JP2014162770A - Method for producing polymerized rosin alcohol, and polymerized rosin alcohol obtained by the method - Google Patents

Method for producing polymerized rosin alcohol, and polymerized rosin alcohol obtained by the method Download PDF

Info

Publication number
JP2014162770A
JP2014162770A JP2013036224A JP2013036224A JP2014162770A JP 2014162770 A JP2014162770 A JP 2014162770A JP 2013036224 A JP2013036224 A JP 2013036224A JP 2013036224 A JP2013036224 A JP 2013036224A JP 2014162770 A JP2014162770 A JP 2014162770A
Authority
JP
Japan
Prior art keywords
rosin
polymerized rosin
alcohol
polymerized
dimer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013036224A
Other languages
Japanese (ja)
Other versions
JP6061140B2 (en
Inventor
Takashi Nakatani
隆 中谷
Yasushi Funakoshi
靖 舟越
Yoshimasa Sato
義昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2013036224A priority Critical patent/JP6061140B2/en
Publication of JP2014162770A publication Critical patent/JP2014162770A/en
Application granted granted Critical
Publication of JP6061140B2 publication Critical patent/JP6061140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high purity polymerized rosin alcohol having a high content of dimer component.SOLUTION: A polymerized rosin ester contains 80 wt.% or more of a rosin dimer component, and contains 80 wt.% or more of a diester compound represented by general formula (1): ROOC-X-COOR (wherein, X represents a residue after removing two ester groups from the rosin dimer; R represents an alkyl group having 1 to 5 carbon atoms) in the dimer component. A method for producing a polymerized rosin alcohol comprises hydrogenating and reducing the polymerized rosin ester at hydrogen pressure of 5 to 30 MPa and temperature of 180 to 350°C in the presence of a copper oxide-based catalyst.

Description

本発明は、重合ロジンアルコールの製造方法および該方法により得られる重合ロジンアルコールに関する。 The present invention relates to a method for producing a polymerized rosin alcohol and a polymerized rosin alcohol obtained by the method.

ロジンアルコールとは、ガムロジン、ウッドロジン、トール油ロジン等のロジン類のカルボキシル基を水酸基に還元して得られる樹脂状化合物である。ロジンアルコールは、各種溶剤やポリマーへの溶解性や、各種基材に対する密着性に優れるため、接着剤、粘着剤、シーリング材、インキ、塗料、その他改質剤として広範に使用されている。 Rosin alcohol is a resinous compound obtained by reducing the carboxyl group of rosins such as gum rosin, wood rosin and tall oil rosin to a hydroxyl group. Rosin alcohol is widely used as an adhesive, pressure-sensitive adhesive, sealing material, ink, paint, and other modifiers because of its excellent solubility in various solvents and polymers and adhesion to various substrates.

ところで、重合ロジンアルコールは、ロジンアルコールに比べて剛直で疎水性が高いため取扱いが容易でないためか、これまで工業的製造法など実用的な検討が充分には進んでいない。しかし、重合ロジンアルコールは、前記特性を有し、溶解性も満足しうる水準にあるため、潜在的に有用な素材であると言える。また、重合ロジンアルコールの水酸基は種々の反応に適用できるため、各種誘導体を得るための有用原料となりうる。   By the way, the polymerized rosin alcohol is rigid and high in hydrophobicity compared to rosin alcohol, so that it is not easy to handle, so far, practical studies such as industrial production methods have not been sufficiently advanced. However, it can be said that polymerized rosin alcohol is a potentially useful material because it has the above-mentioned characteristics and has satisfactory solubility. Moreover, since the hydroxyl group of the polymerized rosin alcohol can be applied to various reactions, it can be a useful raw material for obtaining various derivatives.

従来、ロジン誘導体は、基材(ポリマー等)に添加・混合して使用される例が多いが、該ポリマーと比べ低分子量であるため、ポリマー特性を低下させる懸念があった。そこで、ロジン誘導体をポリマー中に化学的に組み込む検討が行われて来た。例えば、ロジンアルコール等と環状ラクトンを開環重合して得られるラクトン変性ロジンを導入した、水性ポリウレタンが知られている(特許文献1参照)。しかしながら、該ポリウレタンは、ロジン成分の含有率が低く、またロジン成分がポリマーの主鎖では無く、末端または側鎖に導入されたものであるため、ロジンの特徴である剛直性や疎水性が十分に活かされなかった。   Conventionally, rosin derivatives are often used by being added to and mixed with a base material (polymer or the like). Therefore, studies have been conducted to chemically incorporate rosin derivatives into polymers. For example, an aqueous polyurethane into which a lactone-modified rosin obtained by ring-opening polymerization of rosin alcohol or the like and a cyclic lactone is known (see Patent Document 1). However, the polyurethane has a low content of the rosin component, and the rosin component is introduced not at the main chain of the polymer but at the terminal or side chain, so the rigidity and hydrophobicity characteristic of rosin are sufficient. It was not made use of.

また、ロジンと3価アルコールとの反応物をポリオール成分とする、ポリウレタン樹脂が知られている(特許文献2参照)。しかしながら、ロジンと3価アルコールとの反応物には、モノエステル(ジオール成分)、ジエステル(モノオール成分)、トリエステル(ヒドロキシル基を含有しない成分)等が混在する。そのため該反応物を用いた場合には、ウレタン化反応が十分に進行せず、また該ポリウレタン樹脂中に全く組み込まれない成分が残存することとなり、所望の高分子料樹脂を得ることは困難であった。またこの方法でも、ロジン成分がポリウレタン樹脂の末端または側鎖に導入されるため、ロジンの特徴が十分に発揮されなかった。   In addition, a polyurethane resin using a reaction product of rosin and a trihydric alcohol as a polyol component is known (see Patent Document 2). However, monoester (diol component), diester (monool component), triester (component not containing hydroxyl group) and the like are mixed in the reaction product of rosin and trihydric alcohol. Therefore, when the reactant is used, the urethanization reaction does not proceed sufficiently, and components that are not incorporated into the polyurethane resin remain, and it is difficult to obtain a desired polymer resin. there were. Also in this method, since the rosin component is introduced into the terminal or side chain of the polyurethane resin, the characteristics of rosin were not fully exhibited.

