JP2014164984A - Manufacturing method for ceramic heater - Google Patents

Manufacturing method for ceramic heater Download PDF

Info

Publication number
JP2014164984A
JP2014164984A JP2013034214A JP2013034214A JP2014164984A JP 2014164984 A JP2014164984 A JP 2014164984A JP 2013034214 A JP2013034214 A JP 2013034214A JP 2013034214 A JP2013034214 A JP 2013034214A JP 2014164984 A JP2014164984 A JP 2014164984A
Authority
JP
Japan
Prior art keywords
molding
pair
lead
molding material
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013034214A
Other languages
Japanese (ja)
Other versions
JP6080606B2 (en
Inventor
Masahiro Torasawa
雅寛 虎澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013034214A priority Critical patent/JP6080606B2/en
Publication of JP2014164984A publication Critical patent/JP2014164984A/en
Application granted granted Critical
Publication of JP6080606B2 publication Critical patent/JP6080606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce ceramic heater manufacturing failures.SOLUTION: A molding die is used, which includes: a fold molding part, which is provided for molding an unbaked fold that is to be provided as a fold after baking; and a pair of lead molding parts, which is provided for molding a pair of unbaked leads that are to be provided as a pair of leads after baking and of which each one end is connected with each of both ends of the fold molding part. By using this molding die, mold material is injected from the other end of each of the pair of lead molding parts. Thereby, an unbaked resistor that is to be provided as a resistor after baking is molded by injection molding. In the molding die, the minimum cross-sectional area in a range from a channel for injecting the mold material into the pair of lead molding parts to the pair of lead molding parts is 15 to 35% of the maximum cross-sectional area in this range. The injection molding is carried out under the conditions in which the fusing point of wax contained in the mold material is 70 to 80°C, and the temperature of the mold material when injection takes place is 125 to 150°C.

Description

本発明は、セラミックヒータの製造方法に関する。   The present invention relates to a method for manufacturing a ceramic heater.

セラミックヒータは、内燃機関用のグロープラグ等に用いられる。グロープラグに用いられるセラミックヒータの抵抗体は、通常、全体としてU字型をしており、先端(U字の下半円の部分)の発熱部と、発熱部と接続するリード部(U字の下半円から延びる直線部分)とから構成される。製造コストの低減のためには、発熱部とリード部とが、一体で且つ均質材料によって射出成形されるのが好ましい。均質材料を用いつつ発熱部の昇温性能を確保するために、発熱部は細く、リード部は太く形成する手法が知られている(例えば、特許文献1)。   Ceramic heaters are used for glow plugs and the like for internal combustion engines. The resistor of the ceramic heater used for the glow plug is generally U-shaped as a whole, and the heating part at the tip (the lower half of the U-shaped part) and the lead part (U-shaped) connected to the heating part Straight line portion extending from the lower half circle). In order to reduce the manufacturing cost, it is preferable that the heat generating portion and the lead portion are integrally formed by injection molding with a homogeneous material. In order to ensure the temperature rise performance of the heat generating portion while using a homogeneous material, a method is known in which the heat generating portion is thin and the lead portion is thick (for example, Patent Document 1).

特開2009−287920号公報JP 2009-287920 A

上記先行技術の課題は、製造不良の低減が不十分なことである。製造不良の原因としては、例えばジェッティング等が挙げられる。ジェッティングとは、成形材料が成形金型内の断面積の小さい細径部から断面積の大きい太径部に流入する際に、流入先端部が細径部の内径と同じ外径のまま太径部に流入してしまい、成形材料が太径部において流入方向の奥部から充填されていく現象である。このようなジェッティングが発生すると、成形金型に先に充填された成形材料と後から充填された成形材料との融解が悪くなるため、充填性が低下してしまい、成形体の内在欠陥の原因となるおそれがある。   The problem of the prior art is that the production defects are not sufficiently reduced. As a cause of the manufacturing failure, for example, jetting or the like can be cited. Jetting means that when the molding material flows from a small-diameter part with a small cross-sectional area into a large-diameter part with a large cross-sectional area in the molding die, the inflow tip part remains thick with the same outer diameter as the inner diameter of the small-diameter part. This is a phenomenon in which the molding material flows into the diameter portion and the molding material is filled from the back in the inflow direction at the large diameter portion. When such jetting occurs, the melting of the molding material previously filled in the molding die and the molding material filled later is deteriorated, so that the filling property is lowered, and the inherent defect of the molded body is reduced. May cause this.

本発明は、上記課題を解決するためのものであり、以下の形態として実現できる。   SUMMARY An advantage of some aspects of the invention is to solve the above-described problems, and the invention can be implemented as the following forms.

