JP2014163837A - Mixed flow state measuring device, and sensor - Google Patents

Mixed flow state measuring device, and sensor Download PDF

Info

Publication number
JP2014163837A
JP2014163837A JP2013036226A JP2013036226A JP2014163837A JP 2014163837 A JP2014163837 A JP 2014163837A JP 2013036226 A JP2013036226 A JP 2013036226A JP 2013036226 A JP2013036226 A JP 2013036226A JP 2014163837 A JP2014163837 A JP 2014163837A
Authority
JP
Japan
Prior art keywords
insulating member
electrode
sensing electrode
sensor
multiphase flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013036226A
Other languages
Japanese (ja)
Other versions
JP6044386B2 (en
Inventor
Gentaro Yamanaka
玄太郎 山中
Takashi Shimazu
孝 志満津
Tadayoshi Matsumori
唯益 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2013036226A priority Critical patent/JP6044386B2/en
Publication of JP2014163837A publication Critical patent/JP2014163837A/en
Application granted granted Critical
Publication of JP6044386B2 publication Critical patent/JP6044386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of arranging a sensor inside a pipe conduit without unnecessarily disturbing a flow field inside the pipe conduit and capable of improving spatial resolution of a reconstructed image.SOLUTION: A sensor 12 is inserted into a pipe conduit 10. Sensing electrodes 14 are provided separately at a prescribed interval at a plurality of positions so that a part of the sensing electrode 14 is exposed on an inner surface of a roughly ring-shaped support insulation member 22 of the sensor 12. An outer surface of the roughly ring-shaped support insulation member 22 is provided with a screen electrode 16 so as to surround the sensing electrode 14. Respective sensing electrodes 14 supported by the support insulation member 22 and the screen electrode 16 are connected by a resistor 18. The resistor 18 is embedded inside the support insulation member 22. A center shaft of the support insulation member 22 is arranged along a flow direction of a mixed flow inside the pipe conduit 10.

Description

本発明は、混相流の静電容量や電位差等を計測し、混相流の誘電率等の分布状態を求め、混相流の混相状態分布の画像を再構成する技術に関する。   The present invention relates to a technique for measuring a capacitance, a potential difference, and the like of a multiphase flow, obtaining a distribution state such as a dielectric constant of the multiphase flow, and reconstructing an image of the multiphase state distribution of the multiphase flow.

固体、気体、液体等の混相流を扱うパイプラインや機器において、管路等の閉塞防止や輸送の効率化、混合の効率化、抵抗低減等を目的として、管路等を移動する混相流の粒子等の分布状態を観察している。近年では、管路等の混相流の誘電率等の分布から混相状態分布をCT(コンピュータトモグラフィー)を用いて画像を再構成して表示することで混相状態分布を計測する装置が開発されている。   In pipelines and equipment that handle multi-phase flows such as solids, gases, and liquids, multi-phase flows that move through pipes, etc. to prevent blockage of pipes, improve transport efficiency, improve mixing efficiency, reduce resistance, etc. The distribution state of particles and the like is observed. In recent years, an apparatus for measuring a multiphase state distribution by reconstructing and displaying an image of the multiphase state distribution using CT (Computer Tomography) from the distribution of the dielectric constant of a multiphase flow such as a pipe has been developed. .

特許文献1には、既知のn×1行列の静電容量行列C、既知のn×m行列のセンシティビティマップSe、未知のm×1行列の静電率分布行列Eとが、C=SeEの関係にあり、この式の反復計算により誘電率分布行列Eを求めることが記載されている。この際に、γi=CSeiとおき、反復回数をkとしたときに評価関数をf(E(k))=γ・E(k)とし、この評価関数が1に近づく誘電率分布行列Eを求めることが記載されている。 In Patent Document 1, a known n × 1 matrix capacitance matrix C, a known n × m matrix sensitivity map Se, and an unknown m × 1 matrix electrostatic capacitance distribution matrix E include C = SeE. It is described that the dielectric constant distribution matrix E is obtained by iterative calculation of this equation. In this case, γi = C T Sei is set, and when the number of iterations is k, the evaluation function is f (E (k) ) = γ · E (k), and this evaluation function approaches a dielectric constant distribution matrix close to 1. It is described that E is obtained.

図8に、特許文献1に記載された装置の構成を示す。混相流を輸送する管路1の周囲にセンサ2が設けられる。センサ2は、絶縁材と複数個の電極からなり、複数個の電極は、そのうちの任意の2個の組み合わせで複数のコンデンサを形成する。センサ2にはリード線221〜2212を介して静電容量計測手段3が接続される。静電容量計測手段3は、リード線221〜2212を介して複数個のコンデンサの静電容量を計測する。画像再構成手段4は、コンピュータからなり、複数のコンデンサの静電容量に基づいて、管路1の計測空間の誘電率分布を演算し、計測空間の誘電率分布CTの再構成画像信号を発生する。表示装置5は、誘電率分布CTの再構成画像を表示する。   FIG. 8 shows the configuration of the apparatus described in Patent Document 1. A sensor 2 is provided around the pipeline 1 that transports the multiphase flow. The sensor 2 includes an insulating material and a plurality of electrodes, and the plurality of electrodes form a plurality of capacitors by combining any two of them. Capacitance measuring means 3 is connected to the sensor 2 via lead wires 221 to 2212. The capacitance measuring means 3 measures the capacitance of a plurality of capacitors via the lead wires 221 to 2212. The image reconstruction means 4 comprises a computer, calculates the dielectric constant distribution in the measurement space of the pipeline 1 based on the capacitance of a plurality of capacitors, and generates a reconstructed image signal of the dielectric constant distribution CT in the measurement space To do. The display device 5 displays a reconstructed image of the dielectric constant distribution CT.

特開2003−130835号公報JP 2003-130835 A

しかしながら、上記従来技術では、管路の外部にセンサを配置しているため、計測面内のボイド率を決定する場合等において、存在する気泡が配管径と比較して大幅に小さい場合、再構成画像の空間解像度が十分でない問題があった。   However, in the above prior art, since the sensor is arranged outside the pipe line, when the void ratio in the measurement plane is determined, etc., if the existing bubble is significantly smaller than the pipe diameter, the reconstruction is performed. There was a problem that the spatial resolution of the image was not sufficient.

他方、センサを単に管路内に配置する構成では、外部からのノイズに対するロバスト性や浮遊容量耐性の確保ができない問題がある。すなわち、外部からのノイズ削減や外部との浮遊容量の削減のためには、センサのセンシング電極周囲にスクリーン電極を配置し、センシング電極とスクリーン電極との間に抵抗器、例えば1MΩ程度の抵抗器を接続することが有効であるが、センサを管路内に配置する場合には、これらセンシング電極、スクリーン電極及び抵抗器をどのように配置するかが問題となる。   On the other hand, the configuration in which the sensor is simply arranged in the pipe has a problem that robustness against external noise and resistance to stray capacitance cannot be ensured. That is, in order to reduce external noise and external stray capacitance, a screen electrode is arranged around the sensing electrode of the sensor, and a resistor, for example, a resistor of about 1 MΩ, is provided between the sensing electrode and the screen electrode. However, in the case where the sensor is arranged in the pipe line, it becomes a problem how to arrange the sensing electrode, the screen electrode and the resistor.