従って、ロジン部位をポリマー主鎖に導入するためには、分子中に2個のカルボキシル基を有する重合ロジンや、分子中に2つの水酸基を有する重合ロジンアルコールのように、笠高な重合ロジン骨格と複数の反応性官能基を有する化合物を用いることが望ましい。このように、ロジン部位をポリマー主鎖に導入することで、得られるポリマーの物性(耐水性、耐熱性等)を一層向上しうると期待される。特に二量体ジオール成分を多く含む高純度重合ロジンアルコールを用いると、ポリマー主鎖への導入率を高めることができ、重合ロジン骨格の特徴を活かしたポリマー設計が可能となり、ポリエステル、ポリウレタン、ポリエーテル等のポリマー用の原料として、更には(メタ)アクリルエステル用の原料として好適に使用できる。高純度重合ロジンアルコールを用いてなる当該ポリマーは、例えばトナー用樹脂、フイルム樹脂、塗料樹脂、粘接着剤樹脂、インキ用樹脂、コーティング樹脂、フォーム用樹脂、繊維用樹脂等への用途展開が考えられる。 Therefore, in order to introduce a rosin moiety into the polymer main chain, a highly polymerized rosin skeleton such as a polymerized rosin having two carboxyl groups in the molecule or a polymerized rosin alcohol having two hydroxyl groups in the molecule. It is desirable to use a compound having a plurality of reactive functional groups. Thus, it is expected that the physical properties (water resistance, heat resistance, etc.) of the resulting polymer can be further improved by introducing the rosin moiety into the polymer main chain. In particular, when high-purity polymerized rosin alcohol containing a large amount of dimer diol components is used, the rate of introduction into the polymer main chain can be increased, and polymer design utilizing the characteristics of the polymerized rosin skeleton becomes possible. It can be suitably used as a raw material for polymers such as ether, and further as a raw material for (meth) acrylic esters. The polymer using high-purity polymerized rosin alcohol can be used for, for example, toner resin, film resin, paint resin, adhesive resin, ink resin, coating resin, foam resin, fiber resin, etc. Conceivable.

しかしながら、これまで前記のような高純度の重合ロジンアルコールを得ることは容易ではなく、高純度の重合ロジンアルコールはいまだに上市されていない。高純度の重合ロジンアルコールの製造が容易でない理由は定かではないが、次のような要因が考えられる。重合ロジンアルコールの原料となる市販重合ロジンは、重合ロジンとロジン酸との混合物(前者の含有率:55〜80重量%程度)であるため、これを水素化しても高純度重合ロジンアルコールが得られないことや、重合ロジンのカルボンキシル基は反応性が低いため、これを直接還元しても高反応率とならないことも一因と推察される。   However, it has not been easy to obtain a high-purity polymerized rosin alcohol as described above, and a high-purity polymerized rosin alcohol has not yet been put on the market. The reason why it is not easy to produce high-purity polymerized rosin alcohol is not clear, but the following factors can be considered. The commercially available polymerized rosin used as a raw material for the polymerized rosin alcohol is a mixture of polymerized rosin and rosin acid (the former content: about 55 to 80% by weight). This is presumably due to the fact that the carboxyxyl group of the polymerized rosin has low reactivity and does not increase the reaction rate even if it is directly reduced.

特開平8−253550号公報JP-A-8-253550 特開昭57−133114号公報JP 57-133114 A

本発明は、二量体成分の含有率が高い、高純度の重合ロジンアルコールを提供することを目的とする。 An object of the present invention is to provide a high-purity polymerized rosin alcohol having a high content of dimer components.

本発明者は、前記課題を解決すべく鋭意研究を重ねたところ、市販の重合ロジンには、(1)ロジン酸の三量体以上の高分子量体成分、(2)カルボキシル基を2つ有する二量体成分(以下、ジカルボキシ二量体という)、(3)重合反応時の副反応(ロジンの脱炭酸)に伴って生じる、カルボキシル基が1つ脱離した二量体成分(以下、モノカルボキシ二量体という)、ならびに(4)未反応のロジン酸などが含まれていることを見出した。また、本発明者は、重合ロジンを高純度化するために、副成分(例えば、未反応ロジン酸)を減圧留去しようとすると、脱炭酸反応や高分子量化反応が進行して前記モノカルボキシ二量体や高分子量体が却って増加することを見出した。すなわち、低純度重合ロジンを還元しても目的とする高純度重合ロジンアルコールは得られず、また低純度重合ロジンアルコールから副成分(高分子量体成分、重合ロジンモノオール、単量体のロジンアルコール)を除去することも困難であるとの知見を得た。   The present inventor conducted extensive research to solve the above problems, and as a result, the commercially available polymerized rosin has (1) a high molecular weight component of a rosin acid trimer or higher, and (2) two carboxyl groups. Dimer component (hereinafter referred to as “dicarboxy dimer”), (3) Dimer component (hereinafter referred to as “dicarboxyl dimer”), which is generated due to a side reaction at the time of polymerization reaction (rosin decarboxylation). (Referred to as monocarboxy dimer) and (4) unreacted rosin acid. In addition, in order to purify the polymerized rosin, the present inventor tried to distill off the accessory component (for example, unreacted rosin acid) under reduced pressure, and the decarboxylation reaction and the high molecular weight reaction proceeded to cause the monocarboxylization. It was found that dimer and high molecular weight increased on the contrary. That is, the target high-purity polymerized rosin alcohol cannot be obtained by reducing the low-purity polymerized rosin, and subcomponents (high molecular weight component, polymerized rosin monool, monomeric rosin alcohol are obtained from the low-purity polymerized rosin alcohol. ) Was found to be difficult to remove.

前記知見に基づき、本発明者は更に鋭意検討を行った結果、特定の重合ロジンエステルを使用し、これを特定の水素化条件下で還元して初めて上記課題を解決しうることを見出し、本発明を完成するに至った。 Based on the above findings, the present inventor has further intensively studied, and as a result, found that the above-mentioned problems can be solved only when a specific polymerized rosin ester is used and reduced under specific hydrogenation conditions. The invention has been completed.

すなわち、本発明は、ロジン二量体成分の含有量が80重量%以上であって、かつ該二量体成分中に一般式(1):ROOC−X−COOR(式中、Xはロジン二量体から2つのエステル基を除いた残基を、Rは炭素数1〜5のアルキル基を表す)で表わされるジエステル化合物を80%重量以上含有する重合ロジンエステルを、銅酸化物系触媒の存在下に水素圧5〜30MPa、および180〜350℃の条件下にて水素化還元させることを特徴とする重合ロジンアルコールの製造方法に関する。また本発明は、該製造方法により得られる重合ロジンアルコールに関する。 That is, in the present invention, the content of the rosin dimer component is 80% by weight or more, and the dimer component contains the general formula (1): ROOC-X-COOR (wherein X is rosin dimer). A residue obtained by removing two ester groups from the monomer, R represents an alkyl group having 1 to 5 carbon atoms), and a polymerized rosin ester containing 80% by weight or more of a diester compound, The present invention relates to a method for producing a polymerized rosin alcohol characterized by hydrogenating and reducing under conditions of a hydrogen pressure of 5 to 30 MPa and 180 to 350 ° C. The present invention also relates to a polymerized rosin alcohol obtained by the production method.

本発明によれば、二量体成分の含有率が高い重合ロジンアルコールを得ることができる。本発明の重合ロジンアルコールは、二量体成分の含有率が高いため、剛直で疎水性が高いなどの物性を示す。更には、本発明の重合ロジンアルコールは、測定した水酸基価やGPCチャートから判断して、二量体ジオールを多く含有すると推定されるため、ポリマー主鎖の構成成分として好適であり、重合ロジン骨格の特徴を最大限に活かしたポリマーを設計するのに役立つ。また、本発明の重合ロジンアルコールの水酸基を利用することで、種々の2官能ロジン誘導体を収得できる。 According to the present invention, a polymerized rosin alcohol having a high content of dimer components can be obtained. The polymerized rosin alcohol of the present invention exhibits physical properties such as rigidity and high hydrophobicity due to a high content of the dimer component. Furthermore, since the polymerized rosin alcohol of the present invention is presumed to contain a large amount of dimer diol as judged from the measured hydroxyl value and GPC chart, it is suitable as a constituent component of the polymer main chain, and the polymerized rosin skeleton Useful for designing polymers that take full advantage of Moreover, various bifunctional rosin derivatives can be obtained by utilizing the hydroxyl group of the polymerized rosin alcohol of the present invention.

本発明の製造方法では、特定の原料、すなわちロジン二量体成分の含有量が80重量%以上であって、かつ該二量体成分中に一般式(1):ROOC−X−COOR(式中、Xはロジン二量体から2つのエステル基を除いた残基を、Rは炭素数1〜5のアルキル基を表す)で表わされるジエステル化合物を80%重量以上含有する重合ロジンエステルを使用すること(以下、要件(1)という)、ならびに該重合ロジンエステルを特定の条件下で水素化還元すること(以下、要件(2)という)が必要である。 In the production method of the present invention, the specific raw material, that is, the content of the rosin dimer component is 80% by weight or more, and the dimer component has the general formula (1): ROOC-X-COOR (formula X represents a residue obtained by removing two ester groups from a rosin dimer, and R represents an alkyl group having 1 to 5 carbon atoms), and a polymerized rosin ester containing 80% by weight or more of a diester compound is used. (Hereinafter referred to as requirement (1)) as well as hydrogenation reduction of the polymerized rosin ester under specific conditions (hereinafter referred to as requirement (2)).

要件(1)である重合ロジンエステルとしては、特定の原料ロジンエステルを触媒の存在下に重合してなるものであり、これを精製して得られるものを好ましく使用できる。前記の原料ロジンエステルとしては、天然ロジン(ガムロジン、トール油ロジン、ウッドロジン)と炭素数1〜5の1価アルコールとからなるエステル類が挙げられる。なお、該天然ロジンは、得られる重合ロジンエステルの色調を考慮すると、蒸留、再結晶等の精製処理を施して用いるのが好ましく、該精製ロジンの色調は、ガードナー色数で2以下、より好ましくは1以下のものとされる。前記アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、i−ブタノール、t−ブチルアルコール、ペンタノール等が挙げられる。該重合ロジンエステルの色調は、通常、ガードナー色数で10以下とされる。 As the polymerized rosin ester which is requirement (1), a specific raw material rosin ester is polymerized in the presence of a catalyst, and a product obtained by purifying it can be preferably used. Examples of the raw material rosin ester include esters composed of natural rosin (gum rosin, tall oil rosin, wood rosin) and a monohydric alcohol having 1 to 5 carbon atoms. In consideration of the color tone of the polymerized rosin ester obtained, the natural rosin is preferably used after being subjected to a purification treatment such as distillation and recrystallization, and the color tone of the purified rosin is preferably 2 or less in terms of Gardner color. Is 1 or less. Examples of the alcohol include methanol, ethanol, propanol, isopropanol, butanol, i-butanol, t-butyl alcohol, and pentanol. The color tone of the polymerized rosin ester is usually 10 or less in terms of Gardner color.

該エステル化においては、特に限定されず、公知の方法を採用することができる。例えば、(1)天然ロジンに含まれる樹脂酸(以下、ロジン酸という)の酸塩化物(ロジン酸クロライド)と前記アルコールとを反応させる方法や、(2)加圧下でロジン酸とアルコールを一定時間反応させた後、アルコールと水の混合溶液を除去し、さらに系内にアルコールを追加し、同様の操作を繰り返して反応させる方法などが挙げられる。なお、ロジン酸からロジン酸クロライドに誘導する方法としては、塩化チオニル法が好ましい。 In esterification, it does not specifically limit and a well-known method is employable. For example, (1) a method in which an acid chloride (rosin acid chloride) of a resin acid (hereinafter referred to as rosin acid) contained in natural rosin is reacted with the alcohol, and (2) rosin acid and alcohol are constant under pressure. Examples of the method include a method in which a mixed solution of alcohol and water is removed after the reaction for a period of time, alcohol is further added to the system, and the same operation is repeated to react. As a method for deriving rosin acid chloride from rosin acid, the thionyl chloride method is preferable.

前記の重合反応条件は、格別に限定されるものではなく、従来公知の条件から適宜に選択して決定される。例えば、ロジンエステルを下記のような触媒の存在下、必要に応じて有機溶媒の存在下に重合させればよい。 The polymerization reaction conditions are not particularly limited, and are determined by appropriately selecting from conventionally known conditions. For example, the rosin ester may be polymerized in the presence of the following catalyst and, if necessary, in the presence of an organic solvent.