(1)本発明の一形態によれば、折り返し形状をなす折り返し部と、一方の各端部がそれぞれ該折り返し部の両端部に接続されるとともに直線状に延びる一対のリード部とを有するU字型の抵抗体を備えるセラミックヒータの製造方法が提供される。この製造方法は、焼成後に前記折り返し部となる未焼成折り返し部を成形する折り返し部成形部、及び、焼成後に前記一対のリード部となる一対の未焼成リード部を成形し、一方の各端部がそれぞれ前記折り返し部成形部の両端部に接続される一対のリード部成形部、を有する成形金型を用い、前記一対のリード部成形部の他方の各端部から成形材料の充填を行うことにより、焼成後に前記抵抗体となる未焼成抵抗体を射出成形にて成形する射出成形工程を備え;前記成形金型において、前記一対のリード部成形部に前記成形材料の充填を行うための流路から前記一対のリード部成形部までの範囲における最小の断面積は、該範囲における最大の断面積に対して15〜35%であり;前記射出成形工程は、前記成形材料に含まれるワックスの融点が70〜80℃であり、充填時における前記成形材料の温度が125〜150℃である条件にて行われる。この製造方法によれば、ジェッティング等の製造不良を低減できる。 (1) According to one aspect of the present invention, a U having a folded portion having a folded shape and a pair of lead portions each having one end connected to both ends of the folded portion and extending linearly. A method of manufacturing a ceramic heater having a letter-shaped resistor is provided. In this manufacturing method, a folded portion forming portion that forms an unfired folded portion that becomes the folded portion after firing, and a pair of unfired lead portions that become the pair of lead portions after firing, and each end portion on one side Using a molding die having a pair of lead part molding parts connected to both ends of the folded part molding part, respectively, and filling the molding material from each other end of the pair of lead part molding parts An injection molding step of molding an unfired resistor that becomes the resistor after firing by injection molding; in the molding die, a flow for filling the molding material into the pair of lead portion molding portions The minimum cross-sectional area in the range from the path to the pair of lead portion molding portions is 15 to 35% with respect to the maximum cross-sectional area in the range; and the injection molding step is performed on the wax contained in the molding material. Point a is 70 to 80 ° C., the temperature of the molding material during the filling is performed in conditions that are 125 to 150 ° C.. According to this manufacturing method, manufacturing defects such as jetting can be reduced.

(2)上記形態の製造方法において、前記射出成形工程は、充填時における前記成形材料の温度が、125〜140℃である条件にて行われる。この製造方法によれば、更に製造不良が低減される。上記温度範囲では、成形材料に含まれる可塑材(DBP(フタル酸ジブチル)等)の揮発が抑制される。よって、成形材料を再利用した際、成形材料の流動性の変化が小さくなり、製造不良が低減する。 (2) In the manufacturing method of the said form, the said injection molding process is performed on the conditions whose temperature of the said molding material at the time of filling is 125-140 degreeC. According to this manufacturing method, manufacturing defects are further reduced. In the said temperature range, volatilization of the plastic material (DBP (dibutyl phthalate) etc.) contained in a molding material is suppressed. Therefore, when the molding material is reused, the change in the fluidity of the molding material is reduced, and manufacturing defects are reduced.

本発明は、上記以外の種々の形態でも実現できる。例えば、抵抗体の製造方法として実現できる。   The present invention can be realized in various forms other than the above. For example, it can be realized as a method for manufacturing a resistor.

グロープラグの断面図。Sectional drawing of a glow plug. 未焼成発熱部材の射出成形を説明する図。The figure explaining injection molding of an unbaking exothermic member.

図1は、グロープラグ500の断面図を示す。グロープラグ500は、セラミックヒータ100を備える。セラミックヒータ100は、図1に示すように軸線O方向に延びた形状をしている。セラミックヒータ100は、図1に示すように基体10と発熱部材20とを備える。基体10は、セラミック製であり、且つ絶縁性である。   FIG. 1 shows a cross-sectional view of a glow plug 500. The glow plug 500 includes a ceramic heater 100. The ceramic heater 100 has a shape extending in the direction of the axis O as shown in FIG. The ceramic heater 100 includes a base 10 and a heating member 20 as shown in FIG. The substrate 10 is made of ceramic and is insulative.

発熱部材20は、図1に示すように基体10に埋設される。発熱部材20は、セラミック製であり、且つ導電性である。発熱部材20の形状は、図1と図2(後述)とに示すように略U字状である。このU字の折り返し部(下半円の部位)は、発熱部材20の一部としての先端部25である。先端部25に接続し、軸線Oに沿って延びる部位は、発熱部材20の一部としての一対の第1及び第2リード部21,22である。先端部25の断面積は、第1及び第2リード部21,22の断面積に比べて小さい。   The heat generating member 20 is embedded in the base 10 as shown in FIG. The heat generating member 20 is made of ceramic and is conductive. The shape of the heat generating member 20 is substantially U-shaped as shown in FIGS. 1 and 2 (described later). The U-shaped folded portion (lower semicircular portion) is a tip portion 25 as a part of the heat generating member 20. A portion connected to the distal end portion 25 and extending along the axis O is a pair of first and second lead portions 21 and 22 as a part of the heat generating member 20. The cross-sectional area of the tip portion 25 is smaller than the cross-sectional areas of the first and second lead portions 21 and 22.

