radius of the conductor portion. The insulation structure for an electrical device according to claim 1 or 2, wherein the insulation structure is 1.1 times or more and less than 2 times. 前記バリアの比誘電率が2から6の範囲程度であることを特徴とする請求項1ないし請求項3のいずれかに記載の電気機器の絶縁構造。 4. The insulating structure for an electric device according to claim 1, wherein the relative dielectric constant of the barrier is in the range of 2 to 6.
JP2013032986A 2013-02-22 2013-02-22 Insulation structure of electrical equipment Pending JP2014165970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013032986A JP2014165970A (en) 2013-02-22 2013-02-22 Insulation structure of electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013032986A JP2014165970A (en) 2013-02-22 2013-02-22 Insulation structure of electrical equipment

Publications (1)

Publication Number Publication Date
JP2014165970A true JP2014165970A (en) 2014-09-08

Family

ID=51616132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032986A Pending JP2014165970A (en) 2013-02-22 2013-02-22 Insulation structure of electrical equipment

Country Status (1)

Country Link
JP (1) JP2014165970A (en)

Similar Documents

Publication Publication Date Title
IL267864A (en) Overvoltage protection for power systems
CN103026564B (en) Gas insulated electric apparatus
EP2214191A3 (en) Gas-insulated equipment
WO2008039745A3 (en) Terminal structure of an ion implanter
KR20160081365A (en) Electrode device for gas-insulated switchgear
RU2016149181A (en) TIRE BUS
RU2010111713A (en) HIGH VOLTAGE DEVICE
KR100952686B1 (en) Circuit breaker compartmemt of an insulated switchgear with an electrode for decreasing electric field intensity
CN111161964A (en) Static contact and high-voltage switch
EP3217416A1 (en) Vacuum circuit breaker and direct current circuit breaker
WO2018235162A1 (en) Electrical-device connecting apparatus and opening/closing apparatus
RU108206U1 (en) INSULATOR-DISCHARGE
JP2014165970A (en) Insulation structure of electrical equipment
JP4931395B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
JP6519167B2 (en) Electric field relaxation device of vacuum interrupter
JP6352782B2 (en) Insulating spacer
IN2014DN07548A (en)
KR101860439B1 (en) Electrode device for gas-insulated switchgear
KR20140044205A (en) Gas insulated switchgear
CN111628464B (en) Insulating rod cable fixing device
CN204332808U (en) Medium Voltage Switchgear pole
KR102066227B1 (en) Gas Insulated Switchgear
CN214698693U (en) Screw fastening connection electric field shielding cap structure
JP2014147195A (en) Insulation structure of electrical machine
CN203166390U (en) Plateau type complete set device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140620