該触媒は、格別限定されず、各種公知の触媒を用いることができ、具体例としては、三フッ化ホウ素又はその錯体、硫酸、ギ酸、パラトルエンスルホン酸、メタンスルホン酸、フッ化水素、塩化亜鉛、塩化アルミニウム、四塩化チタン等が挙げられる。これらは1種を単独で使用してもよく、また2種以上を併用してもよい。反応性の観点から、硫酸、ギ酸、パラトルエンスルホン酸、メタンスルホン酸、塩化亜鉛及び三フッ化ホウ素もしくはその錯体が特に好ましい。 The catalyst is not particularly limited, and various known catalysts can be used. Specific examples include boron trifluoride or a complex thereof, sulfuric acid, formic acid, paratoluenesulfonic acid, methanesulfonic acid, hydrogen fluoride, chloride. Examples include zinc, aluminum chloride, and titanium tetrachloride. These may be used individually by 1 type and may use 2 or more types together. From the viewpoint of reactivity, sulfuric acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, zinc chloride, boron trifluoride or complexes thereof are particularly preferable.

前記の有機溶媒としては、ロジンエステルの重合反応を阻害しないものであれば、特に限定なく使用できる。具体的には、トルエン、キシレン等の芳香族系炭化水素;ヘプタン、オクタン等の脂肪族炭化水素;メチルエチルケトン、メチルイソプロピルケトン等のケトン系炭化水素;酢酸エチル、酢酸ブチル等のエステル系炭化水素;四塩化炭素、二塩化エチレン、トリクロルエタン、テトラトリクロルエタン等のハロゲン系炭化水素;酢酸、プロピオン酸、酪酸、及びこれらの無水物、ギ酸、クロル酢酸、乳酸等のカルボキシル基含有有機酸などを例示でき、これらは1種単独でまたは2種以上を適宜に組み合わせて使用できる。本発明では、使用溶媒の回収再利用が容易であることを考慮すると、該有機溶媒のうちでも芳香族系炭化水素又はカルボキシル基含有有機酸が好ましく、なかでもキシレンやギ酸が最適である。本発明では、該有機溶媒の使用量は特に限定されないが、通常は用いるロジンエステルに対し5〜900重量%の範囲とされ、更に好ましくは10〜500重量%である。 As said organic solvent, if it does not inhibit the polymerization reaction of rosin ester, it can be used without limitation. Specifically, aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as heptane and octane; ketone hydrocarbons such as methyl ethyl ketone and methyl isopropyl ketone; ester hydrocarbons such as ethyl acetate and butyl acetate; Illustrative of halogenated hydrocarbons such as carbon tetrachloride, ethylene dichloride, trichloroethane, tetratrichloroethane; acetic acid, propionic acid, butyric acid, and anhydrides thereof, carboxyl group-containing organic acids such as formic acid, chloroacetic acid, and lactic acid These can be used singly or in appropriate combination of two or more. In the present invention, in view of easy recovery and reuse of the solvent used, aromatic hydrocarbons or carboxyl group-containing organic acids are preferred among the organic solvents, and xylene and formic acid are the most suitable. In the present invention, the amount of the organic solvent to be used is not particularly limited, but is usually in the range of 5 to 900% by weight, more preferably 10 to 500% by weight, based on the rosin ester used.

前記重合反応は、通常、40〜200℃程度で、0.5〜24時間程度の条件下で行うことができる。該重合反応が終了した後、使用溶剤、触媒、未反応ロジンエステル、分解物などを該反応系から除去することにより、要件(1)に該当する重合ロジンエステルを収得できる。なお、触媒除去方法としては、水洗、アルカリ中和、ろ過等を採用でき、また未反応ロジンエステルや分解物の除去方法としては、減圧蒸留が好ましい。減圧蒸留は、通常、200〜290℃、減圧度60〜8000Paの条件で実施しうる。 The said polymerization reaction can be normally performed on about 40-200 degreeC and the conditions for about 0.5 to 24 hours. After completion of the polymerization reaction, the solvent, catalyst, unreacted rosin ester, decomposition products, etc. are removed from the reaction system to obtain a polymerized rosin ester corresponding to the requirement (1). In addition, water washing, alkali neutralization, filtration, etc. can be employ | adopted as a catalyst removal method, and reduced pressure distillation is preferable as a removal method of an unreacted rosin ester and a decomposition product. The vacuum distillation can usually be carried out under conditions of 200 to 290 ° C. and a degree of vacuum of 60 to 8000 Pa.

ついで、要件(2)について説明する。前記の重合ロジンエステルを水素化還元して目的の高純度重合ロジンアルコールを得るためには、特定の触媒を用い、特定の温度、特定の圧力条件で還元反応を行うことが必要である。   Next, requirement (2) will be described. In order to obtain the desired high-purity polymerized rosin alcohol by hydrogenating and reducing the polymerized rosin ester, it is necessary to perform a reduction reaction at a specific temperature and a specific pressure using a specific catalyst.

該還元触媒としては、酸化銅、銅クロム酸化物、銅−バリウム−クロム酸化物、銅−マンガン−クロム酸化物、銅−バリウム−マンガン−クロム酸化物、亜鉛クロム酸化物、ラネーニッケル、酸化レニウム、ロジウム、白金、ルテニウム、2酸化ルテニウムや、これらをシリカ、アルミナ、カーボン、珪藻土などに担持させた担持触媒など各種公知のものを用いうる。これらの中では、酸化銅および銅クロム酸化物およびその担持触媒などの銅酸化物系触媒が、反応率が高いため好ましい。該触媒の使用量は重合ロジンエステル100重量部に対し、通常0.1〜20重量部程度、好ましくは1〜15重量部である。 Examples of the reduction catalyst include copper oxide, copper chromium oxide, copper-barium-chromium oxide, copper-manganese-chromium oxide, copper-barium-manganese-chromium oxide, zinc chromium oxide, Raney nickel, rhenium oxide, Various known materials such as rhodium, platinum, ruthenium, ruthenium dioxide, and a supported catalyst in which these are supported on silica, alumina, carbon, diatomaceous earth, or the like can be used. Among these, copper oxide catalysts such as copper oxide and copper chromium oxide and supported catalysts thereof are preferable because of high reaction rate. The amount of the catalyst used is usually about 0.1 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the polymerized rosin ester.