図1に示すように、第1リード部21に第1電極取出部23が、第2リード部22に第2電極取出部24が設けられている。第1及び第2電極取出部23,24は、図1に示すように、径方向外側に向けて突出し、基体10の表面に露出する。第1及び第2電極取出部23,24は、発熱部材20に供給される電流の出入り口として機能する。第2電極取出部24は、中軸520及びピン端子530に対し電気的に導通するように配置される。中軸520は、図1に示されるように、軸線Oに沿って延びる略円筒状の主体金具510と接触しない状態で、主体金具510内の孔に挿入されている。ピン端子530は、中軸520の後端部に加締めによって固定された金属製の部材である。第1電極取出部23は、接地されるように配置される。この接地は、取り付け対象(例えばエンジン)にねじ止めするための雄ねじ部511等を通じて行われる。雄ねじ部511は、主体金具510の後端側の外周面に形成される。このような配置によって、ピン端子530を通じて発熱部材20に電流を流すことができる。   As shown in FIG. 1, a first electrode extraction portion 23 is provided on the first lead portion 21, and a second electrode extraction portion 24 is provided on the second lead portion 22. As shown in FIG. 1, the first and second electrode extraction portions 23 and 24 protrude outward in the radial direction and are exposed on the surface of the base 10. The first and second electrode extraction portions 23 and 24 function as a gateway for current supplied to the heat generating member 20. The second electrode extraction portion 24 is disposed so as to be electrically connected to the middle shaft 520 and the pin terminal 530. As shown in FIG. 1, the middle shaft 520 is inserted into a hole in the metal shell 510 without contacting the substantially cylindrical metal shell 510 extending along the axis O. The pin terminal 530 is a metal member fixed to the rear end portion of the middle shaft 520 by caulking. The 1st electrode extraction part 23 is arrange | positioned so that it may be earth | grounded. This grounding is performed through a male screw portion 511 or the like for screwing to an attachment target (for example, an engine). The male screw portion 511 is formed on the outer peripheral surface on the rear end side of the metal shell 510. With such an arrangement, a current can be passed to the heat generating member 20 through the pin terminal 530.

図1に示されるように、第1及び第2電極取出部23,24は、軸線O方向の位置が互いに異なるように配置される。具体的には第2電極取出部24が、第1電極取出部23よりも後端側(図1の上方)に配置される。   As shown in FIG. 1, the first and second electrode extraction portions 23 and 24 are arranged so that the positions in the axis O direction are different from each other. Specifically, the second electrode extraction portion 24 is disposed on the rear end side (upper side in FIG. 1) than the first electrode extraction portion 23.

セラミックヒータ100の製造は、発熱部材用成形材料(以下、「成形材料」とも言う)の混練、成形材料の射出成形による未焼成発熱部材の成形、絶縁粉末のプレス成形による未焼成基体の成形、未焼成発熱部材と未焼成基体とによる未焼成セラミックヒータの成形、脱脂、ホットプレス、研磨という順による工程によって行われる。以下、成形材料の混練と未焼成発熱部材の射出成形とについて詳述する。成形材料は、窒化ケイ素粉末とタングステンカーバイド粉末とバインダとがニーダによって混練されることによって生成される。この混練物に占めるバインダの割合は、45〜55体積%が好ましい。バインダの構成は、例えば、以下のものが好ましい。その構成とは、ワックス(パラフィンワックス又はマイクロクリスタリンワックス等)が50〜80質量%(59質量%が特に好ましい)、可塑剤(DBP又はDOP(フタル酸ジオクチル))が5〜30質量%(20質量%が特に好ましい)、熱可塑性樹脂(ポリプロピレン)が20〜30質量%(20質量%が特に好ましい)、潤滑剤(ポリオキシエチレン等の界面活性剤)が1質量%である。ワックスの融点は、70〜80℃が好ましい。   The ceramic heater 100 is manufactured by kneading a molding material for a heating member (hereinafter also referred to as “molding material”), molding an unsintered heating member by injection molding of the molding material, molding an unsintered substrate by press molding an insulating powder, This is performed by a process in the order of forming, degreasing, hot pressing, and polishing of an unsintered ceramic heater using an unsintered heating member and an unsintered substrate. Hereinafter, the kneading of the molding material and the injection molding of the unsintered heating member will be described in detail. The molding material is produced by kneading silicon nitride powder, tungsten carbide powder and binder with a kneader. The proportion of the binder in the kneaded product is preferably 45 to 55% by volume. The binder configuration is preferably, for example, as follows. The constitution is such that wax (paraffin wax or microcrystalline wax or the like) is 50 to 80% by mass (59% by mass is particularly preferable), and plasticizer (DBP or DOP (dioctyl phthalate)) is 5 to 30% by mass (20 Mass% is particularly preferred), thermoplastic resin (polypropylene) is 20-30 mass% (20 mass% is particularly preferred), and lubricant (surfactant such as polyoxyethylene) is 1 mass%. The melting point of the wax is preferably 70 to 80 ° C.

未焼成発熱部材の射出成形の諸条件としては、例えば、射出成形用の流路の全長(未焼成発熱部材の全長)が42mmの場合、射出速度は12〜40cm3/s、金型体積は8.0cm3、金型温度は30℃が好ましい。射出成形用の流路の全長とは、先端部成形部225から充填用流路227までの長さである(図2参照)。 As conditions for injection molding of the unsintered heat generating member, for example, when the total length of the flow path for injection molding (the total length of the unsintered heat generating member) is 42 mm, the injection speed is 12 to 40 cm 3 / s, and the mold volume is 8.0 cm 3 and the mold temperature is preferably 30 ° C. The total length of the flow path for injection molding is the length from the front end molding portion 225 to the filling flow path 227 (see FIG. 2).

