JP2014161427A - Superconducting magnet device and magnetic resonance imaging apparatus - Google Patents

Superconducting magnet device and magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2014161427A
JP2014161427A JP2013033120A JP2013033120A JP2014161427A JP 2014161427 A JP2014161427 A JP 2014161427A JP 2013033120 A JP2013033120 A JP 2013033120A JP 2013033120 A JP2013033120 A JP 2013033120A JP 2014161427 A JP2014161427 A JP 2014161427A
Authority
JP
Japan
Prior art keywords
superconducting
winding
magnet device
superconducting magnet
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013033120A
Other languages
Japanese (ja)
Inventor
Takeshi Nakayama
武 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2013033120A priority Critical patent/JP2014161427A/en
Publication of JP2014161427A publication Critical patent/JP2014161427A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting magnet device 1 capable of easily transmitting heat generated inside to the outside and also capable of suppressing heat generation when electric current is increased.SOLUTION: A superconducting magnet device comprises a superconducting coil 5 constituted by winding a plurality of times a superconducting wire 13 of which external surface is made from a normal conductor, wherein normal conductors of which turns are opposed to each other in the winding order (direction) directly contact each other, and normal conductors of which turns have separated winding orders are provided with an insulation member 16 therebetween. Normal conductors of which turns are different in the number of winding orders by 3 or less may directly contact each other. The superconducting coil 5 has a ring 9 fitted along an outer periphery thereof. The linear expansion coefficient of the ring is greater than that of the superconducting wire 13.

Description

本発明は、超電導磁石装置及びそれを備えた磁気共鳴イメージング(以下、MRI;Magnetic Resonance Imagingと称す)装置に関する。   The present invention relates to a superconducting magnet device and a magnetic resonance imaging (hereinafter referred to as MRI) device including the same.

超電導磁石装置では、超電導線が巻枠に巻かれている。超電導線は、超電導物質から構成される超電導素線と、その超電導素線を内包する安定化材と、その安定化材を覆う絶縁材とを有している(特許文献1等参照)。安定化材は、超電導素線に何らかの擾乱が発生し、局所的に発熱してもその熱を拡散させ、超電導素線の超電導状態を安定化させている。絶縁材は、巻かれて隣接する超電導線間の電気絶縁を目的に設置されている。しかし、この絶縁層は、安定化材から伝わってくる前記熱を外側へ伝え難くしている。そこで、絶縁材の外側の熱伝達を向上させるため、巻回される超電導線の層間に良熱伝導性金属板を配置することが提案されている(特許文献2等参照)。また、MRI装置に適用されたわけではないが、絶縁材を超電導線から省いた超電導磁石装置が提案されている(非特許文献1等参照)。   In the superconducting magnet device, a superconducting wire is wound around a winding frame. The superconducting wire has a superconducting element wire made of a superconducting material, a stabilizing material that encloses the superconducting element wire, and an insulating material that covers the stabilizing material (see, for example, Patent Document 1). The stabilizing material causes some disturbance in the superconducting element wire, diffuses the heat even if it generates heat locally, and stabilizes the superconducting state of the superconducting element wire. The insulating material is wound for electrical insulation between adjacent superconducting wires. However, this insulating layer makes it difficult to transfer the heat transmitted from the stabilizing material to the outside. Therefore, in order to improve heat transfer outside the insulating material, it has been proposed to dispose a highly heat conductive metal plate between layers of the superconducting wire to be wound (see Patent Document 2 and the like). Although not applied to an MRI apparatus, a superconducting magnet apparatus in which an insulating material is omitted from a superconducting wire has been proposed (see Non-Patent Document 1, etc.).

特開平8−329746号公報JP-A-8-329746 特開平10−116725号公報JP-A-10-116725

Seungyoung Hahn著、IEEE、Transactions on Applied Superconductivity 22巻3号(2012)4501004ページSeungyoung Hahn, IEEE, Transactions on Applied Superconductivity Vol.22, No.3 (2012), 4501004

しかし、非特許文献1の超電導磁石装置を、MRI装置等の強磁場を必要とする装置に適用すると問題が生じると考えられる。具体的には、電流をゼロアンペアから定格電流値まで増加させる際に問題が生じると考えられる。超電導磁石装置では、巻枠に超電導線が複数回巻回されている。そこで、この一巻き毎を一つのインダクタと見做せば、超電導磁石装置は複数のインダクタが直列に接続されたものと見做すことができる。超電導磁石装置に流す電流をゼロアンペアから定格電流値まで増加させる際には、単位時間当たりの電流増加量に応じて一巻き毎のインダクタの両端に誘導電圧が発生する。超電導線内部にある安定化材に、この誘導電圧が印加され、安定化材に電流が流れる。この際、安定化材にジュール発熱が発生する為、その発熱を十分除去できなければ超電導素線の温度が上昇し、超電導状態が維持できなくなると考えられる。しかし、非特許文献1では、問題なく電流をゼロアンペアから定格電流値まで増加させることができたと報告されている。ただ、MRI装置等の強磁場を必要とする装置に用いられる超電導磁石装置では、問題が生じる場合があると考えられる。   However, when the superconducting magnet apparatus of Non-Patent Document 1 is applied to an apparatus that requires a strong magnetic field such as an MRI apparatus, a problem is considered to occur. Specifically, it is considered that a problem occurs when the current is increased from zero ampere to the rated current value. In the superconducting magnet device, a superconducting wire is wound around the winding frame a plurality of times. Therefore, if each turn is regarded as one inductor, the superconducting magnet device can be regarded as a plurality of inductors connected in series. When the current flowing through the superconducting magnet device is increased from zero ampere to the rated current value, an induced voltage is generated at both ends of the inductor for each turn according to the amount of current increase per unit time. This induced voltage is applied to the stabilizing material inside the superconducting wire, and a current flows through the stabilizing material. At this time, since Joule heat is generated in the stabilizing material, it is considered that the temperature of the superconducting wire rises and the superconducting state cannot be maintained unless the heat generation is sufficiently removed. However, Non-Patent Document 1 reports that the current could be increased from zero amperes to the rated current value without any problem. However, it is considered that there may be a problem in a superconducting magnet device used for an apparatus such as an MRI apparatus that requires a strong magnetic field.

すなわち、非特許文献1の超電導磁石装置は、超電導コイルの直径が数cmであり、超電導コイルのインダクタンスが数ミリヘンリ程度、その超電導コイル内部の超電導線の安定化材の抵抗は数ミリオーム程度であるから、安定化材を流れる電流は数アンペア程度であると考えられる。一方、MRI装置に適用される超電導磁石装置は、人間を覆い、その人間の位置に1テスラ程度の磁場を生成するため、超電導磁石装置の直径は1メータ程度、巻数は1000巻き程度、超電導線を流れる電流は数100アンペア程度となる。したがって、数1000ウェーバ程度の磁束を数100アンペアの電流で作ることになるため、インダクタンスは10ヘンリ程度となる。一方、安定化材の抵抗は、非特許文献1と同程度と考えられ、10キロアンペアの大電流が安定化材を流れることになる。この大電流により安定化材に発生するジュール発熱は大きく、超電導素線の温度が大きく上昇するため、超電導状態を維持できないと考えられる。安定化材を覆う絶縁材が省かれた超電導線が巻回された超電導磁石装置は、自身で発熱した熱を外部に伝え易いので有用であるが、電流を定格電流値まで増加させる際に発熱し易い。   That is, in the superconducting magnet device of Non-Patent Document 1, the diameter of the superconducting coil is several cm, the inductance of the superconducting coil is about several millihenries, and the resistance of the stabilizer for the superconducting wire inside the superconducting coil is about several milliohms. Therefore, the current flowing through the stabilizing material is considered to be about several amperes. On the other hand, since the superconducting magnet device applied to the MRI apparatus covers a human and generates a magnetic field of about 1 Tesla at the position of the human, the diameter of the superconducting magnet device is about 1 meter, the number of turns is about 1000, and the superconducting wire. The current flowing through is about several hundred amperes. Therefore, since a magnetic flux of about several thousand webers is generated with a current of several hundred amperes, the inductance is about 10 henry. On the other hand, the resistance of the stabilizing material is considered to be similar to that of Non-Patent Document 1, and a large current of 10 kiloamperes flows through the stabilizing material. It is thought that the superconducting state cannot be maintained because the Joule heat generated in the stabilizing material due to this large current is large and the temperature of the superconducting element wire is greatly increased. A superconducting magnet device in which a superconducting wire without insulating material covering the stabilizer is wound is useful because it easily transfers the heat generated by itself to the outside, but it generates heat when the current is increased to the rated current value. Easy to do.