該水素圧は、5〜30MPa程度、好ましくは10〜25MPaであり、還元温度は180℃〜350℃程度、好ましくは250℃〜300℃であり、反応時間は通常、1〜24時間程度、好ましくは3〜15時間程度である。 The hydrogen pressure is about 5 to 30 MPa, preferably 10 to 25 MPa, the reduction temperature is about 180 ° C. to 350 ° C., preferably 250 ° C. to 300 ° C., and the reaction time is usually about 1 to 24 hours, preferably Is about 3 to 15 hours.

前記の還元反応は、重合ロジンエステルを加熱溶融状態で行ってもよいし、溶剤に溶解させた状態で行ってもよい。該溶剤は、用いる重合ロジンエステルおよび得られる重合ロジンアルコールが溶解しやすい溶剤であれば、特に限定されない。例えば、シクロヘキサン、メチルシクロヘキサン、n−ヘキサン、n−ヘプタン、ベンゼン、トルエン、キシレン、エチルベンゼンなどが挙げられ、これらは1種単独でまたは2種以上を適宜に組み合わせて使用できる。該溶剤の使用量は特に限定されないが、重合ロジンエステル100重量部に対して、通常1〜1000重量部程度、好ましくは50〜300重量部である。なお、反応率向上のため、還元時に発生するアルコール成分を適宜に系外へ留去してもよい。 The reduction reaction may be performed in a state where the polymerized rosin ester is heated and melted or dissolved in a solvent. The solvent is not particularly limited as long as the polymerized rosin ester to be used and the polymerized rosin alcohol to be obtained are easily dissolved. For example, cyclohexane, methylcyclohexane, n-hexane, n-heptane, benzene, toluene, xylene, ethylbenzene and the like can be mentioned, and these can be used alone or in combination of two or more. Although the usage-amount of this solvent is not specifically limited, It is about 1-1000 weight part normally with respect to 100 weight part of superposition | polymerization rosin esters, Preferably it is 50-300 weight part. In order to improve the reaction rate, the alcohol component generated during the reduction may be appropriately distilled out of the system.

本発明の製造方法により得られる重合ロジンアルコールは、ガードナー色調が3以下、好ましくは1以下であり、軟化点が110〜150℃、好ましくは120〜140℃であり、酸価が3mgKOH/g以下、好ましくは1mgKOH/g以下であり、かつ水酸基価が130〜190mgKOH/g、好ましくは140〜190mgKOH/gである。また、該重合ロジンアルコールにおける二量体成分の含有率は、80重量%以上である。また、前記要件(1)を勘案すると、該重合ロジンアルコールは、該二量体成分中に一般式(2):HOHC−Y−CHOH(式中、Yはロジン二量体アルコールから2つのメチロール基を除いた残基を表す)で表される二量体ジオールを、70重量%以上含有すると推定される。該二量体ジオールの含有率は、水酸基を有するロジンユニット比率(総ロジンユニットに対する水酸基含有ロジンユニットを意味する)で表現することもでき、かかる含有率としては70モル%以上とされる。なお、該ロジンユニットとは、重合ロジン誘導体のモノマー単位である炭素数20のジテルペン構造を1ユニット(単位骨格)とみなす。 The polymerized rosin alcohol obtained by the production method of the present invention has a Gardner color tone of 3 or less, preferably 1 or less, a softening point of 110 to 150 ° C, preferably 120 to 140 ° C, and an acid value of 3 mgKOH / g or less. , Preferably it is 1 mgKOH / g or less, and a hydroxyl value is 130-190 mgKOH / g, Preferably it is 140-190 mgKOH / g. The content of the dimer component in the polymerized rosin alcohol is 80% by weight or more. Further, in consideration of the requirement (1), the polymerized rosin alcohol has the general formula (2): HOH 2 C—Y—CH 2 OH (wherein Y is rosin dimer alcohol). 2 represents a residue obtained by removing two methylol groups from the above), and is estimated to contain 70% by weight or more. The content of the dimer diol can also be expressed as a rosin unit ratio having a hydroxyl group (meaning a hydroxyl group-containing rosin unit with respect to the total rosin unit), and the content is 70 mol% or more. The rosin unit refers to a diterpene structure having 20 carbon atoms, which is a monomer unit of a polymerized rosin derivative, as one unit (unit skeleton).

以下に実施例及び比較例をあげて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。各例中、特記しない限り、%は重量基準である。なお、色調、軟化点、酸価、および水酸基価の測定、ならびにモノカルボキシ二量体の確認および各種ロジン成分の構成比率の算出は、以下の方法による。 EXAMPLES The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to these examples. In each example,% is by weight unless otherwise specified. In addition, measurement of a color tone, a softening point, an acid value, and a hydroxyl value, confirmation of a monocarboxy dimer, and calculation of the composition ratio of various rosin components are based on the following methods.

(色調)
JIS K0071−2に準拠してガードナー色数を、JIS K0071−1に準拠してハーゼン色数を目視測定した。
(Color tone)
The Gardner color number was visually measured according to JIS K0071-2, and the Hazen color number was visually measured according to JIS K0071-1.

(軟化点)
本発明における重合ロジンエステルおよび重合ロジンアルコールの軟化点は、環球法(JIS K 2425準拠)により測定した。
(Softening point)
The softening point of the polymerized rosin ester and polymerized rosin alcohol in the present invention was measured by the ring and ball method (based on JIS K 2425).

(酸価)
本発明における重合ロジンエステルおよび重合ロジンアルコールの酸価は、JIS K 0070に準拠して測定した。
(Acid value)
The acid value of the polymerized rosin ester and polymerized rosin alcohol in the present invention was measured according to JIS K 0070.

(水酸基価)
本発明における重合ロジンアルコールの水酸基価は、JIS K 0070に準拠して測定した。
(Hydroxyl value)
The hydroxyl value of the polymerized rosin alcohol in the present invention was measured according to JIS K0070.

(モノカルボキシ二量体の確認方法)
モノカルボキシ二量体の含有率は、ガスクロマトグラフ質量分析(GC−MS)によって測定した。GC−MSは、アジレントテクノロジー社製
Agilent6890(GC)及びAgilent5973N(MS)を使用し、カラムはアジレントテクノロジー社製DB−5を使用した。なお、実施例1〜6の重合ロジンエステルは、トルエン及びメタノールの1:1混合溶液に溶解させて測定した。比較例1〜4の重合ロジン酸は、該混合溶液に溶解させた後、トリメチルシリルジアゾメタン10%ヘキサン溶液を数滴加え、重合ロジンメチルエステルに誘導したのち分析した。モノカルボキシ二量体は、リテンションタイム24〜32分に検出されるm/z;574のすべてのピークを指し、ジカルボキシ二量体はリテンションタイム33〜44分に検出されるm/z;632のすべてのピークを指す。
(Method for confirming monocarboxy dimer)
The content rate of the monocarboxy dimer was measured by gas chromatography mass spectrometry (GC-MS). For GC-MS, Agilent 6890 (GC) and Agilent 5973N (MS) manufactured by Agilent Technologies were used, and DB-5 manufactured by Agilent Technologies was used as the column. In addition, the polymerization rosin ester of Examples 1-6 was dissolved and measured in the 1: 1 mixed solution of toluene and methanol. The polymerized rosin acids of Comparative Examples 1 to 4 were dissolved in the mixed solution, and then a few drops of a 10% hexane solution of trimethylsilyldiazomethane was added to the polymerized rosin methyl ester for analysis. Monocarboxy dimer refers to all peaks at m / z; 574 detected at retention time 24-32 minutes; dicarboxy dimer is detected at retention time 33-44 minutes m / z; 632 Refers to all the peaks.

(各種ロジン成分の構成比率の算出方法)
本発明における各種ロジン成分の構成比率は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した。GPC装置は東ソー(株)製HLC-8220を、カラムは東ソー(株)製「Tskgelカラム」を用い、溶媒をTHFとし、送液量1.0ml/minで測定した。得られた各成分のピーク面積比を、ロジンの三量体成分、二量体成分、ロジン成分及び分解物の構成比率とした。
(Calculation method of composition ratio of various rosin components)
The composition ratio of various rosin components in the present invention was measured by gel permeation chromatography (GPC). The GPC apparatus was HLC-8220 manufactured by Tosoh Corporation, the column used was “Tskel column” manufactured by Tosoh Corporation, the solvent was THF, and the measurement was performed at a liquid feed rate of 1.0 ml / min. The peak area ratio of each obtained component was defined as the composition ratio of the rosin trimer component, dimer component, rosin component and decomposition product.

(水酸基を有するロジンユニット比率の算出方法)
水酸基を有するロジンユニット比率は、重合ロジンアルコールの水酸基価(測定値)より下式に基づき算出した(なお、ロジン1ユニットの分子量を300、水酸基を有するロジンユニットが100%であれば、水酸基価(計算値)は187となる)。水酸基を有するロジンユニット比率(%)=重合ロジンアルコールの水酸基価÷187×100
(Calculation method of the ratio of rosin units having a hydroxyl group)
The ratio of the rosin unit having a hydroxyl group was calculated based on the following formula from the hydroxyl value (measured value) of the polymerized rosin alcohol (if the rosin unit has a molecular weight of 300 and the rosin unit having a hydroxyl group is 100%, the hydroxyl value is (Calculated value) is 187). Ratio of rosin unit having hydroxyl group (%) = hydroxyl value of polymerized rosin alcohol ÷ 187 × 100

製造例1(重合ロジンエステルの合成)
冷却管、温度計、攪拌機、窒素導入管を備えた反応装置に、中国ガムロジンのメチルエステル(荒川化学工業(株)製、試作品)を900g、ギ酸900gを仕込み、窒素気流下103℃で15時間、重合反応を行なった。反応終了後にヘプタン900gを仕込み、ギ酸層を分液し、反応生成物のヘプタン溶液に水500gを加えて洗浄した後、更に各500gの水にて2回洗浄した。洗浄後のヘプタン溶液は液温200℃未満、減圧度6000Paの条件下でヘプタンを留去した後、更に液温275℃、減圧度150Paの条件下で精製ロジンの分解物及び未反応精製ロジンメチルエステルを留去して、重合ロジンメチルエステル360gを得た。該重合ロジンメチルエステルの軟化点は114℃、酸価は2.7mgKOH/gであった。GC/MS測定により、該重合ロジンメチルエステル中の二量体成分においては、モノカルボキシ二量体は検出されなかったため、二量体成分中の前記ジカルボキシ二量体の含有量は、ほぼ100%であると認められる。またGPC測定により、該重合ロジンメチルエステル中のジカルボキシ二量体の含有率は94%、ロジン成分(ロジンメチルエステル)は3%、ロジンの三量体以上の成分の含有量は3%であった。
Production Example 1 (Synthesis of polymerized rosin ester)
A reactor equipped with a cooling tube, thermometer, stirrer, and nitrogen introduction tube was charged with 900 g of methyl ester of Chinese gum rosin (manufactured by Arakawa Chemical Industries, Ltd., prototype) and 900 g of formic acid. The polymerization reaction was carried out for a time. After completion of the reaction, 900 g of heptane was charged, the formic acid layer was separated, 500 g of water was added to the heptane solution of the reaction product and washed, and then washed twice with 500 g of water. The heptane solution after washing was obtained by distilling off heptane under conditions of a liquid temperature of less than 200 ° C. and a reduced pressure of 6000 Pa. The ester was distilled off to obtain 360 g of polymerized rosin methyl ester. The polymerized rosin methyl ester had a softening point of 114 ° C. and an acid value of 2.7 mgKOH / g. According to the GC / MS measurement, no monocarboxy dimer was detected in the dimer component in the polymerized rosin methyl ester. Therefore, the content of the dicarboxy dimer in the dimer component was approximately 100. %. Further, according to GPC measurement, the content of the dicarboxy dimer in the polymerized rosin methyl ester was 94%, the rosin component (rosin methyl ester) was 3%, and the content of the rosin trimer or higher was 3%. there were.

製造例2
製造例1と同様の反応装置に、前記の中国ガムロジンメチルエステルを900g、キシレン300g、メタンスルホン酸36gを仕込み、窒素気流下145℃で2時間、重合反応を行なった。反応終了後、製造例1と同様に洗浄および減圧操作を行い、重合ロジンメチルエステル487gを得た。該エステルの軟化点は111℃、酸価は0.6mgKOH/gであった。GC/MS測定により、該重合ロジンメチルエステル中の二量体成分におけるモノカルボキシ二量体は検出されなかった。GPC測定により、該重合ロジンメチルエステル中のジカルボキシ二量体の含有率は93%、ロジン成分(ロジンメチルエステル)は3%、ロジンの三量体以上の成分の含有量は4%であった。
Production Example 2
In the same reactor as in Production Example 1, 900 g of the above Chinese gum rosin methyl ester, 300 g of xylene and 36 g of methanesulfonic acid were charged, and a polymerization reaction was carried out at 145 ° C. for 2 hours in a nitrogen stream. After completion of the reaction, washing and decompression were performed in the same manner as in Production Example 1 to obtain 487 g of polymerized rosin methyl ester. The ester had a softening point of 111 ° C. and an acid value of 0.6 mgKOH / g. By GC / MS measurement, no monocarboxy dimer in the dimer component in the polymerized rosin methyl ester was detected. According to GPC measurement, the content of the dicarboxy dimer in the polymerized rosin methyl ester was 93%, the rosin component (rosin methyl ester) was 3%, and the content of the rosin trimer or higher was 4%. It was.