表1は、成形温度(充填される時の成形材料の温度)が各不具合に与える影響についての実験結果を示す。実験では、ジェッティングの有無、ポアの有無、耐熱衝撃性について評価を行った。ジェッティング評価では、ジェッティングが発生した場合を「有り」、ジェッティングが発生していない場合を「無し」と判定した。また、ポア評価では、ポアが発生した場合を「有り」、ポアが発生していない場合を「無し」と判定した。   Table 1 shows the experimental results on the influence of the molding temperature (the temperature of the molding material when filled) on each defect. In the experiment, the presence or absence of jetting, the presence or absence of pores, and thermal shock resistance were evaluated. In the jetting evaluation, a case where jetting occurred was determined as “present”, and a case where jetting did not occur was determined as “absent”. In the pore evaluation, it was determined that “exist” when the pore occurred and “absent” when the pore did not occur.

また、耐熱衝撃性試験の条件は、次の通りである。電圧印加開始から0.5秒で1000℃に達するように発熱部材20に電圧を印加し、その昇温速度を維持したまま1350℃に到達させる。その後、電圧印加を止めて30秒間、冷却を行う。これらの手順を1サイクルとする。5万サイクル完了しても断線しなければ「OK」、5万サイクル完了する前に断線すれば「NG」と判定した。   The conditions for the thermal shock resistance test are as follows. A voltage is applied to the heat generating member 20 so as to reach 1000 ° C. in 0.5 seconds from the start of voltage application, and the temperature is increased to 1350 ° C. while maintaining the temperature rising rate. Thereafter, the voltage application is stopped and cooling is performed for 30 seconds. These procedures are defined as one cycle. Even if 50,000 cycles were completed, if it was not disconnected, it was determined as “OK”. If it was disconnected before 50,000 cycles were completed, it was determined as “NG”.

Figure 2014164984
Figure 2014164984

表1に示されるように、成形温度が125℃以上の場合(NO.3〜7)、ジェッティングの発生は無く、耐熱衝撃性はOK(許容範囲内)であった。よって、成形温度は125℃以上が好ましい。   As shown in Table 1, when the molding temperature was 125 ° C. or higher (NO. 3 to 7), no jetting occurred and the thermal shock resistance was OK (within an allowable range). Therefore, the molding temperature is preferably 125 ° C. or higher.

また、表1に示されるように、成形温度が150℃以下の場合(NO.1〜6)、ポアの発生は無かった。よって、成形温度は150℃以下が好ましい。ポアとは、小さな空孔のことである。ポアが発生する原因としては、バインダや可塑剤の揮発が挙げられる。この揮発は、成形温度が高ければ高いほど促進される。このため、成形温度が150℃以下ではポアの発生が無かったのに対し、成形温度が160℃(NO.7)においてはバインダや可塑剤が揮発したためにポアが発生したと考えられる。   Further, as shown in Table 1, when the molding temperature was 150 ° C. or lower (NO. 1 to 6), no pore was generated. Therefore, the molding temperature is preferably 150 ° C. or lower. A pore is a small hole. As a cause of the occurrence of pores, volatilization of a binder and a plasticizer can be mentioned. This volatilization is accelerated as the molding temperature increases. For this reason, pores were not generated at a molding temperature of 150 ° C. or lower, whereas pores were considered to be generated at a molding temperature of 160 ° C. (NO. 7) because the binder and plasticizer were volatilized.

成形温度がジェッティングと耐熱衝撃性とに与える影響について説明する。図2は、未焼成発熱部材の射出成形を説明するための断面図である。この射出成形には成形金型300が用いられる。成形金型300は、焼成後に発熱部材20となる未焼成発熱部材を成形するための流路を内部に有する。この流路は、第1及び第2リード部成形部221,222と、第1及び第2電極取出部成形部223,224と、先端部成形部225と、充填用流路227とに分けることができる。   The influence of the molding temperature on jetting and thermal shock resistance will be described. FIG. 2 is a cross-sectional view for explaining injection molding of an unfired heat generating member. A molding die 300 is used for this injection molding. The molding die 300 has a flow path for molding an unfired heating member that becomes the heating member 20 after firing. This flow path is divided into first and second lead part molding parts 221, 222, first and second electrode extraction part molding parts 223, 224, a tip part molding part 225, and a filling flow path 227. Can do.

図2(A)は成形温度が110〜120℃の場合(NO.1〜2)の射出成形の様子を、図2(B)は成形温度が125〜150℃の場合(NO.3〜6)の射出成形の様子を説明するための図であり、成形金型300内部に設けられた射出成形用の流路を示す断面図である。図2(C)は、図2(A),(B)を下から見た際の断面図である。但し、図2(C)は、射出成形用の流路のみを図示する。   2A shows the state of injection molding when the molding temperature is 110 to 120 ° C. (NO. 1 to 2), and FIG. 2B shows the case where the molding temperature is 125 to 150 ° C. (NO. 3 to 6). ) Is a diagram for explaining the state of injection molding, and is a cross-sectional view showing a flow path for injection molding provided inside the molding die 300. FIG. FIG. 2C is a cross-sectional view of FIGS. 2A and 2B viewed from below. However, FIG. 2C illustrates only the flow path for injection molding.

成形金型300内部の流路への成形材料の充填は、充填用流路227を通じて行われる。この結果、充填用流路227にも成形材料が充填される。充填用流路227に充填された成形材料は、焼成後に除去される。   The molding material is filled into the flow path inside the molding die 300 through the filling flow path 227. As a result, the filling channel 227 is also filled with the molding material. The molding material filled in the filling channel 227 is removed after firing.