そこで、本発明が解決しようとする課題は、内部で発生した熱を外部に伝え易く、電流を増加させる際の発熱を抑制できる超電導磁石装置を提供することである。また、この超電導磁石装置を搭載したMRI装置を提供することである。   Therefore, the problem to be solved by the present invention is to provide a superconducting magnet device that can easily transmit heat generated inside to the outside and suppress heat generation when current is increased. Moreover, it is providing the MRI apparatus which mounts this superconducting magnet apparatus.

前記課題を解決するために、本発明は、
外表面が常電導体になっている超電導線が複数回巻回された超電導コイルを有し、
巻順が相前後するターンの前記常電導体同士は直接接し、
前記巻順が離れている前記ターンの前記常電導体の間には、絶縁部材が設けられていることを特徴とする超電導磁石装置である。また、この超電導磁石装置を搭載したことを特徴する磁気共鳴イメージング装置である。
In order to solve the above problems, the present invention provides:
It has a superconducting coil in which a superconducting wire whose outer surface is a normal conductor is wound several times,
The normal conductors of the turns in which the winding order is in sequence are in direct contact with each other,
In the superconducting magnet apparatus, an insulating member is provided between the normal conductors of the turns in which the winding order is separated. Further, the present invention is a magnetic resonance imaging apparatus characterized by mounting this superconducting magnet apparatus.

本発明によれば、内部で発生した熱を外部に伝え易く、電流を増加させる際の発熱を抑制できる超電導磁石装置を提供できる。また、この超電導磁石装置を搭載したMRI装置を提供できる。なお、前記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   ADVANTAGE OF THE INVENTION According to this invention, the superconducting magnet apparatus which can carry out the heat | fever which generate | occur | produced inside easily and can suppress the heat_generation | fever at the time of increasing an electric current can be provided. In addition, an MRI apparatus equipped with this superconducting magnet apparatus can be provided. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の第1の実施形態に係る超電導磁石装置の断面図である。It is sectional drawing of the superconducting magnet apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁気共鳴イメージング(MRI)装置の斜視図である。1 is a perspective view of a magnetic resonance imaging (MRI) apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るMRI装置の縦断面図である。1 is a longitudinal sectional view of an MRI apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係る超電導磁石装置を構成する超電導コイルの断面図の一部である。It is a part of sectional drawing of the superconducting coil which comprises the superconducting magnet apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る超電導磁石装置の等価回路図である。It is an equivalent circuit diagram of the superconducting magnet device according to the first embodiment of the present invention. 本発明の第2の実施形態に係る超電導磁石装置の断面図である。It is sectional drawing of the superconducting magnet apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る超電導磁石装置の断面図である。It is sectional drawing of the superconducting magnet apparatus which concerns on the 3rd Embodiment of this invention. 比較例の超電導磁石装置の断面図である。It is sectional drawing of the superconducting magnet apparatus of a comparative example. 比較例の超電導磁石装置を構成する超電導コイルの断面図の一部である。It is a part of sectional drawing of the superconducting coil which comprises the superconducting magnet apparatus of a comparative example. 比較例の超電導磁石装置の等価回路図である。It is the equivalent circuit schematic of the superconducting magnet apparatus of a comparative example.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

(第1の実施形態)
図2に、本発明の第1の実施形態に係る磁気共鳴イメージング(MRI)装置3の斜視図を示す。MRI装置3は、核磁気共鳴(以下、NMRという)現象により水素原子核スピンが放出する電磁波を計測し、その信号を演算処理して被検者2体内中の水素原子核密度分布を求めることで、断層像を撮像するものである。その計測の際には観測領域8(図3参照)において、強い磁場(0.2T以上)で、高い磁場均一度(10ppm程度)を有する均一磁場を形成する必要がある。MRI装置3には、複数(図2の例では2つ)の超電導磁石装置1と、これらの超電導磁石装置1を収める真空容器10と、被検者2を横たえるベッド4とが設けられている。被検者2は、例えば水平方向に移動可能なベッド4と共に、円筒形状の真空容器10内の所定の位置までに移動し、体内の所定部位の撮像が行われる。超電導磁石装置1によって、真空容器10の円筒形状の内部の観測領域8(図3参照)に強力な磁場強度の均一磁場が形成されている。
(First embodiment)
FIG. 2 is a perspective view of the magnetic resonance imaging (MRI) apparatus 3 according to the first embodiment of the present invention. The MRI apparatus 3 measures an electromagnetic wave emitted by a hydrogen nuclear spin due to a nuclear magnetic resonance (hereinafter referred to as NMR) phenomenon, calculates the hydrogen nuclear density distribution in the subject 2 by calculating the signal, A tomographic image is captured. In the measurement, it is necessary to form a uniform magnetic field having a high magnetic field uniformity (about 10 ppm) with a strong magnetic field (0.2 T or more) in the observation region 8 (see FIG. 3). The MRI apparatus 3 is provided with a plurality (two in the example of FIG. 2) of superconducting magnet devices 1, a vacuum container 10 for housing these superconducting magnet devices 1, and a bed 4 for laying the subject 2. . The subject 2 moves to a predetermined position in the cylindrical vacuum vessel 10 together with the bed 4 that can move in the horizontal direction, for example, and images a predetermined part in the body. The superconducting magnet device 1 forms a uniform magnetic field having a strong magnetic field strength in the observation region 8 (see FIG. 3) inside the cylindrical shape of the vacuum vessel 10.

図3に、本発明の第1の実施形態に係るMRI装置3の縦断面図を示す。この縦断面図は、円筒形状の真空容器10の中心軸6を含む平面でMRI装置3を切った断面図である。超電導磁石装置1は円環形状をしており、この中心軸も、前記中心軸6に概ね一致しているので、図3では、1本の中心軸6で兼用している。超電導磁石装置1は、中心軸6を中心軸とする円環状の巻枠7と、巻枠7に超電導線が複数回巻回された超電導コイル5と、この超電導コイル5の外周に沿ってこの超電導コイル5に嵌められたリング9とを有している。巻枠7は、例えばステンレス鋼により形成されている。そして、超電導コイル5から引き出される超電導線の両端を図示していない電源に接続することにより、超電導コイル5に電流を流し、NMR現象により水素原子核スピンが放出する電磁波の観測領域8に所定の磁場強度と磁場均一度を持った静磁場(均一磁場)を形成する。超電導磁石装置1は、例えば床から荷重支持体12により支持されている。この荷重支持体12は、熱伝導率の低い材料、例えばFRP(Fiber Reinforced Plastics)により形成されている。超電導磁石装置1は真空容器10内部に設置され、真空容器10と超電導磁石装置1の間の空間に輻射シールド11が設置される。真空容器10は床面に固定(支持)され、輻射シールド11は、例えば前記荷重支持体12に固定(支持)される。超電導コイル5に巻回されている超電導線は、磁場生成中は、極低温状態に保持する必要がある。そのため、例えば超電導磁石装置1と輻射シールド11の間の空間に図示省略した冷媒容器を設けて、この冷媒容器内に超電導磁石装置1を収め、極低温冷媒、例えば液体ヘリウムを満たしている。これにより超電導コイル5に巻回されている超電導線の超電導状態を維持可能としている。あるいは、例えば超電導磁石装置1と輻射シールド11に接続する図示を省略した冷凍機を設けて、輻射や伝導による超電導磁石装置1と輻射シールド11からの入熱を外部に放出し、超電導コイル5に巻回されている超電導線の超電導状態を維持可能としてもよい。真空容器10は、非磁性材料、例えばステンレス鋼で構成し、輻射シールド11は、熱伝導度の高い材料、例えばアルミニウムで構成することができる。   FIG. 3 shows a longitudinal sectional view of the MRI apparatus 3 according to the first embodiment of the present invention. This longitudinal sectional view is a sectional view in which the MRI apparatus 3 is cut along a plane including the central axis 6 of the cylindrical vacuum vessel 10. The superconducting magnet device 1 has an annular shape, and this central axis substantially coincides with the central axis 6, and therefore, the single central axis 6 is also used in FIG. 3. The superconducting magnet apparatus 1 includes an annular winding frame 7 having a central axis 6 as a central axis, a superconducting coil 5 in which a superconducting wire is wound around the winding frame 7, and an outer periphery of the superconducting coil 5. And a ring 9 fitted to the superconducting coil 5. The winding frame 7 is made of stainless steel, for example. Then, by connecting both ends of the superconducting wire drawn out from the superconducting coil 5 to a power source (not shown), a current is passed through the superconducting coil 5, and a predetermined magnetic field is applied to the observation region 8 of the electromagnetic waves emitted by the hydrogen nuclear spins by the NMR phenomenon A static magnetic field (uniform magnetic field) having strength and magnetic field uniformity is formed. The superconducting magnet device 1 is supported by a load support 12 from the floor, for example. The load support 12 is made of a material having low thermal conductivity, for example, FRP (Fiber Reinforced Plastics). Superconducting magnet device 1 is installed inside vacuum vessel 10, and radiation shield 11 is installed in the space between vacuum vessel 10 and superconducting magnet device 1. The vacuum vessel 10 is fixed (supported) to the floor surface, and the radiation shield 11 is fixed (supported) to the load support 12, for example. The superconducting wire wound around the superconducting coil 5 needs to be kept at a very low temperature during magnetic field generation. Therefore, for example, a refrigerant container (not shown) is provided in a space between the superconducting magnet device 1 and the radiation shield 11, and the superconducting magnet device 1 is placed in the refrigerant container and filled with a cryogenic refrigerant, for example, liquid helium. Thereby, the superconducting state of the superconducting wire wound around the superconducting coil 5 can be maintained. Alternatively, for example, a refrigerator (not shown) connected to the superconducting magnet device 1 and the radiation shield 11 is provided, and heat input from the superconducting magnet device 1 and the radiation shield 11 due to radiation or conduction is released to the outside, and the superconducting coil 5 is discharged. The superconducting state of the wound superconducting wire may be maintained. The vacuum vessel 10 can be made of a nonmagnetic material, such as stainless steel, and the radiation shield 11 can be made of a material having high thermal conductivity, such as aluminum.