実施例1(重合ロジンアルコールの合成)
製造例1で得られた重合ロジンエステル100gと酸化銅触媒(堺化学工業(株)製、KC−1H)5gを0.3L回転式オートクレーブに仕込み、系内の酸素を除去した後、水素にて20MPaまで加圧し、285℃まで昇温し、30分に1回脱圧しながら7時間反応を行って、重合ロジンアルコールを得た。該重合ロジンアルコールの物性を表1に示す(以下、同様)。
Example 1 (Synthesis of polymerized rosin alcohol)
100 g of the polymerized rosin ester obtained in Production Example 1 and 5 g of a copper oxide catalyst (manufactured by Sakai Chemical Industry Co., Ltd., KC-1H) were charged into a 0.3 L rotary autoclave to remove oxygen in the system, The pressure was increased to 20 MPa, the temperature was increased to 285 ° C., and the reaction was performed for 7 hours while depressurizing once every 30 minutes to obtain a polymerized rosin alcohol. The physical properties of the polymerized rosin alcohol are shown in Table 1 (hereinafter the same).

実施例2
重合ロジンエステルを製造例2で得られた重合ロジンエステルに変えたほかは、実施例1と同様に反応を行って、重合ロジンアルコールを得た。
Example 2
A polymerized rosin alcohol was obtained by carrying out the reaction in the same manner as in Example 1 except that the polymerized rosin ester was changed to the polymerized rosin ester obtained in Production Example 2.

実施例3
製造例1で得られた重合ロジンエステル100gと前記の酸化銅触媒8gを前記オートクレーブに仕込み、系内の酸素を除去した後、水素にて20MPaまで加圧し、290℃まで昇温し、30分に1回脱圧しながら6時間反応させることにより、重合ロジンアルコールを得た。
Example 3
100 g of the polymerized rosin ester obtained in Production Example 1 and 8 g of the copper oxide catalyst were charged into the autoclave, and after removing oxygen in the system, the pressure was increased to 20 MPa with hydrogen, the temperature was raised to 290 ° C., and 30 minutes. The polymerized rosin alcohol was obtained by reacting for 6 hours while releasing the pressure once.

実施例4
製造例1で得られた重合ロジンエステル100gと前記の酸化銅触媒5gを前記オートクレーブに仕込み、系内の酸素を除去した後、水素にて18MPaまで加圧し、280℃まで昇温し、30分に1回脱圧しながら4時間反応させることにより、重合ロジンアルコールを得た。
Example 4
100 g of the polymerized rosin ester obtained in Production Example 1 and 5 g of the copper oxide catalyst were charged into the autoclave, and after removing oxygen in the system, the pressure was increased to 18 MPa with hydrogen, the temperature was raised to 280 ° C., and 30 minutes. The polymerized rosin alcohol was obtained by reacting for 4 hours while releasing pressure once.

比較例1
製造例1で得られた重合ロジンエステル100gと前記の酸化銅触媒3gを前記オートクレーブに仕込み、系内の酸素を除去した後、水素にて14MPaまで加圧し、280℃まで昇温し、30分に1回脱圧しながら4時間反応させることにより重合ロジンアルコールを得た。
Comparative Example 1
100 g of the polymerized rosin ester obtained in Production Example 1 and 3 g of the copper oxide catalyst were charged into the autoclave, and after removing oxygen in the system, the pressure was increased to 14 MPa with hydrogen, the temperature was raised to 280 ° C., and 30 minutes. The polymerized rosin alcohol was obtained by reacting for 4 hours while releasing pressure once.

Claims (7)

ロジン二量体成分の含有量が80重量%以上であって、かつ該二量体成分中に一般式(1):ROOC−X−COOR(式中、Xはロジン二量体から2つのエステル基を除いた残基を、Rは炭素数1〜5のアルキル基を表す)で表わされるジエステル化合物を80%重量以上含有する重合ロジンエステルを、銅酸化物系触媒の存在下に水素圧5〜30MPa、および180〜350℃の条件下にて水素化還元させることを特徴とする重合ロジンアルコールの製造方法。 The content of the rosin dimer component is 80% by weight or more, and the dimer component has the general formula (1): ROOC-X-COOR (wherein X is two esters from the rosin dimer) A polymerized rosin ester containing 80% by weight or more of a diester compound represented by (R represents an alkyl group having 1 to 5 carbon atoms), and a hydrogen pressure of 5 in the presence of a copper oxide catalyst. A method for producing a polymerized rosin alcohol, characterized by performing hydrogenation reduction under conditions of -30 MPa and 180-350 ° C. 前記の重合ロジンエステルが、ガードナー色数が10以下のものである請求項1に記載の製造方法。 The production method according to claim 1, wherein the polymerized rosin ester has a Gardner color number of 10 or less. 前記の重合ロジンエステルが、硫酸、ギ酸、パラトルエンスルホン酸、メタンスルホン酸、塩化亜鉛及び三フッ化ホウ素もしくはその錯体からなる群より選ばれる少なくとも1種の触媒の存在下にロジンエステルを重合して得られるものである、請求項1または2に記載の重合ロジンアルコールの製造方法。 The polymerized rosin ester polymerizes the rosin ester in the presence of at least one catalyst selected from the group consisting of sulfuric acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, zinc chloride, boron trifluoride or complexes thereof. The method for producing a polymerized rosin alcohol according to claim 1 or 2, wherein the polymerized rosin alcohol is obtained. 前記の水素化還元における水素圧が10〜25MPaであり、かつ反応温度が250〜300℃である請求項1〜3のいずれかに記載の製造方法。 The hydrogen pressure in the said hydrogenation reduction is 10-25 Mpa, and reaction temperature is 250-300 degreeC, The manufacturing method in any one of Claims 1-3. 前記の重合ロジンアルコールが、ガードナー色数が3以下、軟化点が110〜150℃、酸価が3mgKOH/g以下、および水酸基価が130〜190mgKOH/gのものである請求項1〜4のいずれかに記載の製造方法。 The polymerized rosin alcohol has a Gardner color number of 3 or less, a softening point of 110 to 150 ° C, an acid value of 3 mgKOH / g or less, and a hydroxyl value of 130 to 190 mgKOH / g. The manufacturing method of crab. 前記の重合ロジンアルコールが、ロジン二量体成分を80重量%以上含有するものである請求項1〜5いずれかに記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the polymerized rosin alcohol contains 80% by weight or more of a rosin dimer component. 請求項1〜6のいずれかに記載の製造方法により得られることを特徴とする重合ロジンアルコール。

A polymerized rosin alcohol obtained by the production method according to claim 1.

JP2013036224A 2013-02-26 2013-02-26 Process for producing polymerized rosin alcohol and polymerized rosin alcohol obtained by the process Active JP6061140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036224A JP6061140B2 (en) 2013-02-26 2013-02-26 Process for producing polymerized rosin alcohol and polymerized rosin alcohol obtained by the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013036224A JP6061140B2 (en) 2013-02-26 2013-02-26 Process for producing polymerized rosin alcohol and polymerized rosin alcohol obtained by the process

Publications (2)

Publication Number Publication Date
JP2014162770A true JP2014162770A (en) 2014-09-08
JP6061140B2 JP6061140B2 (en) 2017-01-18

Family

ID=51613706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036224A Active JP6061140B2 (en) 2013-02-26 2013-02-26 Process for producing polymerized rosin alcohol and polymerized rosin alcohol obtained by the process

Country Status (1)

Country Link
JP (1) JP6061140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172897A (en) * 2013-03-13 2014-09-22 Arakawa Chem Ind Co Ltd Method for producing polymerized rosin ester and polymerized rosin ester obtained by the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2124675A (en) * 1936-02-20 1938-07-26 Hercules Powder Co Ltd Method for the polymerization of rosin
JP2000302710A (en) * 1999-04-20 2000-10-31 Teijin Ltd Production of decahydronaphthalene dimethanol
JP2007022962A (en) * 2005-07-15 2007-02-01 Kuraray Co Ltd Method for producing alicyclic diol
JP2011074249A (en) * 2009-09-30 2011-04-14 Fujifilm Corp New abietane polymer
WO2012090976A1 (en) * 2010-12-28 2012-07-05 三菱瓦斯化学株式会社 Novel alicyclic alcohol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2124675A (en) * 1936-02-20 1938-07-26 Hercules Powder Co Ltd Method for the polymerization of rosin
JP2000302710A (en) * 1999-04-20 2000-10-31 Teijin Ltd Production of decahydronaphthalene dimethanol
JP2007022962A (en) * 2005-07-15 2007-02-01 Kuraray Co Ltd Method for producing alicyclic diol
JP2011074249A (en) * 2009-09-30 2011-04-14 Fujifilm Corp New abietane polymer
WO2012090976A1 (en) * 2010-12-28 2012-07-05 三菱瓦斯化学株式会社 Novel alicyclic alcohol

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN7016002143; Gigante, Barbera; Jones, Ray; Lobo, Ana M.; Marcelo-Curto, M. Joao; Prabhakar, Sundaresan; Rzepa, He: 'The structure of an abietic acid dimer' Journal of the Chemical Society, Chemical Communications (1986), (13),, 1986 *
JPN7016002144; Fujii, R.; Arimoto, K.; Zinkel, D. F.: 'Dimeric components from the dimerization of abietic acid' JAOCS, J. Am. Oil Chem. Soc. (1987), 64(8), 1144-9, 1987 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172897A (en) * 2013-03-13 2014-09-22 Arakawa Chem Ind Co Ltd Method for producing polymerized rosin ester and polymerized rosin ester obtained by the method

Also Published As

Publication number Publication date
JP6061140B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP2009001579A (en) Process for producing 1,6-hexanediol with level of purity over 99%
KR20140020236A (en) Synthesis of methylene malonates using rapid recovery in the presence of a heat transfer agent
KR20170115064A (en) Isocyanate-free synthesis of carbonate-modified polymers
KR20120004513A (en) Method for producing 1,6-hexanediol and caprolactone
JP6061140B2 (en) Process for producing polymerized rosin alcohol and polymerized rosin alcohol obtained by the process
WO2006124899A2 (en) Production of derivatives of lactide, production of lactides, and use of lactide in foods and to produce polymers
JPH10511100A (en) Production of amide ester compounds
JP6061087B2 (en) Method for producing polymerized rosin ester and polymerized rosin ester obtained by the method
JP5428161B2 (en) Method for producing 1,6-hexanediol
JP4452037B2 (en) New alicyclic vinyl ether
EP4289808A1 (en) 1,4-cyclohexanedimethanol composition and purification method therefor
CN104203904B (en) Process for preparing amides
JP6828500B2 (en) Method and composition for producing 2-methyl-2-hydroxy-1-propyl (meth) acrylate and / or 3-methyl-3-hydroxy-1-butyl (meth) acrylate
JP2010126481A (en) Method for producing transesterification product using organotin catalyst
JPWO2014203786A1 (en) Polyfunctional (meth) acrylate and method for producing the same
JP2686824B2 (en) Process for producing dipentaerythritol hexaester compound
JP2007332123A (en) Terpenic dimethylol compound
CN107108444B (en) Process for the catalytic vinylation of carboxylic acids
EP2508502A1 (en) Process for the manufacture of alfa,alfa branched carboxylic acid vinyl esters
JP2010222373A (en) Method for producing glycidyloxybutyl acrylate
JP4070023B2 (en) New dimethylol compounds for polymer raw materials
JP2004010551A (en) Method for producing vinyl ether-containing (meth)acrylic esters
CN117098745A (en) Process for producing dimethanol compound having norbornane skeleton
CA2940168C (en) Process for making esters of 2-acetoxyalkanoic acids using a 3,6-dialkyl-1,4-dioxane-2,5-dione or poly-(alpha-hydroxyalkanoic acid) as a starting material
JP2017066093A (en) Dinitrile compound and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161130

R150 Certificate of patent or registration of utility model

Ref document number: 6061140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250