図2(A),(B)に示された矢印は、融解した成形材料が成形金型300の内部を流れる様子を模式的に示す。図2(A)に示されるように、融解した成形材料は、充填用流路227を介して、焼成後に第1リード部21となる未焼成第1リード部を成形する第1リード部成形部221と、焼成後に第2リード部21となる未焼成第2リード部を成形する第2リード部成形部222とに分かれて流れる。それぞれの流れは焼成後に先端部25となる未焼成先端部を成形する先端部成形部225に向かう。   The arrows shown in FIGS. 2A and 2B schematically show how the molten molding material flows inside the molding die 300. As shown in FIG. 2 (A), the melted molding material is formed through the filling channel 227 to form a first lead portion molding portion that molds an unfired first lead portion that becomes the first lead portion 21 after firing. 221 and a second lead part molding part 222 for molding an unfired second lead part that becomes the second lead part 21 after firing. Each flow goes to a tip portion forming part 225 that forms an unfired tip portion that becomes the tip portion 25 after firing.

図2(A)に示されるように成形温度が110〜120℃の場合においては、先端部成形部225における先端付近からやや後端側にずれた位置において、第1リード部成形部221及び第2リード部成形部222を流れる成形材料が合流する。このように後端側にずれた位置において合流する理由は、第1リード部成形部221でジェッティングが発生し、第2リード部成形部222の流れよりも速くなるためであると考えられる。ここで言うジェッティングとは、成形材料が充填用流路227を介して充填用流路227よりも内径の大きい第1リード部成形部221に流入する際に、流入先端部が固化し栓のように働くことにより、成形材料が第1リード部成形部221の内壁に広がりながら充填されずに、勢いよく第1リード部成形部221の奥に流入するために発生する現象である。このようなジェッティングの発生は、ショートショット成形により、充填用流路227と第1リード部成形部221との境界部から順に成形材料が充填されているか否かを観察することにより確認できる。   As shown in FIG. 2A, when the molding temperature is 110 to 120 ° C., the first lead portion molding portion 221 and the first lead portion molding portion 221 and the first lead portion molding portion 225 are slightly displaced from the vicinity of the front end to the rear end side. The molding material flowing through the two-lead part molding part 222 joins. The reason for joining at the position shifted to the rear end side in this way is considered to be that jetting occurs in the first lead portion molding portion 221 and the flow becomes faster than the flow of the second lead portion molding portion 222. Jetting here refers to the fact that when the molding material flows into the first lead portion molding part 221 having a larger inner diameter than the filling channel 227 via the filling channel 227, the inflow tip is solidified. This is a phenomenon that occurs because the molding material spreads into the inner wall of the first lead portion molding portion 221 and is not filled with the material, but vigorously flows into the first lead portion molding portion 221. The occurrence of such jetting can be confirmed by observing whether or not the molding material is sequentially filled from the boundary portion between the filling flow path 227 and the first lead portion molding portion 221 by short shot molding.

一方、第2リード部成形部222では、第1リード部成形部221のようにジェッティングは発生し難い。なぜなら、第2リード部成形部222においては、固化した成形材料が、焼成後に第2電極取出部24となる未焼成第2電極取出部を成形する第2電極取出部成形部224に捕捉されるからである。固化した成形材料が第2電極取出部成形部224に捕捉されるのは、第2電極取出部成形部224が充填用流路227に近いからである。これに対して、焼成後に第1電極取出部23となる未焼成第1電極取出部を成形する第1電極取出部成形部223は、充填用流路227から遠いので、充填用流路227付近において固化した成形材料をほとんど捕捉しない。この結果、第1リード部成形部221では、第2リード部成形部222よりもジェッティングが発生し易い。   On the other hand, in the second lead part molding part 222, unlike the first lead part molding part 221, jetting hardly occurs. This is because, in the second lead portion molding portion 222, the solidified molding material is captured by the second electrode extraction portion molding portion 224 that forms the unfired second electrode extraction portion that becomes the second electrode extraction portion 24 after firing. Because. The solidified molding material is captured by the second electrode extraction part molding part 224 because the second electrode extraction part molding part 224 is close to the filling channel 227. On the other hand, the first electrode extraction part forming part 223 for forming the unfired first electrode extraction part which becomes the first electrode extraction part 23 after firing is far from the filling flow path 227, so that it is near the filling flow path 227. Hardly captures the solidified molding material. As a result, jetting is more likely to occur in the first lead part molding part 221 than in the second lead part molding part 222.

第1リード部成形部221及び第2リード部成形部222を流れる成形材料が合流する部位は、ウエルドが生じ易い。ウエルドとは、成形金型300内で成形材料の流れが合流して、成形材料の融着が不十分な部分である。ウエルドが生じた部分は成形材料の充填密度が低くなるため、ウエルドが、未焼成発熱部材の一部であって、発熱部材20の発熱によって高温になる部位に対応する部位に発生すると、不具合が発生する可能性がある。発熱部材20において最高温度になる部位は、先端付近からやや後端側にずれた位置である。よって、成形温度が110〜120℃の場合、第1リード部成形部221及び第2リード部成形部222を流れる成形材料の合流する部位にウエルドが生じると、不具合が生じる可能性が高い。   A weld is likely to occur at a portion where the molding materials flowing through the first lead portion molding portion 221 and the second lead portion molding portion 222 merge. The weld is a portion where the molding material flows in the molding die 300 and the molding material is insufficiently fused. Since the filling density of the molding material is low in the portion where the weld is generated, if the weld is a part of the unfired heat generating member and occurs at a portion corresponding to a portion where the heat generating member 20 generates a high temperature, there is a problem. May occur. The portion of the heat generating member 20 where the maximum temperature is reached is a position slightly shifted from the vicinity of the front end to the rear end side. Therefore, when the molding temperature is 110 to 120 ° C., there is a high possibility that a problem occurs when a weld occurs in a portion where the molding material flowing through the first lead portion molding portion 221 and the second lead portion molding portion 222 joins.

これに対して、図2(B)に示されるように成形温度が125〜150℃の場合、第1リード部成形部221を流れる成形材料及び第2リード部成形部222を流れる成形材料は、先端部成形部225における先端付近において合流する。この結果、ウエルドが生じたとしても、最高温度になる部位とは異なる部位に生じるので、不具合が生じる可能性は低い。第1リード部成形部221及び第2リード部成形部222を流れる成形材料が先端部成形部225における先端付近において合流するのは、第1リード部成形部221及び第2リード部成形部222を流れる成形材料の速さが同程度だからである。第1リード部成形部221及び第2リード部成形部222を流れる成形材料の速さが同程度なのは、成形温度が110〜120℃の場合と異なり、成形温度が高いことによって、第1リード部成形部においてジェッティングが発生し難いからであると考えられる。   On the other hand, as shown in FIG. 2B, when the molding temperature is 125 to 150 ° C., the molding material flowing through the first lead portion molding portion 221 and the molding material flowing through the second lead portion molding portion 222 are: It merges in the vicinity of the tip in the tip part molding part 225. As a result, even if the weld is generated, it is generated at a site different from the site where the maximum temperature is reached, so that the possibility of occurrence of a malfunction is low. The molding material flowing through the first lead part molding part 221 and the second lead part molding part 222 merges in the vicinity of the tip of the tip part molding part 225 because the first lead part molding part 221 and the second lead part molding part 222 are joined together. This is because the speed of the flowing molding material is about the same. The speed of the molding material flowing through the first lead part molding part 221 and the second lead part molding part 222 is about the same, unlike the case where the molding temperature is 110 to 120 ° C., because the molding temperature is high. This is probably because jetting is unlikely to occur in the molded part.

さらに、成形温度が高いことにより、ウエルドの発生そのものを抑制することができる。成形温度が高いと、第1リード部成形部221及び第2リード部成形部222を流れる成形材料が合流した時点においても、成形材料が充分に融解している可能性が高い。合流した時点において成形材料が充分に融解していれば、合流した部位において充填密度が高くなる。この結果、ウエルドの発生が抑制される。   Furthermore, since the molding temperature is high, the occurrence of weld itself can be suppressed. When the molding temperature is high, there is a high possibility that the molding material is sufficiently melted even when the molding materials flowing through the first lead part molding part 221 and the second lead part molding part 222 merge. If the molding material is sufficiently melted at the time of merging, the filling density is increased at the merged portion. As a result, the occurrence of welds is suppressed.

加えて、成形温度が高いと、第1リード部成形部221において流入先端部が固化することを抑制できるので、ジェッティングの発生が抑制される。さらに、成形温度が高いと、成形材料の粘度が下がり、これによって成形材料の流動性が高くなる。流動性が高くなると、射出速度を遅くすることができる。この結果、射出速度を遅くすることによってもジェッティングを抑制することが容易になる。   In addition, when the molding temperature is high, solidification of the inflow tip portion in the first lead portion molding portion 221 can be suppressed, so that the occurrence of jetting is suppressed. Furthermore, when the molding temperature is high, the viscosity of the molding material decreases, thereby increasing the fluidity of the molding material. When the fluidity increases, the injection speed can be decreased. As a result, it is easy to suppress jetting by slowing the injection speed.

これまで述べたように、本実施形態は、ジェッティングを抑制できる。本実施形態は、成形温度に着目し、さらにワックスの融点を調整することによって、ジェッティングを抑制することができた。   As described above, this embodiment can suppress jetting. In the present embodiment, jetting can be suppressed by paying attention to the molding temperature and further adjusting the melting point of the wax.

また、耐熱衝撃性については、先述したように、成形温度が125℃以上の場合に(NO.3〜7)、OKであった。この理由は、ジェッティングが発生しなかったためであると考えられる。   Further, as described above, the thermal shock resistance was OK when the molding temperature was 125 ° C. or higher (NO. 3 to 7). The reason is considered that jetting did not occur.

成形温度は、125〜140℃(NO.3〜5)が特に好ましい。140℃以下の場合、可塑剤の揮発がより抑制される。この結果、成形材料を再利用した際の流動性の変化が小さくなる。流動性の変化が小さくなれば、製造がより安定する。   The molding temperature is particularly preferably 125 to 140 ° C. (NO. 3 to 5). When the temperature is 140 ° C. or lower, the volatilization of the plasticizer is further suppressed. As a result, the change in fluidity when the molding material is reused is reduced. The smaller the change in fluidity, the more stable the production.

次に、成形金型300における断面積比が各不具合に与える影響についての実験結果を示す。実験では、ジェッティングの有無、先端充填性について評価を行った。ジェッティング評価では、ジェッティングが発生した場合を「有り」、ジェッティングが発生していない場合を「無し」と判定した。また、先端充填性評価では、射出成形後の未焼成発熱部材において未焼成先端部まで成形材料が充填されているか否かを未焼成発熱部材の外観で確認し、充填不良が発生した場合を「NG」、充填不良が発生していない場合を「OK」と判定した。   Next, the experimental result about the influence which the cross-sectional area ratio in the shaping die 300 gives to each malfunction is shown. In the experiment, the presence or absence of jetting and the tip filling property were evaluated. In the jetting evaluation, a case where jetting occurred was determined as “present”, and a case where jetting did not occur was determined as “absent”. In addition, in the tip filling property evaluation, it is confirmed whether or not the molding material is filled up to the unfired tip in the unfired heating member after injection molding. “NG”, and the case where no filling failure occurred was determined as “OK”.

Figure 2014164984
Figure 2014164984

表2に示されるように、成形金型300における断面積比が15〜35%の場合(NO.14,15,18,19,22,23)、ジェッティングが発生しなかったとともに先端充填性も良好であった。断面積比とは、第1及び第2リード部成形部221,222から充填用流路227までの範囲における断面積の最小値と、その範囲における断面積の最大値との比のことである。ここで言う断面とは、法線の方向が、成形材料の流れの方向と一致することを満たすものである。   As shown in Table 2, when the cross-sectional area ratio in the molding die 300 is 15 to 35% (NO. 14, 15, 18, 19, 22, 23), jetting did not occur and the tip filling property Was also good. The cross-sectional area ratio is the ratio between the minimum value of the cross-sectional area in the range from the first and second lead portion molding parts 221 and 222 to the filling flow path 227 and the maximum value of the cross-sectional area in that range. . The section mentioned here satisfies that the direction of the normal line coincides with the direction of flow of the molding material.

断面積比が15%未満の場合(NO.10,11)、材料充填時における圧力損失が大きい。この結果、ジェッティングは発生しなかったものの、未焼成発熱部材先端における成形材料の充填性が悪く、好ましくない。一方で35%を超える場合には、断面積比が大きいため、成形温度が低くてもジェッティングが発生しないため、本発明を適用しなくてもよい。なお、発熱部材20の後端面に第1及び第2リード部21,22の端面が露出している場合、これらの露出面積が大きくなると第1及び第2リード部21,22間の引張り応力が大きくなって、クラックが発生する可能性がある。このため、断面積比を35%以下にすることにより、発熱部材20に発生するクラックを抑制することもできる。   When the cross-sectional area ratio is less than 15% (NO. 10, 11), the pressure loss during material filling is large. As a result, although jetting did not occur, the filling property of the molding material at the tip of the unfired heat generating member was poor, which is not preferable. On the other hand, when it exceeds 35%, since the cross-sectional area ratio is large, jetting does not occur even if the molding temperature is low, and thus the present invention may not be applied. When the end surfaces of the first and second lead portions 21 and 22 are exposed on the rear end surface of the heat generating member 20, the tensile stress between the first and second lead portions 21 and 22 is increased when the exposed area is increased. It may become large and cracks may occur. For this reason, the crack which generate | occur | produces in the heat generating member 20 can also be suppressed by making a cross-sectional area ratio into 35% or less.

なお、断面積の最大値を決定する際に、第1及び第2電極取出部成形部223,224を含む部位は除外される。最小の断面積を有する部位は、図2に例示された場合、充填用流路227の何れかの断面である。   In addition, when determining the maximum value of the cross-sectional area, a portion including the first and second electrode extraction portion molding portions 223 and 224 is excluded. The portion having the smallest cross-sectional area is any cross-section of the filling channel 227 in the case illustrated in FIG. 2.

本発明は、上述の実施形態や実施例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現できる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことができる。その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することできる。   The present invention is not limited to the above-described embodiments and examples, and can be realized with various configurations without departing from the spirit thereof. For example, the technical features in the embodiments and examples corresponding to the technical features in each embodiment described in the summary section of the invention may be used to solve part or all of the above-described problems, or In order to achieve part or all of the effects, replacement or combination can be performed as appropriate. If the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

10…基体
20…発熱部材
21…第1リード部
22…第2リード部
23…第1電極取出部
24…第2電極取出部
25…先端部
100…セラミックヒータ
221…第1リード部成形部
222…第2リード部成形部
223…第1電極取出部成形部
224…第2電極取出部成形部
225…先端部成形部
227…充填用流路
300…成形金型
500…グロープラグ
510…主体金具
511…雄ねじ部
520…中軸
530…ピン端子
DESCRIPTION OF SYMBOLS 10 ... Base | substrate 20 ... Heat generating member 21 ... 1st lead part 22 ... 2nd lead part 23 ... 1st electrode extraction part 24 ... 2nd electrode extraction part 25 ... Tip part 100 ... Ceramic heater 221 ... 1st lead part shaping | molding part 222 ... second lead part molding part 223 ... first electrode extraction part molding part 224 ... second electrode extraction part molding part 225 ... tip part molding part 227 ... filling channel 300 ... molding die 500 ... glow plug 510 ... metal shell 511 ... Male thread 520 ... Middle shaft 530 ... Pin terminal

Claims (2)

