JP2014165104A - Organic EL lighting device - Google Patents

Organic EL lighting device Download PDF

Info

Publication number
JP2014165104A
JP2014165104A JP2013036797A JP2013036797A JP2014165104A JP 2014165104 A JP2014165104 A JP 2014165104A JP 2013036797 A JP2013036797 A JP 2013036797A JP 2013036797 A JP2013036797 A JP 2013036797A JP 2014165104 A JP2014165104 A JP 2014165104A
Authority
JP
Japan
Prior art keywords
organic
switch means
turned
power
power switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013036797A
Other languages
Japanese (ja)
Inventor
Tadao Uetsuki
唯夫 植月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2013036797A priority Critical patent/JP2014165104A/en
Publication of JP2014165104A publication Critical patent/JP2014165104A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic EL lighting device in which luminance unevenness and luminance reduction that progress in light-out due to electric charge remaining (residual electric charge) in an electrode are less likely to occur.SOLUTION: An organic EL lighting device 1 comprises: power supply means 2 supplying a power for lighting an organic EL element (EL); and power supply switch means 3 turning on/off the power to be supplied from the power supply means 2 to the organic EL element (EL). Electric charge stored in an electrode of the organic EL element (EL) at the lighting when the power supply switch means 3 is turned on is removed or reduced at the light-out when the power supply switch means 3 is turned off. In concrete terms, a configuration having a parallel resistor 4 connected in parallel to the organic EL element (EL) can be achieved.

Description

本発明は、有機EL素子を点灯させるための有機EL点灯装置に関する。   The present invention relates to an organic EL lighting device for lighting an organic EL element.

物質に電界を印加した時に電子帯構造に応じた波長の光を放出する現象をエレクトロルミネッサンス(Electroluminescence)と呼ぶ。この現象を利用した発光素子がエレクトロルミネッサンス発光素子(以降、EL素子と呼ぶ)である。   The phenomenon of emitting light of a wavelength corresponding to the electronic band structure when an electric field is applied to a substance is called electroluminescence. A light-emitting element utilizing this phenomenon is an electroluminescence light-emitting element (hereinafter referred to as an EL element).

このEL素子として、発光材料に無機物を用いたいわゆる無機EL素子の他、発光材料に有機物を用いたいわゆる有機EL素子もある。この有機EL素子は、対向する一対の電極間にAlq3やPPV等の有機発光材料を含んだ発光層を設け、この発光層に一対の電極それぞれからホールと電子を注入し、発光層内部で再結合させて励起子を生成し、有機発光材料のHOMO−LUMOギャップに応じた波長の光を放出して発光する素子である。   As this EL element, there is a so-called organic EL element using an organic substance as a light emitting material in addition to a so-called inorganic EL element using an inorganic substance as a light emitting material. In this organic EL element, a light-emitting layer containing an organic light-emitting material such as Alq3 or PPV is provided between a pair of opposed electrodes, holes and electrons are injected into the light-emitting layer from each of the pair of electrodes, and the light-emitting layer is regenerated inside the light-emitting layer. It is an element that emits light having a wavelength corresponding to the HOMO-LUMO gap of the organic light emitting material by generating excitons by combining them.

有機EL素子は、薄型面光源として今後の屋内照明の一翼を担う可能性が大きく、各社その高効率化、高出力化に取り組んでいる。また照明用という目的を考慮した場合、その大面積化も求められている。有機ELの基本構造は、例えば、ガラス基板の上に陽極(透明電極)、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層、陰極(金属電極)が積層されているものがある。陰極と陽極の間に直流電圧を印加すると、イオン・電子が発光層で再結合し、その時の再結合エネルギーが光として放射される。簡単に述べると、陽極と陰極の間に有機薄膜を挟みこんだ構造であり、直流電圧を印加させて発光させるものである。   Organic EL elements are likely to play a role in future indoor lighting as thin surface light sources, and each company is working to increase efficiency and output. In addition, when the purpose of illumination is taken into consideration, an increase in area is also required. The basic structure of organic EL is, for example, a structure in which an anode (transparent electrode), a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode (metal electrode) are laminated on a glass substrate. There is. When a DC voltage is applied between the cathode and the anode, ions and electrons recombine in the light emitting layer, and the recombination energy at that time is emitted as light. Briefly, it has a structure in which an organic thin film is sandwiched between an anode and a cathode, and emits light by applying a DC voltage.

有機EL素子の課題の一つとして信頼性がある。即ち、有機EL素子は、長時間点灯すると、不点になったり極端な輝度ムラ・輝度低下が発生したりする現象が生じるのである。   One of the problems with organic EL devices is reliability. That is, when the organic EL element is lit for a long time, a phenomenon that it becomes inconspicuous or extreme luminance unevenness / luminance reduction occurs occurs.

この課題を解決する為に種々の技術が提唱されており、それらは有機薄膜材料や成膜プロセスに関するものが多い。例えば、下記特許文献1では成膜条件に着目し、「成膜に先立って、有機薄膜層を成膜する雰囲気を低露点でかつ有機蒸気を含んだ雰囲気に調節し、該雰囲気中で有機薄膜層を成膜することを特徴とする有機EL素子の有機薄膜層成膜方法。」が記載され、これによって、「ダークスポットが経時的に発生しにくく、信頼性の高い、高分子有機EL素子の有機薄膜層成膜方法等を提供することができる。」とある。   In order to solve this problem, various techniques have been proposed, and many of them relate to organic thin film materials and film forming processes. For example, in Patent Document 1 below, attention is paid to the film formation conditions, and, “Before film formation, the atmosphere for forming the organic thin film layer is adjusted to an atmosphere containing a low dew point and containing organic vapor, and the organic thin film is formed in the atmosphere. Organic thin film layer forming method of organic EL element, characterized in that a layer is formed. "By this," a high-reliability polymer organic EL element in which dark spots are less likely to occur with time " Can provide a method for forming an organic thin film layer, etc. ”.

特開2007−273229JP2007-273229A

前述した様に、有機EL素子は長時間点灯すると、不点になったり極端な輝度ムラ・輝度低下が発生したりする現象が生じる。これらの現象は点灯時間に大きな影響を受けるが、その消灯時間にも影響を受ける。つまり、点灯した後長時間消灯し、その後再度点灯させようとすると、不点になったり極端な輝度ムラ・輝度低下が発生したりする現象が生じる。これは電極にたまった電荷(残留電荷)によって、消灯中も電極間に吸引力が働き部分的に短絡現象を引き起こしたり、誘電体界面に働く力が場所により異なったりするために誘電体界面の接触密度が場所により変化することが原因である。   As described above, when the organic EL element is lit for a long time, a phenomenon occurs in which it becomes inconspicuous or extreme luminance unevenness or luminance decreases. These phenomena are greatly influenced by the lighting time, but are also influenced by the lighting time. That is, if the light is turned off for a long time and then turned on again, there will be a phenomenon in which it becomes inconspicuous or extreme luminance unevenness or luminance decreases. This is because the charge (residual charge) accumulated on the electrodes causes an attractive force between the electrodes even during extinction, causing a short-circuit phenomenon partially, and the force acting on the dielectric interface varies depending on the location. This is because the contact density varies depending on the location.