被検者2の断層像の撮像において空間位置情報を付与する目的で、超電導磁石装置1が形成した前記均一磁場に、空間的な変化(傾斜磁場)を重畳する傾斜磁場コイル(図示省略)が、真空容器10の観測領域8側に配置されている。また、NMR現象を引き起すための共鳴周波数の電磁波を被検者2に照射(印加)する高周波照射コイル(図示省略)が、前記傾斜磁場コイル(図示省略)の観測領域8側に配置されている。これらにより、関心領域(観測領域8)の断面を画像化する。即ち、超電導コイル5で生成した均一磁場に、傾斜磁場コイル(図示省略)で磁場を重畳させることにより関心領域(通常1mmピッチのスライス面)だけを所定の磁場強度に設定する。続いて、その関心領域に共鳴周波数の電磁波を照射して、スライス面にだけNMR現象を引き起こさせ、水素原子核スピンが放出する電磁波を受信して断層画像を形成している。そして、良好な断層画像を得るためには観測領域8における前記均一磁場の磁場強度を高精度に均一に保持する必要がある。そのために、観測領域8の磁場計測結果を元に、真空容器10の内筒の大気側側面に小鉄片(図示省略)を配置する磁場調整作業や、傾斜磁場コイル(図示省略)と高周波照射コイル(図示省略)の間に配置した磁場補正コイル(図示省略)に給電することによる磁場調整作業が行われる。   A gradient magnetic field coil (not shown) that superimposes a spatial change (gradient magnetic field) on the uniform magnetic field formed by the superconducting magnet device 1 is provided for the purpose of providing spatial position information in tomographic imaging of the subject 2. These are arranged on the observation region 8 side of the vacuum vessel 10. In addition, a high-frequency irradiation coil (not shown) that irradiates (applies) an electromagnetic wave having a resonance frequency for causing an NMR phenomenon to the subject 2 is disposed on the observation region 8 side of the gradient coil (not shown). Yes. Thus, a cross section of the region of interest (observation region 8) is imaged. That is, only a region of interest (usually a slice plane with a pitch of 1 mm) is set to a predetermined magnetic field intensity by superimposing a magnetic field with a gradient magnetic field coil (not shown) on the uniform magnetic field generated by the superconducting coil 5. Subsequently, the region of interest is irradiated with an electromagnetic wave having a resonance frequency, causing an NMR phenomenon only on the slice plane, and receiving the electromagnetic wave emitted by the hydrogen nuclear spin to form a tomographic image. In order to obtain a good tomographic image, it is necessary to keep the magnetic field strength of the uniform magnetic field in the observation region 8 uniformly with high accuracy. Therefore, based on the magnetic field measurement results in the observation region 8, a magnetic field adjustment operation for arranging a small iron piece (not shown) on the atmosphere side surface of the inner cylinder of the vacuum vessel 10, a gradient magnetic field coil (not shown), and a high-frequency irradiation coil Magnetic field adjustment work is performed by supplying power to a magnetic field correction coil (not shown) arranged between (not shown).

図1に、本発明の第1の実施形態に係る超電導磁石装置1の断面図の中心軸6の上側を示す。中心軸6の下側は、この上側と中心軸6を対称線として略線対称になっているので、その記載を省略している。断面形状が四角形の超電導線13が、巻枠7に複数回(図1の例では30回)巻かれている。超電導線13内の数字は巻順を表し、図1の例では1巻目から30巻目まで順に巻かれている。超電導線13は、中心軸6の周りにその周方向に沿って巻回される。図1に示すように、超電導線13の巻順(巻目、ターン)は、中心軸6に沿った方向を往復しながら、増加している。超電導線13は、中心軸6と略平行な第1方向(図1の例えば右方向)に巻順が増加するように巻回されて第1層をなしている。具体的に、第1層としては、巻順1〜5の超電導線13からなる層と、巻順11〜15の超電導線13からなる層と、巻順21〜25の超電導線13からなる層とが該当する。また、超電導線13は、中心軸6と略平行で前記第1方向に逆向きの第2方向(図1の例えば左方向)に巻順が増加するように巻回されて第2層をなしている。具体的に、第2層としては、巻順6〜10の超電導線13からなる層と、巻順16〜20の超電導線13からなる層と、巻順26〜30の超電導線13からなる層とが該当する。超電導コイル5では、これらの第1層と第2層とが交互に積層されている。そして、第1層と第2層の間の一部に、絶縁部材16が設けられている。絶縁部材16は、中心軸6の周方向に沿って全周にわたって設けられている。   In FIG. 1, the upper side of the central axis 6 of the cross-sectional view of the superconducting magnet device 1 according to the first embodiment of the present invention is shown. Since the lower side of the central axis 6 is substantially line symmetric with the upper axis and the central axis 6 as symmetry lines, the description thereof is omitted. A superconducting wire 13 having a square cross section is wound around the winding frame 7 a plurality of times (30 times in the example of FIG. 1). The numbers in the superconducting wire 13 indicate the winding order, and in the example of FIG. Superconducting wire 13 is wound around central axis 6 along its circumferential direction. As shown in FIG. 1, the winding order (winding, turn) of the superconducting wire 13 increases while reciprocating in the direction along the central axis 6. The superconducting wire 13 is wound to increase the winding order in a first direction (for example, the right direction in FIG. 1) substantially parallel to the central axis 6 to form a first layer. Specifically, as the first layer, a layer made of the superconducting wire 13 in the winding order 1 to 5, a layer made of the superconducting wire 13 in the winding order 11 to 15, and a layer made of the superconducting wire 13 in the winding order 21 to 25. And are applicable. Further, the superconducting wire 13 is wound so as to increase the winding order in a second direction (for example, the left direction in FIG. 1) that is substantially parallel to the central axis 6 and opposite to the first direction. ing. Specifically, as the second layer, a layer composed of the superconducting wire 13 in the winding order 6 to 10, a layer composed of the superconducting wire 13 in the winding order 16 to 20, and a layer composed of the superconducting wire 13 in the winding order 26 to 30. And are applicable. In the superconducting coil 5, these first layers and second layers are alternately laminated. An insulating member 16 is provided in a part between the first layer and the second layer. The insulating member 16 is provided over the entire circumference along the circumferential direction of the central shaft 6.

超電導線13の外表面は、絶縁材で覆われておらず、常電導体(良導体)である安定化材15(図4参照)が露出している。そして、巻順が相前後する巻目(ターン)の超電導線13(の常電導体)同士は直接接している。例えば、巻順が相前後する1巻目(ターン)と2巻目とは、直接接している。巻順が相前後する5巻目と6巻目とは、直接接している。巻順が相前後するn巻目(nは自然数)とn+1巻目とは、直接接している。一方、巻順が、3を超えて離れている巻目(ターン)の超電導線13(の常電導体)の間には、絶縁部材16が設けられている。なお、巻順が3以上離れている巻目の超電導線13(の常電導体)の間に、絶縁部材16が設けられていてもよく、2以上離れている巻目の超電導線13(の常電導体)の間に、絶縁部材16が設けられていてもよい。例えば、巻順が9つ離れている1巻目(ターン)と10巻目の超電導線13(の常電導体)の間には、絶縁部材16が設けられている。巻順が7つ離れている2巻目と9巻目の超電導線13(の常電導体)の間には、絶縁部材16が設けられている。巻順が5つ離れている3巻目と8巻目の超電導線13(の常電導体)の間には、絶縁部材16が設けられている。巻順が3つ離れている4巻目と7巻目の超電導線13(の常電導体)の間の一部には、絶縁部材16が設けられ、4巻目と7巻目の超電導線13(の常電導体)の間の他の一部は直接接している。巻順の差が3以下の巻目(ターン)同士の超電導線13(の常電導体)は互いに直接接している。   The outer surface of the superconducting wire 13 is not covered with an insulating material, and the stabilizing material 15 (see FIG. 4) that is a normal conductor (good conductor) is exposed. The superconducting wires 13 (normal conductors) of the windings (turns) whose winding order is in sequence are in direct contact with each other. For example, the first volume (turn) and the second volume in which the winding order is in sequence are in direct contact with each other. The 5th and 6th rolls in which the winding order is adjacent are in direct contact. The n-th roll (n is a natural number) and the n + 1-th roll in which the winding order is in sequence are in direct contact with each other. On the other hand, an insulating member 16 is provided between the superconducting wires 13 (normal conductors) of the winding (turn) whose winding order is more than 3. In addition, an insulating member 16 may be provided between the superconducting wires 13 (normal conductors) of the windings whose winding order is 3 or more apart, and the superconducting wires 13 (of the windings 2 or more apart) may be provided. An insulating member 16 may be provided between the normal conductors). For example, an insulating member 16 is provided between the first winding (turn) and the tenth winding superconducting wire 13 (ordinary conductor) of which the winding order is nine. An insulating member 16 is provided between the second and ninth superconducting wires 13 (normal conductors) of which the winding order is separated by seven. An insulating member 16 is provided between the third and eighth superconducting wires 13 (normal conductors) of which the winding order is separated by five. An insulating member 16 is provided in a portion between the fourth and seventh superconducting wires 13 (normal conductors) of the fourth and seventh windings, which are separated by three winding orders, and the fourth and seventh superconducting wires. The other part between 13 (normal conductors) is in direct contact. Superconducting wires 13 (normal conductors) of windings (turns) having a winding order difference of 3 or less are in direct contact with each other.

前記第1層の例えば巻順1〜5の超電導線13からなる層の端部に位置する5巻目(ターン)と、前記第2層の例えば巻順6〜10の超電導線13からなる層の端部に位置する6巻目とでは、巻順が相前後し、互いの超電導線13(の常電導体)が直接接している。前記第1層の例えば巻順1〜5の超電導線13からなる層の端部に位置する1巻目(ターン)と、前記第2層の例えば巻順6〜10の超電導線13からなる層の端部に位置する10巻目とでは、巻順が3を超えて離れ、互いの超電導線13(の常電導体)の間に絶縁部材16が設けられている。   The fifth layer (turn) located at the end of the layer composed of the superconducting wire 13 of, for example, the winding order 1 to 5 of the first layer, and the layer of the superconducting wire 13 of the second layer, for example, the winding order 6 to 10 In the sixth volume located at the end of the winding, the winding order is in the same order, and the superconducting wires 13 (normal conductors) are in direct contact with each other. A first turn (turn) located at an end of a layer made of the superconducting wire 13 of, for example, winding order 1 to 5 of the first layer, and a layer made of the superconducting wire 13 of the second layer, for example, winding order 6 to 10 From the tenth volume located at the end of the wire, the winding order is more than 3 and the insulating member 16 is provided between the superconducting wires 13 (normal conductors).

超電導コイル5には、その外周に沿ってリング9が嵌められている。リング9は、前記層の最外層の外側に配置され、その最外層に中心軸6の周りの全周において圧接している。リング9は超電導線13内部の安定化材15(図4参照)よりも線膨張係数の大きい材料、例えばアルミニウムなどで構成されることが好適である。また、リング9を超電導コイル5に嵌めるには、例えば、焼き嵌めを用いることができる。このリング9によれば、互いに隣接する巻目同士を、圧接して、確実に直接接触させることができる。そして、その接触における接触抵抗Rc(図4参照)を小さく安定させることができる。なお、このリング9に替えて、超電導コイル5を径方向外側から圧縮できるのであれば、他の手段であってもよい。また、超電導コイル5の巻線張力によって自身を圧縮させる圧縮力を発生させることができるのであれば、リング9を省いてもよい。また、加圧成型によってもよい。   A ring 9 is fitted to the superconducting coil 5 along its outer periphery. The ring 9 is disposed outside the outermost layer of the layer, and is in pressure contact with the outermost layer around the central axis 6. The ring 9 is preferably made of a material having a linear expansion coefficient larger than that of the stabilizing material 15 (see FIG. 4) inside the superconducting wire 13, such as aluminum. For fitting the ring 9 to the superconducting coil 5, for example, shrink fitting can be used. According to the ring 9, the windings adjacent to each other can be brought into pressure contact with each other and reliably brought into direct contact with each other. And the contact resistance Rc (refer FIG. 4) in the contact can be made small and stable. Instead of the ring 9, other means may be used as long as the superconducting coil 5 can be compressed from the outside in the radial direction. Further, the ring 9 may be omitted if a compressive force for compressing itself can be generated by the winding tension of the superconducting coil 5. Alternatively, pressure molding may be used.

図4に、本発明の第1の実施形態に係る超電導磁石装置1を構成する超電導コイル5の断面図の一部を示す。超電導線13は、複数本の超電導素線14と、それら複数本の超電導素線14を覆う安定化材(常電導体)15とを有している。超電導線13(安定化材15)の外表面は絶縁材で覆われておらず、安定化材15が露出している。超電導素線14は、超電導物質(例えばNbTiニオブチタンなど)から構成されている。安定化材15は、その超電導素線14を内包している。安定化材15は、超電導素線14を超電導状態に安定化させる機能を有している。安定化材15には、常電導体の特に良導体が用いられる。例えば銅などが好適である。超電導線13の最外層は良導体で形成されることになる。巻順が相前後する超電導線13同士の安定化材15が直接接触する。このため、巻順が相前後する超電導線13の間では、熱を良好に伝導することができる。また、巻順が相前後する超電導線13の間には、小さな(接触)抵抗Rcが生じ、電流が流れ易くなっている。一方、巻順が、3を超えて離れている巻目(ターン)の超電導線13の間(例えば、3巻目と8巻目の間)には、絶縁部材16が設けられている。このため、巻順が3を超えて離れている巻目(ターン)の超電導線13の間では、熱を伝導し難くなり、また、電流が流れ難くなっている。よって、熱伝導に関しては、巻順が相前後する方向に沿って熱流速の通り道が形成される。超電導素線14で発生した局所的な熱は、この熱流速の通り道を通って、巻枠7を含めた外部へ伝導させる。また、電気伝導に関しては、超電導磁石装置に流す電流をゼロアンペアから定格電流値まで増加させる際に、超電導線13の巻目(インダクタ19、図5参照)毎に誘導電圧が発生すると、巻順が相前後する方向に沿った電流パスに電流が流れる。この電流は、超電導線13の巻目毎に前記小さな(接触)抵抗Rcを流れる。(接触)抵抗Rcは小さいが、この電流は、巻順が相前後する方向に多数の巻目の(接触)抵抗Rcを順に(直列に)流れるので、大電流化を抑制でき、これによる発熱を抑制できる。そして、リング9は、超電導コイル5の巻線形状の保持だけでなく、前記した超電導線13間の接触(電気)抵抗Rcと接触熱抵抗を低下させることを可能にしている。   FIG. 4 shows a part of a cross-sectional view of the superconducting coil 5 constituting the superconducting magnet device 1 according to the first embodiment of the present invention. The superconducting wire 13 includes a plurality of superconducting wires 14 and a stabilizing material (normal conductor) 15 covering the plurality of superconducting wires 14. The outer surface of the superconducting wire 13 (stabilizing material 15) is not covered with an insulating material, and the stabilizing material 15 is exposed. The superconducting wire 14 is made of a superconducting material (for example, NbTi niobium titanium). The stabilizing material 15 includes the superconducting element wire 14. The stabilizer 15 has a function of stabilizing the superconducting element wire 14 in a superconducting state. For the stabilizing member 15, a particularly good conductor of a normal conductor is used. For example, copper is suitable. The outermost layer of the superconducting wire 13 is formed of a good conductor. The stabilizing material 15 between the superconducting wires 13 whose winding order is adjacent to each other is in direct contact. For this reason, heat can be favorably conducted between the superconducting wires 13 in which the winding order is similar. In addition, a small (contact) resistance Rc is generated between the superconducting wires 13 whose winding order is adjacent to each other, and a current easily flows. On the other hand, an insulating member 16 is provided between the superconducting wires 13 of the windings (turns) whose winding order exceeds 3 (for example, between the third winding and the eighth winding). For this reason, it is difficult to conduct heat between the superconducting wires 13 of the winding (turn) whose winding order is more than 3, and it is difficult for current to flow. Therefore, with regard to heat conduction, a path of the heat flow rate is formed along the direction in which the winding order follows. The local heat generated in the superconducting element wire 14 is conducted to the outside including the reel 7 through the path of the heat flow rate. As for electrical conduction, when an induced voltage is generated for each winding of the superconducting wire 13 (inductor 19, see FIG. 5) when increasing the current flowing through the superconducting magnet device from zero ampere to the rated current value, the winding order A current flows in a current path along the direction in which the currents follow each other. This current flows through the small (contact) resistance Rc for each winding of the superconducting wire 13. Although the (contact) resistance Rc is small, since this current flows through the (contact) resistance Rc of a large number of windings in order (in series) in the direction in which the winding order follows, a large current can be suppressed, and heat is generated by this. Can be suppressed. The ring 9 not only maintains the winding shape of the superconducting coil 5 but also makes it possible to reduce the contact (electric) resistance Rc and the contact thermal resistance between the superconducting wires 13 described above.

図5に、本発明の第1の実施形態に係る超電導磁石装置1の等価回路図を示す。超電導磁石装置1では、超電導線13(図1参照)が複数回巻回されている。そこで、この一巻き毎を一つのインダクタ19と見做せば、超電導磁石装置1は巻数分の数のインダクタ19が、巻順の順番で直列に接続されたものと見做すことができる。そして、直流電源18を用いて、超電導磁石装置1(超電導コイル5)に流す電流を、ゼロアンペアから定格電流値まで増加させる際には、単位時間当たりの電流増加量に応じて、インダクタ19毎の両端に誘導電圧が発生する。超電導磁石装置1では、図1に示すように巻順が相前後する超電導線13が接触しているため、巻順が相前後するインダクタ19の間毎に安定化材15に起因する抵抗(接触抵抗Rc)が並列に接続(分布)していると考えることができる。これは見方を変えると、巻数分の数の抵抗(接触抵抗Rc)が直列に接続されていると考えることができる。このため、この直列接続された抵抗(接触抵抗Rc)のトータルの抵抗値を大きくすることができる(具体的には、接触抵抗Rcの巻数倍)。そして、この抵抗(接触抵抗Rc)の直列接続の両端には、インダクタ19毎の両端に発生した誘導電圧を巻数倍したトータル電圧が印加される。MRI装置3(図2参照)に搭載されるような大きな磁場強度の磁場を発生させる超電導磁石装置1では、大きな前記トータル電圧が印加されるが、それが印加される前記トータルの抵抗値が大きいので、ジュール熱による発熱を低く抑えることができる。すなわち、ジュール熱Qは、トータル電圧の2乗に比例し、トータルの抵抗値に反比例する(Q∝V/R)ので、詳細は後記するが、絶縁部材16によって、トータルの抵抗値の低下を抑制し、ジュール熱Qを小さく抑えることができる。 FIG. 5 shows an equivalent circuit diagram of the superconducting magnet device 1 according to the first embodiment of the present invention. In the superconducting magnet device 1, a superconducting wire 13 (see FIG. 1) is wound a plurality of times. Therefore, if each turn is regarded as one inductor 19, the superconducting magnet device 1 can be regarded as the number of turns of the inductors 19 connected in series in the order of winding. Then, when the current flowing through the superconducting magnet device 1 (superconducting coil 5) is increased from zero ampere to the rated current value using the DC power source 18, each inductor 19 is changed according to the amount of current increase per unit time. An induced voltage is generated at both ends. In the superconducting magnet device 1, as shown in FIG. 1, the superconducting wire 13 whose winding order is in phase with each other is in contact, and therefore the resistance (contact) caused by the stabilizing material 15 between the inductors 19 whose winding order is in phase. It can be considered that the resistors Rc) are connected (distributed) in parallel. From a different point of view, it can be considered that resistances corresponding to the number of turns (contact resistance Rc) are connected in series. Therefore, the total resistance value of the series-connected resistors (contact resistance Rc) can be increased (specifically, the number of turns of the contact resistance Rc). A total voltage obtained by multiplying the induction voltage generated at both ends of each inductor 19 by the number of turns is applied to both ends of the series connection of the resistors (contact resistance Rc). In the superconducting magnet apparatus 1 that generates a magnetic field having a large magnetic field strength as mounted in the MRI apparatus 3 (see FIG. 2), a large total voltage is applied, but the total resistance value to which it is applied is large. Therefore, heat generation due to Joule heat can be kept low. That is, the Joule heat Q is proportional to the square of the total voltage and inversely proportional to the total resistance value (Q∝V 2 / R). However, as will be described in detail later, the insulation member 16 reduces the total resistance value. And Joule heat Q can be kept small.

図8に、比較例の超電導磁石装置の断面図の中心軸6の上側を示し、図9に、比較例の超電導磁石装置を構成する超電導コイル5の断面図の一部を示し、図10に、比較例の超電導磁石装置の等価回路図を示す。図8に示すように、断面形状が円形の超電導線13が、巻枠7に複数回(図8の例では23回)巻かれている。超電導線13内の数字は巻順を表し、図8の例では1巻目から23巻目まで順に巻かれている。超電導線13は、中心軸6の周りにその周方向に沿って巻回される。図8に示すように、超電導線13の巻順(巻目、ターン)は、中心軸6に沿った方向を往復しながら、増加している。   8 shows an upper side of the central axis 6 of the cross-sectional view of the superconducting magnet device of the comparative example, FIG. 9 shows a part of the cross-sectional view of the superconducting coil 5 constituting the superconducting magnet device of the comparative example, and FIG. The equivalent circuit diagram of the superconducting magnet apparatus of a comparative example is shown. As shown in FIG. 8, the superconducting wire 13 having a circular cross-sectional shape is wound around the winding frame 7 a plurality of times (23 times in the example of FIG. 8). The numbers in the superconducting wire 13 indicate the winding order, and in the example of FIG. Superconducting wire 13 is wound around central axis 6 along its circumferential direction. As shown in FIG. 8, the winding order (winding, turn) of the superconducting wire 13 increases while reciprocating in the direction along the central axis 6.

図9に示すように、超電導線13は、複数本の超電導素線14と、それら複数本の超電導素線14を覆う安定化材(常電導体)15とを有している。超電導線13(安定化材15)の外表面は絶縁材で覆われておらず、安定化材15が露出している。これにより、例えば、8巻目の超電導線13(の安定化材15)は、隣接する2巻目、3巻目、7巻目、9巻目、11巻目、12巻目の超電導線13(の安定化材15)と、直接接触している。このため、隣接する超電導線13の間で、熱を良好に伝導することができる。また、隣接する超電導線13の間には、小さな(接触)抵抗Rcが生じ、電流が流れ易くなっている。   As shown in FIG. 9, the superconducting wire 13 includes a plurality of superconducting wires 14 and a stabilizing material (normal conductor) 15 that covers the plurality of superconducting wires 14. The outer surface of the superconducting wire 13 (stabilizing material 15) is not covered with an insulating material, and the stabilizing material 15 is exposed. Thus, for example, the superconducting wire 13 (stabilizing material 15) of the eighth roll is the superconducting wire 13 of the second, third, seventh, ninth, eleventh, and twelfth turns. (Stabilizer 15) is in direct contact. For this reason, heat can be conducted well between the adjacent superconducting wires 13. In addition, a small (contact) resistance Rc is generated between adjacent superconducting wires 13 so that a current easily flows.

図8に示すように、比較例の超電導磁石装置では、超電導線13が複数回巻回されている。そこで、図10に示すように、この一巻き毎を一つのインダクタ19と見做せば、超電導磁石装置1は巻数分の数のインダクタ19が、巻順の順番で直列に接続されたものと見做すことができる。そして、図5と同様に、巻順が相前後する超電導線13が接触しているため、巻順が相前後するインダクタ19の間毎に安定化材15に起因する抵抗(接触抵抗Rc)が並列に接続(分布)していると考えることができる。そして、巻数分の数の抵抗(接触抵抗Rc)が直列に接続されていると考えることができる。しかし、比較例では、絶縁部材16が設けられていないので、この直列接続された抵抗(接触抵抗Rc)のトータルの抵抗値が小さくなってしまう。具体的には、接触抵抗Rcの巻数倍の数分の1か、数十分の1になってしまう。   As shown in FIG. 8, in the superconducting magnet device of the comparative example, the superconducting wire 13 is wound a plurality of times. Therefore, as shown in FIG. 10, if each turn is regarded as one inductor 19, the superconducting magnet device 1 has a structure in which the inductors 19 corresponding to the number of turns are connected in series in the turn order. Can be seen. And since the superconducting wire 13 whose winding order is in phase with each other is in contact like FIG. 5, the resistance (contact resistance Rc) caused by the stabilizing material 15 is between the inductors 19 whose winding order is in sequence. It can be considered that they are connected (distributed) in parallel. Then, it can be considered that resistances (contact resistance Rc) corresponding to the number of turns are connected in series. However, in the comparative example, since the insulating member 16 is not provided, the total resistance value of the resistors (contact resistance Rc) connected in series is reduced. Specifically, it is a fraction of the number of turns of the contact resistance Rc, or a few tenths.

具体的に、1巻目と23巻目の間のトータルの抵抗Rを考えると、1巻目から23巻目への電流パスが複数存在し、トータルの抵抗Rが小さくなる。1巻目から23巻目への電流パスとしては、主なものでも、1巻目−2巻目−3巻目−7巻目−13巻目−15巻目−23巻目の電流パスと、1巻目−2巻目−8巻目−7巻目−13巻目−15巻目−23巻目の電流パスと、1巻目−2巻目−8巻目−12巻目−13巻目−15巻目−23巻目の電流パスと、1巻目−2巻目−8巻目−12巻目−16巻目−15巻目−23巻目の電流パスと、1巻目−2巻目−8巻目−12巻目−16巻目−22巻目−23巻目の電流パスと、1巻目−9巻目−11巻目−17巻目−21巻目−22巻目−23巻目の電流パスの、6つの電流パスが存在する。これらの電流パスでは、6つ前後の接触抵抗Rcが直列に接続されていることになるが、電流パスが互いに並列に接続されているので、トータルの抵抗Rは、1つ分の接触抵抗Rc程度の抵抗値にしかならない(R≒Rc)。このように、比較例においては、トータルの抵抗Rは、接触抵抗Rcの巻数倍の抵抗値に比べて小さくなりやすい。 Specifically, considering the total resistance R 0 between the first and the 23rd rolls, there are a plurality of current paths from the first roll to the 23rd roll, and the total resistance R 0 becomes smaller. As the current path from the 1st volume to the 23rd volume, even the main current path includes the 1st volume-2 volume-3 volume-7 volume-13 volume-15 volume-23 current path 1st volume-2nd volume-8th volume-7th volume-13th volume-15th volume-23rd volume current path and 1st volume-2nd volume-8th volume-12th volume-13 Volume-15, Volume-23, Current Path, Volume1-2, Volume-8, Volume-12, Volume-16, Volume-15, Volume-23 Current Path, Volume 1 Volume-2, Volume-8, Volume-12, Volume-16, Volume-22, Volume-23, Current path, Volume-1, Volume-9, Volume-11, Volume-17, Volume-21, Volume-22 There are six current paths, the current paths of rolls 23-23. In these current paths, about six contact resistances Rc are connected in series. However, since the current paths are connected in parallel to each other, the total resistance R 0 is equal to one contact resistance. The resistance value is only about Rc (R 0 ≈Rc). As described above, in the comparative example, the total resistance R 0 tends to be smaller than the resistance value of the contact resistance Rc times the number of turns.

そして、この小さなトータルの抵抗Rの両端には、電流をゼロアンペアから定格電流値まで増加させる際に、インダクタ19毎の両端に発生した誘導電圧を巻数倍したトータル電圧が印加される。MRI装置3(図2参照)に搭載されるような大きな磁場強度の磁場を発生させる超電導磁石装置1では、大きな前記トータル電圧が印加されるが、それが印加される前記トータルの抵抗Rが小さいので、比較例ではジュール熱による発熱が大きくなってしまう。すなわち、ジュール熱Qは、トータル電圧の2乗に比例し、トータルの抵抗値に反比例する(Q∝V/R)ので、比較例のようにトータルの抵抗Rが小さいと、ジュール熱Qが大きくなってしまう。逆に、第1の実施形態では、前記したように、トータルの抵抗が絶縁部材16によって小さくならないので、ジュール熱Qを小さくすることできる。 The total voltage obtained by multiplying the induced voltage generated at both ends of each inductor 19 by the number of turns is applied to both ends of the small total resistance R0 when the current is increased from zero ampere to the rated current value. In the superconducting magnet apparatus 1 that generates a magnetic field having a large magnetic field strength as mounted in the MRI apparatus 3 (see FIG. 2), the large total voltage is applied, but the total resistance R 0 to which the total voltage is applied is Since it is small, heat generation due to Joule heat increases in the comparative example. That is, since the Joule heat Q is proportional to the square of the total voltage and inversely proportional to the total resistance value (Q 2V 2 / R), if the total resistance R 0 is small as in the comparative example, the Joule heat Q Will become bigger. On the other hand, in the first embodiment, as described above, the total resistance is not reduced by the insulating member 16, so the Joule heat Q can be reduced.

(第2の実施形態)
図6に、本発明の第2の実施形態に係る超電導磁石装置1の断面図を示す。第2の実施形態の超電導磁石装置1が、第1の実施形態の超電導磁石装置1と異なる点は、超電導線13の断面形状が、矩形ではなく、円形である点である。円形であっても、第1の実施形態と同様な効果を得ることができる。また、第2の実施形態では、超電導線13の巻回方式が所謂「密巻」であり、第1の実施形態の所謂「整列巻」とは異なっている。「密巻」であっても、第1の実施形態と同様な効果を得ることができる。
(Second Embodiment)
In FIG. 6, sectional drawing of the superconducting magnet apparatus 1 which concerns on the 2nd Embodiment of this invention is shown. The superconducting magnet device 1 of the second embodiment differs from the superconducting magnet device 1 of the first embodiment in that the cross-sectional shape of the superconducting wire 13 is not a rectangle but a circle. Even if it is circular, the same effect as the first embodiment can be obtained. In the second embodiment, the winding method of the superconducting wire 13 is a so-called “close winding”, which is different from the so-called “aligned winding” in the first embodiment. Even with “close winding”, the same effect as in the first embodiment can be obtained.

超電導線13は、中心軸6と略平行な第1方向(図6の例えば右方向)に巻順が増加するように巻回されて第1層をなしている。具体的に、第1層としては、巻順1〜5の超電導線13からなる層と、巻順10〜14の超電導線13からなる層と、巻順19〜23の超電導線13からなる層とが該当する。また、超電導線13は、中心軸6と略平行で前記第1方向に逆向きの第2方向(図6の例えば左方向)に巻順が増加するように巻回されて第2層をなしている。具体的に、第2層としては、巻順6〜9の超電導線13からなる層と、巻順15〜18の超電導線13からなる層とが該当する。超電導コイル5では、これらの第1層と第2層とが交互に積層されている。そして、第1層と第2層の間の一部に、絶縁部材16が設けられている。絶縁部材16は、中心軸6の周方向に沿って全周にわたって設けられている。   The superconducting wire 13 is wound to increase the winding order in a first direction (for example, the right direction in FIG. 6) substantially parallel to the central axis 6 to form a first layer. Specifically, as the first layer, a layer made of the superconducting wire 13 in the winding order 1 to 5, a layer made of the superconducting wire 13 in the winding order 10-14, and a layer made of the superconducting wire 13 in the winding order 19-23. And are applicable. Further, the superconducting wire 13 is wound in such a manner that the winding order increases in a second direction (for example, the left direction in FIG. 6) that is substantially parallel to the central axis 6 and opposite to the first direction. ing. Specifically, the second layer corresponds to a layer composed of the superconducting wire 13 in the winding order 6-9 and a layer composed of the superconducting wire 13 in the winding order 15-18. In the superconducting coil 5, these first layers and second layers are alternately laminated. An insulating member 16 is provided in a part between the first layer and the second layer. The insulating member 16 is provided over the entire circumference along the circumferential direction of the central shaft 6.

巻順が相前後する巻目(ターン)の超電導線13(の常電導体)同士は直接接している。一方、巻順が、1を超えて離れている巻目(ターン)の超電導線13の間には、絶縁部材16が設けられている。なお、巻順が2を超えて(3以上)離れている巻目の超電導線13の間に、絶縁部材16が設けられていてもよい。例えば、巻順が8つ離れている1巻目(ターン)と9巻目の超電導線13の間には、絶縁部材16が設けられている。巻順が7つ離れている2巻目と9巻目の超電導線13の間には、絶縁部材16が設けられている。巻順が6つ離れている2巻目と8巻目の超電導線13の間には、絶縁部材16が設けられている。巻順が5つ離れている3巻目と8巻目の超電導線13の間には、絶縁部材16が設けられている。巻順が4つ離れている3巻目と7巻目の超電導線13の間には、絶縁部材16が設けられている。巻順が3つ離れている4巻目と7巻目の超電導線13の間には、絶縁部材16が設けられている。巻順が2つ離れている4巻目と6巻目の超電導線13の間には、絶縁部材16が設けられている。巻順が1つ離れている5巻目と6巻目の超電導線13とは、直接接している。   The superconducting wires 13 (ordinary conductors) of the windings (turns) whose winding order is in sequence are in direct contact with each other. On the other hand, an insulating member 16 is provided between the superconducting wires 13 of windings (turns) whose winding order is more than 1. An insulating member 16 may be provided between the superconducting wires 13 of windings whose winding order is more than 2 (3 or more) apart. For example, an insulating member 16 is provided between the first winding (turn) and the ninth winding superconducting wire 13 which are separated by eight winding orders. An insulating member 16 is provided between the second and ninth superconducting wires 13 whose winding order is separated by seven. An insulating member 16 is provided between the second and eighth superconducting wires 13 whose winding order is six. An insulating member 16 is provided between the third and eighth superconducting wires 13 whose winding order is five. An insulating member 16 is provided between the third and seventh superconducting wires 13 that are separated by four winding orders. An insulating member 16 is provided between the fourth and seventh superconducting wires 13 whose winding order is three. An insulating member 16 is provided between the fourth and sixth superconducting wires 13 whose winding order is separated by two. The fifth and sixth superconducting wires 13 that are one turn away from each other are in direct contact with each other.

前記第1層の例えば巻順1〜5の超電導線13からなる層の端部に位置する5巻目(ターン)と、前記第2層の例えば巻順6〜9の超電導線13からなる層の端部に位置する6巻目とでは、巻順が相前後し、互いの超電導線13が直接接している。前記第1層の例えば巻順1〜5の超電導線13からなる層の端部に位置する1巻目(ターン)と、前記第2層の例えば巻順6〜9の超電導線13からなる層の端部に位置する9巻目とでは、巻順が1を超えて離れ、互いの超電導線13の間に絶縁部材16が設けられている。   The fifth layer (turn) located at the end of the layer composed of the superconducting wire 13 of, for example, the winding order 1 to 5 of the first layer, and the layer of the superconducting wire 13 of the second layer, for example, the winding order 6 to 9 With the sixth volume located at the end of the winding, the winding order is in phase, and the superconducting wires 13 are in direct contact with each other. A first turn (turn) located at an end of a layer made of the superconducting wire 13 of, for example, winding order 1 to 5 of the first layer, and a layer of the superconducting wire 13 of the second layer, for example, winding order 6 to 9 From the ninth roll located at the end of the wire, the winding order is more than 1 and the insulating member 16 is provided between the superconducting wires 13.

(第3の実施形態)
図7に、本発明の第3の実施形態に係る超電導磁石装置1の断面図を示す。第3の実施形態の超電導磁石装置1が、第1の実施形態の超電導磁石装置1と異なる点は、超電導線13の巻回方式が所謂「アルファ(α)巻」もしくは「パンケーキ巻」である点である。「アルファ巻」であっても、第1の実施形態と同様な効果を得ることができる。「アルファ巻」では、超電導線13では、巻枠7の半径方向外側に向かって巻順が連続的に増加する。「アルファ巻」では、半径方向外側に巻順が増加するように巻回され、互いに渦巻の方向が逆の一対の第1渦巻と第2渦巻層を有している。
(Third embodiment)
In FIG. 7, sectional drawing of the superconducting magnet apparatus 1 which concerns on the 3rd Embodiment of this invention is shown. The superconducting magnet device 1 of the third embodiment is different from the superconducting magnet device 1 of the first embodiment in that the winding method of the superconducting wire 13 is so-called “alpha (α) winding” or “pancake winding”. There is a point. Even with “Alpha volume”, the same effect as the first embodiment can be obtained. In “alpha winding”, in the superconducting wire 13, the winding order continuously increases toward the outside in the radial direction of the winding frame 7. The “alpha winding” has a pair of first and second spiral layers wound in such a manner that the winding order increases radially outward, and the spiral directions are opposite to each other.

第1渦巻は、例えば、巻順0r〜5rの超電導線13からなっている。第1渦巻では、超電導コイル5の中心軸6の周方向に沿った第1方向に渦巻ながら半径方向外側へ広がるように巻順0r〜5rの順に、超電導線13が巻回されている。第2渦巻は、例えば、巻順0l〜5lの超電導線13からなっている。第2渦巻では、超電導コイル5の中心軸6の周方向に沿い前記第1方向とは逆の第2方向に渦巻ながら半径方向外側へ広がるように巻順0l〜5lの順に、超電導線13が巻回されている。そして、第1渦巻と第2渦巻の間の一部に、絶縁部材16が設けられている。絶縁部材16は、中心軸6の周方向に沿って全周にわたって設けられている。   The first spiral is composed of, for example, a superconducting wire 13 having a winding order of 0r to 5r. In the first spiral, the superconducting wire 13 is wound in the order of winding order 0r to 5r so as to spread outward in the radial direction while spiraling in the first direction along the circumferential direction of the central axis 6 of the superconducting coil 5. The second spiral is composed of, for example, a superconducting wire 13 having a winding order of 0 l to 5 l. In the second spiral, the superconducting wires 13 are arranged in the order of winding orders 0l to 5l so as to spread outward in the radial direction while spiraling in the second direction opposite to the first direction along the circumferential direction of the central axis 6 of the superconducting coil 5. It is wound. An insulating member 16 is provided in a part between the first spiral and the second spiral. The insulating member 16 is provided over the entire circumference along the circumferential direction of the central shaft 6.

巻順が相前後する巻目(ターン)の超電導線13同士は直接接している。一方、巻順が、1を超えて離れている巻目(ターン)の超電導線13の間には、絶縁部材16が設けられている。例えば、巻順が10巻き離れている第1渦巻の5r巻目(ターン)と第2渦巻の5l巻目(ターン)の超電導線13の間には、絶縁部材16が設けられている。第1渦巻において中心軸6から最も離れた5r巻目(ターン)と、第2渦巻において中心軸6から最も離れた5l巻目(ターン)とでは、巻順が10巻き離れ、互いの間に絶縁部材16が設けられている。また、巻順が8巻き離れている第1渦巻の4r巻目(ターン)と第2渦巻の4l巻目(ターン)の超電導線13の間には、絶縁部材16が設けられている。巻順が6巻き離れている第1渦巻の3r巻目(ターン)と第2渦巻の3l巻目(ターン)の超電導線13の間には、絶縁部材16が設けられている。巻順が4巻き離れている第1渦巻の2r巻目(ターン)と第2渦巻の2l巻目(ターン)の超電導線13の間には、絶縁部材16が設けられている。巻順が2巻き離れている第1渦巻の1r巻目(ターン)と第2渦巻の1l巻目(ターン)の超電導線13の間には、絶縁部材16が設けられている。巻順が等しい第1渦巻の0r巻目(ターン)と第2渦巻の0l巻目(ターン)の超電導線13とは、実質的に1つのターンであり、両端部が互いに直接接している。   The superconducting wires 13 of the winding (turn) whose winding order is in series are in direct contact with each other. On the other hand, an insulating member 16 is provided between the superconducting wires 13 of windings (turns) whose winding order is more than 1. For example, an insulating member 16 is provided between the superconducting wire 13 of the first spiral 5r (turn) and the second spiral 5l (turn) of which the winding order is 10 turns apart. In the first spiral, the 5r winding (turn) farthest from the central axis 6 and the 5l winding (turn) farthest from the central axis 6 in the second spiral, the winding order is 10 turns apart, An insulating member 16 is provided. In addition, an insulating member 16 is provided between the superconducting wire 13 of the first spiral 4r (turn) and the second spiral 4l (turn) of which the winding order is 8 turns apart. An insulating member 16 is provided between the superconducting wire 13 of the third spiral (turn) of the first spiral and the third spiral (turn) of the second spiral whose winding order is 6 turns apart. An insulating member 16 is provided between the superconducting wire 13 of the second spiral (2r) (turn) of the first spiral and the second spiral (turn) of the second spiral whose winding order is four turns apart. An insulating member 16 is provided between the superconducting wire 13 of the first spiral 1r (turn) and the second spiral 1l (turn) of which the winding order is two turns apart. The superconducting wire 13 of the first spiral 0r (turn) and the second spiral 0l (turn) of the first spiral having the same winding order is substantially one turn, and both ends thereof are in direct contact with each other.

なお、本発明は、前記した第1〜第3の実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した第1〜第3の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることも可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。   The present invention is not limited to the first to third embodiments described above, and includes various modifications. For example, the first to third embodiments described above have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 超電導磁石装置
2 被検者
3 磁気共鳴イメージング(MRI)装置
4 ベッド
5 超電導コイル
6 中心軸
7 巻枠
8 観測領域
9 リング
10 真空容器
11 輻射シールド
12 荷重支持体
13 超電導線
14 超電導素線
15 安定化材(常電導体)
16 絶縁部材
18 直流電源
19 インダクタ
Rc (接触)抵抗
DESCRIPTION OF SYMBOLS 1 Superconducting magnet apparatus 2 Subject 3 Magnetic resonance imaging (MRI) apparatus 4 Bed 5 Superconducting coil 6 Central axis 7 Winding frame 8 Observation area 9 Ring 10 Vacuum container 11 Radiation shield 12 Load support 13 Superconducting wire 14 Superconducting wire 15 Stabilizer (normal conductor)
16 Insulating member 18 DC power supply 19 Inductor Rc (contact) resistance

Claims (13)

外表面が常電導体になっている超電導線が複数回巻回された超電導コイルを有し、
巻順が相前後するターンの前記常電導体同士は直接接し、
前記巻順が離れている前記ターンの前記常電導体の間には、絶縁部材が設けられていることを特徴とする超電導磁石装置。
It has a superconducting coil in which a superconducting wire whose outer surface is a normal conductor is wound several times,
The normal conductors of the turns in which the winding order is in sequence are in direct contact with each other,
A superconducting magnet device, wherein an insulating member is provided between the normal conductors of the turns in which the winding order is separated.
前記超電導線は、超電導素線を有し、
前記常電導体は、前記超電導素線を覆い、前記超電導素線を安定化させることを特徴とする請求項1に記載の超電導磁石装置。
The superconducting wire has a superconducting wire,
2. The superconducting magnet device according to claim 1, wherein the normal conductor covers the superconducting element wire and stabilizes the superconducting element wire.
前記巻順の差が3以下の前記ターン同士の前記常電導体は互いに直接接することを特徴とする請求項1又は請求項2に記載の超電導磁石装置。   The superconducting magnet device according to claim 1 or 2, wherein the normal conductors of the turns having a winding order difference of 3 or less are in direct contact with each other. 前記超電導コイルの中心軸と略平行な第1方向に前記巻順が増加するように前記超電導線が巻回されて第1層をなし、
前記第1方向とは逆の第2方向に前記巻順が増加するように前記超電導線が巻回されて第2層をなし、
前記第1層と前記第2層とが交互に積層され、
前記第1層と前記第2層の間の一部に、前記絶縁部材が設けられていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の超電導磁石装置。
The superconducting wire is wound so as to increase the winding order in a first direction substantially parallel to the central axis of the superconducting coil to form a first layer;
The superconducting wire is wound to increase the winding order in a second direction opposite to the first direction to form a second layer;
The first layer and the second layer are alternately stacked,
4. The superconducting magnet device according to claim 1, wherein the insulating member is provided in a part between the first layer and the second layer. 5.
前記第1層の一方の端部に位置する前記ターンと、
前記第2層の一方の端部に位置する前記ターンとでは、
前記巻順が相前後し、互いの前記常電導体は直接接することを特徴とする請求項4に記載の超電導磁石装置。
The turn located at one end of the first layer;
With the turn located at one end of the second layer,
The superconducting magnet device according to claim 4, wherein the winding order is phased and the normal conductors are in direct contact with each other.
前記第1層の他方の端部に位置する前記ターンと、
前記第2層の他方の端部に位置する前記ターンとでは、
前記巻順が離れ、互いの前記常電導体の間に前記絶縁部材が設けられていることを特徴とする請求項5に記載の超電導磁石装置。
The turn located at the other end of the first layer;
With the turn located at the other end of the second layer,
The superconducting magnet device according to claim 5, wherein the winding order is separated and the insulating member is provided between the normal conductors.
前記超電導線は、整列巻によって巻回されていることを特徴とする請求項1乃至請求項6のいずれか1項に記載の超電導磁石装置。   The superconducting magnet device according to any one of claims 1 to 6, wherein the superconducting wire is wound by aligned winding. 前記超電導線は、密巻によって巻回されていることを特徴とする請求項1乃至請求項6のいずれか1項に記載の超電導磁石装置。   The superconducting magnet device according to any one of claims 1 to 6, wherein the superconducting wire is wound by close winding. 前記超電導コイルの中心軸の周方向に沿った第1方向に渦巻ながら広がるように前記超電導線が巻回された第1渦巻と、
前記周方向に沿い前記第1方向とは逆の第2方向に渦巻ながら広がるように前記超電導線が巻回された第2渦巻とを有し、
前記第1渦巻と前記第2渦巻の間の一部に、前記絶縁部材が設けられていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の超電導磁石装置。
A first spiral in which the superconducting wire is wound so as to spread while spiraling in a first direction along the circumferential direction of the central axis of the superconducting coil;
A second spiral in which the superconducting wire is wound so as to spread while spiraling in a second direction opposite to the first direction along the circumferential direction;
4. The superconducting magnet device according to claim 1, wherein the insulating member is provided in a part between the first spiral and the second spiral. 5.
前記第1渦巻において前記中心軸から最も離れた前記ターンと、
前記第2渦巻において前記中心軸から最も離れた前記ターンとでは、
前記巻順が離れ、互いの前記常電導体の間に前記絶縁部材が設けられていることを特徴とする請求項9に記載の超電導磁石装置。
The turn farthest from the central axis in the first spiral;
In the turn that is farthest from the central axis in the second spiral,
The superconducting magnet device according to claim 9, wherein the winding order is separated and the insulating member is provided between the normal conductors.
前記超電導コイルの外周に沿って前記超電導コイルに嵌められたリングを有することを特徴とする請求項1乃至請求項10のいずれか1項に記載の超電導磁石装置。   The superconducting magnet device according to any one of claims 1 to 10, further comprising a ring fitted to the superconducting coil along an outer periphery of the superconducting coil. 前記リングの線膨張係数が前記超電導線の線膨張係数よりも大きいことを特徴する請求項11に記載の超電導磁石装置。   The superconducting magnet device according to claim 11, wherein a linear expansion coefficient of the ring is larger than a linear expansion coefficient of the superconducting wire. 請求項1乃至請求項12のいずれか1項に記載の超電導磁石装置を搭載したことを特徴する磁気共鳴イメージング装置。   A magnetic resonance imaging apparatus comprising the superconducting magnet apparatus according to claim 1.
JP2013033120A 2013-02-22 2013-02-22 Superconducting magnet device and magnetic resonance imaging apparatus Pending JP2014161427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033120A JP2014161427A (en) 2013-02-22 2013-02-22 Superconducting magnet device and magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033120A JP2014161427A (en) 2013-02-22 2013-02-22 Superconducting magnet device and magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
JP2014161427A true JP2014161427A (en) 2014-09-08

Family

ID=51612666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033120A Pending JP2014161427A (en) 2013-02-22 2013-02-22 Superconducting magnet device and magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP2014161427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016064069A1 (en) * 2014-10-20 2016-04-28 고려대학교 산학협력단 Superconducting coil using partially-insulating winding, and method for manufacturing superconducting coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016064069A1 (en) * 2014-10-20 2016-04-28 고려대학교 산학협력단 Superconducting coil using partially-insulating winding, and method for manufacturing superconducting coil
KR20160046380A (en) * 2014-10-20 2016-04-29 고려대학교 산학협력단 Superconducting coils using partial insulation winding technique and manufacturing method thereof
KR101649291B1 (en) 2014-10-20 2016-08-18 고려대학교 산학협력단 Superconducting coils using partial insulation winding technique and manufacturing method thereof
JP2017535948A (en) * 2014-10-20 2017-11-30 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Superconducting coil using partially insulated winding and method of manufacturing superconducting coil

Similar Documents

Publication Publication Date Title
Lvovsky et al. Novel technologies and configurations of superconducting magnets for MRI
US3801942A (en) Electric magnet with superconductive windings
JP7383643B2 (en) Normal electromagnet system
GB2432898A (en) Cryogenic cooling circuit arrangement to avoid direct conductive thermal engagement of the inlet path with a coupler for a superconducting magnet
JP2010283186A (en) Refrigerator-cooled superconducting magnet
JP2012061311A (en) Magnet assembly and method of manufacturing the same
US8704520B2 (en) Radio frequency coil and apparatus
JP6636405B2 (en) Cryostat with magnet device having LTS part and HTS part
JP4928477B2 (en) Superconducting magnet apparatus, magnetic resonance imaging apparatus using the same, and nuclear magnetic resonance apparatus
JP6668350B2 (en) Superconducting wire, superconducting coil, MRI and NMR
JP6266225B2 (en) Magnetic resonance imaging apparatus and magnet for magnetic resonance imaging apparatus
JPH0479304A (en) Superconducting magnet apparatus
JP5224888B2 (en) Superconducting magnet and magnet device including the same
JP2016049159A (en) Superconducting magnet and magnetic resonance imaging apparatus
JP2014161427A (en) Superconducting magnet device and magnetic resonance imaging apparatus
JP2016116804A (en) Magnetic resonance imaging apparatus
US20160245886A1 (en) Open magnetic resonance imaging
JP2013507753A (en) Method and apparatus for electrical, mechanical and thermal isolation of superconducting magnets
JP2007319317A (en) Magnet system and magnetic resonance imaging system
Khrushchev et al. 3.5 Tesla 49-pole superconducting wiggler for DLS
JPS63304608A (en) Magnet system of neuclear spin tomographer
Wang et al. Design of superconducting magnet for background magnetic field
Li et al. Design of the superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging
JP2016032504A (en) Magnetic resonance imaging device
WO2023105974A1 (en) Superconducting coil apparatus