折り返し形状をなす折り返し部と、一方の各端部がそれぞれ該折り返し部の両端部に接続されるとともに直線状に延びる一対のリード部とを有するU字型の抵抗体を備えるセラミックヒータの製造方法であって、
焼成後に前記折り返し部となる未焼成折り返し部を成形する折り返し部成形部、及び、焼成後に前記一対のリード部となる一対の未焼成リード部を成形し、一方の各端部がそれぞれ前記折り返し部成形部の両端部に接続される一対のリード部成形部、を有する成形金型を用い、前記一対のリード部成形部の他方の各端部から成形材料の充填を行うことにより、焼成後に前記抵抗体となる未焼成抵抗体を射出成形にて成形する射出成形工程を備え、
前記成形金型において、前記一対のリード部成形部に前記成形材料の充填を行うための流路から前記一対のリード部成形部までの範囲における最小の断面積は、該範囲における最大の断面積に対して15〜35%であり、
前記射出成形工程は、前記成形材料に含まれるワックスの融点が70〜80℃であり、充填時における前記成形材料の温度が125〜150℃である条件にて行われる
セラミックヒータの製造方法。
Method of manufacturing a ceramic heater comprising a U-shaped resistor having a folded portion having a folded shape and a pair of lead portions each having one end connected to both ends of the folded portion and extending linearly Because
A folded portion forming portion that forms an unfired folded portion that becomes the folded portion after firing, and a pair of unfired lead portions that become the pair of lead portions after firing, each one end portion of which is the folded portion, respectively. By using a molding die having a pair of lead part molding parts connected to both ends of the molding part, and filling the molding material from each other end of the pair of lead part molding parts, An injection molding process for molding an unfired resistor that becomes a resistor by injection molding,
In the molding die, the minimum cross-sectional area in the range from the flow path for filling the molding material to the pair of lead part molding parts to the pair of lead part molding parts is the maximum cross-sectional area in the range. 15 to 35%,
The said injection molding process is a manufacturing method of the ceramic heater performed on the conditions whose melting | fusing point of the wax contained in the said molding material is 70-80 degreeC, and the temperature of the said molding material at the time of filling is 125-150 degreeC.
前記射出成形工程は、充填時における前記成形材料の温度が、125〜140℃である条件にて行われる
請求項1に記載のセラミックヒータの製造方法。
The method for manufacturing a ceramic heater according to claim 1, wherein the injection molding step is performed under a condition that a temperature of the molding material at the time of filling is 125 to 140 ° C.
JP2013034214A 2013-02-25 2013-02-25 Manufacturing method of ceramic heater Expired - Fee Related JP6080606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013034214A JP6080606B2 (en) 2013-02-25 2013-02-25 Manufacturing method of ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013034214A JP6080606B2 (en) 2013-02-25 2013-02-25 Manufacturing method of ceramic heater

Publications (2)

Publication Number Publication Date
JP2014164984A true JP2014164984A (en) 2014-09-08
JP6080606B2 JP6080606B2 (en) 2017-02-15

Family

ID=51615433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034214A Expired - Fee Related JP6080606B2 (en) 2013-02-25 2013-02-25 Manufacturing method of ceramic heater

Country Status (1)

Country Link
JP (1) JP6080606B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022889A (en) * 2001-05-02 2003-01-24 Ngk Spark Plug Co Ltd Ceramic heater, glow plug using the same and method of manufacturing the ceramic heater
JP2012099373A (en) * 2010-11-04 2012-05-24 Ngk Spark Plug Co Ltd Method for manufacturing ceramic heater, and glow plug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022889A (en) * 2001-05-02 2003-01-24 Ngk Spark Plug Co Ltd Ceramic heater, glow plug using the same and method of manufacturing the ceramic heater
JP2012099373A (en) * 2010-11-04 2012-05-24 Ngk Spark Plug Co Ltd Method for manufacturing ceramic heater, and glow plug

Also Published As

Publication number Publication date
JP6080606B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
CN101449103B (en) Multi-layer heating element
JP5455522B2 (en) Glow plug and manufacturing method thereof
JP6080606B2 (en) Manufacturing method of ceramic heater
JP6291542B2 (en) Ceramic heater and glow plug
JP6228039B2 (en) heater
KR101504631B1 (en) Heater and glow plug provided with same
JP6392000B2 (en) Glow plug
US20180310364A1 (en) Heater and glow plug including the same
JP6075774B2 (en) Heater and glow plug
JP6996848B2 (en) Glow plug
JP6105464B2 (en) Heater and glow plug equipped with the same
JP6512848B2 (en) Ceramic heater and glow plug
JP6370754B2 (en) Ceramic heater and glow plug
JP5643611B2 (en) Manufacturing method of ceramic heater and glow plug
JP2018096670A (en) Glow plug
JP5837401B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
JP5844621B2 (en) Method for manufacturing ceramic heater, method for manufacturing glow plug, ceramic heater and glow plug
JP6725653B2 (en) Heater and glow plug equipped with the same
JP6620032B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
JP6101145B2 (en) Heater module manufacturing method and glow plug manufacturing method
JP2018190663A (en) Manufacturing method of ceramic heater and manufacturing method of glow plug
JP2020118384A (en) Glow plug
JP2017195078A (en) Ceramic heater and glow plug
JP2019185934A (en) Manufacturing method of spark plug
CN107429917A (en) Igniter plug and combustion engine with fire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6080606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees