JP2014163249A - Vertical shaft type wind turbine - Google Patents

Vertical shaft type wind turbine Download PDF

Info

Publication number
JP2014163249A
JP2014163249A JP2013033127A JP2013033127A JP2014163249A JP 2014163249 A JP2014163249 A JP 2014163249A JP 2013033127 A JP2013033127 A JP 2013033127A JP 2013033127 A JP2013033127 A JP 2013033127A JP 2014163249 A JP2014163249 A JP 2014163249A
Authority
JP
Japan
Prior art keywords
plate
wind turbine
vertical axis
blade
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013033127A
Other languages
Japanese (ja)
Inventor
Shinya Fukuno
慎也 福埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013033127A priority Critical patent/JP2014163249A/en
Publication of JP2014163249A publication Critical patent/JP2014163249A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

PROBLEM TO BE SOLVED: To provide an efficient vertical shaft type wind turbine that does not become a resistance, but can generate a fast rotating speed, does not apply any unreasonable load to a weak segment and shows a smooth rotation even under weak wind due to becoming light in its weight through its operation.SOLUTION: This invention is characterized in that some vertical long plate vanes with a certain width are arranged in equally spaced apart relation around a vertical axis acting as a center of wind turbine, at least a pair of upper and lower arms are present between the vertical axis and each of the plate vanes, each of the arms is a hollow lifting type member having, as its main component, a belt-like supporting plate connected to both the vertical axis and the plate vane and having a curved upper surface plate assembled with it, the plate vanes are constructed such that they have, at their extremity ends in their rotating direction, streamlined hollow head pieces with both sides of the same rotating direction being widened in a retraction angle, the hollow space is divided into right and left segments at the extremity ends of the plate vanes, thereby the hollow space is separately opened at an outer pocket and an inner pocket at the retracting surfaces of the head pieces.

Description

この発明は、風力発電等に用いるための縦軸型風車に関する。   The present invention relates to a vertical wind turbine for use in wind power generation or the like.

風車を大別すれば、これには横軸型と縦軸(垂直軸)型とがあり、横軸形は、横軸の回転軸に羽根を放射状に取り付けたもので、この分野ではプロペラ型が現在発電用に主流をなし多用されている。これに対して、縦軸型は、縦軸の回転軸の周囲にアームを介して羽根を配列したものである。   There are two types of windmills: a horizontal axis type and a vertical axis (vertical axis) type. In the horizontal axis type, blades are attached radially to the rotation axis of the horizontal axis. Currently, the mainstream is used for power generation. On the other hand, the vertical axis type is a type in which blades are arranged around an axis of rotation of the vertical axis via an arm.

現在、大型風力発電装置では、ほゞ100%が横軸(水平軸)のプロペラ型の3枚ブレード風車である。これに関連して、縦軸(垂直軸)の風車がなぜ使われなかったのかといえば、横軸型風車は技術的優位性があるということではなく、開発が先行し莫大な開発投資により成功を収めているに過ぎないとされる。つまり縦軸型の分野では、開発の余地が多く残されて未開であるという。   At present, in large wind turbine generators, almost 100% is a propeller type three blade wind turbine with a horizontal axis (horizontal axis). In this connection, the reason why the vertical axis (vertical axis) wind turbine was not used is not that the horizontal axis type wind turbine has a technical advantage, but it has succeeded in development and huge development investment. It is said that it only contains. In other words, there is plenty of room for development in the vertical field, which is undeveloped.

縦軸型の風車は、縦軸を中心に羽根が回転する関係で、構造的に上に伸ばし制限なく風を取り入れることができ、横に拡張する必要がないため、特に、日本のような複雑地形で、風向変化の激しい国土では、小型化にも適し、何処からの風も受け入れる風向対応性がある縦軸型風車が有利であると考えられる。   Vertical wind turbines are particularly complex as in Japan because the blades rotate about the vertical axis, so they can take in the wind without any restrictions on stretching upwards and do not need to be expanded horizontally. In the land where the wind direction changes drastically due to topography, it is considered that a vertical wind turbine that is suitable for downsizing and that can accept wind from anywhere is advantageous.

縦軸型の風車は、縦軸の周りに縦長の羽根を配列することにより多大の風力を取り入れることができるが、縦長の羽根の総重量が多くなると、それが運転中に軸受等で負荷がかかり、その結果として、風力に対して相応の回転速度や耐力を得るために装置がコスト高となるという問題があった。   A vertical wind turbine can take in a great deal of wind power by arranging vertical blades around the vertical axis.However, if the total weight of the vertical blades increases, it causes a load on the bearings during operation. As a result, there has been a problem that the apparatus is expensive in order to obtain a rotation speed and proof strength corresponding to wind power.

この発明は、上記のような実情に鑑みて、運転により軽量化するために、抵抗とならなく、高い回転速度が得られ、また、弱い部分に無理がかかることがなく、微風にも軽々に回転する効率的な縦軸型の風車を提供することを課題とした。   In view of the above circumstances, the present invention is not resistive and high rotational speed is obtained in order to reduce the weight by driving, and the weak part is not overwhelmed and light winds are lightly applied. An object of the present invention is to provide an efficient vertical axis wind turbine that rotates.

上記の課題を解決するために、この発明は、風車の中心となる縦軸の回りに縦長で幅のある板羽根を等位に配列し、縦軸と各板羽根との間に少なくとも上下一対のアームを介在させてなり、各アームは、縦軸と板羽根との双方に連結される帯板状の支持板を主体としこれに湾曲した上面板が組み合わされた中空の揚力型であり、板羽根は、回転方向側の先端縁に、同方向両側が後退角に広がる流線型である内空の頭部片を取り付け、該内空が板羽根の先端縁部で左右に分けられることにより、その頭部片の後退面に内空が外ポケットと内ポケットとして別々に開口していることを特徴とする縦軸型風車を提供する。   In order to solve the above-described problems, the present invention is arranged such that longitudinally long and wide plate blades are arranged equally around a vertical axis that is the center of a wind turbine, and at least a pair of upper and lower plates are arranged between the vertical axis and each plate blade. Each arm is a hollow lift type in which a belt-like support plate connected to both the vertical axis and the plate blades is mainly used and a curved top plate is combined with this, The plate blade is attached to the tip edge on the rotational direction side by a streamlined head piece that is streamlined on both sides in the same direction, and the inner space is divided into left and right at the tip edge of the plate blade, Provided is a vertical wind turbine characterized in that an inner space is separately opened as an outer pocket and an inner pocket on the receding surface of the head piece.

縦軸型風車は上記のように構成したから、微風であっても、それによりアームが揚力を受けることで持ち上げられ、軽量化により抵抗が減じられて回転する。また、強力な風を受けると、風車の回転速度によりアームがさらに強く浮揚する力で抵抗を和らげる結果、無理なく回転速度が速まる。さらに、板羽根やアームを構成する材料に、3〜4mm厚のアルミニウム複合板を使用することにより、コストや重量の面において、より好ましい結果が得られる。   Since the vertical wind turbine is configured as described above, even if it is a slight wind, the arm is lifted by receiving lift force, and is rotated with reduced resistance due to weight reduction. In addition, when a strong wind is received, the resistance is eased by the force that the arm floats more strongly due to the rotational speed of the windmill, so that the rotational speed increases without difficulty. Furthermore, by using an aluminum composite plate having a thickness of 3 to 4 mm as the material constituting the plate blades and arms, more favorable results can be obtained in terms of cost and weight.

以上説明したように、この発明の縦軸型風車によれば、運転により軽量化するために、抵抗とならなく、高い回転速度が得られ、また、弱い部分に無理がかかることがないために製造およびメンテナンスにつきコスト安に適し、微風にも軽々に回転するため、発電用としては効率的に電力が得られ、一定の安定した風が得られがたい日本の風土や地形に適するという優れた効果がある。   As described above, according to the vertical axis type wind turbine of the present invention, since it is reduced in weight by driving, it does not become resistance, a high rotation speed is obtained, and a weak portion is not forced. It is suitable for manufacturing and maintenance at low cost and lightly rotates even in light winds, so it can be efficiently used for power generation, and it is suitable for Japanese climate and topography where it is difficult to obtain a constant and stable wind. effective.

この発明に係る縦軸型風車の一部断面した正面図である。1 is a partially sectional front view of a vertical wind turbine according to the present invention. 同縦軸型風車を平面から見た断面説明図である。It is sectional explanatory drawing which looked at the same vertical axis type windmill from the plane. 図2のA−A線矢視断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. アームの取付部分の正面図である。It is a front view of the attachment part of an arm. アームと板羽根の連結部分の平面断面図である。It is plane sectional drawing of the connection part of an arm and a board blade. 他の実施態様を示す上から見た板羽根の断面図である。It is sectional drawing of the plate blade | wing seen from the top which shows another embodiment.

この発明において、縦軸1を中心に配列される板羽根3の枚数については特に限定するものではないが、逆回転に働く枚数よりも正回転に働く枚数が常時多いことになるので、奇数枚であって、少数の3枚羽根又は5枚羽根であることが望ましい。   In the present invention, the number of the plate blades 3 arranged around the vertical axis 1 is not particularly limited. However, since the number of sheets that work in the forward rotation is always larger than the number of sheets that work in the reverse rotation, And it is desirable that there are a small number of 3 blades or 5 blades.

図1ないし図5は、一実施の形態を示したもので、その縦軸型風車は、縦軸1の回りに縦長の板羽根3,3,・・を配列し、支柱1と各板羽根3との間に上下一対のアーム5,5を介在させ、各アーム5,5、・・が揚力型に形成される。且つ、板羽根や各アームを構成する材料には、厚さ3〜4mmのアルミニウム複合板が使用される。この構成材料により、コスト及び重量の両面において好結果が得られる。   FIG. 1 to FIG. 5 show an embodiment. In the vertical wind turbine, vertical plate blades 3, 3,... Are arranged around the vertical axis 1, and the column 1 and each plate blade are arranged. A pair of upper and lower arms 5, 5 is interposed between the arms 5, 3 and the arms 5, 5,. In addition, an aluminum composite plate having a thickness of 3 to 4 mm is used as a material constituting the plate blade and each arm. This constituent material provides good results in both cost and weight.

縦軸1は、基台7の上にスラスト型の下端軸受9を介して立設され、垂直を保持するために、基台7の上に風車を囲むように数本のフレーム11,11、・・(図示は一部のみ)を立設し、上端においてその中心に縦軸1の上端を支持するラジアル形の上端軸受13が設けられる。また、基台7の上には、高い台状の軸受ケース15が設置され、その上端にラジアル型の中間軸受17が設けられる。したがって、縦軸1は、下端軸受9と、上端軸受13と、中間軸受17とで支持され、中間軸受17より高い位置の範囲に前記アーム11,11、・・をねじ止めする上下鍔板19,19が突設される。なお、簡単には、下端軸受9と中間軸受17だけで支持しても良い。   The vertical axis 1 is erected on a base 7 via a thrust-type lower end bearing 9, and in order to maintain verticality, several frames 11, 11, .. (Only a part of the illustration is erected), and a radial upper end bearing 13 that supports the upper end of the vertical axis 1 is provided at the center at the upper end. In addition, a high base-like bearing case 15 is installed on the base 7, and a radial intermediate bearing 17 is provided at the upper end thereof. Therefore, the vertical axis 1 is supported by the lower end bearing 9, the upper end bearing 13, and the intermediate bearing 17, and the upper and lower vertical plates 19 that screw the arms 11, 11,. 19 are projected. In addition, you may support only by the lower end bearing 9 and the intermediate bearing 17 simply.

アーム5の構造は、鍔板19と板羽根3の双方に掛け止めしてネジ止めされる帯状の支持板21を主体とするもので(図3)、支持板21に湾曲した上面板23を組み合わせることにより、支持板21の両端部21a、21b(を除いた)間が飛行機の主翼に似た断面の揚力型に組立て形成される(図3)。   The structure of the arm 5 is mainly composed of a belt-like support plate 21 that is hooked and screwed to both the flange plate 19 and the plate blade 3 (FIG. 3), and a curved upper surface plate 23 is formed on the support plate 21. By combining them, the end portions 21a and 21b (excluding the support plate 21) of the support plate 21 are assembled into a lift type having a cross section similar to the main wing of an airplane (FIG. 3).

組み立てには、上面板23の(進行方向)後端部が支持板21の上面に重なる水平なネジ止縁部25に形成され、その後端部から徐々に湾曲しながら高くなり前端部で円弧形に反転し、反転先端部が支持板21の前端部の下面に重なる水平なねじ止縁部27として形成される。したがって、縦軸1と板羽根3との連結が支持板21でなされ、上面板23が揚力のほか、リブしても作用する。   For the assembly, the rear end portion (in the advancing direction) of the upper surface plate 23 is formed on a horizontal screw stop edge portion 25 that overlaps the upper surface of the support plate 21, and gradually rises while curving from the rear end portion to form an arc at the front end portion. The inverted tip is formed as a horizontal screw stop edge 27 that overlaps the lower surface of the front end of the support plate 21. Therefore, the vertical axis 1 and the plate blade 3 are connected by the support plate 21, and the upper surface plate 23 acts as a rib in addition to the lift force.

板羽根3は、縦長の矩形板状であって、その回転側の先端に設けられる流線形に湾曲した頭部片31が、止金物33で一体に組み付けられたもので(図5)、先端にやや鋭角にL字形に屈折した屈折部35を設け、屈折部35と頭部片31の一側内面に止金物33が添えられビス36、36、・・で止められる。そして、頭部片31の外側に奥行が内側に曲がる深いポケット37を、内側に浅いポケット38が設けられる。また、羽根板3の内側には前記したようにアーム11の支持板21を掛け止める水平な取付片39が突設される。   The plate blade 3 is a vertically long rectangular plate, and a streamlined curved head piece 31 provided at the tip of the rotation side is integrally assembled with a clasp 33 (FIG. 5). A refracting portion 35 refracted in an L shape at a slightly acute angle is provided, and a metal fitting 33 is attached to one inner surface of the refracting portion 35 and the head piece 31 and is fastened with screws 36, 36,. A deep pocket 37 whose depth bends inward is provided outside the head piece 31, and a shallow pocket 38 is provided inside. Further, as described above, a horizontal mounting piece 39 for hooking the support plate 21 of the arm 11 is projected from the inside of the blade plate 3.

板羽根3は、頭部片31を先頭に回転するが、方向性については、板羽根3の基端が通る位置に沿った回転仮想円Rを想定すると(図2)、その上の一点Pにおける接線Lに沿って先端が延びる向きとなっており、この向きでアーム5に連結される。   The plate blade 3 rotates with the head piece 31 at the head, but regarding the directionality, assuming a rotating virtual circle R along the position through which the proximal end of the plate blade 3 passes (FIG. 2), a point P thereon is provided. The tip extends in the direction along the tangent line L and is connected to the arm 5 in this direction.

また、先端の頭部片31は、同じ向きでもよいが、板羽根3に対して内向き傾斜となっている。これについては、頭部片31の中心を通る仮想の回転円Raを想定し、その位置における接線Laの方向に変向して形成されている。次に側方から風Fを受けたとして回転状態を次に説明する。   The head piece 31 at the tip may be in the same direction, but is inclined inward with respect to the plate blade 3. As for this, a virtual rotation circle Ra passing through the center of the head piece 31 is assumed, and the direction is changed in the direction of the tangent line La at that position. Next, the rotation state will be described below assuming that the wind F is received from the side.

5枚の板羽根3をW1、W2,W3,W4,W5,W6で位置表示し、また、回転仮想円Rに対する板羽根3の基端が位置する接点Pを風力が掛かる支点と見る。   The positions of the five blades 3 are indicated by W1, W2, W3, W4, W5, and W6, and the contact point P where the base end of the blade 3 is located with respect to the virtual rotation circle R is regarded as a fulcrum on which wind force is applied.

まず、板羽根W1については、接点Pよりも右全面で風Fを受けるばかりでなく、外ポケット37で受けるために、接点Pを中心とする回転力が得られる。   First, the plate blade W1 receives not only the wind F on the entire right side of the contact P but also the outer pocket 37, so that a rotational force about the contact P is obtained.

W2については、傾斜外面で受けるためにわずかに力を受けるが外ポケット37で強力に受けるために大きな回転力が得られる。   W2 receives a slight force because it is received by the inclined outer surface, but a large rotational force is obtained because it is received strongly by the outer pocket 37.

W3については、内面の傾斜面で受けるために、わずかな回転力となるが、内ポケット38で受けるために、大きな回転力として作用することになる。   Since W3 is received by the inclined surface of the inner surface, it has a slight rotational force, but since it is received by the inner pocket 38, it acts as a large rotational force.

W4については、全体が風Fの抵抗となる体勢であり逆回転に働くが全体が逃げ角であるので、抵抗力は小さく、風車の正回転をほとんど妨げない。W5についても同様であって、全体が逃げ角の体勢であり、風車の正回転を妨げない。   About W4, the whole is a posture which becomes the resistance of the wind F and works in the reverse rotation, but the whole is a clearance angle, so the resistance is small, and the forward rotation of the windmill is hardly hindered. The same applies to W5, and the whole is in a posture of a clearance angle and does not hinder the forward rotation of the windmill.

上記のように、板羽根3,3、・・のうち、半数5より多い枚数3(W1,W2,W3)で正回転力が得られ、残り枚数2(W4,W5)で微弱な抵抗となるので、3枚、5枚の奇数枚であると、大きな正回転力が確実に得られることから、その枚数が望ましいといえる。   As described above, a positive rotational force is obtained with the number 3 (W1, W2, W3) of the blade blades 3, 3,... Therefore, if the number is three or five odd, a large positive rotational force can be obtained with certainty, and it can be said that the number is desirable.

なお、発電装置については、軸受ケース15には、縦軸1に固着して傘歯車41が内装され、側面に発電機43が外付けされ、発電機には傘歯車41と噛み合う従動歯車45が取り付けられる。   As for the power generation device, the bearing case 15 is fixed to the vertical axis 1 and has a bevel gear 41 provided therein, a generator 43 is externally attached to the side surface, and the generator has a driven gear 45 that meshes with the bevel gear 41. It is attached.

図6は、板羽根3について、他の実施態様を示したもので、その板羽根3は、取付片39付きであって、先端に台形の山形に屈折した内金物44と止金物45とを介して頭部片31が取り付けられる。   FIG. 6 shows another embodiment of the plate blade 3, and the plate blade 3 is provided with an attachment piece 39, and has an inner metal piece 44 and a clasp piece 45 refracted into a trapezoidal chevron at the tip. The head piece 31 is attached via the via.

1 縦軸
3 板羽根
5 アーム
21 支持基板
23 上面板
29 主部板材
31 頭部片
37 外ポケット
38 内ポケット
R,Ra 仮想の回転円
L,La 接線
DESCRIPTION OF SYMBOLS 1 Vertical axis | shaft 3 Plate blade 5 Arm 21 Support substrate 23 Upper surface plate 29 Main part plate material 31 Head piece 37 Outer pocket 38 Inner pocket R, Ra Virtual rotation circle L, La Tangent

Claims (4)

風車の中心となる縦軸の回りに縦長で幅のある板羽根を等位に配列し、縦軸と各板羽根との間に少なくとも上下一対のアームを介在させてなり、各アームは、縦軸と板羽根との双方に連結される帯板状の支持板を主体としこれに湾曲した上面板が組み合わされた中空の揚力型であり、板羽根は、回転方向側の先端縁に、同方向両側が後退角に広がる流線型である内空の頭部片を取り付け、該内空が板羽根の先端縁部で左右に分けられることにより、その頭部片の後退面に内空が外ポケットと内ポケットとして別々に開口していることを特徴とする縦軸型風車。   Vertically long and wide plate blades are arranged around the vertical axis that is the center of the windmill, and at least a pair of upper and lower arms are interposed between the vertical axis and each plate blade. This is a hollow lift type consisting mainly of a belt-like support plate connected to both the shaft and the blades, and a curved upper surface plate combined with the support plate. A streamlined inner space head piece that spreads at both sides in the receding direction is attached, and the inner space is divided into left and right at the tip edge of the plate blade, so that the inner space is outside pockets on the receding surface of the head piece A vertical wind turbine characterized by being opened separately as an inner pocket. 縦軸を中心に各板羽根の基端を通る仮想の回転円に、各板羽根がその基端で接するとともに、その接線方向またはほゞ接線方向に向う配置としてあることを特徴とする請求項1記載の縦軸型風車。   The virtual rotating circle passing through the base end of each plate blade centering on the vertical axis is arranged so that each plate blade is in contact with the base end and directed in the tangential direction or almost tangential direction. The vertical axis wind turbine according to claim 1. 各板羽根について、先端の頭部片が前記接線とは別でその中心を通る仮想の回転円とほゞ平行方向に向くように内側に傾斜してなり、両ポケットがその傾斜に応じて後ろ斜めに開口されていることを特徴とする請求項1又は2記載の縦軸型風車。   For each blade, the head piece at the tip is inclined inward so that it faces in a direction substantially parallel to the virtual rotation circle passing through the center of the blade, and both pockets are rearward according to the inclination. The vertical wind turbine according to claim 1 or 2, wherein the wind turbine is opened obliquely. 各板羽根及び各アームを構成する材料が、厚み3〜4mmのアルミニウム複合板であることを特徴とする請求項1,2又は3記載の縦軸型風車。








The vertical wind turbine according to claim 1, 2 or 3, wherein the material constituting each plate blade and each arm is an aluminum composite plate having a thickness of 3 to 4 mm.








JP2013033127A 2013-02-22 2013-02-22 Vertical shaft type wind turbine Pending JP2014163249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033127A JP2014163249A (en) 2013-02-22 2013-02-22 Vertical shaft type wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033127A JP2014163249A (en) 2013-02-22 2013-02-22 Vertical shaft type wind turbine

Publications (1)

Publication Number Publication Date
JP2014163249A true JP2014163249A (en) 2014-09-08

Family

ID=51614106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033127A Pending JP2014163249A (en) 2013-02-22 2013-02-22 Vertical shaft type wind turbine

Country Status (1)

Country Link
JP (1) JP2014163249A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101828074B1 (en) 2017-05-24 2018-03-22 김민석 Vertical type wind power generator
WO2019045114A1 (en) * 2017-09-04 2019-03-07 利充 山澤 Wind power generation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101828074B1 (en) 2017-05-24 2018-03-22 김민석 Vertical type wind power generator
WO2019045114A1 (en) * 2017-09-04 2019-03-07 利充 山澤 Wind power generation device

Similar Documents

Publication Publication Date Title
CN105492761A (en) Vertical axis water/wind turbine motor using flight feather opening/closing wing system
TWI548811B (en) Rotor blade of a wind power installation and wind power installation
JP2014518358A (en) Vertical shaft turbine with variable diameter and angle
US20160003218A1 (en) Vane device for a turbine apparatus
US20150110627A1 (en) Blade bucket structure for savonius turbine
TW201600716A (en) Horizontal shaft type windmill and waiting method therefor
US8556572B2 (en) Wind power turbine
JP2014163249A (en) Vertical shaft type wind turbine
JP2012092651A (en) Wind power generation apparatus
CN105840428A (en) Self-adaption variation paddle vertical shaft wind driven generator with blades provided with flaps
KR101488220B1 (en) Wind, hydro and tidal power turbine to improve the efficiency of the device
RU186586U1 (en) VERTICAL GENERATOR WITH VERTICAL DRIVE SHAFT
JP6312284B1 (en) Sail equipment
JP2006090246A (en) Wind turbine generator
JP2015113775A (en) Vertical shaft wind turbine
JP2018119483A (en) Blade and wind turbine using the same
CN107762725B (en) Wind driven generator
JP2023530198A (en) Swivel propeller, method of operation, and preferred use thereof
JP2002081364A (en) Wind force device
US20180355845A1 (en) Low friction vertical axis-horizontal blade wind turbine with high efficiency
CN204061044U (en) A kind of vertical-shaft wind hundred KW generator and impeller thereof
WO2017141501A1 (en) Vertical axis wind turbine
JP6398095B2 (en) Power equipment
JP6246413B1 (en) Drag type open / close generator
WO2012152263A3 (en) Wind turbine with pivotable rotor blades