電極に電荷が存在すれば電極間、および誘電体界面に力が働く。点灯中にこの力が働くことは仕方がないが、消灯中も電極に電荷が存在していると、点灯していないときも常にこの力は存在し、輝度ムラや不点を起こしやすくなる。これは有機EL素子の寿命に関する信頼性を著しく低下させる。したがって消灯しているときに、その残留電荷を消滅させる必要がある。本発明は、消灯時に発生する出力低下の原因を除去することを目的とする。   If electric charges exist in the electrodes, a force acts between the electrodes and the dielectric interface. Although this force is unavoidable during lighting, if there is a charge on the electrode even during extinguishing, this force always exists even when the electrode is not lit, and it tends to cause uneven brightness and inconvenience. This significantly reduces the reliability related to the lifetime of the organic EL element. Therefore, when the light is extinguished, it is necessary to eliminate the residual charge. An object of the present invention is to eliminate the cause of output decrease that occurs when the light is turned off.

即ち、本発明は、電極に残留した電荷(残留電荷)によって消灯している際に進行する輝度ムラや輝度低下が生じ難い有機EL点灯装置を提案することを目的とする。   That is, an object of the present invention is to propose an organic EL lighting device that is less likely to cause uneven brightness and lowering of brightness when the light is extinguished by the charge remaining on the electrode (residual charge).

以下、上記現象について詳説する。有機EL素子に用いられている有機薄膜は電気伝導性が小さく、誘電体としての性質を有しているとみなせる。このため高効率化のために、有機薄膜の厚みを非常に薄くする必要がある(例えば、数十nm程度)。したがって印加電圧は数ボルトであっても、電界強度は108V/mのオーダーとなり非常に強い。図6に示すように、並行平板電極の間には吸引力が働き、その単位面積あたりの力の大きさは式(1)で示される。
ここで、Fは力の大きさ[N]、εは誘電体の誘電率、Eは電極間の電界強度である。
Hereinafter, the above phenomenon will be described in detail. The organic thin film used for the organic EL element has low electrical conductivity and can be regarded as having a property as a dielectric. For this reason, it is necessary to make the thickness of the organic thin film very thin (for example, about several tens of nm) in order to increase the efficiency. Therefore, even if the applied voltage is several volts, the electric field strength is on the order of 10 8 V / m, which is very strong. As shown in FIG. 6, an attractive force acts between the parallel plate electrodes, and the magnitude of the force per unit area is expressed by Equation (1).
Here, F is the magnitude of the force [N], ε is the dielectric constant of the dielectric, and E is the electric field strength between the electrodes.

コンデンサの間に2種類の誘電体が存在すると図7に示すように電極だけではなく誘電体界面にも力が働くようになる。図7中のF、F、Fは式(2)で示すことができる。
ここで図7は、ε2>ε1とした場合の力の向きを示している。
When two types of dielectrics exist between the capacitors, a force acts not only on the electrodes but also on the dielectric interface as shown in FIG. F 1 , F 2 , and F 3 in FIG. 7 can be expressed by Expression (2).
Here, FIG. 7 shows the direction of force when ε 2 > ε 1 .

また、有機EL素子は発光部の面積が大きいため(通常は、数cm角〜10cm角以上)、製造する上で以下の問題がある。
(A)誘電体膜の厚みを均一にすることが困難で、厚みが不均一になりやすい。
(B)透明導電膜が抵抗値を持ち、その値の制御が困難なため、陽極面での電圧降下が発生し、誘電体中の電界強度が場所によって異なる。
Moreover, since the organic EL element has a large area of the light emitting portion (usually several cm square to 10 cm square or more), there are the following problems in manufacturing.
(A) It is difficult to make the thickness of the dielectric film uniform, and the thickness tends to be non-uniform.
(B) Since the transparent conductive film has a resistance value and it is difficult to control the value, a voltage drop occurs on the anode surface, and the electric field strength in the dielectric varies depending on the location.

有機EL素子は設計により、発光層を1つだけ持っているもの(誘電体層が薄く、端子間電圧は低い)と、発光層を何種類か持ちそれらを直列接続しているもの(誘電体層が厚くなり、端子間電圧が比較的高い)がある。   By design, the organic EL element has only one light emitting layer (thin dielectric layer is thin and the voltage between terminals is low), and several types of light emitting layers are connected in series (dielectric) The layer is thicker and the voltage across the terminals is relatively high).

まず、発光層を1つだけ持っている(誘電体層が薄く、端子間電圧は低い)種類のものについて、上述の(A),(B)に対してどのような問題が発生するかを考えてみる。   First, what kind of problems occur with respect to the above-mentioned (A) and (B) for the type having only one light emitting layer (the dielectric layer is thin and the voltage between terminals is low)? I'll think about it.

(A)の場合にどのような不具合があるかを考えてみる。図8にその代表的な場合の模式図を示す。電極には一定電圧が印加されているため、厚みが薄いところ(図8中の領域[2]とする)の電界強度、電束密度ともに、周り(図8中の領域[1]とする)より高くなる。そのため領域[2]に働く力(図8中F2)は領域[1]に働く力(図8中F1)より大きくなる。したがって、領域[2]は電極間をさらに短くしようとする力が働く。それと同時に、領域の境界面では領域[2]の誘電体には領域[1]に広がろうとする力が働くため、その部分の密度が薄くなる傾向があり、領域[2]の電極はさらに近づくことになる。その結果、その部分が短絡に近い状態になり、面全体に電流が流れなくなり、発光しなくなる。もしくは一部分しか発光しなくなる、という現象につながる。 Let's consider what kind of trouble exists in the case of (A). FIG. 8 shows a schematic diagram of the representative case. Since a constant voltage is applied to the electrode, both the electric field strength and the electric flux density in the place where the thickness is thin (region [2] in FIG. 8) are the surroundings (region [1] in FIG. 8). Get higher. Therefore, the force acting on the region [2] (F 2 in FIG. 8) is larger than the force acting on the region [1] (F 1 in FIG. 8). Therefore, a force for further shortening the distance between the electrodes acts in the region [2]. At the same time, the region [2] dielectric has a tendency to spread in the region [1] at the boundary surface of the region, so that the density of the portion tends to be reduced. It will approach. As a result, the portion is in a state close to a short circuit, no current flows through the entire surface, and no light is emitted. Or it leads to the phenomenon that only one part emits light.

(B)の場合について考える。この場合の概念図を図9に示す。陽極に使用されている透明導電膜は抵抗をもつため、電極からの給電点から離れるに従い陽極表面上での電圧降下が発生する。そのため、給電点付近(領域[2])の電界強度、電束密度は、離れた場所(領域[1])に比べて大きくなる。領域[2]、および領域[1]の電極間に働く力F1、F2は式(3)で示される。
ここで、E2>E1よりF2>F1がなりたつ。したがって、領域[2]は電極間をさらに短くしようとする力が働く。それと同時に、領域の境界面では領域[2]の誘電体には領域[1]に広がろうとする力が働くため、その部分の密度が薄くなる傾向があり、領域[2]の電極はさらに近づくことになる。その結果、その部分が短絡に近い状態になり、面全体に電流が流れなくなり、発光しなくなる。もしくは一部分しか発光しなくなる、という現象につながる。
Consider the case of (B). A conceptual diagram of this case is shown in FIG. Since the transparent conductive film used for the anode has resistance, a voltage drop on the anode surface occurs as the distance from the feeding point from the electrode increases. Therefore, the electric field strength and electric flux density near the feeding point (region [2]) are larger than those at a distant location (region [1]). The forces F 1 and F 2 acting between the electrodes in the region [2] and the region [1] are expressed by Expression (3).
Here, F 2 > F 1 is satisfied from E 2 > E 1 . Therefore, a force for further shortening the distance between the electrodes acts in the region [2]. At the same time, the region [2] dielectric has a tendency to spread in the region [1] at the boundary surface of the region, so that the density of the portion tends to be reduced. It will approach. As a result, the portion is in a state close to a short circuit, no current flows through the entire surface, and no light is emitted. Or it leads to the phenomenon that only one part emits light.

ここでは、透明導電膜の表面抵抗にバラツキがない場合を考え、給電点付近と離れた場所を比較したが、表面抵抗にバラツキがある場合は給電点から同じくらいの距離にある場所であっても同様の現象が起こることは容易に理解できる。実際に点灯後に長時間放置された有機ELを点灯させたとき、あるいは長時間点灯させ続けたとき、その両方の場合に、輝度が低下しかつ輝度ムラを生じることがある。   Here, considering the case where there is no variation in the surface resistance of the transparent conductive film, a comparison was made between the vicinity of the feeding point and a location away from it, but if there is a variation in the surface resistance, it is a place that is at the same distance from the feeding point. It is easy to understand that the same phenomenon occurs. When the organic EL that has been allowed to stand for a long time after being lit is lit, or when the organic EL is lit for a long time, the luminance may decrease and luminance unevenness may occur in both cases.

次に、発光層を何種類か持ちそれらを直列接続している(誘電体層が厚くなり、端子間電圧が比較的高い)種類のものについて、上述の(A),(B)に対してどのような問題が発生するかを考えてみる。この場合、基本的に電極間にかかる力については、発光層を1つだけ持っている(誘電体層が薄く、端子間電圧は低い)種類のものと同じであるが、誘電体層が厚いために電極間の短絡は発生しない。しかしながら図7に示すように誘電体界面にかかる力により、誘電体の密度が時間的に変化し、端子電圧の変化(上昇あるいは低下)を引き起こす。しかもこの誘電体界面にかかる力が場所によって異なると、界面の接触密度が場所により変化し、発光輝度ムラを引き起こすのである。   Next, with respect to the types (A) and (B) described above, some types of light emitting layers are connected in series (the dielectric layer is thick and the voltage between terminals is relatively high). Consider what kind of problems will occur. In this case, the force applied between the electrodes is basically the same as that having only one light emitting layer (the dielectric layer is thin and the voltage between terminals is low), but the dielectric layer is thick. Therefore, a short circuit between the electrodes does not occur. However, as shown in FIG. 7, due to the force applied to the dielectric interface, the density of the dielectric changes with time, causing a change (increase or decrease) in the terminal voltage. In addition, when the force applied to the dielectric interface varies from place to place, the contact density at the interface changes from place to place, causing uneven brightness.

上記課題を解決するために、有機EL素子を点灯させるための電力を供給する電源手段と、この電源手段から前記有機EL素子に供給される電力をON/OFFする電源スイッチ手段と、を備え、電源スイッチ手段をONにした点灯時に有機EL素子の電極に蓄積された電荷が、電源スイッチ手段をOFFにした消灯時に除去又は低減されるように構成した、有機EL点灯装置とした。電源スイッチ手段をONにすると、有機EL素子に順方向の電圧がかかり発光する。   In order to solve the above-mentioned problem, the power supply means for supplying power for lighting the organic EL element, and the power supply switch means for turning ON / OFF the power supplied from the power supply means to the organic EL element, The organic EL lighting device is configured such that the charge accumulated in the electrode of the organic EL element at the time of lighting with the power switch means turned on is removed or reduced when the power switch means is turned off when the power switch means is turned off. When the power switch means is turned on, a forward voltage is applied to the organic EL element to emit light.

具体的には、有機EL素子に並列接続される並列抵抗を備えることによって、有機EL素子の電極に蓄積された電荷が、電源スイッチ手段をOFFにした消灯時に除去又は低減されるように構成した有機EL点灯装置とすることができる。   Specifically, by providing a parallel resistor connected in parallel to the organic EL element, the charge accumulated in the electrode of the organic EL element is removed or reduced when the power switch unit is turned off. An organic EL lighting device can be obtained.

このとき、並列抵抗に直列に接続され、有機EL素子と並列抵抗との接続をON/OFFするための並列抵抗スイッチ手段を備え、電源スイッチ手段をONにした点灯時には、前記並列抵抗スイッチ手段がOFFにされて、有機EL素子と並列抵抗との並列接続が解除される一方、電源スイッチ手段をOFFにした消灯時には、前記並列抵抗スイッチ手段がONにされて、有機EL素子と並列抵抗が並列接続されることで、有機EL素子の電極に蓄積している電荷が除去又は低減されるように構成した、有機EL点灯装置とすることが好ましい。   At this time, it is connected in series to the parallel resistance, and includes parallel resistance switch means for turning on / off the connection between the organic EL element and the parallel resistance. When the power switch means is turned on, the parallel resistance switch means While being turned off, the parallel connection between the organic EL element and the parallel resistor is released. On the other hand, when the power switch means is turned off, the parallel resistance switch means is turned on so that the organic EL element and the parallel resistance are in parallel. It is preferable that the organic EL lighting device is configured such that the charges accumulated in the electrodes of the organic EL element are removed or reduced by being connected.

また、電源スイッチ手段をOFFにした消灯時に、電源手段から有機EL素子に供給する電力の極性を所定時間反転させて、有機EL素子の電極に蓄積している電荷が除去又は低減されるように構成した、有機EL点灯装置とすることもできる。   Further, when the power switch means is turned off, the polarity of the power supplied from the power supply means to the organic EL element is reversed for a predetermined time so that the charge accumulated in the electrodes of the organic EL element is removed or reduced. It can also be set as the comprised organic EL lighting device.

また、二個の有機EL素子を点灯させる有機EL点灯装置であって、電源スイッチ手段をONにした点灯時には、二個の有機EL素子が、並列に接続され、電源スイッチ手段をOFFにした消灯時には、一方の有機EL素子の正極側と他方の有機EL素子の負極側とを短絡させるとともに、一方の有機EL素子の負極側と他方の有機EL素子の正極側とを短絡させることで、有機EL素子の電極に蓄積している電荷が除去又は低減されるように構成した、有機EL点灯装置とすることもできる。   Moreover, it is an organic EL lighting device for lighting two organic EL elements, and when the power switch means is turned on, the two organic EL elements are connected in parallel, and the power switch means is turned off. Sometimes, by short-circuiting the positive electrode side of one organic EL element and the negative electrode side of the other organic EL element, the negative electrode side of one organic EL element and the positive electrode side of the other organic EL element are short-circuited. It can also be set as the organic EL lighting device comprised so that the electric charge accumulate | stored in the electrode of EL element might be removed or reduced.

本発明により、電極に残留した電荷(残留電荷)によって消灯している際に進行する輝度ムラや輝度低下が生じ難い有機EL点灯装置を提案することができる。   According to the present invention, it is possible to propose an organic EL lighting device that is less likely to cause uneven luminance and lowering of brightness when the light is extinguished by the charge remaining on the electrode (residual charge).

第一実施形態の有機EL点灯装置を例示する図である。It is a figure which illustrates the organic electroluminescent lighting device of 1st embodiment. 第二実施形態の有機EL点灯装置を例示する図である。It is a figure which illustrates the organic electroluminescent lighting device of 2nd embodiment. 第三実施形態の有機EL点灯装置を例示する図である。It is a figure which illustrates the organic electroluminescent lighting device of 3rd embodiment. 電極の電荷(残留電荷)の変化を示す図である。It is a figure which shows the change of the electric charge (residual electric charge) of an electrode. 第四実施形態の有機EL点灯装置を例示する図である。It is a figure which illustrates the organic electroluminescent lighting device of 4th embodiment. コンデンサの電極に作用する力の原理説明図である。It is principle explanatory drawing of the force which acts on the electrode of a capacitor | condenser. 2種類の誘電体を有するコンデンサの各部分にかかる力の説明図である。It is explanatory drawing of the force concerning each part of the capacitor which has two types of dielectrics. 電極間距離が均一でない場合に電極間に働く力を示す原理説明図である。It is principle explanatory drawing which shows the force which acts between electrodes when the distance between electrodes is not uniform. 電極が抵抗値を有する場合に電極間に働く力を示す原理説明図である。It is principle explanatory drawing which shows the force which acts between electrodes when an electrode has resistance value.

以下、有機EL点灯装置を例示説明する。有機EL点灯装置は、電源手段、および電源スイッチ手段を備え、電源スイッチ手段をONにした点灯時に有機EL素子の電極に蓄積された電荷が、電源スイッチ手段をOFFにした消灯時に除去又は低減されるように構成したものである。   Hereinafter, an organic EL lighting device will be described as an example. The organic EL lighting device includes a power supply means and a power switch means, and the charge accumulated in the electrode of the organic EL element at the time of lighting when the power switch means is turned on is removed or reduced when the power switch means is turned off. It is comprised so that.

1.第一実施形態
本実施形態の有機EL点灯装置1は、図1に示す様に、電源手段2および電源スイッチ手段3に加え、有機EL素子(EL)に並列接続される並列抵抗4を備えることによって、有機EL素子(EL)の電極に蓄積された電荷が、電源スイッチ手段3をOFFにした後、自然に除去又は低減されるように構成したものである。以下、各構成要素について詳説する。
1. First Embodiment As shown in FIG. 1, the organic EL lighting device 1 of the present embodiment includes a parallel resistor 4 connected in parallel to an organic EL element (EL) in addition to the power supply means 2 and the power switch means 3. Thus, the charge accumulated in the electrode of the organic EL element (EL) is naturally removed or reduced after the power switch means 3 is turned off. Hereinafter, each component will be described in detail.

[電源手段]
電源手段2は、発光源である有機EL素子(EL)を点灯させるための電力を、有機EL素子(EL)に供給するものである。通常は、点灯回路などが内蔵されており、使用する有機EL素子(EL)に応じた電力が供給されるようになっている。発光源として使用する有機EL素子(EL)としては、種々の構成のものが存在し、また新たな構成のものも検討されているが、特に制限されない。有機EL素子(EL)は、通常は直流駆動であるため、電源手段2として直流電源が用いられ、有機EL素子(EL)に対して順方向に電力が供給される。
[Power supply means]
The power supply means 2 supplies power for lighting the organic EL element (EL), which is a light emitting source, to the organic EL element (EL). Usually, a lighting circuit or the like is built in, and power corresponding to an organic EL element (EL) to be used is supplied. There are various configurations of organic EL elements (EL) used as a light emitting source, and new configurations have been studied, but are not particularly limited. Since the organic EL element (EL) is normally DC driven, a DC power source is used as the power supply means 2 and power is supplied to the organic EL element (EL) in the forward direction.

[電源スイッチ手段]
電源スイッチ手段3は、電源手段2から有機EL素子(EL)に供給される電力をON/OFFするためのものである。図1では、電源手段2の正極側と有機EL素子の正極側を導通させる配線経路に電源スイッチ手段3が設けられている。電源スイッチ手段3としては種々のスイッチを用いることができる。
[Power switch means]
The power switch means 3 is for turning on / off the power supplied from the power means 2 to the organic EL element (EL). In FIG. 1, the power switch means 3 is provided in the wiring path which conducts the positive electrode side of the power supply means 2 and the positive electrode side of the organic EL element. Various switches can be used as the power switch means 3.

[並列抵抗]
並列抵抗4は、図1に示す様に、有機EL素子(EL)に並列接続される。並列抵抗4の抵抗値は特に制限されないが、10kΩ〜1MΩであることが好ましく、50kΩ〜300kΩであることがより好ましい。
[Parallel resistance]
As shown in FIG. 1, the parallel resistor 4 is connected in parallel to an organic EL element (EL). The resistance value of the parallel resistor 4 is not particularly limited, but is preferably 10 kΩ to 1 MΩ, and more preferably 50 kΩ to 300 kΩ.

この並列抵抗4によって、有機EL素子の電極に蓄積された電荷(電源スイッチ手段3をONにした点灯時に蓄積)が、電源スイッチ手段3をOFFにした消灯時に除去又は低減されるのである。図1は、電源スイッチ手段3をOFFにした消灯時の状態である。   The parallel resistance 4 removes or reduces charges accumulated in the electrodes of the organic EL element (accumulated when the power switch means 3 is turned on) when the power switch means 3 is turned off. FIG. 1 shows a state when the power switch means 3 is turned off and is extinguished.

本第一実施形態の有機EL点灯装置1では、点灯中に並列抵抗4による電力損失が発生する。その大きさは並列抵抗4の抵抗値に反比例し、有機EL素子(EL)に印加される電圧の2乗に比例する。例えば、印加電圧が最大で5V程度、並列抵抗4の抵抗値を100kΩとすると、消費電力は0.25mW程度となる。有機EL素子の消費電力が2W程度であることを考えると実用上は許容範囲であると思われる。
このとき10cm角の有機EL素子で電極間距離が100nm、誘電体の比誘電率を3とすると、その静電容量は式(4)のようになる。
残留電荷を放電するのに必要な時間(時定数)はC×Rで与えられることより、R=100kΩとすると0.27秒となり、短時間で残留電荷を除去できる。
In the organic EL lighting device 1 of the first embodiment, power loss due to the parallel resistance 4 occurs during lighting. Its magnitude is inversely proportional to the resistance value of the parallel resistor 4 and proportional to the square of the voltage applied to the organic EL element (EL). For example, if the applied voltage is about 5 V at the maximum and the resistance value of the parallel resistor 4 is 100 kΩ, the power consumption is about 0.25 mW. Considering that the power consumption of the organic EL element is about 2 W, it seems to be acceptable in practical use.
At this time, when the distance between the electrodes is 100 nm and the relative permittivity of the dielectric is 3 in the 10 cm square organic EL element, the capacitance is as shown in the equation (4).
Since the time (time constant) required for discharging the residual charge is given by C × R, when R = 100 kΩ, it is 0.27 seconds, and the residual charge can be removed in a short time.

2.第二実施形態
上記第一実施形態の有機EL点灯装置1では、点灯中に並列抵抗4による電力損失が生じるが、これを解決したのが、本第二実施形態の有機EL点灯装置1である。本第二実施形態では、上記第一実施形態の各構成要素に加えて、図2に示す様に、並列抵抗スイッチ手段5を備えていることを特徴とする。
2. Second Embodiment In the organic EL lighting device 1 of the first embodiment described above, power loss due to the parallel resistance 4 occurs during lighting, but this is solved by the organic EL lighting device 1 of the second embodiment. . In the second embodiment, in addition to the components of the first embodiment, as shown in FIG. 2, a parallel resistance switch means 5 is provided.

[並列抵抗スイッチ手段]
並列抵抗スイッチ手段5は、並列抵抗4に直列に接続され、有機EL素子(EL)と並列抵抗4との接続をON/OFFするためのものである。並列抵抗スイッチ手段5としては種々のスイッチを用いることができる。そして、図2に示す様に、電源スイッチ手段3をONにした点灯時には、並列抵抗スイッチ手段5がOFFにされて、有機EL素子と並列抵抗4との並列接続が解除される。これによって、並列抵抗4による点灯中の電力損失が発生しなくなる。
[Parallel resistance switch means]
The parallel resistance switch means 5 is connected in series to the parallel resistance 4 and is used to turn on / off the connection between the organic EL element (EL) and the parallel resistance 4. Various switches can be used as the parallel resistance switch means 5. As shown in FIG. 2, when the power switch means 3 is turned on, the parallel resistance switch means 5 is turned off and the parallel connection between the organic EL element and the parallel resistance 4 is released. As a result, power loss during lighting due to the parallel resistor 4 does not occur.

一方、電源スイッチ手段3をOFFにした消灯時には、並列抵抗スイッチ手段5がONにされて、有機EL素子(EL)と並列抵抗4が並列接続されることで、前記第一実施形態と同様、有機EL素子(EL)の電極に蓄積している電荷(電源スイッチ手段3をONにした点灯時に蓄積)が除去又は低減されるようになっているのである。   On the other hand, when the power switch means 3 is turned off, the parallel resistance switch means 5 is turned on, and the organic EL element (EL) and the parallel resistance 4 are connected in parallel, as in the first embodiment. Charges accumulated in the electrodes of the organic EL element (EL) (accumulated during lighting when the power switch means 3 is turned on) are removed or reduced.

このように、電源スイッチ手段3のON/OFFと連動して、並列抵抗スイッチ手段5がOFF/ONするように構成すればよいが、このような構成は種々の手段を用いて実現することができる。例えば、多極(二極)スイッチを用いれば簡単な構成となる。また、電源スイッチ手段3のON/OFFを検知する電源スイッチ検知手段を設けるとともに、この電源スイッチ検知手段からの検知信号に応じて並列抵抗スイッチ手段5をOFF/ONする並列抵抗スイッチ制御手段を設けてもよい。   In this way, the parallel resistance switch means 5 may be configured to be turned off / on in conjunction with the ON / OFF of the power switch means 3, but such a configuration can be realized using various means. it can. For example, if a multi-pole (two-pole) switch is used, the configuration is simple. In addition, power switch detection means for detecting ON / OFF of the power switch means 3 is provided, and parallel resistance switch control means for turning OFF / ON the parallel resistance switch means 5 according to a detection signal from the power switch detection means is provided. May be.

2.第三実施形態
図3に第三実施形態の有機EL点灯装置を示す。本実施形態では、有機ELが消灯するときに電源を有機ELに逆向きに接続(プラスマイナスを反転)し、それにより電荷(残留電荷)を消去する。以下、図3に基づき具体的に説明する。
2. Third Embodiment FIG. 3 shows an organic EL lighting device according to a third embodiment. In the present embodiment, when the organic EL is turned off, the power source is connected to the organic EL in the opposite direction (plus / minus is inverted), thereby erasing the charge (residual charge). Hereinafter, a specific description will be given based on FIG.

前述した実施形態と同様、本実施形態でも、有機EL素子(EL)を点灯させるための電力を有機EL素子に供給する電源手段2を備えている。   Similar to the above-described embodiment, this embodiment also includes power supply means 2 for supplying power for lighting the organic EL element (EL) to the organic EL element.

そして、本実施形態では、反転用第一配線61と反転用第二配線62も備える。反転用第一配線61は、負荷抵抗7を有するとともに、有機EL素子(EL)の負極側から分岐し、消灯時に、第一電源スイッチ手段31(後述)によって先端側y1が電源手段2の正極側と接続される。また、反転用第二配線62は、負荷抵抗7を有するとともに、有機EL素子(EL)の正極側から分岐し、消灯時に、第二電源スイッチ手段32(後述)によって先端側y2が電源手段2の負極側と接続される。   In this embodiment, the inversion first wiring 61 and the inversion second wiring 62 are also provided. The first inversion wiring 61 has a load resistor 7 and branches from the negative electrode side of the organic EL element (EL). When the light is extinguished, the first power switch means 31 (described later) sets the tip side y1 to the positive electrode of the power supply means 2. Connected with the side. The second inversion wiring 62 has a load resistor 7 and branches from the positive electrode side of the organic EL element (EL). When the light is extinguished, the tip side y2 is connected to the power source means 2 by the second power switch means 32 (described later). Connected to the negative electrode side.

また、本実施形態では、電源手段2から有機EL素子(EL)に供給される電力をON/OFF(順方向の電力をON/OFF)する電源スイッチ手段として、第一電源スイッチ手段31と第二電源スイッチ手段32を備える。ここで、第一電源スイッチ手段31は、電源手段2の正極側を基軸に、有機EL素子(EL)の正極側x1と反転用第一配線61の先端側y1との間で接続を切替えるものである。また、第二電源スイッチ手段32は、電源手段2の負極側を基軸に、有機EL素子(EL)の負極側x2と反転用第二配線62の先端側y2との間で接続を切替えるものである。   In the present embodiment, the first power switch means 31 and the first power switch means 31 are used as power switch means for turning ON / OFF the power supplied from the power supply means 2 to the organic EL element (EL) (forward power ON / OFF). Dual power switch means 32 is provided. Here, the first power supply switch means 31 switches the connection between the positive electrode side x1 of the organic EL element (EL) and the tip end side y1 of the inversion first wiring 61 with the positive electrode side of the power supply means 2 as a basic axis. It is. The second power switch means 32 switches the connection between the negative electrode side x2 of the organic EL element (EL) and the tip end side y2 of the inversion second wiring 62 with the negative electrode side of the power supply means 2 as a basic axis. is there.

そして、点灯時には、第一電源スイッチ手段31を有機EL素子(EL)の正極側x1に位置させるとともに、第二電源スイッチ手段32を有機EL素子(EL)の負極側x2に位置させて、有機EL素子(EL)を発光させる。   At the time of lighting, the first power switch means 31 is positioned on the positive electrode side x1 of the organic EL element (EL) and the second power switch means 32 is positioned on the negative electrode side x2 of the organic EL element (EL). The EL element (EL) is caused to emit light.

一方、消灯時には、第一電源スイッチ手段31を反転用第一配線61の先端側y1に所定時間位置させるとともに、第二電源スイッチ手段32を反転用第二配線62の先端側y2に所定時間位置させることで、電源手段2から有機EL素子(EL)に供給する電力の極性を所定時間反転(逆電圧を印加 詳しくは電源スイッチ手段をONにした点灯時とは逆方向の電圧を有機EL素子に印加)させて、有機EL素子の電極に蓄積している電荷が除去又は低減されるようにするのである。逆電圧を印加した後は、例えば、第一電源スイッチ手段31と第二電源スイッチ手段32をフリーの状態にしておけばよい。   On the other hand, when the light is turned off, the first power switch means 31 is positioned on the tip side y1 of the reversing first wiring 61 for a predetermined time, and the second power switch means 32 is positioned on the tip side y2 of the reversing second wiring 62 for a predetermined time. By reversing the polarity of the electric power supplied from the power supply means 2 to the organic EL element (EL) for a predetermined time (applying a reverse voltage, in detail, the voltage in the direction opposite to that when the power switch means is turned on is turned on. The charge accumulated in the electrodes of the organic EL element is removed or reduced. After the reverse voltage is applied, for example, the first power switch means 31 and the second power switch means 32 may be set in a free state.

ここで、逆電圧を印加する時間τ(上記所定時間)は以下のように求められる。時間τだけ逆電圧を印加するように制御手段(逆電圧印加時間制御手段)を設けて、第一電源スイッチ手段31と第二電源スイッチ手段32を制御することが好ましい。   Here, the time τ for applying the reverse voltage (the predetermined time) is obtained as follows. It is preferable to provide control means (reverse voltage application time control means) so as to apply the reverse voltage for the time τ to control the first power switch means 31 and the second power switch means 32.

図3において、点灯時に電荷Q0[C]が電極に蓄えられたとする。第一電源スイッチ手段31と第二電源スイッチ手段32を切り替えて消灯した瞬間から電極の電荷Qは図4に示されるような変化を始める。その変化は式(5)で示される。
ここでRは図3に示す負荷抵抗7の抵抗値であり、Cは有機ELの静電容量である。この式よりスイッチを端子2に接続する時間τは式(6)で求められる。
例えば、R=100kΩ、C=2.7×10-6Cとすると、τ=0.817sとなる。
In FIG. 3, it is assumed that the charge Q 0 [C] is stored in the electrode during lighting. From the moment when the first power switch means 31 and the second power switch means 32 are switched and turned off, the charge Q of the electrode begins to change as shown in FIG. The change is shown by Formula (5).
Here, R is the resistance value of the load resistor 7 shown in FIG. 3, and C is the capacitance of the organic EL. From this equation, the time τ for connecting the switch to the terminal 2 is obtained by equation (6).
For example, when R = 100 kΩ and C = 2.7 × 10 −6 C, τ = 0.817 s.

2.第四実施形態
図5に第四実施形態の有機EL点灯装置を示す。この有機EL点灯装置は二個の有機EL素子を点灯させるものである。点灯時に並列接続されて発光する一組の有機EL素子(EL1,EL2)を用い、消灯時に有機EL素子同士を逆接続することで、電荷(残留電荷)を除去又は低減させるものである。
2. Fourth Embodiment FIG. 5 shows an organic EL lighting device according to a fourth embodiment. This organic EL lighting device lights two organic EL elements. Charge (residual charge) is removed or reduced by using a pair of organic EL elements (EL1, EL2) that emit light by being connected in parallel when turned on and by reversely connecting the organic EL elements when turned off.

具体的には、本実施形態では、図5(a)に示す点灯時(各電源スイッチ手段35,36,37,38がONの位置にある)には、有機EL素子が、二個、並列に接続され、図5(b)に示す消灯時(各電源スイッチ手段35,36,37,38がOFFの位置にある)には、一方の有機EL素子(EL1)の正極側と他方の有機EL素子(EL2)の負極側とを短絡させるとともに、一方の有機EL素子(EL1)の負極側と他方の有機EL素子(EL2)の正極側とを短絡させることで、有機EL素子の電極に蓄積している電荷が除去又は低減されるように構成されている。
以下、図5に基づき具体的に説明する。
Specifically, in this embodiment, two organic EL elements are arranged in parallel at the time of lighting shown in FIG. 5A (each power switch means 35, 36, 37, 38 is in the ON position). When the light is turned off as shown in FIG. 5B (each power switch means 35, 36, 37, 38 is in the OFF position), the positive side of one organic EL element (EL1) and the other organic By short-circuiting the negative electrode side of the EL element (EL2), and short-circuiting the negative electrode side of one organic EL element (EL1) and the positive electrode side of the other organic EL element (EL2), The accumulated charge is removed or reduced.
Hereinafter, a specific description will be given based on FIG.

前述した実施形態と同様、本実施形態でも、有機EL素子を点灯させるための電力を有機EL素子に供給する電源手段2を備えている。しかし、点灯させる有機EL素子として、第一の有機EL素子(EL1)と第二の有機EL素子(EL2)を用いる。そして、第一の有機EL素子(EL1)と第二の有機EL素子(EL2)は点灯時に並列接続される。   Similar to the above-described embodiment, this embodiment also includes power supply means 2 for supplying power for lighting the organic EL element to the organic EL element. However, the first organic EL element (EL1) and the second organic EL element (EL2) are used as the organic EL elements to be lit. The first organic EL element (EL1) and the second organic EL element (EL2) are connected in parallel during lighting.

そして、本実施形態では、短絡用第一配線81と短絡用第二配線82も備える。短絡用第一配線81は、第一の有機EL素子(EL1)の正極側と第二の有機EL素子(EL2)の負極側とを消灯時に短絡させるためのものであり、短絡用第二配線82は、第一の有機EL素子(EL1)の負極側と第二の有機EL素子(EL2)の正極側とを消灯時に短絡させるためのものである。   In this embodiment, a short-circuit first wiring 81 and a short-circuit second wiring 82 are also provided. The first short circuit wiring 81 is for short-circuiting the positive electrode side of the first organic EL element (EL1) and the negative electrode side of the second organic EL element (EL2) when the light is extinguished. 82 is for short-circuiting the negative electrode side of the first organic EL element (EL1) and the positive electrode side of the second organic EL element (EL2) when the light is extinguished.

また、本実施形態では、電源スイッチ手段として、第一正極電源スイッチ手段35、第一負極電源スイッチ手段36、第二正極電源スイッチ手段37、及び第二負極電源スイッチ手段38を備える。 In the present embodiment, the first positive power supply switch means 35, the first negative power supply switch means 36, the second positive power supply switch means 37, and the second negative power supply switch means 38 are provided as the power switch means.

ここで、第一正極電源スイッチ手段35は、第一の有機EL素子(EL1)の正極側を基軸に、電源手段2の正極側と短絡用第一配線81の一端側との間で接続を切替えるものである。また、第一負極電源スイッチ手段36は、第一の有機EL素子(EL1)の負極側を基軸に、電源手段2の負極側と短絡用第二配線82の一端側との間で接続を切替えるものである。また、第二正極電源スイッチ手段37は、第二の有機EL素子(EL2)の正極側を基軸に、電源手段2の正極側と短絡用第二配線82の他端側との間で接続を切替えるものである。また、第二負極電源スイッチ手段38は、第二の有機EL素子(EL2)の負極側を基軸に、電源手段2の負極側と短絡用第一配線81の他端側との間で接続を切替えるものである。   Here, the first positive power supply switch means 35 is connected between the positive electrode side of the power supply means 2 and one end side of the short-circuit first wiring 81 with the positive electrode side of the first organic EL element (EL1) as a basic axis. It is to switch. The first negative power supply switch means 36 switches the connection between the negative electrode side of the power supply means 2 and one end side of the short-circuit second wiring 82 with the negative electrode side of the first organic EL element (EL1) as a basic axis. Is. The second positive power supply switch means 37 is connected between the positive electrode side of the power supply means 2 and the other end side of the short-circuit second wiring 82 with the positive electrode side of the second organic EL element (EL2) as a basic axis. It is to switch. The second negative power supply switch means 38 is connected between the negative electrode side of the power supply means 2 and the other end side of the short-circuit first wiring 81 with the negative electrode side of the second organic EL element (EL2) as a basic axis. It is to switch.

そして、点灯時には、図5(a)に示す様に、第一正極電源スイッチ手段35を電源手段2の正極側に、第一負極電源スイッチ手段36を電源手段2の負極側に、第二正極電源スイッチ手段37を電源手段2の正極側に、第二負極電源スイッチ手段38を電源手段2の負極側にそれぞれ位置させて、第一の有機EL素子(EL1)と第二の有機EL素子(EL2)とを並列接続させて両有機EL素子を発光させる。   At the time of lighting, as shown in FIG. 5 (a), the first positive power supply switch means 35 is on the positive side of the power supply means 2, the first negative power supply switch means 36 is on the negative side of the power supply means 2, and the second positive electrode The power switch means 37 is positioned on the positive side of the power supply means 2 and the second negative power supply switch means 38 is positioned on the negative side of the power supply means 2 so that the first organic EL element (EL1) and the second organic EL element ( EL2) is connected in parallel to cause both organic EL elements to emit light.

一方、消灯時には、図5(b)に示す様に、第一正極電源スイッチ手段35を短絡用第一配線81の一端側に、第一負極電源スイッチ手段36を短絡用第二配線82の一端側に、第二正極電源スイッチ手段37を短絡用第二配線82の他端側に、第二負極電源スイッチ手段38を短絡用第一配線81の他端側にそれぞれ位置させて、第一の有機EL素子(EL1)の正極側と第二の有機EL素子(EL2)の負極側とを短絡させるとともに、第一の有機EL素子(EL1)の負極側と第二の有機EL素子(EL2)の正極側とを短絡させるように構成して、両有機EL素子の電極に蓄積している電荷が除去又は低減されるようにしたのである。このとき、第一の有機EL素子(EL1)と第二の有機EL素子(EL2)は何れも電源手段2との接続が遮断されており、電気的に独立した状態となっている。なお、第一の有機EL素子(EL1)と第二の有機EL素子(EL2)は同じ静電容量のものを用いることが好ましい。   On the other hand, when the light is turned off, as shown in FIG. 5B, the first positive power supply switch means 35 is connected to one end of the short-circuit first wiring 81 and the first negative power supply switch means 36 is connected to one end of the second short-circuit wiring 82. The second positive power switch means 37 is positioned on the other end side of the second short-circuit wiring 82 and the second negative power switch means 38 is positioned on the other end side of the first short-circuit wiring 81, While short-circuiting the positive electrode side of the organic EL element (EL1) and the negative electrode side of the second organic EL element (EL2), the negative electrode side of the first organic EL element (EL1) and the second organic EL element (EL2) In other words, the charge accumulated in the electrodes of both organic EL elements is removed or reduced. At this time, the first organic EL element (EL1) and the second organic EL element (EL2) are both disconnected from the power supply means 2 and are in an electrically independent state. The first organic EL element (EL1) and the second organic EL element (EL2) preferably have the same capacitance.

以上、特定の実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではなく、当該技術分野における熟練者等により、本出願の願書に添付された特許請求の範囲から逸脱することなく、種々の変更及び修正が可能である。   Although the present invention has been described above with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and claims attached to the application of the present application by those skilled in the art or the like. Various changes and modifications can be made without departing from the scope.

1 有機EL点灯装置

2 電源手段
3 電源スイッチ手段
31 第一電源スイッチ手段
32 第二電源スイッチ手段
35 第一正極電源スイッチ手段
36 第一負極電源スイッチ手段
37 第二正極電源スイッチ手段
38 第二負極電源スイッチ手段

4 並列抵抗
5 並列抵抗スイッチ手段

61 反転用第一配線
62 反転用第二配線
7 負荷抵抗

81 短絡用第一配線
82 短絡用第二配線


EL 有機EL素子
EL1 第一の有機EL素子
EL2 第二の有機EL素子
1 Organic EL lighting device

2 Power supply means 3 Power switch means
31 First power switch means
32 Second power switch means
35 First positive power switch means
36 First negative power switch means
37 Second positive power switch means
38 Second negative power switch means

4 parallel resistance 5 parallel resistance switch means

61 First wiring for reversal
62 Second wiring for inversion 7 Load resistance

81 First wiring for short circuit
82 Second wiring for short circuit


EL Organic EL device
EL1 First organic EL element
EL2 Second organic EL element

Claims (5)

有機EL素子を点灯させるための電力を供給する電源手段と、
この電源手段から前記有機EL素子に供給される電力をON/OFFする電源スイッチ手段と、を備え、
電源スイッチ手段をONにした点灯時に有機EL素子の電極に蓄積された電荷が、電源スイッチ手段をOFFにした消灯時に除去又は低減されるように構成した、
有機EL点灯装置。
Power supply means for supplying power for lighting the organic EL element;
Power supply switch means for turning ON / OFF the power supplied from the power supply means to the organic EL element,
The charge accumulated in the electrode of the organic EL element during lighting with the power switch means turned on is configured to be removed or reduced when the power switch means is turned off.
Organic EL lighting device.
有機EL素子に並列接続される並列抵抗を備えることによって、
有機EL素子の電極に蓄積された電荷が、電源スイッチ手段をOFFにした消灯時に除去又は低減されるように構成した、
請求項1記載の有機EL点灯装置。
By providing a parallel resistor connected in parallel to the organic EL element,
The charge accumulated in the electrode of the organic EL element is configured to be removed or reduced when the power switch means is turned off and turned off.
The organic EL lighting device according to claim 1.
並列抵抗に直列に接続され、有機EL素子と並列抵抗との接続をON/OFFするための並列抵抗スイッチ手段を備え、
電源スイッチ手段をONにした点灯時には、前記並列抵抗スイッチ手段がOFFにされて、有機EL素子と並列抵抗との並列接続が解除される一方、
電源スイッチ手段をOFFにした消灯時には、前記並列抵抗スイッチ手段がONにされて、有機EL素子と並列抵抗が並列接続されることで、有機EL素子の電極に蓄積している電荷が除去又は低減されるように構成した、
請求項2記載の有機EL点灯装置。
A parallel resistance switch means connected in series to the parallel resistance, for turning on / off the connection between the organic EL element and the parallel resistance;
At the time of lighting with the power switch means turned on, the parallel resistance switch means is turned off, and the parallel connection between the organic EL element and the parallel resistance is released,
When the power switch means is turned off, the parallel resistance switch means is turned on and the organic EL element and the parallel resistance are connected in parallel to remove or reduce the charge accumulated in the electrodes of the organic EL element. Configured to be
The organic EL lighting device according to claim 2.
電源スイッチ手段をOFFにした消灯時に、電源手段から有機EL素子に供給する電力の極性を所定時間反転させて、
有機EL素子の電極に蓄積している電荷が除去又は低減されるように構成した、
請求項1記載の有機EL点灯装置。
When turning off the power switch means, the polarity of the power supplied from the power means to the organic EL element is reversed for a predetermined time,
The charge accumulated in the electrode of the organic EL element is configured to be removed or reduced.
The organic EL lighting device according to claim 1.
二個の有機EL素子を点灯させる有機EL点灯装置であって、
電源スイッチ手段をONにした点灯時には、二個の有機EL素子が、並列に接続され、
電源スイッチ手段をOFFにした消灯時には、一方の有機EL素子の正極側と他方の有機EL素子の負極側とを短絡させるとともに、一方の有機EL素子の負極側と他方の有機EL素子の正極側とを短絡させることで、有機EL素子の電極に蓄積している電荷が除去又は低減されるように構成した、
請求項1記載の有機EL点灯装置。
An organic EL lighting device for lighting two organic EL elements,
When lighting with the power switch means ON, two organic EL elements are connected in parallel,
When turning off the power switch means, the positive electrode side of one organic EL element and the negative electrode side of the other organic EL element are short-circuited, and the negative electrode side of one organic EL element and the positive electrode side of the other organic EL element Are configured such that the charge accumulated in the electrodes of the organic EL element is removed or reduced.
The organic EL lighting device according to claim 1.
JP2013036797A 2013-02-27 2013-02-27 Organic EL lighting device Pending JP2014165104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036797A JP2014165104A (en) 2013-02-27 2013-02-27 Organic EL lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013036797A JP2014165104A (en) 2013-02-27 2013-02-27 Organic EL lighting device

Publications (1)

Publication Number Publication Date
JP2014165104A true JP2014165104A (en) 2014-09-08

Family

ID=51615521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036797A Pending JP2014165104A (en) 2013-02-27 2013-02-27 Organic EL lighting device

Country Status (1)

Country Link
JP (1) JP2014165104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139202A1 (en) * 2017-01-25 2018-08-02 株式会社小糸製作所 Vehicle lamp fitting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139202A1 (en) * 2017-01-25 2018-08-02 株式会社小糸製作所 Vehicle lamp fitting
CN110234537A (en) * 2017-01-25 2019-09-13 株式会社小糸制作所 Lamps apparatus for vehicle
US20190353322A1 (en) * 2017-01-25 2019-11-21 Koito Manufacturing Co., Ltd. Vehicle lamp
US10883693B2 (en) 2017-01-25 2021-01-05 Koito Manufacturing Co., Ltd. Vehicle lamp

Similar Documents

Publication Publication Date Title
KR101477929B1 (en) Organic light emitting device and method for manufacturing the same
KR101477955B1 (en) Organic light emitting device and method for manufacturing the same
JP6510560B2 (en) Organic light emitting device
KR101946999B1 (en) Organic light emitting device and method for manufacturing the same
JP6608354B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
TWI590508B (en) Organic light emitting device and method for manufacturing the same
CN107004695B (en) Organic light emitting device
US8138679B2 (en) Organic electroluminescent light emitting device for restoring normal operation after low-voltage errors
TW201318471A (en) Organic electroluminescent device with space charge/voltage instability stabilization drive
JPH11162637A (en) Restoring method for organic light emitting diode
JP2017516265A (en) Organic light emitting device
JP2007227094A (en) Panel for lighting using organic el element, and lighting device
KR101946905B1 (en) Organic light emitting device
JP2014165104A (en) Organic EL lighting device
TWI585967B (en) Method for repairing of organic light emitting device
JP2006339122A (en) Light emitting device using organic electroluminescent element
JP2009021073A (en) Self light emission element, lighting system, and display device
US10205111B2 (en) Organic light emitting diode, method for manufacturing organic light emitting diode, and method for repairing organic light emitting diode
KR101938695B1 (en) Method for detection of short defects region of organic light emitting device
JP2015118752A (en) Organic el element for lighting