JP2014164861A - Lithium battery manufacturing method - Google Patents

Lithium battery manufacturing method Download PDF

Info

Publication number
JP2014164861A
JP2014164861A JP2013033241A JP2013033241A JP2014164861A JP 2014164861 A JP2014164861 A JP 2014164861A JP 2013033241 A JP2013033241 A JP 2013033241A JP 2013033241 A JP2013033241 A JP 2013033241A JP 2014164861 A JP2014164861 A JP 2014164861A
Authority
JP
Japan
Prior art keywords
lithium battery
battery
load
lithium
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013033241A
Other languages
Japanese (ja)
Other versions
JP6200656B2 (en
Inventor
Haruhiko Satake
春彦 佐竹
Hiroshi Hamada
浩 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Tottori Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Tottori Co Ltd filed Critical FDK Tottori Co Ltd
Priority to JP2013033241A priority Critical patent/JP6200656B2/en
Publication of JP2014164861A publication Critical patent/JP2014164861A/en
Application granted granted Critical
Publication of JP6200656B2 publication Critical patent/JP6200656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium battery manufacturing method capable of improving safety and productivity while achieving good long-term storage performance.SOLUTION: The method includes: a step of housing a negative electrode material 4 made of lithium and a lithium alloy, a positive electrode material 3, and an organic electrolyte in a battery can 2 on which one of positive and negative electrode terminal parts 11 is formed, and assembling a lithium battery 1 by sealing an opening 13 of the battery can by a sealing body 9 also serving as the other electrode terminal part 7; and a preliminary discharging step s12 of discharging a predetermined ratio of electric capacitance relative to a theoretical capacity to the assembled lithium battery. In the preliminary discharging step, a load of 20 Ω or more and 50 Ω or less is connected and discharged between one electrode terminal part and the other electrode terminal part.

Description

本発明はリチウム電池の製造方法に関し、とくに、組み立て後のリチウム電池に対する予備放電工程に関する。   The present invention relates to a method for manufacturing a lithium battery, and more particularly to a preliminary discharge process for a lithium battery after assembly.

二酸化マンガン、フッ化黒鉛、酸化銅などを正極活物質として含む正極材料と、リチウム金属あるいはリチウム合金からなる負極材料と、有機電解液とを用いたリチウム電池は、高エネルギー密度を有するとともに、優れた保存性を有して、各種小型携帯機器の電源、バックアップとして広く用いられている。   A lithium battery using a positive electrode material containing manganese dioxide, graphite fluoride, copper oxide or the like as a positive electrode active material, a negative electrode material made of lithium metal or a lithium alloy, and an organic electrolyte has high energy density and is excellent In addition, it is widely used as a power source and backup for various small portable devices.

ところで、リチウム電池における優れた保存性能は、電池の製造工程中に予備放電と呼ばれる処理を施すことで得られる。予備放電は、電池組み立て直後に予め理論容量の数%(例えば2%)を放電させることで行われる。それよって、リチウム電池は、リチウムイオンが正極活物質に電気化学的挿入されて正極活物質の活性度が下がり、貯蔵時に電解液の分解などによる特性劣化が防止される。   By the way, the outstanding preservation | save performance in a lithium battery is acquired by performing the process called preliminary discharge in the manufacturing process of a battery. The preliminary discharge is performed by discharging several percent (for example, 2%) of the theoretical capacity in advance immediately after battery assembly. Accordingly, in the lithium battery, lithium ions are electrochemically inserted into the positive electrode active material, the activity of the positive electrode active material is lowered, and characteristic deterioration due to decomposition of the electrolyte during storage is prevented.

具体的には、リチウム電池における電解液としては、プロピレンカーボネイト(PC)を主体とした有機電解液が用いられるが、正極に導電材として炭素材料が含まれている場合、PCの分解電位が0.8Vであり、正極側の電位が金属リチウムに対して0.8V未満だと、PCが分解して炭素材料表面に抵抗体が生成し、それに伴ってガスが発生する。 そして、正極と負極の端子間を短絡するなどして、大きな電流を短時間に流す方法で予備放電を行ってしまうと、正極電位がPCの分解電圧より下がってしまう。そのため、従来では、PCの分解電位以下にならないように監視しながら小さな電流を長時間かけて流すことで所定容量を予備放電していた。また、以下の特許文献1には、予備放電の条件などを規定することで、リチウム電池の保存性能を向上させる技術について開示されている。なお、各種リチウム電池の構造などについては以下の非特許文献1に記載されている。   Specifically, an organic electrolyte mainly composed of propylene carbonate (PC) is used as an electrolyte in a lithium battery. However, when the positive electrode contains a carbon material as a conductive material, the decomposition potential of PC is 0. When the potential on the positive electrode side is less than 0.8 V with respect to metallic lithium, PC decomposes and a resistor is generated on the surface of the carbon material, and gas is generated accordingly. If the preliminary discharge is performed by a method in which a large current is passed in a short time, for example, by short-circuiting between the positive and negative terminals, the positive electrode potential falls below the PC decomposition voltage. For this reason, conventionally, a predetermined capacity is preliminarily discharged by flowing a small current over a long period of time while monitoring so as not to be lower than the decomposition potential of the PC. Patent Document 1 below discloses a technique for improving the storage performance of a lithium battery by defining predischarge conditions and the like. The structure of various lithium batteries is described in Non-Patent Document 1 below.

特開2009−152030号公報JP 2009-152030 A

稲電機株式会社、”取扱いメーカー一覧”、[online]、[平成25年2月14日検索]、インターネット<URL:http://www.inedenki.co.jp/pdf/sanyo_lit.pdf>Ina Denki Co., Ltd., “Manufacturer List”, [online], [Search February 14, 2013], Internet <URL: http://www.inedenki.co.jp/pdf/sanyo_lit.pdf>

上述したように、リチウム電池では、その製造工程において予備放電が必須の処理であり、その予備放電は、電解液の分解などを抑制するために、上記特許文献1に記載の技術も含め、小さな電流を長時間掛けて流す、所謂「定電流方式」で行われていた。そのため、リチウム電池の生産性を飛躍的に向上させることが困難であった。また、定電流方式での予備放電では、電池の1本1本に対して電流を監視ながら放電させるため、予備放電に供される設備が複雑となり、製造設備における初期コストを増加させる。さらに、電流を監視しながら放電を行わせるため、予備放電に関わる設備の電流監視系統に何らかのトラブルが発生すると、電流が流れ続けて電池が発火する可能性すらある。   As described above, in a lithium battery, preliminary discharge is an essential process in the manufacturing process, and the preliminary discharge is small, including the technique described in Patent Document 1, in order to suppress decomposition of the electrolytic solution. This was performed by a so-called “constant current method” in which a current is applied for a long time. For this reason, it has been difficult to dramatically improve the productivity of lithium batteries. Further, in the preliminary discharge by the constant current method, the discharge is performed while monitoring the current for each of the batteries, so that the equipment used for the preliminary discharge becomes complicated and the initial cost in the manufacturing equipment is increased. Furthermore, since the discharge is performed while monitoring the current, if any trouble occurs in the current monitoring system of the facility related to the preliminary discharge, the current may continue to flow and the battery may even ignite.

もちろん、電池の正負両極間に抵抗値が小さな抵抗素子を接続して、ほぼ短絡した状態で電流を流す「短絡方式」での予備放電では、上述したように、大きな電流が短時間に流れ、電解液の分解と、それに伴う種々の問題が発生する。また、短絡方式による予備放電では、ジュール熱に起因して発生する温度上昇が電池内で不均一となり、電池内に温度差が発生する。そして、その温度差に伴うゼーベック効果により、負極材料を構成する金属リチウムやリチウム合金の微粉が電池内に堆積する。この微粉がセパレーターの多孔質構造に入り込めば、極めて微細な短絡(微短絡)が発生することにある。負極材料の微粉による微短絡は、電池を長期に保存した際に、年率で、小数点以下数%相当の微量の容量を損失させる原因となる。   Of course, by connecting a resistance element having a small resistance value between the positive and negative electrodes of the battery, and pre-discharging in the “short circuit method” in which a current flows in a substantially short-circuited state, as described above, a large current flows in a short time, The decomposition of the electrolytic solution and various problems associated therewith occur. Further, in the preliminary discharge by the short-circuit method, the temperature rise generated due to Joule heat becomes non-uniform in the battery, and a temperature difference is generated in the battery. Due to the Seebeck effect associated with the temperature difference, metal lithium or lithium alloy fine powder constituting the negative electrode material is deposited in the battery. If this fine powder enters the porous structure of the separator, an extremely fine short circuit (fine short circuit) occurs. The short-circuit caused by the fine powder of the negative electrode material causes a loss of a small amount of capacity equivalent to several percent below the decimal point when stored for a long period of time.

したがって、本発明は良好な長期保存性能を達成しつつ、安全性と生産性を向上させることが可能なリチウム電池の製造方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a method for producing a lithium battery that can improve safety and productivity while achieving good long-term storage performance.

上記目的を達成するための本発明は、正負一方の電極端子部が形成された電池缶内に、リチウムおよびリチウム合金からなる負極材料と、正極材料と、有機電解液とを収納するとともに、前記電池缶の開口を他方の電極端子部を兼ねる封口体によって密閉してリチウム電池を組み立てる工程と、当該組み立て後のリチウム電池に対し、理論容量に対して所定の割合の電気容量を放電させる予備放電工程とを含み、当該予備放電工程では、前記一方の電極端子部と他方の電極端子部との間に20Ω以上50Ω以下の負荷を接続して放電させることを特徴とするリチウム電池の製造方法としている。   In order to achieve the above object, the present invention accommodates a negative electrode material made of lithium and a lithium alloy, a positive electrode material, and an organic electrolyte in a battery can in which one of positive and negative electrode terminal portions is formed. The process of assembling a lithium battery by sealing the opening of the battery can with a sealing body that also serves as the other electrode terminal part, and preliminary discharge for discharging a predetermined ratio of electric capacity to the theoretical capacity of the assembled lithium battery In the preliminary discharge process, a load of 20Ω or more and 50Ω or less is connected between the one electrode terminal portion and the other electrode terminal portion to discharge the lithium battery. Yes.

そして、前記予備放電工程では、当該工程の期間に亘って35Ω以上50Ω以下の一定の負荷によって放電させることとすればより好ましい。あるいは、前記予備放電工程では、当該工程の期間中に前記20Ω以上50Ω以下の負荷を段階的に切り替えながら放電させることとしてもよい。   In the preliminary discharge step, it is more preferable to discharge with a constant load of 35Ω to 50Ω over the period of the step. Alternatively, in the preliminary discharge step, the load of 20Ω or more and 50Ω or less may be discharged while being switched stepwise during the period of the step.

本発明に係るリチウム電池の製造方法によれば、生産性を向上させるとともに、製造時の安全性を確保できる。また、良好な長期保存性能を備えたリチウム電池を提供することができる。なお、その他の効果については以下の記載で明らかにする。   According to the method for manufacturing a lithium battery according to the present invention, productivity can be improved and safety during manufacturing can be ensured. In addition, a lithium battery having good long-term storage performance can be provided. Other effects will be clarified in the following description.

ボビン形リチウム電池の構造図である。It is a structural diagram of a bobbin type lithium battery. ボビン形リチウム電池の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of a bobbin type lithium battery. ボビン形リチウム電池を本発明の実施例に係る製造方法に基づいて予備放電させた際の放電特性を示す図である。It is a figure which shows the discharge characteristic at the time of carrying out preliminary discharge of the bobbin type lithium battery based on the manufacturing method which concerns on the Example of this invention.

===リチウム電池の構造===
図1に本発明の対象となるリチウム電池の一例として、ボビン形(またはインサイド・アウト型)と呼ばれる円筒形のリチウム電池1を示した。なお、この図では円筒軸100の延長方向を上下(縦)方向としたときの縦断面図を示している。このリチウム電池1は、正極端子を兼ねる有底円筒状の電池缶2、中空円筒状に成形された正極材料(以下、正極合剤)3、負極材料4、円筒カップ状のセパレーター5、負極端子板7などによって構成されている。
=== Structure of lithium battery ===
FIG. 1 shows a cylindrical lithium battery 1 called a bobbin type (or inside-out type) as an example of a lithium battery that is an object of the present invention. In addition, in this figure, the longitudinal cross-sectional view when the extending direction of the cylindrical axis | shaft 100 is made into the up-down (vertical) direction is shown. The lithium battery 1 includes a bottomed cylindrical battery can 2 that also serves as a positive electrode terminal, a positive electrode material (hereinafter, positive electrode mixture) 3 formed into a hollow cylindrical shape, a negative electrode material 4, a cylindrical cup-shaped separator 5, and a negative electrode terminal. It is comprised by the board 7 grade | etc.,.

電池缶2は金属製であって、その外底面には凸状の正極端子部11がプレス加工により形成されている。正極合剤3は、正極活物質となる二酸化マンガン(EMD)、導電材となる炭素材料、およびフッ素系バインダー(PTFE)を混合したものを中空円筒状のコアに成型・固結したものが使用されている。セパレーター5は、円筒袋状であり、ポリプロピレン、ポリエチレン、およびガラス繊維からなる複合素材でできている。   The battery can 2 is made of metal, and a convex positive terminal portion 11 is formed on the outer bottom surface thereof by pressing. The positive electrode mixture 3 is obtained by molding and solidifying a mixture of manganese dioxide (EMD) as a positive electrode active material, a carbon material as a conductive material, and a fluorine-based binder (PTFE) into a hollow cylindrical core. Has been. The separator 5 has a cylindrical bag shape and is made of a composite material made of polypropylene, polyethylene, and glass fiber.

負極材料4は、負極活物質である金属リチウム板を丸めて中空筒状に成形したものであり、その一部には負極リード6の一端部6aがあらかじめ取り付けられている。この負極リード6は帯状の金属薄板で、その一端部6aが負極材料4に面状に固着した状態で接続されることで負極集電体が形成されている。なお、負極材料4にリチウム合金(例えば、リチウム・アルミニウム合金)を用いるリチウム電池もある。   The negative electrode material 4 is obtained by rolling a metallic lithium plate as a negative electrode active material into a hollow cylindrical shape, and one end portion 6a of the negative electrode lead 6 is attached in advance to a part thereof. The negative electrode lead 6 is a strip-shaped metal thin plate, and its one end 6a is connected to the negative electrode material 4 in a planar state to form a negative electrode current collector. There is also a lithium battery that uses a lithium alloy (for example, lithium / aluminum alloy) as the negative electrode material 4.

また、電池缶2の開口端13側を上方として、この電池缶2の上部開口が封口体9によって封口されている。封口体9は、伏せた皿状の金属製負極端子板7の下方に円盤状の封口板8を積層してなり、負極リード6の他端部6bが、その封口板8の下面(電池内側面)にスポット溶接されている。それによって、負極端子部である負極端子板7と負極材料4とが電気的に接続された状態となっている。   In addition, the upper opening of the battery can 2 is sealed by the sealing body 9 with the opening end 13 side of the battery can 2 facing upward. The sealing body 9 is formed by laminating a disc-shaped sealing plate 8 below the flat plate-shaped metallic negative electrode terminal plate 7, and the other end 6 b of the negative electrode lead 6 is connected to the lower surface of the sealing plate 8 (inside the battery). Spot welded to the side). Thereby, the negative electrode terminal plate 7 which is the negative electrode terminal portion and the negative electrode material 4 are electrically connected.

===リチウム電池の製造方法===
図2に、上記構造のリチウム電池1の製造手順の一例を示した。電池缶2内に正極合剤3を挿入する(s1)。所定の乾燥処理を施したのち正極合剤3の内側にセパレーター5を配置するとともに(s2)、負極リード6の一端部6aが固着された状態の負極材料4をセパレーター5の内側に挿入する(s3)。
=== Production Method of Lithium Battery ===
FIG. 2 shows an example of a manufacturing procedure of the lithium battery 1 having the above structure. The positive electrode mixture 3 is inserted into the battery can 2 (s1). After performing a predetermined drying process, the separator 5 is disposed inside the positive electrode mixture 3 (s2), and the negative electrode material 4 in a state where the one end portion 6a of the negative electrode lead 6 is fixed is inserted into the separator 5 ( s3).

次いで、電池缶2の上端側の周囲にビーディング部12を形成するとともに、負極リード6の他端部6bをガスケット10の中央孔を通過させて封口板8に溶接する(s4、s5)。さらに、円筒状の絶縁体(絶縁円筒)を電池缶2に着脱自在に装着させておき、溶媒としてPCを含む有機電解液を電池缶2内に注液し(s6)、注液後、電池缶2内にガスケット10を介して先のビーディング部12を座にして封口板8を挿入しつつ載置する(s7)。また、負極端子板7を封口板8の上方に積層しつつ電池缶2内に挿入する(s8)。電池缶2に装着されていた絶縁円筒を除去したのち、電池缶2の開口端13にカール(曲げ)加工を施し(s9、s10)、電池缶2のビーディング12から開口端13までの領域を内方にかしめ加工して電池缶2を密閉封口する(s11)。以上の工程により、リチウム電池1の組み立てが完了する。そして、この組立後のリチウム電池1に対して予備放電(s12)を行ってリチウム電池1を完成させる。なお、各部材は事前に乾燥処理を施しており、上述の電池組立はドライ雰囲気下で行っている。   Next, the beading portion 12 is formed around the upper end side of the battery can 2, and the other end portion 6b of the negative electrode lead 6 is welded to the sealing plate 8 through the central hole of the gasket 10 (s4, s5). Further, a cylindrical insulator (insulating cylinder) is detachably attached to the battery can 2, and an organic electrolyte containing PC as a solvent is injected into the battery can 2 (s6). The can 2 is placed while inserting the sealing plate 8 with the previous beading portion 12 as a seat through the gasket 10 (s7). Further, the negative electrode terminal plate 7 is inserted into the battery can 2 while being laminated above the sealing plate 8 (s8). After the insulating cylinder attached to the battery can 2 is removed, the opening end 13 of the battery can 2 is subjected to curling (bending) processing (s9, s10), and the region from the beading 12 to the opening end 13 of the battery can 2 The battery can 2 is hermetically sealed by caulking inward (s11). The assembly of the lithium battery 1 is completed through the above steps. Then, preliminary discharge (s12) is performed on the assembled lithium battery 1 to complete the lithium battery 1. Each member has been previously dried, and the above-described battery assembly is performed in a dry atmosphere.

===本発明の実施例===
本発明の実施例に係る製造方法によって製造されるリチウム電池として、図1に示したボビン形リチウム電池1を挙げる。すなわち、本発明の実施例に係る製造方法は、図2に示した手順に従っている。しかし、本実施例に係るリチウム電池の製造方法では、予備放電工程(s12)の内容に特徴を有し、それによって、リチウム電池の生産性と、製造後のリチウム電池の長期保存特性を向上させることに成功している。概略的には、予備放電工程(s12)時に定電流ではなく、一定の負荷を掛けた状態で放電させている。以下では、この一定の負荷を掛けた状態で予備放電を行う方式を「定抵抗方式」と称することとする。以下に本発明の実施例に係るリチウム電池の製造方法の特徴である定抵抗方式による予備放電について説明する。
=== Embodiment of the Invention ===
As a lithium battery manufactured by the manufacturing method according to the embodiment of the present invention, the bobbin type lithium battery 1 shown in FIG. 1 is given. That is, the manufacturing method according to the embodiment of the present invention follows the procedure shown in FIG. However, the method for manufacturing a lithium battery according to the present embodiment is characterized by the contents of the preliminary discharge step (s12), thereby improving the productivity of the lithium battery and the long-term storage characteristics of the lithium battery after manufacture. Has been successful. In general, during the preliminary discharge step (s12), the discharge is performed under a constant load, not a constant current. Hereinafter, the method of performing preliminary discharge in a state where a certain load is applied will be referred to as a “constant resistance method”. The preliminary discharge by the constant resistance method, which is a feature of the method for manufacturing a lithium battery according to the embodiment of the present invention, will be described below.

まず、本発明の実施例に係るリチウム電池の製造方法の有効性を確認するために、CR2/38L型のリチウム電池をサンプルとして作製した。サンプルは予備放電の条件が異なる6種類あり、各種類について1000個の個体を作製した。そして、その全個体に対してエージング後の開路電圧(OV)を測定する初期特性試験を行い、規定値未満で不良となった個体の出現率(%)を求めた、また、この初期特性試験において、OVが規格値以上となった個体に対して長期保存特性試験を行った。長期保存特性試験は、加速劣化試験70℃114日保存後(約10年相当)に、OVが規格値以下となった不良個体出現率(%)を求めることで行った。   First, in order to confirm the effectiveness of the manufacturing method of the lithium battery according to the example of the present invention, a CR2 / 38L type lithium battery was prepared as a sample. There were 6 types of samples with different predischarge conditions, and 1000 specimens were prepared for each type. Then, an initial characteristic test for measuring the open circuit voltage (OV) after aging was performed on all the individuals, and the appearance rate (%) of individuals that became defective below the specified value was obtained. Also, this initial characteristic test Then, a long-term storage characteristic test was performed on individuals whose OV was equal to or higher than the standard value. The long-term storage characteristic test was performed by obtaining the defective individual appearance rate (%) at which the OV was below the standard value after storage at 70 ° C. for 114 days (corresponding to about 10 years).

以下の表1に各サンプルの予備放電条件と試験結果とを示した。   Table 1 below shows the preliminary discharge conditions and test results of each sample.

Figure 2014164861
Figure 2014164861

表1において、サンプル1は短絡方式で予備放電を行ったものである。サンプル2〜6は、図3に示した製造方法によってサンプルの組み立てた後に定抵抗方式で予備放電を行ったものである。そして、サンプル2〜5は、理論容量に対して所定の割合の容量(約2.0%)が放電されるまで一定の負荷を正負の電極端子(11、7)間に継続して接続した状態で放電させたものである。なお、サンプル2〜5における負荷は、それぞれ、40Ω、35Ω、30Ω、20Ωである。   In Table 1, Sample 1 was subjected to preliminary discharge by the short circuit method. Samples 2 to 6 were pre-discharged by a constant resistance method after the samples were assembled by the manufacturing method shown in FIG. In Samples 2 to 5, a constant load was continuously connected between the positive and negative electrode terminals (11, 7) until a predetermined ratio (about 2.0%) of the theoretical capacity was discharged. It was discharged in a state. The loads in samples 2 to 5 are 40Ω, 35Ω, 30Ω, and 20Ω, respectively.

また、サンプル6は、サンプル2〜5のように一定の負荷を一定の時間連続して掛けて予備放電を行うのではなく、20Ω、30Ω、40Ωの各負荷を表中の(a)〜(e)の順番で切換ながら定抵抗方式で予備放電を行ったものである。そして、サンプル6も、予備放電工程(s12)では、放電容量が約2%となるように放電させた。なお、表1には各サンプルにおける放電容量(%)も示した。   Sample 6 is not subjected to preliminary discharge by continuously applying a constant load for a certain period of time as in samples 2 to 5, but each load of 20Ω, 30Ω, and 40Ω is shown in (a) to ( The preliminary discharge was performed by the constant resistance method while switching in the order of e). Sample 6 was also discharged so that the discharge capacity was about 2% in the preliminary discharge step (s12). Table 1 also shows the discharge capacity (%) in each sample.

表1より、短絡方式で予備放電を行ったサンプル1では、0.2%の個体が必要とする初期特性を満たすことができなかった。また、長期保存特性試験では、2.8%の不良個体が発生した。短絡方式での予備放電では、組み立て直後の電池が出力できる最大の電流で放電されるため、容量の2%を放電するまでの間(約10分)に電池内に温度差が発生する。そして、この温度差が上述した微短絡を発生させ、このことが、初期特性や長期保存特性を劣化させたものと思われる。また、短絡方式の予備放電では、放電中の閉路電圧はほぼ0(V)で推移し続けるため、電解液中の微量のPCが分解した可能性や、正極合剤中のマンガンが還元した可能性なども考えられる。いずれにしても、短絡方式での予備放電では、歩留まりの低下に伴う生産性が低下や特性劣化による信頼性の低下が認められた。   As shown in Table 1, Sample 1 subjected to preliminary discharge by the short circuit method could not satisfy the initial characteristics required by 0.2% of the individuals. In the long-term storage characteristic test, 2.8% of defective individuals were generated. In the preliminary discharge in the short-circuit method, since the battery immediately after assembly is discharged at the maximum current that can be output, a temperature difference occurs in the battery until 2% of the capacity is discharged (about 10 minutes). This temperature difference causes the above-described fine short circuit, which seems to have deteriorated initial characteristics and long-term storage characteristics. In addition, in the short-circuit type preliminary discharge, the closed-circuit voltage during discharge continues to be almost 0 (V), so that a small amount of PC in the electrolyte may be decomposed or manganese in the positive electrode mixture may be reduced. Sex is also considered. In any case, in the preliminary discharge in the short circuit method, productivity was lowered due to a decrease in yield, and reliability was lowered due to characteristic deterioration.

一方、定抵抗方式で予備放電を行ったサンプル2〜6では、全ての固体で初期特性を満たすことができた。そして、一定の負荷を連続して掛けながら予備放電を行ったサンプル2〜5では、負荷が小さいほど、所定容量を予備放電させるまでの時間が短かった。サンプル2〜5のうち、30Ωの負荷で予備放電を行ったサンプル4では、長期保存試験において0.2%の固体に不良が発生し、20Ωの負荷で予備放電を行ったサンプル5では、全ての固体で初期特性が確保できたものの、長期保存試験において2.0%の固体に不良が発生した。しかし、短絡方式によって予備放電を行ったサンプル1よりも不良発生率を低減させることが確認できた。また、負荷の値を段階的に変えて予備放電を行ったサンプル6では、全ての個体において、初期特性試験および長期保存特性試験で不良が発生しなかった。   On the other hand, in samples 2 to 6 where preliminary discharge was performed by the constant resistance method, the initial characteristics could be satisfied with all solids. In Samples 2 to 5 in which the preliminary discharge was performed while continuously applying a certain load, the time until the predetermined capacity was preliminarily discharged was shorter as the load was smaller. Among samples 2 to 5, in sample 4 in which preliminary discharge was performed with a load of 30Ω, a defect occurred in 0.2% of the solid in the long-term storage test, and in sample 5 in which preliminary discharge was performed with a load of 20Ω, all Although the initial characteristics could be secured with the solid, 2.0% of the solids were defective in the long-term storage test. However, it was confirmed that the defect occurrence rate was reduced as compared with the sample 1 in which the preliminary discharge was performed by the short circuit method. Further, in sample 6 in which preliminary discharge was performed by changing the load value stepwise, no failure occurred in the initial characteristic test and the long-term storage characteristic test in all the individuals.

以上の結果から、20Ω以上の負荷による低抵抗方式で予備放電を行うことで、初期特性を確保した上で確実に予備放電に掛かる時間を短縮することができ、生産性を向上させることができる。なお、サンプル2〜5の試験結果から、負荷を50Ωより大きくすると、予備放電時間が50分を超えることが予想されるため、大きな時間短縮効果が得られない。   From the above results, by performing preliminary discharge with a low resistance method with a load of 20Ω or more, it is possible to reliably reduce the time required for preliminary discharge while ensuring initial characteristics, and to improve productivity. . From the test results of Samples 2 to 5, if the load is made larger than 50Ω, the preliminary discharge time is expected to exceed 50 minutes, so a large time reduction effect cannot be obtained.

図3に、表1におけるサンプル2〜6における負荷と放電時間との関係をグラフ200にして示した。当該グラフ200において、白丸「○」および実線で示した線形近似直線201は、表1に示したサンプル2〜5についての負荷と放電時間を示している。黒丸「●」および点線で示した線形近似直線202は、サンプル2〜5の放電容量を一律に2.0%として正規化したときの負荷と放電時間との関係を示している。また、三角形「△」で示した点は、サンプル6における負荷の平均値(≒33Ω)と放電時間(35分)を示している。そして、このグラフ200からも明らかなように、予備放電に要する時間と接続する負荷は、ほぼ比例の関係にあり、負荷を小さくするほど予備放電に要する時間を短縮することができることがわかった。そして、定抵抗方式による予備放電に際して適切な負荷については、負荷が小さ過ぎると短絡に近い状態となり、20Ωの負荷では初期特性試験については不良となった固体が発生しなかったが、長期保存特性試験での不良発生率が、短絡方式で予備放電を行ったサンプル1の7割程度であったことから、下限を20Ω以上と規定した。   FIG. 3 is a graph 200 showing the relationship between the load and discharge time in Samples 2 to 6 in Table 1. In the graph 200, a white circle “◯” and a linear approximate straight line 201 indicated by a solid line indicate the load and discharge time for the samples 2 to 5 shown in Table 1. A black line “●” and a linear approximate straight line 202 indicated by a dotted line indicate the relationship between the load and the discharge time when the discharge capacities of the samples 2 to 5 are normalized to 2.0% uniformly. The points indicated by triangles “Δ” indicate the average load value (≈33Ω) and the discharge time (35 minutes) in sample 6. As is apparent from this graph 200, the time required for the preliminary discharge and the load to be connected are substantially proportional to each other, and the time required for the preliminary discharge can be shortened as the load is reduced. As for the load suitable for the preliminary discharge by the constant resistance method, when the load is too small, it becomes a state close to a short circuit, and with a load of 20Ω, a solid that has become defective in the initial characteristic test does not occur. Since the defect occurrence rate in the test was about 70% of the sample 1 subjected to the preliminary discharge by the short circuit method, the lower limit was defined as 20Ω or more.

また、上限については50Ωと規定した。これは、図3に示したグラフ200に示した近似直線(201、202)からも予想されるように50Ωの負荷で50〜55分程度の放電時間となり、50Ωより大きな負荷では1時間程度の放電時間が必要となってくることから、50Ωより大きな負荷では大きな時間短縮の効果が得られないと判断したからである。なお、理論容量に対して所定の容量を一定の負荷で連続して放電させたサンプル2〜5において、サンプル5の20Ωおよびサンプル4の30Ωの負荷による予備放電では、長期保存試験において不良となった固体が発生したことから、理論容量に対して所定の容量を一定の負荷で連続して放電させる場合では、35Ω以上50Ω以下の負荷で予備放電させることがより好ましい。   The upper limit was defined as 50Ω. As expected from the approximate straight lines (201, 202) shown in the graph 200 shown in FIG. 3, the discharge time is about 50 to 55 minutes with a load of 50Ω, and about 1 hour with a load larger than 50Ω. This is because, since the discharge time becomes necessary, it is determined that a large time reduction effect cannot be obtained with a load larger than 50Ω. In Samples 2 to 5 in which a predetermined capacity is continuously discharged with a constant load with respect to the theoretical capacity, the preliminary discharge with the load of 20Ω of Sample 5 and the load of 30Ω of Sample 4 is defective in the long-term storage test. In the case where a predetermined capacity is continuously discharged with a constant load with respect to the theoretical capacity, it is more preferable to perform preliminary discharge with a load of 35Ω to 50Ω.

一方、サンプル6では、20Ωや30Ωの低い負荷で予備放電させているものの、長期保存試験での不良発生率を0%とすることができた。すなわち、低い負荷での予備放電をその放電の全期間に亘って継続させなければ、上記の35Ω以上50Ω以下の条件を満たさなくても極めて優れた初期特性や長期保存特性を確保することができることがわかった。しかも、この場合の放電時間は35分であり、全放電時間に亘る平均負荷は約33Ωであった。これは、33Ωよりも低いサンプル4の30Ωの負荷と同等の時間で所定の容量を予備放電させることができることを意味する。しかも、サンプル2や3と同様に極めて優れた長期保存試験特性を有していることを意味する。したがって、予備放電に際して20Ω以上50Ω以下の異なる複数の負荷で段階的に放電させることもより好ましい。   On the other hand, sample 6 was pre-discharged with a low load of 20Ω or 30Ω, but the defect occurrence rate in the long-term storage test could be 0%. That is, if preliminary discharge at a low load is not continued for the entire period of the discharge, extremely excellent initial characteristics and long-term storage characteristics can be ensured even if the above conditions of 35Ω to 50Ω are not satisfied. I understood. In addition, the discharge time in this case was 35 minutes, and the average load over the entire discharge time was about 33Ω. This means that a predetermined capacity can be predischarged in a time equivalent to the 30 Ω load of sample 4 lower than 33 Ω. In addition, like Samples 2 and 3, it means that it has extremely long-term storage test characteristics. Therefore, it is more preferable to perform the discharge stepwise with a plurality of different loads of 20Ω to 50Ω in the preliminary discharge.

このように、本実施例の製造方法によれば、予備放電に要する時間を短縮できることともに、定電流方式による予備放電において問題となっていた複雑な設備が不要となり、製造設備における初期コストを低減させることができる。さらに、電流を監視する必要がないので、予備放電に関わる設備自体のトラブル(過放電による発火など)を考慮する必要がなく、安全性も高い。なお、上記実施例では、ボビン形リチウム電池の製造方法について説明したが、本発明は、製造過程において予備放電を要するリチウム電池であればよく、コイン形リチウム電池や円筒形のスパイラル形リチウム電池の製造方法にも適用可能である。もちろん、負極端子を兼ねる電池缶を正極端子を兼ねる封口体で密閉する構造のリチウム電池にも適用できる。   As described above, according to the manufacturing method of the present embodiment, the time required for the preliminary discharge can be shortened, and the complicated equipment that has been a problem in the preliminary discharge by the constant current method becomes unnecessary, thereby reducing the initial cost in the manufacturing equipment. Can be made. Furthermore, since there is no need to monitor the current, it is not necessary to consider troubles in the facility itself related to preliminary discharge (ignition due to overdischarge, etc.), and safety is high. In the above embodiment, the method for manufacturing the bobbin-type lithium battery has been described. However, the present invention may be any lithium battery that requires preliminary discharge in the manufacturing process, such as a coin-type lithium battery or a cylindrical spiral lithium battery. It can also be applied to a manufacturing method. Of course, the present invention can also be applied to a lithium battery having a structure in which a battery can that also serves as a negative electrode terminal is sealed with a sealing body that also serves as a positive electrode terminal.

1 ボビン形リチウム電池、2 電池缶、3 正極合剤、4 負極材料、
5 セパレーター、6 負極リード、7 負極端子板、8 封口板、9 封口体、
10 ガスケット、11 正極端子、200 予備放電特性グラフ
1 Bobbin-type lithium battery, 2 battery can, 3 cathode mix, 4 anode material,
5 Separator, 6 negative electrode lead, 7 negative electrode terminal plate, 8 sealing plate, 9 sealing body,
10 Gasket, 11 Positive terminal, 200 Predischarge characteristic graph

Claims (3)

正負一方の電極端子部が形成された電池缶内に、リチウムまたはリチウム合金からなる負極材料と、正極材料と、有機電解液とを収納するとともに、前記電池缶の開口を他方の電極端子部を兼ねる封口体によって密閉してリチウム電池を組み立てる工程と、当該組み立て後のリチウム電池に対し、理論容量に対して所定の割合の電気容量を放電させる予備放電工程とを含み、当該予備放電工程では、前記一方の電極端子部と他方の電極端子部との間に20Ω以上50Ω以下の負荷を接続して放電させることを特徴とするリチウム電池の製造方法。   In a battery can in which one of the positive and negative electrode terminal portions is formed, a negative electrode material made of lithium or a lithium alloy, a positive electrode material, and an organic electrolyte are housed, and the opening of the battery can is connected to the other electrode terminal portion. Including a step of assembling a lithium battery by sealing with a sealing body that also serves as an assembly, and a preliminary discharge step of discharging a predetermined ratio of electric capacity to the theoretical capacity with respect to the assembled lithium battery, A method for producing a lithium battery, comprising discharging a load of 20Ω to 50Ω between the one electrode terminal portion and the other electrode terminal portion. 請求項1において、前記予備放電工程では、当該工程の期間に亘って35Ω以上50Ω以下の一定の負荷によって放電させることを特徴とするリチウム電池の製造方法。   2. The method of manufacturing a lithium battery according to claim 1, wherein in the preliminary discharging step, discharging is performed with a constant load of 35Ω to 50Ω over a period of the step. 請求項1において、前記予備放電工程では、当該工程の期間中に前記20Ω以上50Ω以下の負荷を段階的に切り替えながら放電させることを特徴とするリチウム電池の製造方法。   2. The method of manufacturing a lithium battery according to claim 1, wherein in the preliminary discharging step, discharging is performed while the load of 20Ω or more and 50Ω or less is switched stepwise during the period of the step.
JP2013033241A 2013-02-22 2013-02-22 Lithium battery manufacturing method Active JP6200656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033241A JP6200656B2 (en) 2013-02-22 2013-02-22 Lithium battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033241A JP6200656B2 (en) 2013-02-22 2013-02-22 Lithium battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2014164861A true JP2014164861A (en) 2014-09-08
JP6200656B2 JP6200656B2 (en) 2017-09-20

Family

ID=51615323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033241A Active JP6200656B2 (en) 2013-02-22 2013-02-22 Lithium battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6200656B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116275A (en) * 1980-02-18 1981-09-11 Hitachi Maxell Ltd Nonaqueous-electrolyte battery
JPS58142767A (en) * 1982-02-20 1983-08-24 Hitachi Maxell Ltd Manufacture of organic electrolyte battery
JPS62290058A (en) * 1986-06-10 1987-12-16 Sony Corp Organic electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116275A (en) * 1980-02-18 1981-09-11 Hitachi Maxell Ltd Nonaqueous-electrolyte battery
JPS58142767A (en) * 1982-02-20 1983-08-24 Hitachi Maxell Ltd Manufacture of organic electrolyte battery
JPS62290058A (en) * 1986-06-10 1987-12-16 Sony Corp Organic electrolyte battery

Also Published As

Publication number Publication date
JP6200656B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP5032737B2 (en) Electrochemical element
US10205152B2 (en) Bushing forming a terminal for a lithium storage battery and related storage battery
JP6078377B2 (en) Lithium battery manufacturing method
US20070266554A1 (en) Electrochemical cell with moderate-rate discharging capability and method of production
KR100693079B1 (en) Sealed cell
JP5588539B2 (en) Electrochemical cell
JP6200656B2 (en) Lithium battery manufacturing method
JP2000090974A (en) Lithium ion secondary battery and manufacture thereof
JP3723352B2 (en) Secondary battery
JP2007059650A (en) Coin-shaped storage cell
JPH1031992A (en) Lead-acid battery separator and its manufacture
JP2011249216A (en) Lithium battery
JP5341960B2 (en) Electrochemical cell
US20130236756A1 (en) Lithium bobbin cell with cathode using wrapped metal grid as current collector
JPH09129264A (en) Manufacture of nonaqueous electrolyte secondary battery
JP5813821B2 (en) Electrochemical cell
JP4581378B2 (en) Non-aqueous electrolyte secondary battery
JPH11213983A (en) Cylindrical battery
JP4178884B2 (en) Square battery
JP3851082B2 (en) Non-aqueous electrolyte secondary battery
US1627334A (en) Dry cell
JP2001052719A (en) Oxyhalide-lithium battery having spiral structure
US20090053600A1 (en) Lithium Battery
JPS6151749A (en) Nonaqueous electrolyte battery
JPH1064551A (en) Inorganic nonaqueous solvent battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6200656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250