さらに、センサを単に管路内に配置する構成では、管路内の流れ場を必要以上に乱すことも想定され得る。   Further, in the configuration in which the sensor is simply arranged in the pipe line, it may be assumed that the flow field in the pipe line is disturbed more than necessary.

本発明の目的は、管路内の流れ場を必要以上に乱すことなくセンサを管路内に配置することが可能で、再構成画像の空間解像度を向上することができる装置及びセンサを提供することにある。   An object of the present invention is to provide an apparatus and a sensor that can arrange a sensor in a pipeline without unnecessarily disturbing a flow field in the pipeline and can improve the spatial resolution of a reconstructed image. There is.

本発明は、センサにより混相流の静電容量又は電位差を計測し、得られた静電容量又は電位差に基づいて混相流の誘電率分布を演算し、混相流状態分布のCT画像を再構成する混相流状態計測装置であって、前記センサは、少なくとも3個以上のセンシング電極と、前記センシング電極を囲むように配置されたスクリーン電極と、前記センシング電極と前記スクリーン電極との間に接続された抵抗器とを備え、前記センシング電極及び前記スクリーン電極は、同一又は互いに異なる支持絶縁部材に設けられ、前記支持絶縁部材は、前記混相流の流れ方向に対して流線型をなし、前記センサは、計測対象の混相流内に配置されることを特徴とする。   The present invention measures the capacitance or potential difference of a multiphase flow with a sensor, calculates a dielectric constant distribution of the multiphase flow based on the obtained capacitance or potential difference, and reconstructs a CT image of the multiphase flow state distribution. In the multiphase flow state measuring device, the sensor is connected to at least three sensing electrodes, a screen electrode disposed so as to surround the sensing electrode, and the sensing electrode and the screen electrode. The sensing electrode and the screen electrode are provided on the same or different supporting insulating member, the supporting insulating member has a streamlined shape with respect to the flow direction of the multiphase flow, and the sensor measures It is arranged in the target multiphase flow.

また、本発明は、混相流の静電容量又は電位差を計測し、得られた静電容量又は電位差に基づいて混相流の誘電率分布を演算し、混相流状態分布のCT画像を再構成する混相流状態計測装置に用いられるセンサであって、前記センサは、計測対象の混相流内に配置されるものであり、少なくとも3個以上のセンシング電極と、前記センシング電極を囲むように配置されたスクリーン電極と、前記センシング電極と前記スクリーン電極との間に接続された抵抗器とを備え、前記センシング電極及び前記スクリーン電極は、同一又は互いに異なる支持絶縁部材に設けられ、前記支持絶縁部材は、前記混相流の流れ方向に対して流線型をなすことを特徴とする。   The present invention also measures the capacitance or potential difference of the multiphase flow, calculates the dielectric constant distribution of the multiphase flow based on the obtained capacitance or potential difference, and reconstructs the CT image of the multiphase flow state distribution. A sensor used in a multiphase flow state measuring device, wherein the sensor is disposed in a multiphase flow to be measured, and is disposed so as to surround at least three sensing electrodes and the sensing electrode. A screen electrode, and a resistor connected between the sensing electrode and the screen electrode, the sensing electrode and the screen electrode are provided on the same or different support insulating member, the support insulating member, It is streamlined with respect to the flow direction of the multiphase flow.

本発明において、センシング電極及びスクリーン電極は、同一又は互いに異なる支持絶縁部材に設けられる。すなわち、センシング電極とスクリーン電極は、ともに共通の支持絶縁部材に設けられるか、あるいは、センシング電極はセンシング電極用の支持絶縁部材に設けられ、スクリーン電極はスクリーン電極用の支持絶縁部材に設けられる。これらの支持絶縁部材のサイズ及び相対的な位置関係を調整することで、センシング電極及びスクリーン電極並びに抵抗器を混相流の内部に配置することができる。そして、これらの支持絶縁部材の形状を、混相流の流れ方向に対して流線型とすることで、混相流の内部に配置した場合においても、混相流の流れ場を必要以上に乱すことがない。   In the present invention, the sensing electrode and the screen electrode are provided on the same or different supporting insulating members. That is, the sensing electrode and the screen electrode are both provided on a common supporting insulating member, or the sensing electrode is provided on the supporting insulating member for the sensing electrode, and the screen electrode is provided on the supporting insulating member for the screen electrode. By adjusting the size and relative positional relationship of these supporting insulating members, the sensing electrode, the screen electrode, and the resistor can be arranged inside the multiphase flow. Further, the shape of these supporting insulating members is streamlined with respect to the flow direction of the multiphase flow, so that the flow field of the multiphase flow is not disturbed more than necessary even when arranged inside the multiphase flow.

本発明の1つの実施形態では、前記センシング電極は、センシング電極支持絶縁部材に設けられ、前記スクリーン電極は、スクリーン電極支持絶縁部材に設けられ、前記抵抗器は、前記センシング電極あるいは前記スクリーン電極支持絶縁部材内に埋設されることを特徴とする。   In one embodiment of the present invention, the sensing electrode is provided on a sensing electrode supporting insulating member, the screen electrode is provided on a screen electrode supporting insulating member, and the resistor is the sensing electrode or the screen electrode supporting member. It is embedded in an insulating member.

本発明の他の実施形態では、前記センシング電極支持絶縁部材及び前記スクリーン電極支持絶縁部材は、略リング状をなし、前記スクリーン電極支持絶縁部材は、前記センシング電極支持絶縁部材を囲むように前記センシング電極支持絶縁部材と同軸上に配置され、前記センシング電極は、前記センシング電極支持絶縁部材の内面側に設けられ、前記スクリーン電極は、前記スクリーン電極支持絶縁部材の表面に設けられることを特徴とする。   In another embodiment of the present invention, the sensing electrode support insulating member and the screen electrode support insulating member have a substantially ring shape, and the screen electrode support insulating member surrounds the sensing electrode support insulating member. The sensing electrode is provided on an inner surface side of the sensing electrode supporting insulating member, and the screen electrode is provided on a surface of the screen electrode supporting insulating member. .

本発明のさらに他の実施形態では、前記センシング電極及び前記スクリーン電極は、同一の支持絶縁部材に設けられ、前記抵抗器は、前記支持絶縁部材内に埋設されることを特徴とする。   In still another embodiment of the present invention, the sensing electrode and the screen electrode are provided in the same supporting insulating member, and the resistor is embedded in the supporting insulating member.

本発明のさらに他の実施形態では、前記支持絶縁部材は、略リング状をなし、前記センシング電極は、前記支持絶縁部材の内面側に設けられ、前記スクリーン電極は、前記支持絶縁部材の外面側に設けられることを特徴とする。   In still another embodiment of the present invention, the support insulating member has a substantially ring shape, the sensing electrode is provided on the inner surface side of the support insulating member, and the screen electrode is on the outer surface side of the support insulating member. It is provided in.

本発明のセンサは、混相流内に配置されるが、単一のセンサのみを配置する他に、複数のセンサを混相流内に配置してもよく、複数のセンサを混相流の流れ方向に沿って複数配置してもよい。   Although the sensor of the present invention is arranged in a multiphase flow, in addition to arranging only a single sensor, a plurality of sensors may be arranged in the multiphase flow, and the plurality of sensors are arranged in the flow direction of the multiphase flow. A plurality may be arranged along.

本発明によれば、センシング電極とスクリーン電極とが同一又は互いに異なる支持絶縁部材に設けられてセンサを構成し、計測対象の混相流内に配置されることで、混相流外にセンサを配置する場合に比べて再構成画像の解像度が向上する。センシング電極のみならず、スクリーン電極及び抵抗器も混相流内に配置することで、浮遊容量の影響が低減され、ノイズへのロバスト性も確保される。   According to the present invention, the sensing electrode and the screen electrode are provided on the same or different supporting insulating members to constitute a sensor, and the sensor is arranged outside the multiphase flow by being arranged in the multiphase flow to be measured. Compared to the case, the resolution of the reconstructed image is improved. By arranging not only the sensing electrode but also the screen electrode and the resistor in the multiphase flow, the influence of the stray capacitance is reduced and the robustness to noise is also ensured.

また、支持絶縁部材は、混相流の流れ方向に対して流線型であるため、センサを混相流内に配置した場合でも流れ場を必要以上に乱すことがない。   Further, since the supporting insulating member is streamlined with respect to the flow direction of the multiphase flow, the flow field is not disturbed more than necessary even when the sensor is arranged in the multiphase flow.

また、センシング電極とスクリーン電極とを同一の支持絶縁部材に設ける場合には、さらにセンサのサイズを縮小することができ、混相流内への配置を容易化できる。   Further, when the sensing electrode and the screen electrode are provided on the same supporting insulating member, the size of the sensor can be further reduced, and the arrangement in the multiphase flow can be facilitated.

実施形態のセンサ配置説明図である。It is sensor arrangement explanatory drawing of an embodiment. 第1実施形態のセンサ外観斜視図である。It is a sensor external appearance perspective view of a 1st embodiment. 第1実施形態の模式的断面図である。It is a typical sectional view of a 1st embodiment. 第2実施形態のセンサ外観斜視図である。It is a sensor external appearance perspective view of 2nd Embodiment. 第2実施形態の模式的断面図である。It is a typical sectional view of a 2nd embodiment. 第3実施形態のセンサ外観斜視図である。It is a sensor external appearance perspective view of 3rd Embodiment. 第3実施形態の模式的断面図である。It is a typical sectional view of a 3rd embodiment. 従来装置の全体構成図である。It is a whole block diagram of the conventional apparatus.

以下、図面に基づき本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1実施形態>
本実施形態における混相流計測装置の全体構成は、図8に示す従来の構成とほぼ同一である。すなわち、センサに静電容量計測手段2が接続され、さらに画像再構成手段4、画像表示手段5が接続される。画像再構成手段4はコンピュータからなり、センサ内の複数のコンデンサの静電容量に基づいて、管路の計測空間の誘電率分布を演算し、計測空間の誘電率分布CTの再構成画像信号を発生して表示装置5に誘電率分布CTの再構成画像を表示する。
<First Embodiment>
The overall configuration of the multiphase flow measuring apparatus in the present embodiment is substantially the same as the conventional configuration shown in FIG. That is, the capacitance measuring means 2 is connected to the sensor, and the image reconstruction means 4 and the image display means 5 are further connected. The image reconstruction means 4 is composed of a computer, calculates the dielectric constant distribution in the measurement space of the pipe based on the capacitance of a plurality of capacitors in the sensor, and generates a reconstructed image signal of the dielectric constant distribution CT in the measurement space. It is generated and a reconstructed image of the dielectric constant distribution CT is displayed on the display device 5.

但し、従来においてセンサは管路の外部に配置されているが、本実施形態ではセンサは管路の内部に配置される。   However, conventionally, the sensor is arranged outside the pipeline, but in the present embodiment, the sensor is arranged inside the pipeline.

図1に、本実施形態におけるセンサ12の配置を示す。混相流を輸送する管路10内にセンサ12が配置される。センサ12には、センシング電極14、スクリーン電極16及び1MΩ程度の抵抗器18が設けられる。スクリーン電極16はセンシング電極14を取り囲むようにその周囲に配置され、センシング電極14とスクリーン電極16との間には抵抗器18が接続される。センシング電極14、スクリーン電極16及び抵抗器18は全てセンサ12の構成部材として管路10内に配置される。   FIG. 1 shows the arrangement of the sensors 12 in this embodiment. A sensor 12 is disposed in the conduit 10 that transports the multiphase flow. The sensor 12 is provided with a sensing electrode 14, a screen electrode 16, and a resistor 18 of about 1 MΩ. The screen electrode 16 is arranged around the sensing electrode 14 so that a resistor 18 is connected between the sensing electrode 14 and the screen electrode 16. The sensing electrode 14, the screen electrode 16, and the resistor 18 are all disposed in the conduit 10 as components of the sensor 12.

図2に、センサ12の外観斜視図を示す。センサ12のセンシング電極14は、略リング状をなすセンシング電極支持絶縁部材13に、所定の間隔だけ互いに離間して複数個設けられる。センシング電極14は、その一部がセンシング電極支持絶縁部材13の内面から外部に露出するように設けられる。図においては、略リング状をなすセンシング電極支持絶縁部材13に所定間隔だけ互いに離間して合計8個のセンシング電極14が設けられているが、これに限定されるわけではない。   FIG. 2 shows an external perspective view of the sensor 12. A plurality of sensing electrodes 14 of the sensor 12 are provided on a sensing electrode supporting insulating member 13 having a substantially ring shape and spaced apart from each other by a predetermined distance. The sensing electrode 14 is provided such that a part thereof is exposed to the outside from the inner surface of the sensing electrode support insulating member 13. In the figure, the sensing electrode supporting insulating member 13 having a substantially ring shape is provided with a total of eight sensing electrodes 14 spaced apart from each other by a predetermined interval, but the present invention is not limited to this.

また、センサ12のスクリーン電極16は、略リング状をなすセンシング電極支持絶縁部材13の周囲に、センシング電極14を内包するように略リング状のスクリーン電極支持絶縁部材15が設けられ、スクリーン電極16はこのスクリーン電極支持絶縁部材15の表面全周に設けられる。略リング状のスクリーン電極支持絶縁部材15のリング径は、当然ながら略リング状のセンシング電極支持絶縁部材13のリング径よりも大きく、両者はいずれも管路10の径よりも小さい。センシング電極支持絶縁部材13及びスクリーン電極支持絶縁部材15は、ともに絶縁性樹脂で構成され、図示しない絶縁性支持部材で管路10内の所定位置に支持固定される。   The screen electrode 16 of the sensor 12 is provided with a substantially ring-shaped screen electrode support insulating member 15 so as to enclose the sensing electrode 14 around the sensing electrode support insulating member 13 having a substantially ring shape. Is provided around the entire surface of the screen electrode supporting insulating member 15. The ring diameter of the substantially ring-shaped screen electrode support insulating member 15 is naturally larger than the ring diameter of the substantially ring-shaped sensing electrode support insulating member 13, both of which are smaller than the diameter of the conduit 10. The sensing electrode support insulating member 13 and the screen electrode support insulating member 15 are both made of an insulating resin, and are supported and fixed at predetermined positions in the pipe line 10 by an insulating support member (not shown).

さらに、センシング電極支持絶縁部材13に支持されたセンシング電極14のそれぞれと、スクリーン電極支持絶縁部材15に支持されたスクリーン電極16とは、1MΩ程度の抵抗器18で電気的に接続される。従って、車輪に例えると、あたかもスクリーン電極支持絶縁部材15は車輪のハブに対応し、抵抗器18は車輪のスポークに対応する。   Further, each of the sensing electrodes 14 supported by the sensing electrode support insulating member 13 and the screen electrode 16 supported by the screen electrode support insulating member 15 are electrically connected by a resistor 18 of about 1 MΩ. Therefore, in the case of a wheel, the screen electrode supporting insulating member 15 corresponds to a wheel hub, and the resistor 18 corresponds to a wheel spoke.

センシング電極支持絶縁部材13及びスクリーン電極支持絶縁部材15は、その中心軸が互いに一致するように同心円状に配置され、かつ、その中心軸は管路10内の混相流の流れ方向に沿って配置される。図において、矢印は混相流の流れ方向を示す。   The sensing electrode supporting insulating member 13 and the screen electrode supporting insulating member 15 are arranged concentrically so that their central axes coincide with each other, and the central axis is arranged along the flow direction of the multiphase flow in the pipe 10. Is done. In the figure, arrows indicate the flow direction of the multiphase flow.

なお、センサ12のセンシング電極14で取得した電気信号は、スクリーン電極支持絶縁部材15を管路10内に支持固定するための支持部材に埋設されたリード線を介して静電容量計測手段3に供給される。   The electrical signal acquired by the sensing electrode 14 of the sensor 12 is sent to the capacitance measuring means 3 via a lead wire embedded in a support member for supporting and fixing the screen electrode supporting insulating member 15 in the conduit 10. Supplied.

図3に、図2に示すセンサ12の一部断面を模式的に示す。混相流の流れ方向に対して平行な平面でセンサ12を切断し、混相流の流れ方向(混相流の主流方向)に対して垂直な方向から見た場合のセンシング電極支持絶縁部材13、スクリーン電極支持絶縁部材15並びに抵抗器18の模式的な断面図である。センシング電極支持絶縁部材13は、その縦断面の断面形状が混相流の流れ方向(図中矢印で示す)に対して流線型をなし、センシング電極14はセンシング電極支持絶縁部材13の内面側(図では下部側)から露出するように設けられる。   FIG. 3 schematically shows a partial cross section of the sensor 12 shown in FIG. The sensor 12 is cut along a plane parallel to the flow direction of the multiphase flow, and the sensing electrode supporting insulating member 13 and the screen electrode when viewed from a direction perpendicular to the flow direction of the multiphase flow (the main flow direction of the multiphase flow) 3 is a schematic cross-sectional view of a support insulating member 15 and a resistor 18. FIG. The sensing electrode support insulating member 13 has a streamlined cross-sectional shape with respect to the flow direction of the multiphase flow (indicated by an arrow in the figure), and the sensing electrode 14 is on the inner surface side of the sensing electrode support insulating member 13 (in the figure). It is provided so as to be exposed from the lower side.

スクリーン電極支持絶縁部材15も、同様にその縦断面積の断面形状が混相流の流れ方向に対して流線型をなし、スクリーン電極16はスクリーン電極支持絶縁部材15の表面に全周的に設けられる。   Similarly, the screen electrode supporting insulating member 15 has a streamlined cross-sectional shape with respect to the flow direction of the multiphase flow, and the screen electrode 16 is provided on the entire surface of the screen electrode supporting insulating member 15.

抵抗器18は、センシング電極14とスクリーン電極16との間に接続される。より詳しくは、センシング電極14の一端と、全周的に設けられるスクリーン電極16の閉じた一端との間を接続するように設けられる。   The resistor 18 is connected between the sensing electrode 14 and the screen electrode 16. More specifically, it is provided so as to connect between one end of the sensing electrode 14 and one closed end of the screen electrode 16 provided on the entire circumference.

このように、センシング電極14及びスクリーン電極16をそれぞれセンシング電極支持絶縁部材13及びスクリーン電極支持絶縁部材15に設け、両者の間を抵抗器18で接続し、かつ、両部材13,15の径を管路10の径よりも小さく設定してコンパクトな構成とすることで、センサ12を管路10内に配置することが可能となり、これにより再構成画像の解像度を向上することができる。また、センシング電極14のみならず、スクリーン電極16及び抵抗器18も管路10内に配置することができるので、浮遊容量の影響を低減でき、外部ノイズへのロバスト性も確保される。さらに、センシング電極支持絶縁部材13及びスクリーン電極支持絶縁部材15の外観形状をともに流線型とすることで、センサ12を管路10内に挿入しても混相流を必要以上に乱すこともない。   As described above, the sensing electrode 14 and the screen electrode 16 are provided on the sensing electrode support insulating member 13 and the screen electrode support insulating member 15, respectively, the resistor 18 is connected therebetween, and the diameters of both the members 13 and 15 are set. By setting the diameter smaller than the diameter of the pipe line 10 to be a compact structure, the sensor 12 can be arranged in the pipe line 10, thereby improving the resolution of the reconstructed image. Further, since not only the sensing electrode 14 but also the screen electrode 16 and the resistor 18 can be arranged in the pipe line 10, the influence of stray capacitance can be reduced, and robustness against external noise is ensured. Furthermore, by forming both the sensing electrode supporting insulating member 13 and the screen electrode supporting insulating member 15 to be streamlined, even if the sensor 12 is inserted into the conduit 10, the multiphase flow is not disturbed more than necessary.

なお、本実施形態では、センサ12を管路10内に挿入できるため、想定される最小気相径を同定可能なようにセンサ12のサイズを設計することができる。例えば、想定される最小気相径の10倍程度となるようにセンサ12のサイズを設計する等である。これにより、計測領域での媒体あるいは相の比率を正確に計測することができる。   In the present embodiment, since the sensor 12 can be inserted into the conduit 10, the size of the sensor 12 can be designed so that the assumed minimum gas phase diameter can be identified. For example, the size of the sensor 12 is designed to be about 10 times the assumed minimum gas phase diameter. Thereby, the medium or phase ratio in the measurement region can be accurately measured.

<第2実施形態>
図4に、本実施形態におけるセンサ12の外観斜視図を示す。
Second Embodiment
FIG. 4 shows an external perspective view of the sensor 12 in the present embodiment.

センサ12のセンシング電極14は、第1実施形態と同様であり、略リング状をなすセンシング電極支持絶縁部材13に、所定の間隔だけ互いに離間して複数個設けられる。センシング電極14は、その一部がセンシング電極支持絶縁部材13の内面から外部に露出するように設けられる。   The sensing electrodes 14 of the sensor 12 are the same as in the first embodiment, and a plurality of sensing electrodes 14 are provided on the sensing electrode support insulating member 13 having a substantially ring shape so as to be separated from each other by a predetermined distance. The sensing electrode 14 is provided such that a part thereof is exposed to the outside from the inner surface of the sensing electrode support insulating member 13.

一方、センサ12のスクリーン電極16は、略リング状をなすセンシング電極支持絶縁部材13の周囲に、センシング電極14を内包するように略リング状のスクリーン電極支持絶縁部材15が設けられ、スクリーン電極16はこのスクリーン電極支持絶縁部材15の表面に設けられる。第1実施形態では、スクリーン電極16はスクリーン電極支持絶縁部材15の表面に全周的に設けられるが、本実施形態ではスクリーン電極支持絶縁部材15の表面を覆うもののその一部が開放されるように設けられる。略リング状のスクリーン電極支持絶縁部材15のリング径は、略リング状のセンシング電極支持絶縁部材13のリング径よりも大きく、両者はいずれも管路10の径よりも小さい。センシング電極支持絶縁部材13及びスクリーン電極支持絶縁部材15は、ともに絶縁性樹脂で構成され、図示しない絶縁性支持部材で管路10内の所定位置に支持固定される。   On the other hand, the screen electrode 16 of the sensor 12 is provided with a substantially ring-shaped screen electrode support insulating member 15 so as to enclose the sensing electrode 14 around the sensing electrode support insulating member 13 having a substantially ring shape. Is provided on the surface of the screen electrode supporting insulating member 15. In the first embodiment, the screen electrode 16 is provided on the entire surface of the screen electrode support insulating member 15, but in this embodiment, a part of the screen electrode support insulating member 15 that covers the surface is opened. Is provided. The ring diameter of the substantially ring-shaped screen electrode support insulating member 15 is larger than the ring diameter of the substantially ring-shaped sensing electrode support insulating member 13, and both are smaller than the diameter of the conduit 10. The sensing electrode support insulating member 13 and the screen electrode support insulating member 15 are both made of an insulating resin, and are supported and fixed at predetermined positions in the pipe line 10 by an insulating support member (not shown).

さらに、センシング電極支持絶縁部材13に支持されたセンシング電極14のそれぞれと、スクリーン電極支持絶縁部材15に支持されたスクリーン電極16とは、1MΩ程度の抵抗器18で電気的に接続されるが、抵抗器18はスクリーン電極支持絶縁部材15の内部に埋め込まれる。センシング電極支持絶縁部材13に支持されたセンシング電極14のそれぞれと、スクリーン電極支持絶縁部材15に支持されたスクリーン電極16とは、導電部材19、具体的には抵抗器18のリード線で互いに接続される。   Furthermore, each of the sensing electrodes 14 supported by the sensing electrode support insulating member 13 and the screen electrode 16 supported by the screen electrode support insulating member 15 are electrically connected by a resistor 18 of about 1 MΩ, The resistor 18 is embedded in the screen electrode supporting insulating member 15. Each of the sensing electrodes 14 supported by the sensing electrode support insulating member 13 and the screen electrode 16 supported by the screen electrode support insulating member 15 are connected to each other by a conductive member 19, specifically, a lead wire of a resistor 18. Is done.

センシング電極支持絶縁部材13及びスクリーン電極支持絶縁部材15は、その中心軸が互いに一致するように同心円状に配置され、かつ、その中心軸は管路10内の混相流の流れ方向に沿って配置される。図において、矢印は混相流の流れ方向を示す。   The sensing electrode supporting insulating member 13 and the screen electrode supporting insulating member 15 are arranged concentrically so that their central axes coincide with each other, and the central axis is arranged along the flow direction of the multiphase flow in the pipe 10. Is done. In the figure, arrows indicate the flow direction of the multiphase flow.

なお、センサ12のセンシング電極14で取得した電気信号は、第1実施形態と同様にスクリーン電極支持絶縁部材15を管路10内に支持固定するための支持部材に埋設されたリード線を介して静電容量計測手段3に供給される。   Note that the electrical signal acquired by the sensing electrode 14 of the sensor 12 is transmitted via a lead wire embedded in a support member for supporting and fixing the screen electrode support insulating member 15 in the pipe line 10 as in the first embodiment. It is supplied to the capacitance measuring means 3.

図5に、図4に示すセンサ12の模式的な断面を示す。センシング電極支持絶縁部材13は、その縦断面の断面形状が混相流の流れ方向(図中矢印で示す)に対して流線型をなし、センシング電極14はセンシング電極支持絶縁部材13の内面側(図では下部側)から露出するように設けられる。   FIG. 5 shows a schematic cross section of the sensor 12 shown in FIG. The sensing electrode support insulating member 13 has a streamlined cross-sectional shape with respect to the flow direction of the multiphase flow (indicated by an arrow in the figure), and the sensing electrode 14 is on the inner surface side of the sensing electrode support insulating member 13 (in the figure). It is provided so as to be exposed from the lower side.

スクリーン電極支持絶縁部材15も、同様にその縦断面積の断面形状が混相流の流れ方向に対して流線型をなし、スクリーン電極16はスクリーン電極支持絶縁部材15の表面に設けられる。図3に示す第1実施形態と異なり、本実施形態では、スクリーン電極16はスクリーン電極支持絶縁部材15の全周に設けられておらず、その一端が開放されている点に留意されたい。   Similarly, the screen electrode supporting insulating member 15 has a streamlined cross-sectional shape with respect to the flow direction of the multiphase flow, and the screen electrode 16 is provided on the surface of the screen electrode supporting insulating member 15. It should be noted that, unlike the first embodiment shown in FIG. 3, in this embodiment, the screen electrode 16 is not provided on the entire circumference of the screen electrode support insulating member 15, and one end thereof is opened.

抵抗器18は、スクリーン電極支持絶縁部材15の内部に埋め込まれ、センシング電極14の一端とスクリーン電極16とを接続する。詳細には、センシング電極14の一端は導電部材19、すなわち抵抗器18のリード線に接続され、リード線の他端はスクリーン電極支持絶縁部材15内の抵抗器18に接続され、抵抗器18の他端はスクリーン電極16に接続される。   The resistor 18 is embedded in the screen electrode supporting insulating member 15 and connects one end of the sensing electrode 14 and the screen electrode 16. Specifically, one end of the sensing electrode 14 is connected to the conductive member 19, that is, the lead wire of the resistor 18, and the other end of the lead wire is connected to the resistor 18 in the screen electrode supporting insulating member 15. The other end is connected to the screen electrode 16.

本実施形態においても、第1実施形態と同様に、センサ12を管路10内に配置することが可能となり、これにより再構成画像の解像度を向上することができる。また、センシング電極14のみならず、スクリーン電極16及び抵抗器18も管路10内に配置することができるので、浮遊容量の影響を低減でき、外部ノイズへのロバスト性も確保される。また、センシング電極支持絶縁部材13及びスクリーン電極支持絶縁部材15の外観形状をともに流線型とすることで、センサ12を管路10内に挿入しても混相流を必要以上に乱すこともない。また、想定される最小気相径の10倍程度となるようにセンサ12のサイズを設計する等により、計測領域での媒体あるいは相の比率を正確に計測することができる。   Also in the present embodiment, as in the first embodiment, the sensor 12 can be disposed in the pipe line 10, thereby improving the resolution of the reconstructed image. Further, since not only the sensing electrode 14 but also the screen electrode 16 and the resistor 18 can be arranged in the pipe line 10, the influence of stray capacitance can be reduced, and robustness against external noise is ensured. In addition, since the external appearance shapes of the sensing electrode support insulating member 13 and the screen electrode support insulating member 15 are both streamlined, even if the sensor 12 is inserted into the conduit 10, the multiphase flow is not disturbed more than necessary. In addition, the medium or phase ratio in the measurement region can be accurately measured by designing the size of the sensor 12 so as to be about 10 times the assumed minimum gas phase diameter.

さらに、本実施形態では、抵抗器18をスクリーン電極支持絶縁部材15の内部に埋め込むことで、スポーク状の導電部材19に抵抗成分を付与する必要がなく、導電部材19の制約が少なくなって、導電部材19の径を小さくする等して混相流の流れに対する影響をより低減することが可能である。具体的には、導電部材19を抵抗器18のリード線とすることでその径を小さくして混相流の流れに対する影響を低減できる。   Furthermore, in this embodiment, by embedding the resistor 18 in the screen electrode supporting insulating member 15, it is not necessary to give a resistance component to the spoke-like conductive member 19, and the restriction of the conductive member 19 is reduced. The influence on the flow of the multiphase flow can be further reduced by reducing the diameter of the conductive member 19 or the like. Specifically, by using the conductive member 19 as a lead wire of the resistor 18, the diameter thereof can be reduced and the influence on the flow of the multiphase flow can be reduced.

<第3実施形態>
図6に、本実施形態におけるセンサ12の外観斜視図を示す。
<Third Embodiment>
FIG. 6 shows an external perspective view of the sensor 12 in the present embodiment.

第1実施形態及び第2実施形態では、センシング電極支持絶縁部材13とスクリーン電極支持絶縁部材15は互いに別個の部材として配置されているが、本実施形態ではともに同一部材として構成される。   In the first embodiment and the second embodiment, the sensing electrode support insulating member 13 and the screen electrode support insulating member 15 are arranged as separate members, but in this embodiment, both are configured as the same member.

すなわち、略リング状をなす支持絶縁部材22の内側表面に、その一部が露出するようにセンシング電極14が複数個所定の間隔だけ離間して設けられる。また、略リング状をなす支持絶縁部材22の外側表面に、スクリーン電極16がセンシング電極14を囲むように設けられる。   That is, a plurality of sensing electrodes 14 are provided on the inner surface of the support insulating member 22 having a substantially ring shape so as to be partially exposed at a predetermined interval. Further, the screen electrode 16 is provided on the outer surface of the support insulating member 22 having a substantially ring shape so as to surround the sensing electrode 14.

さらに、支持絶縁部材22に支持されたセンシング電極14のそれぞれとスクリーン電極16とは、1MΩ程度の抵抗器18で電気的に接続されるが、抵抗器18は支持絶縁部材22の内部に埋め込まれる。   Further, each of the sensing electrodes 14 supported by the support insulating member 22 and the screen electrode 16 are electrically connected by a resistor 18 of about 1 MΩ, but the resistor 18 is embedded in the support insulating member 22. .

支持絶縁部材22の中心軸は管路10内の混相流の流れ方向に沿って配置される。図において、矢印は混相流の流れ方向を示す。   The central axis of the support insulating member 22 is disposed along the flow direction of the multiphase flow in the pipe 10. In the figure, arrows indicate the flow direction of the multiphase flow.

センサ12のセンシング電極14で取得した電気信号は、支持絶縁部材22を管路10内に支持固定するための支持部材に埋設されたリード線を介して静電容量計測手段3に供給される。   The electrical signal acquired by the sensing electrode 14 of the sensor 12 is supplied to the capacitance measuring means 3 via a lead wire embedded in a support member for supporting and fixing the support insulating member 22 in the pipe line 10.

図7に、図6に示すセンサ12の模式的断面を示す。支持絶縁部材22は、その縦断面の断面形状が混相流の流れ方向(図中矢印で示す)に対して流線型をなす。センシング電極14は、支持絶縁部材22の内面側(図では下部側)に設けられる。また、スクリーン電極16は、支持絶縁部材22の外側面(図では上側)に、センシング電極14を囲むように設けられる。センシング電極14の一端と、スクリーン電極16の一端は、支持絶縁部材22内で抵抗器18により接続される。   FIG. 7 shows a schematic cross section of the sensor 12 shown in FIG. The support insulating member 22 has a streamlined cross-sectional shape with respect to the flow direction of the multiphase flow (indicated by arrows in the figure). The sensing electrode 14 is provided on the inner surface side (lower side in the figure) of the support insulating member 22. The screen electrode 16 is provided on the outer surface (upper side in the drawing) of the support insulating member 22 so as to surround the sensing electrode 14. One end of the sensing electrode 14 and one end of the screen electrode 16 are connected by a resistor 18 in the support insulating member 22.

本実施形態においても、第1実施形態あるいは第2実施形態と同様に、センサ12を管路10内に配置することが可能となり、これにより再構成画像の解像度を向上することができる。また、センシング電極14のみならず、スクリーン電極16及び抵抗器18も管路10内に配置することができるので、浮遊容量の影響を低減でき、外部ノイズへのロバスト性も確保される。また、支持絶縁部材22の外観形状をともに流線型とすることで、センサ12を管路10内に挿入しても混相流を必要以上に乱すこともない。また、想定される最小気相径の10倍程度となるようにセンサ12のサイズを設計する等により、計測領域での媒体あるいは相の比率を正確に計測することができる。   Also in this embodiment, similarly to the first embodiment or the second embodiment, the sensor 12 can be arranged in the pipe line 10, and thereby the resolution of the reconstructed image can be improved. Further, since not only the sensing electrode 14 but also the screen electrode 16 and the resistor 18 can be arranged in the pipe line 10, the influence of stray capacitance can be reduced, and robustness against external noise is ensured. In addition, since both the outer shapes of the supporting insulating members 22 are streamlined, even if the sensor 12 is inserted into the conduit 10, the multiphase flow is not disturbed more than necessary. In addition, the medium or phase ratio in the measurement region can be accurately measured by designing the size of the sensor 12 so as to be about 10 times the assumed minimum gas phase diameter.

さらに、本実施形態では、センシング電極支持絶縁部材13とスクリーン電極支持絶縁部材15を共通化して単一の支持絶縁部材22とし、この支持絶縁部材22にセンシング電極14、スクリーン電極16、抵抗器18を設ける構成としたので、センサ12のサイズを一層縮小することが可能となり、より多様な管路10に適用し得る。   Further, in this embodiment, the sensing electrode support insulating member 13 and the screen electrode support insulating member 15 are made common to form a single support insulating member 22, and the sensing electrode 14, the screen electrode 16, and the resistor 18 are connected to the support insulating member 22. Therefore, the sensor 12 can be further reduced in size, and can be applied to a wider variety of pipes 10.

以上説明したように、本実施形態では、センサ12を管路10内に挿入して管路10内の混相流の誘電率等の分布から混相状態分布CT(コンピュータトモグラフィー)の画像を再構成して表示することができる。   As described above, in the present embodiment, the sensor 12 is inserted into the conduit 10, and an image of the multiphase state distribution CT (computer tomography) is reconstructed from the distribution of the dielectric constant and the like of the multiphase flow in the conduit 10. Can be displayed.

本実施形態において、管路10内の混相流は、固体、液体、気体等であるが、少なくとも2つの媒体が流れるものでよく、あるいは単一の媒体であっても異なる2つ以上の相が流動するものであればよい。   In the present embodiment, the multiphase flow in the pipe 10 is solid, liquid, gas, etc., but at least two media may flow, or even a single medium may have two or more different phases. It only needs to be fluid.

また、本実施形態では、同心円状に配置された8個のセンシング電極14を例示したが、少なくとも3個のセンシング電極14であればよい。   Further, in the present embodiment, the eight sensing electrodes 14 arranged concentrically are illustrated, but at least three sensing electrodes 14 may be used.

また、本実施形態では、センシング電極支持絶縁部材13、スクリーン電極支持絶縁部材15、支持絶縁部材22の外観形状を略リング状として説明したが、外観形状は矩形、菱形、楕円等任意でよく、管路10の断面形状に合致する形状としてもよい。   In the present embodiment, the outer shape of the sensing electrode supporting insulating member 13, the screen electrode supporting insulating member 15, and the supporting insulating member 22 is described as a substantially ring shape, but the outer shape may be any shape such as a rectangle, a rhombus, an ellipse, It is good also as a shape corresponding to the cross-sectional shape of the pipe line 10.

また、本実施形態では、センシング電極14間の静電容量を計測しているが、静電容量に代えて電位差を計測し、電位差に基づいて誘電率分布を演算してもよい。   In this embodiment, the capacitance between the sensing electrodes 14 is measured. However, a potential difference may be measured instead of the capacitance, and a dielectric constant distribution may be calculated based on the potential difference.

さらに、本実施形態において、センサ12を混相流の流れに沿って複数配置し、それぞれのセンサ12から得られる媒体あるいは相分布の離散的な時系列分布から、計測領域での3次元速度を演算することも可能である。   Further, in the present embodiment, a plurality of sensors 12 are arranged along the flow of the multiphase flow, and the three-dimensional velocity in the measurement region is calculated from the medium obtained from each sensor 12 or the discrete time series distribution of the phase distribution. It is also possible to do.

10 管路、12 センサ、13 センシング電極支持絶縁部材、14 センシング電極、15 スクリーン電極支持絶縁部材、16 スクリーン電極、18 抵抗器。   DESCRIPTION OF SYMBOLS 10 Pipe line, 12 Sensor, 13 Sensing electrode support insulation member, 14 Sensing electrode, 15 Screen electrode support insulation member, 16 Screen electrode, 18 Resistor.

Claims (11)

センサにより混相流の静電容量又は電位差を計測し、得られた静電容量又は電位差に基づいて混相流の誘電率分布を演算し、混相流状態分布のCT画像を再構成する混相流状態計測装置であって、
前記センサは、
少なくとも3個以上のセンシング電極と、
前記センシング電極を囲むように配置されたスクリーン電極と、
前記センシング電極と前記スクリーン電極との間に接続された抵抗器と、
を備え、
前記センシング電極及び前記スクリーン電極は、同一又は互いに異なる支持絶縁部材に設けられ、
前記支持絶縁部材は、前記混相流の流れ方向に対して流線型をなし、
前記センサは、計測対象の混相流内に配置される
ことを特徴とする混相流状態計測装置。
Measure the capacitance or potential difference of the multiphase flow with the sensor, calculate the dielectric constant distribution of the multiphase flow based on the obtained capacitance or potential difference, and reconstruct the CT image of the multiphase flow state distribution A device,
The sensor is
At least three sensing electrodes;
A screen electrode arranged to surround the sensing electrode;
A resistor connected between the sensing electrode and the screen electrode;
With
The sensing electrode and the screen electrode are provided on the same or different supporting insulating members,
The support insulating member is streamlined with respect to the flow direction of the multiphase flow,
The said sensor is arrange | positioned in the multiphase flow of measurement object. The multiphase flow state measuring apparatus characterized by the above-mentioned.
請求項1記載の装置において、
前記センシング電極は、センシング電極支持絶縁部材に設けられ、
前記スクリーン電極は、スクリーン電極支持絶縁部材に設けられ、
前記抵抗器は、前記センシング電極あるいは前記スクリーン電極支持絶縁部材内に埋設される
ことを特徴とする混相流状態計測装置。
The apparatus of claim 1.
The sensing electrode is provided on a sensing electrode supporting insulating member,
The screen electrode is provided on a screen electrode supporting insulating member,
The said resistor is embed | buried in the said sensing electrode or the said screen electrode support insulation member. The multiphase flow state measuring apparatus characterized by the above-mentioned.
請求項2記載の装置において、
前記センシング電極支持絶縁部材及び前記スクリーン電極支持絶縁部材は、略リング状をなし、
前記スクリーン電極支持絶縁部材は、前記センシング電極支持絶縁部材を囲むように前記センシング電極支持絶縁部材と同軸上に配置され、
前記センシング電極は、前記センシング電極支持絶縁部材の内面側に設けられ、
前記スクリーン電極は、前記スクリーン電極支持絶縁部材の表面に設けられる
ことを特徴とする混相流状態計測装置。
The apparatus of claim 2.
The sensing electrode support insulating member and the screen electrode support insulating member are substantially ring-shaped,
The screen electrode supporting insulating member is disposed coaxially with the sensing electrode supporting insulating member so as to surround the sensing electrode supporting insulating member,
The sensing electrode is provided on the inner surface side of the sensing electrode support insulating member,
The said screen electrode is provided in the surface of the said screen electrode support insulation member. The multiphase flow state measuring apparatus characterized by the above-mentioned.
請求項1記載の装置において、
前記センシング電極及び前記スクリーン電極は、同一の支持絶縁部材に設けられ、
前記抵抗器は、前記支持絶縁部材内に埋設される
ことを特徴とする混相流状態計測装置。
The apparatus of claim 1.
The sensing electrode and the screen electrode are provided on the same supporting insulating member,
The resistor is embedded in the supporting insulating member. A multiphase flow state measuring apparatus.
請求項4記載の装置において、
前記支持絶縁部材は、略リング状をなし、
前記センシング電極は、前記支持絶縁部材の内面側に設けられ、
前記スクリーン電極は、前記支持絶縁部材の外面側に設けられる
ことを特徴とする混相流状態計測装置。
The apparatus of claim 4.
The supporting insulating member has a substantially ring shape,
The sensing electrode is provided on the inner surface side of the support insulating member,
The said screen electrode is provided in the outer surface side of the said support insulation member. The multiphase flow state measuring apparatus characterized by the above-mentioned.
請求項1〜5のいずれかに記載の装置において、
前記センサは、計測対象の混相流内に、混相流の流れに沿って複数配置される
ことを特徴とする混相流状態計測装置。
In the apparatus in any one of Claims 1-5,
A plurality of sensors are arranged along the flow of the multiphase flow in the multiphase flow to be measured.
混相流の静電容量又は電位差を計測し、得られた静電容量又は電位差に基づいて混相流の誘電率分布を演算し、混相流状態分布のCT画像を再構成する混相流状態計測装置に用いられるセンサであって、
前記センサは、計測対象の混相流内に配置されるものであり、
少なくとも3個以上のセンシング電極と、
前記センシング電極を囲むように配置されたスクリーン電極と、
前記センシング電極と前記スクリーン電極との間に接続された抵抗器と、
を備え、
前記センシング電極及び前記スクリーン電極は、同一又は互いに異なる支持絶縁部材に設けられ、
前記支持絶縁部材は、前記混相流の流れ方向に対して流線型をなす
ことを特徴とするセンサ。
A multiphase flow state measurement apparatus that measures the capacitance or potential difference of a multiphase flow, calculates the dielectric constant distribution of the multiphase flow based on the obtained capacitance or potential difference, and reconstructs a CT image of the multiphase flow state distribution. A sensor used,
The sensor is arranged in a multiphase flow to be measured,
At least three sensing electrodes;
A screen electrode arranged to surround the sensing electrode;
A resistor connected between the sensing electrode and the screen electrode;
With
The sensing electrode and the screen electrode are provided on the same or different supporting insulating members,
The sensor is characterized in that the supporting insulating member is streamlined with respect to the flow direction of the multiphase flow.
請求項7記載のセンサにおいて、
前記センシング電極は、センシング電極支持絶縁部材に設けられ、
前記スクリーン電極は、スクリーン電極支持絶縁部材に設けられ、
前記抵抗器は、前記スクリーン電極支持絶縁部材内に埋設される
ことを特徴とするセンサ。
The sensor according to claim 7, wherein
The sensing electrode is provided on a sensing electrode supporting insulating member,
The screen electrode is provided on a screen electrode supporting insulating member,
The sensor is embedded in the screen electrode supporting insulating member.
請求項8記載のセンサにおいて、
前記センシング電極支持絶縁部材及び前記スクリーン電極支持絶縁部材は、略リング状をなし、
前記スクリーン電極支持絶縁部材は、前記センシング電極支持絶縁部材を囲むように前記センシング電極支持絶縁部材と同軸上に配置され、
前記センシング電極は、前記センシング電極支持絶縁部材の内面側に設けられ、
前記スクリーン電極は、前記スクリーン電極支持絶縁部材の表面に設けられる
ことを特徴とするセンサ。
The sensor according to claim 8, wherein
The sensing electrode support insulating member and the screen electrode support insulating member are substantially ring-shaped,
The screen electrode supporting insulating member is disposed coaxially with the sensing electrode supporting insulating member so as to surround the sensing electrode supporting insulating member,
The sensing electrode is provided on the inner surface side of the sensing electrode support insulating member,
The screen electrode is provided on a surface of the screen electrode supporting insulating member.
請求項7記載のセンサにおいて、
前記センシング電極及び前記スクリーン電極は、同一の支持絶縁部材に設けられ、
前記抵抗器は、前記支持絶縁部材内に埋設される
ことを特徴とするセンサ。
The sensor according to claim 7, wherein
The sensing electrode and the screen electrode are provided on the same supporting insulating member,
The sensor is embedded in the supporting insulating member.
請求項10記載のセンサにおいて、
前記支持絶縁部材は、略リング状をなし、
前記センシング電極は、前記支持絶縁部材の内面側に設けられ、
前記スクリーン電極は、前記支持絶縁部材の外面側に設けられる
ことを特徴とするセンサ。
The sensor according to claim 10.
The supporting insulating member has a substantially ring shape,
The sensing electrode is provided on the inner surface side of the support insulating member,
The screen electrode is provided on an outer surface side of the supporting insulating member.
JP2013036226A 2013-02-26 2013-02-26 Multiphase flow state measuring device and sensor Expired - Fee Related JP6044386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036226A JP6044386B2 (en) 2013-02-26 2013-02-26 Multiphase flow state measuring device and sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013036226A JP6044386B2 (en) 2013-02-26 2013-02-26 Multiphase flow state measuring device and sensor

Publications (2)

Publication Number Publication Date
JP2014163837A true JP2014163837A (en) 2014-09-08
JP6044386B2 JP6044386B2 (en) 2016-12-14

Family

ID=51614567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036226A Expired - Fee Related JP6044386B2 (en) 2013-02-26 2013-02-26 Multiphase flow state measuring device and sensor

Country Status (1)

Country Link
JP (1) JP6044386B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796245A (en) * 1980-10-15 1982-06-15 Westinghouse Electric Corp Electrically conductive cell
US4392110A (en) * 1979-06-12 1983-07-05 National Research Development Corporation Methods and apparatus for monitoring the condition of dielectric liquid in electric discharge machining
JPH02213760A (en) * 1988-12-22 1990-08-24 Fev Motorentechnik Gmbh & Co Kg Apparatus for measuring content and/or heating value of alcohol of fuel
JPH0479253U (en) * 1990-11-22 1992-07-10
JP2001242027A (en) * 2000-01-06 2001-09-07 Rosemount Inc Capacity type pressure sensor having movable dielectric
JP2002214183A (en) * 2001-01-19 2002-07-31 Univ Nihon Multiphase state distribution measuring device and multiphase state distribution measuring method
US20070133746A1 (en) * 2003-08-22 2007-06-14 Ortiz Aleman Jose C Method for imaging multiphase flow using electrical capacitance tomography
US20100097374A1 (en) * 2005-03-22 2010-04-22 The Ohio State University 3d and real time electrical capacitance volume-tomography sensor design and image reconstruction
JP2012145438A (en) * 2011-01-12 2012-08-02 Sekiguchi:Kk Method for measuring moisture ratio of w/o emulsion and moisture ratio measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392110A (en) * 1979-06-12 1983-07-05 National Research Development Corporation Methods and apparatus for monitoring the condition of dielectric liquid in electric discharge machining
JPS5796245A (en) * 1980-10-15 1982-06-15 Westinghouse Electric Corp Electrically conductive cell
JPH02213760A (en) * 1988-12-22 1990-08-24 Fev Motorentechnik Gmbh & Co Kg Apparatus for measuring content and/or heating value of alcohol of fuel
JPH0479253U (en) * 1990-11-22 1992-07-10
JP2001242027A (en) * 2000-01-06 2001-09-07 Rosemount Inc Capacity type pressure sensor having movable dielectric
JP2002214183A (en) * 2001-01-19 2002-07-31 Univ Nihon Multiphase state distribution measuring device and multiphase state distribution measuring method
US20070133746A1 (en) * 2003-08-22 2007-06-14 Ortiz Aleman Jose C Method for imaging multiphase flow using electrical capacitance tomography
US20100097374A1 (en) * 2005-03-22 2010-04-22 The Ohio State University 3d and real time electrical capacitance volume-tomography sensor design and image reconstruction
JP2012145438A (en) * 2011-01-12 2012-08-02 Sekiguchi:Kk Method for measuring moisture ratio of w/o emulsion and moisture ratio measuring device

Also Published As

Publication number Publication date
JP6044386B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
Fossa Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows
CN105308445B (en) Method and apparatus for the dielectric constant in survey target domain
Dos Reis et al. Experimental study on different configurations of capacitive sensors for measuring the volumetric concentration in two-phase flows
CN105466465B (en) A kind of capacitance tomography sensor of helical structure electrode
CN103439375B (en) A kind of integrated capacitive-ultrasound tomography sensor
RU2515427C2 (en) Multi-phase flow meter
CN103439374B (en) A kind of combined printed circuit board capacitance tomography sensor
US7481118B2 (en) Flow measurement apparatus
US20130036817A1 (en) Means and method for monitoring the flow of fluid
Ko et al. An improved electrical-conductance sensor for void-fraction measurement in a horizontal pipe
Wang et al. A new visualisation and measurement technology for water continuous multiphase flows
GB2527324A (en) Segmented electromagnetic sensor
MX2014010089A (en) Indirect mass flow sensor.
Li et al. Optimizing the geometry of three-dimensional electrical capacitance tomography sensors
CN107218975A (en) Gas-solid two-phase flow detection device and method based on spiral capacitor-annular electrostatic sensor
Cao et al. Coil shape optimization of the electromagnetic flowmeter for different flow profiles
CN103454318B (en) Electrical capacitance tomography sensor with double-layer rotating electrode
JP6044386B2 (en) Multiphase flow state measuring device and sensor
Muhamedsalih et al. A two-phase flow meter for determining water and solids volumetric flow rates in stratified, inclined solids-in-water flows
Wang et al. A new dual-modality ECT/ERT technique based on C 4 D principle
CN107110805B (en) Computer tomography device and method
CN107290394A (en) Method and apparatus for measuring the two phase flow in petroleum transportation pipeline
GB2543587B (en) Method and means for monitoring fluid flow
CN108398465A (en) A kind of high-voltage capacitance sensor array
RU2568962C1 (en) Device to measure flow parameters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6044386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees