JP2014160399A - Solution search device, solution search method and program, schedule generating device, schedule generation method, program, and charging control system - Google Patents
Solution search device, solution search method and program, schedule generating device, schedule generation method, program, and charging control system Download PDFInfo
- Publication number
- JP2014160399A JP2014160399A JP2013031187A JP2013031187A JP2014160399A JP 2014160399 A JP2014160399 A JP 2014160399A JP 2013031187 A JP2013031187 A JP 2013031187A JP 2013031187 A JP2013031187 A JP 2013031187A JP 2014160399 A JP2014160399 A JP 2014160399A
- Authority
- JP
- Japan
- Prior art keywords
- generation
- individual
- evaluation value
- constraint condition
- calculation unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000004364 calculation method Methods 0.000 claims abstract description 197
- 238000011156 evaluation Methods 0.000 claims abstract description 177
- 238000009795 derivation Methods 0.000 claims abstract description 22
- 230000002068 genetic effect Effects 0.000 claims description 60
- 230000005611 electricity Effects 0.000 claims description 24
- 238000004422 calculation algorithm Methods 0.000 claims description 23
- 230000035772 mutation Effects 0.000 claims description 16
- 238000010353 genetic engineering Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 27
- 238000003860 storage Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000004088 simulation Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、制約条件を満たす解を探索する解探索装置、解探索方法及びプログラム、二次電池を備える設備の電力制御スケジュールを生成するスケジュール生成装置、スケジュール生成方法及びプログラム、並びに二次電池の充電を制御する充電制御システムに関する。 The present invention relates to a solution search device, a solution search method and a program for searching for a solution that satisfies a constraint condition, a schedule generation device that generates a power control schedule for a facility including a secondary battery, a schedule generation method and a program, and a secondary battery The present invention relates to a charging control system that controls charging.
近年、エネルギー管理システム(Energy Management System:EMS)を用いて消費電力を削減する技術が研究されている。また、近年は、電気自動車(Electric Vehicle)に搭載された二次電池の電力を用いて家庭内・企業内の電力を調整する技術が研究されている。これらの技術では、一般的に、電気代が比較的安価な夜間にEVの二次電池を充電し、電気代が比較的高価な日中にEVの二次電池を放電させることで、電気代の調整を行っている。 In recent years, a technique for reducing power consumption using an energy management system (EMS) has been studied. In recent years, a technique for adjusting electric power in a home or a company using electric power of a secondary battery mounted on an electric vehicle has been studied. In these technologies, generally, an EV secondary battery is charged at night when the electricity bill is relatively inexpensive, and the EV secondary battery is discharged during a day when the electricity bill is relatively expensive. Adjustments are being made.
ここで、企業など、複数のEVを有する場合に電気代の削減をしようとすると、夜間に全てのEVを充電すると、夜間のピーク電力が増大し、契約電力を挙げる必要が生じ、結果として電気代が高くなってしまうという問題がある。 Here, if a company or the like has multiple EVs and tries to reduce the electricity bill, if all EVs are charged at night, the peak power at night will increase, and it will be necessary to raise the contract power, resulting in electricity There is a problem that the bill becomes expensive.
この問題に対し、特許文献1には、多数のEVの充放電を制御する方法として、数理最適化を行うことで、適正な充放電パターンを得る技術が開示されている。 To solve this problem, Patent Document 1 discloses a technique for obtaining an appropriate charge / discharge pattern by performing mathematical optimization as a method for controlling charge / discharge of a large number of EVs.
数理最適化の一手法として、遺伝的アルゴリズムが知られている。遺伝的アルゴリズムとは、解の候補である個体をランダムに複数生成し、ある世代の個体について遺伝的操作を行い、次の世代の個体を生成する処理を繰り返し実行し、最後に得られた世代の個体の中で、最も適正度が高い個体を、解とするアルゴリズムである。ここで、遺伝的操作とは、選択、突然変異、交叉の操作のことをいい、遺伝的アルゴリズムでは、解としての適正度が高い個体ほど、遺伝的操作の対象となる確率を高くする。 A genetic algorithm is known as a method of mathematical optimization. A genetic algorithm is a method that randomly generates multiple individuals that are solution candidates, performs a genetic operation on an individual of a certain generation, repeatedly executes a process of generating an individual of the next generation, and the last generation obtained This algorithm uses the individual with the highest appropriateness among the individuals. Here, the genetic operation refers to selection, mutation, and crossover operations. In the genetic algorithm, an individual having a higher appropriateness as a solution increases the probability of being a target of the genetic operation.
選択操作とは、個体を1つ選択して当該個体をコピーする操作をいう。突然変異操作とは、個体を1つ選択して当該個体の一部を変化させる操作をいう。交叉操作とは、個体を2つ選択してその一部を入れ替える操作をいう。
なお、本明細書では、次の世代の個体を生成する計算を世代計算という。
The selection operation is an operation of selecting one individual and copying the individual. The mutation operation refers to an operation of selecting one individual and changing a part of the individual. The crossover operation is an operation of selecting two individuals and exchanging a part thereof.
In this specification, the calculation for generating the next generation individual is referred to as generation calculation.
しかしながら、特許文献1に開示された方法のように、数理最適化を用いて解を探索する場合、制約条件を満たす初期解(遺伝的アルゴリズムにおける第1世代の個体)を生成する必要があり、制約条件が厳しい場合に、初期解を生成することが困難であるという問題がある。
本発明の目的は、上述した課題を解決する解探索装置、解探索方法及びプログラム、スケジュール生成装置、スケジュール生成方法及びプログラム、並びに充電制御システムを提供することにある。
However, as in the method disclosed in Patent Document 1, when searching for a solution using mathematical optimization, it is necessary to generate an initial solution (first generation individual in the genetic algorithm) that satisfies a constraint condition, There is a problem that it is difficult to generate an initial solution when the constraint condition is severe.
An object of the present invention is to provide a solution search device, a solution search method and program, a schedule generation device, a schedule generation method and program, and a charge control system that solve the above-described problems.
本発明は上記の課題を解決するためになされたものであり、制約条件を満たす解を探索する解探索装置であって、前記制約条件より緩い条件である仮制約条件を満たす個体を生成する個体生成部と、所定の評価関数を用いて、前記個体について評価値を算出する評価値算出部と、前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行する世代計算部と、前記世代計算部が前記世代計算を実行したときに、前記仮制約条件を前記制約条件に近い条件に変更する条件変更部と、前記仮制約条件が前記制約条件と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体から解を導き出す解導出部とを備えることを特徴とする。 The present invention has been made to solve the above-described problem, and is a solution search apparatus that searches for a solution that satisfies a constraint condition, and that generates an individual that satisfies a temporary constraint condition that is looser than the constraint condition. A generation unit, an evaluation value calculation unit that calculates an evaluation value for the individual using a predetermined evaluation function, and the individual is selected based on the probability based on the evaluation value calculated by the evaluation value calculation unit. A generation calculation unit that repeatedly executes a generation calculation that generates a new individual that satisfies the temporary constraint condition by genetic operation according to a genetic algorithm; and when the generation calculation unit executes the generation calculation, the temporary constraint condition is A condition change unit for changing to a condition close to the constraint condition, and after the temporary constraint condition becomes equal to the constraint condition, derive a solution from the individual generated by the generation calculation of the generation calculation unit Characterized in that it comprises a solution deriving unit.
また、本発明において前記評価値算出部は、前記仮制約条件が前記制約条件と等しくなるまで、前記個体が前記制約条件を満たす値に近いほど高い評価を示す評価値を導出する仮評価関数を用いて、前記個体について評価値を算出し、前記仮制約条件が前記制約条件と等しくなった後に、前記評価関数を用いて前記個体について評価値を算出し、前記解導出部は、前記評価値算出部が前記評価関数を用いて算出した評価値に基づいて、前記世代計算部の前記世代計算によって生成された個体から解を導き出すことを特徴とする。 Further, in the present invention, the evaluation value calculation unit calculates a temporary evaluation function for deriving an evaluation value indicating a higher evaluation as the individual is closer to a value satisfying the constraint condition until the temporary constraint condition is equal to the constraint condition. Using the evaluation function to calculate an evaluation value for the individual after the temporary constraint condition is equal to the constraint condition, and the solution derivation unit is configured to calculate the evaluation value for the individual. Based on the evaluation value calculated by the calculation unit using the evaluation function, a solution is derived from the individual generated by the generation calculation of the generation calculation unit.
また、本発明において前記世代計算部は、前記仮制約条件の少なくとも1つの条件に違反しない範囲で、前記遺伝的操作を実行することを特徴とする。 In the present invention, the generation calculation unit executes the genetic operation within a range that does not violate at least one of the provisional constraint conditions.
また、本発明において前記世代計算部は、前記遺伝的操作において突然変異操作を行う場合に、前記個体のうち前記評価値が変動しやすい部分が前記遺伝的操作の対象となる確率が高くなる所定の確率に基づいて前記遺伝的操作を行うことを特徴とする。 Further, in the present invention, the generation calculation unit, when performing a mutation operation in the genetic operation, a predetermined probability that a portion in which the evaluation value is likely to vary among the individuals becomes a target of the genetic operation is high. The genetic operation is performed based on the probability of.
また、本発明は、制約条件を満たす解を探索する解探索装置を用いた解探索方法であって、個体生成部が、前記制約条件より緩い条件である仮制約条件を満たす個体を生成するステップと、評価値算出部が、所定の評価関数を用いて、前記個体について評価値を算出するステップと、世代計算部が、前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行するステップと、条件変更部が、前記世代計算部が前記世代計算を実行したときに、前記仮制約条件を前記制約条件に近い条件に変更するステップと、解導出部が、前記仮制約条件が前記制約条件と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体から解を導き出すステップとを有することを特徴とする。 Further, the present invention provides a solution search method using a solution search apparatus for searching for a solution that satisfies a constraint condition, wherein the individual generation unit generates an individual that satisfies a temporary constraint condition that is a looser condition than the constraint condition. And an evaluation value calculation unit calculating an evaluation value for the individual using a predetermined evaluation function, and a generation calculation unit based on the probability based on the evaluation value calculated by the evaluation value calculation unit. A step of repeatedly executing a generation calculation for generating a new individual satisfying the provisional constraint condition by a genetic operation related to a genetic algorithm, a condition changing unit, and the generation calculation unit executing the generation calculation The temporary constraint condition is changed to a condition close to the constraint condition, and the solution derivation unit, after the temporary constraint condition becomes equal to the constraint condition, the generation of the generation calculation unit Characterized by a step of deriving a solution from an individual that is generated by the calculation.
また、本発明は、コンピュータを、所定の制約条件より緩い条件である仮制約条件を満たす個体を生成する個体生成部、所定の評価関数を用いて、前記個体について評価値を算出する評価値算出部、前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行する世代計算部、前記世代計算部が前記世代計算を実行したときに、前記仮制約条件を前記制約条件に近い条件に変更する条件変更部、前記仮制約条件が前記制約条件と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体から解を導き出す解導出部として機能させるためのプログラムである。 In addition, the present invention provides an evaluation value calculation for calculating an evaluation value for an individual using a predetermined evaluation function, an individual generation unit that generates an individual that satisfies a temporary constraint condition that is a condition looser than a predetermined constraint condition. Selecting the individual based on the probability based on the evaluation value calculated by the evaluation value calculation unit, and repeating generational generation to generate a new individual that satisfies the temporary constraint condition through a genetic operation related to a genetic algorithm A generation calculation unit to be executed, a condition change unit for changing the temporary constraint condition to a condition close to the constraint condition when the generation calculation unit has executed the generation calculation, and the temporary constraint condition is equal to the constraint condition This is a program for functioning as a solution derivation unit that derives a solution from an individual generated by the generation calculation of the generation calculation unit later.
また、本発明は、二次電池を備える設備における当該二次電池の充電スケジュールを生成するスケジュール生成装置であって、単位時間に前記設備が電力系統から供給を受ける電力が所定の契約電力より高い電力である仮契約電力を超えないようにする、という条件を含む仮制約条件を満たす個体を生成する個体生成部と、電気代が小さいほど高い評価を示す評価値を導出する評価関数を用いて、前記個体について評価値を算出する評価値算出部と、前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行する世代計算部と、前記世代計算部が前記世代計算を実行したときに、前記仮契約電力を前記契約電力に近い値に変更する条件変更部と、前記仮契約電力が前記契約電力と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体に基づいて、前記充電スケジュールを生成する解導出部とを備えることを特徴とする。 In addition, the present invention is a schedule generation device that generates a charging schedule for a secondary battery in a facility including a secondary battery, and the power that the facility receives from the power system per unit time is higher than a predetermined contract power Using an individual generation unit that generates an individual that satisfies the provisional constraint condition that does not exceed the provisional contract power, which is power, and an evaluation function that derives an evaluation value that indicates a higher evaluation as the electricity bill is smaller An evaluation value calculation unit for calculating an evaluation value for the individual, and selecting the individual based on a probability based on the evaluation value calculated by the evaluation value calculation unit, and performing the temporary constraint by a genetic operation according to a genetic algorithm A generation calculation unit that repeatedly executes generation calculation that generates a new individual that satisfies the condition, and when the generation calculation unit executes the generation calculation, the provisional contract power is A condition change unit that changes to a value close to about power, and the charge schedule is generated based on the individual generated by the generation calculation of the generation calculation unit after the provisional contract power becomes equal to the contract power And a solution deriving unit.
また、本発明において前記評価値算出部は、前記仮契約電力が前記契約電力と等しくなるまで、単位時間に前記設備が電力系統から供給を受ける電力の最大値が小さいほど高い評価を示す評価値を導出する仮評価関数を用いて、前記個体について評価値を算出し、前記仮契約電力が前記契約電力と等しくなった後に、前記評価関数を用いて前記個体について評価値を算出し、前記解導出部は、前記評価値算出部が前記評価関数を用いて算出した評価値に基づいて、前記世代計算部の前記世代計算によって生成された個体から解を導き出すことを特徴とする。 Further, in the present invention, the evaluation value calculation unit indicates an evaluation value indicating a higher evaluation as the maximum value of power supplied from the power system to the facility per unit time is smaller until the provisional contract power becomes equal to the contract power. An evaluation value is calculated for the individual using a temporary evaluation function for deriving, and after the temporary contract power becomes equal to the contract power, an evaluation value is calculated for the individual using the evaluation function, and the solution The derivation unit derives a solution from the individual generated by the generation calculation of the generation calculation unit based on the evaluation value calculated by the evaluation value calculation unit using the evaluation function.
また、本発明において前記設備は、前記二次電池及び当該二次電池を充電する充電器を複数備え、前記仮制約条件は、前記充電器それぞれが同時に複数の二次電池を充電してはならないという条件を含み、前記世代計算部は、前記遺伝的操作において交叉操作または突然変異操作を行う場合に、前記充電器単位で操作を行うことを特徴とする。 Further, in the present invention, the facility includes a plurality of chargers that charge the secondary battery and the secondary battery, and the temporary constraint condition is that each of the chargers must not simultaneously charge a plurality of secondary batteries. The generation calculation unit performs an operation in units of the charger when performing a crossover operation or a mutation operation in the genetic operation.
また、本発明において前記世代計算部は、前記遺伝的操作において突然変異操作を行う場合に、前記個体のうち電気代が安い時間帯が前記遺伝的操作の対象となる確率が高くなる所定の確率に基づいて前記遺伝的操作を行うことを特徴とする。 Further, in the present invention, the generation calculation unit, when performing a mutation operation in the genetic operation, the predetermined probability that the time period in which the electricity cost is low among the individuals is a target of the genetic operation is high Based on the above, the genetic operation is performed.
また、本発明は、二次電池を備える設備における当該二次電池の充電スケジュールを生成するスケジュール生成装置を用いたスケジュール生成方法であって、個体生成部が、単位時間に前記設備が電力系統から供給を受ける電力が所定の契約電力より高い値の仮契約電力を超えないようにする、という条件を含む仮制約条件を満たす個体を生成するステップと、評価値算出部が、電気代が小さいほど高い評価を示す評価値を導出する評価関数を用いて、前記個体について評価値を算出するステップと、世代計算部が、前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行するステップと、条件変更部が、前記世代計算部が前記世代計算を実行したときに、前記仮契約電力を前記契約電力に近い値に変更するステップと、解導出部が、前記仮契約電力が前記契約電力と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体に基づいて、前記充電スケジュールを生成するステップとを有することを特徴とする。 Further, the present invention is a schedule generation method using a schedule generation device for generating a charging schedule of the secondary battery in the facility including the secondary battery, wherein the individual generation unit is connected to the power system in unit time. The step of generating an individual that satisfies the provisional constraint condition including the condition that the supplied power does not exceed the provisional contract power with a value higher than the predetermined contract power, and the evaluation value calculation unit has a smaller electricity cost. A step of calculating an evaluation value for the individual using an evaluation function for deriving an evaluation value indicating a high evaluation, and a generation calculation unit, based on the probability based on the evaluation value calculated by the evaluation value calculation unit, A step of selecting and repeatedly executing a generation calculation for generating a new individual that satisfies the provisional constraint condition by a genetic operation related to a genetic algorithm; and a condition change However, when the generation calculation unit executes the generation calculation, the step of changing the temporary contract power to a value close to the contract power, and the solution derivation unit, the temporary contract power is equal to the contract power And generating the charging schedule based on the individual generated by the generation calculation of the generation calculation unit.
また、本発明は、コンピュータを、二次電池を備える設備が単位時間に電力系統から供給を受ける電力が所定の契約電力より高い値の仮契約電力を超えないようにする、という条件を含む仮制約条件を満たす個体を生成する個体生成部、電気代が小さいほど高い評価を示す評価値を導出する評価関数を用いて、前記個体について評価値を算出する評価値算出部、前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して遺伝的アルゴリズムに係る遺伝的操作により、前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行する世代計算部、前記世代計算部が前記世代計算を実行したときに、前記仮契約電力を前記契約電力に近い値に変更する条件変更部、前記仮契約電力が前記契約電力と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体に基づいて、前記二次電池の充電スケジュールを生成する解導出部として機能させるためのプログラムである。 In addition, the present invention provides a provisional computer including a condition that a facility provided with a secondary battery prevents power received from the power system per unit time from exceeding a provisional contract power having a value higher than a predetermined contract power. An individual generation unit that generates an individual that satisfies a constraint condition, an evaluation value calculation unit that calculates an evaluation value for the individual using an evaluation function that derives an evaluation value that indicates higher evaluation as the electricity bill is smaller, and the evaluation value calculation unit A generation calculation unit that repeatedly executes generation calculation to generate a new individual that satisfies the temporary constraint condition by genetic operation according to a genetic algorithm by selecting the individual based on a probability based on the evaluation value calculated by A condition changing unit that changes the temporary contract power to a value close to the contract power when the generation calculation unit executes the generation calculation, after the temporary contract power becomes equal to the contract power , Based on an individual that has been generated by the generation calculation of the generation calculator is a program for functioning as a solution deriving unit for generating a charging schedule of the secondary battery.
また、本発明は、二次電池を備える設備における当該二次電池の充電を制御する充電制御システムであって、単位時間に前記設備が電力系統から供給を受ける電力が所定の契約電力より高い電力である仮契約電力を超えないようにする、という条件を含む仮制約条件を満たす個体を生成する個体生成部と、電気代が小さいほど高い評価を示す評価値を導出する評価関数を用いて、前記個体について評価値を算出する評価値算出部と、前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行する世代計算部と、前記世代計算部が前記世代計算を実行したときに、前記仮契約電力を前記契約電力に近い値に変更する条件変更部と、前記仮契約電力が前記契約電力と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体に基づいて、前記充電スケジュールを生成する解導出部とを備えるスケジュール生成装置と、前記解導出部が生成した充電スケジュールに従って前記二次電池の充電を行う充電器とを備えることを特徴とする。 In addition, the present invention is a charge control system for controlling charging of a secondary battery in a facility including a secondary battery, wherein the power that the facility receives from the power system per unit time is higher than a predetermined contract power Using an individual generation unit that generates an individual that satisfies a temporary constraint condition including a condition that the provisional contract power is not exceeded, and an evaluation function that derives an evaluation value that indicates a higher evaluation as the electricity cost is smaller, An evaluation value calculation unit for calculating an evaluation value for the individual, and selecting the individual based on a probability based on the evaluation value calculated by the evaluation value calculation unit, and the temporary constraint condition by a genetic operation according to a genetic algorithm A generation calculation unit that repeatedly executes a generation calculation that generates a new individual that satisfies the condition, and when the generation calculation unit executes the generation calculation, the temporary contract power is a value close to the contract power A condition changing unit for changing, and a solution derivation unit for generating the charging schedule based on the individual generated by the generation calculation of the generation calculation unit after the provisional contract power becomes equal to the contract power. The apparatus includes a schedule generation device and a charger that charges the secondary battery according to a charging schedule generated by the solution derivation unit.
本発明によれば、解探索装置及びスケジュール生成装置は、初期解となる個体を容易に生成しつつ、制約条件を満たす適正な解を得ることができる。 According to the present invention, the solution search device and the schedule generation device can obtain an appropriate solution that satisfies the constraint conditions while easily generating an individual as an initial solution.
《第1の実施形態》
以下、図面を参照しながら本発明の実施形態について詳しく説明する。
第1の実施形態に係るスケジュール生成装置100(解探索装置)は、二次電池を搭載する複数のEVと当該EVを充電する複数の充電器とを備える設備において、契約電力の条件を満たしつつ全体の電気代を抑えるための、二次電池の充電スケジュールを生成する装置である。ここで、契約電力とは、単位時間に電力系統から供給を受けることができる電力の上限値として、電力会社との契約で定められた電力のことである。なお、第1の実施形態に係る設備には、複数の充電器が備えられており、1つの充電器は同時に2以上のEVの二次電池を充電することができない。
<< First Embodiment >>
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The schedule generation device 100 (solution search device) according to the first embodiment satisfies a contract power condition in a facility including a plurality of EVs equipped with secondary batteries and a plurality of chargers that charge the EVs. It is a device that generates a charging schedule for a secondary battery to reduce the overall electricity bill. Here, the contract power is power defined by a contract with an electric power company as an upper limit value of power that can be supplied from the power system per unit time. The facility according to the first embodiment includes a plurality of chargers, and one charger cannot charge two or more EV secondary batteries at the same time.
図1は、本発明の第1の実施形態に係るスケジュール生成装置100の構成を示す概略ブロック図である。
スケジュール生成装置100は、仮制約条件記憶部101、個体生成部102、シミュレータ部103、評価値算出部104、世代計算部105、条件変更部106、解導出部107を備える。
FIG. 1 is a schematic block diagram showing the configuration of the
The
仮制約条件記憶部101は、充放電スケジュールが満たすべき制約条件より緩い条件である仮制約条件を記憶する。なお、本実施形態における制約条件は、単位時間に設備が電力系統から供給を受ける電力が仮契約電力を超えないようにするという条件と、充電器それぞれが同時に複数の二次電池を充電してはならないという条件とを有する。本実施形態において仮契約電力とは、実際の契約電力より大きい電力である。
The temporary constraint
個体生成部102は、仮制約条件記憶部101が記憶する仮制約条件を満たす個体を、初期解として生成する。本明細書において「個体」とは、解の候補、すなわち二次電池の充電スケジュールの候補のことをいう。
The
シミュレータ部103は、設備の電力消費スケジュールとして、各EVを走行させる時刻及び時間、設備内の機器を使用する時刻及び時間を予め定めておき、当該電力消費スケジュールと個体生成部102または世代計算部105が生成した個体とを用いて、設備の電力制御をシミュレートする。シミュレータ部103は、シミュレーションの結果として、単位時間ごとの消費電力と電気代とを出力する。
The
評価値算出部104は、シミュレータ部103によるシミュレーション結果と所定の評価関数または仮評価関数を用いて、各個体について評価値を算出する。本実施形態において評価関数は、電気代が安くなる個体ほど高い評価値を導出する関数である。また、本実施形態において仮評価関数は、電気代が安くかつピーク電力が小さい個体ほど高い評価値を導出する関数である。ここで、ピーク電力とは、単位時間に設備が電力系統から供給を受ける電力の最大値を示す。なお、評価値は、高い値であるほど適正度、評価が高いことを示す。
The evaluation
世代計算部105は、評価値算出部104が算出した評価値に基づく確率に基づいて個体を選択し、遺伝的アルゴリズムに係る遺伝的操作により新たな個体を生成する世代計算を繰り返し実行する。評価値に基づく確率とは、評価値が高い個体ほど選択される可能性が高い確率である。また、世代計算部105は、仮制約条件記憶部101が記憶する仮制約条件を満たすように個体を生成する。
The
条件変更部106は、世代計算部105が世代計算を実行したときに、仮制約条件記憶部101が記憶する仮制約条件を、もとの制約条件に近い条件に変更する。具体的には、条件変更部106は、仮制約条件で設定された仮契約電力を減少させ、契約電力に近い値に変更する。なお、条件変更部106は、世代計算の実行回数と仮契約電力とが単調非増加(広義単調減少)となるように制約条件を変更する。
The
解導出部107は、仮制約条件が制約条件と等しくなった後に、世代計算部105の世代計算によって生成された個体のうち、評価値が最も高い個体を解として導き出し、当該個体に基づいて充放電スケジュールを生成する。
The
ここで、条件変更部106による制約条件の変更方法について説明する。
図2は、制約条件の変更方法の例を示す図である。
例えば、条件変更部106は、図2(A)に示すように、世代計算部105による世代計算を1回行うごとに、一定の電力(例えば、契約電力と初期の仮契約電力の差を整数値で除算して得られる電力)だけ仮契約電力を減少させても良い。
Here, a method for changing the constraint condition by the
FIG. 2 is a diagram illustrating an example of a constraint condition changing method.
For example, as shown in FIG. 2A, the
また、条件変更部106は、図2(B)に示すように、世代計算がある程度繰り返し実行されるまでは、仮契約電力の値を変更せず、世代計算がある程度繰り返し実行されてから仮契約電力を減少させても良い。この場合、条件変更部106は、例えば予め定められた回数だけ世代計算が行われたときに仮契約電力を減少させても良いし、各個体のピーク電力が所定電力以下になったときに仮契約電力を減少させても良い。
In addition, as shown in FIG. 2B, the
また、条件変更部106は、図2(C)に示すように、世代計算がある程度繰り返し実行されるたびに仮契約電力を減少させても良い。この場合、条件変更部106は、例えば予め定められた回数だけ世代計算が行われたときに仮契約電力を減少させても良いし、各個体のピーク電力が所定電力以下になったときに仮契約電力を減少させても良い。
Further, as shown in FIG. 2C, the
また、条件変更部106は、上記変更方法を状況に応じて使い分けても良い。なお、条件変更部106が、各個体のピーク電力を監視して仮契約電力を減少させるか否かを判断する場合、各個体の収束度合いに応じて制約条件を厳しくすることができるため、適切に最適解探索を行うことができる。
In addition, the
次に、本発明の第1の実施形態に係るスケジュール生成装置100の動作について説明する。
図3は、本発明の第1の実施形態に係るスケジュール生成装置100の動作を示すフローチャートである。
まず、スケジュール生成装置100の個体生成部102は、仮制約条件記憶部101が記憶する仮制約条件を満たす個体をN個生成する(ステップS1)。なお、個体生成部102は、乱数に基づいて固体を生成しても良いし、利用者の手入力などによって個体を生成しても良い。
Next, the operation of the
FIG. 3 is a flowchart showing the operation of the
First, the
次に、シミュレータ部103は、個体生成部102が設定した個体ごとに、設備の電力制御をシミュレートし、単位時間ごとに電力系統から供給を受けた電力と電気代とを算出する(ステップS2)。次に、評価値算出部104は、現在の仮制約条件と、実際の制約条件とが等しいか否かを判定する(ステップS3)。すなわち、評価値算出部104は、仮契約電力と実際の契約電力とが等しいか否かを判定する。
Next, the
評価値算出部104は、仮契約電力と実際の契約電力とが異なると判定した場合(ステップS3:NO)、シミュレータ部103によるシミュレーション結果と、上述した仮評価関数を用いて、個体ごとに評価値を算出する(ステップS4)。次に、条件変更部106は、仮制約条件記憶部101が記憶する仮制約条件を、制約条件に近い条件に書き換える(ステップS5)。
When the evaluation
次に、世代計算部105は、各個体について、遺伝的アルゴリズムに基づく遺伝的操作を行う。つまり、世代計算部105は、個体生成部102が生成し、または世代計算部105が生成したある世代の個体の中から、評価値が高い個体が残るように、選択、交叉、または突然変異の操作を行い、次の世代の個体を生成する世代計算を行う。世代計算部105は、以下に示すステップS6〜ステップS11の操作を繰り返し実行することで、世代計算を行う。
Next, the
まず、世代計算部105は、選択、交叉、突然変異の何れの操作を行うかを、ランダムに決定する(ステップS6)。なお、通常、遺伝的アルゴリズムでは、何れの処理を行うかを決定する確率は、交叉操作を行う確率≧選択操作を行う確率≧突然変異操作を行う確率の順に設定される。
First, the
世代計算部105は、交叉操作を行うことを決定した場合(ステップS6:交叉)、複数の個体の中から、評価値算出部104が算出した評価値に応じた重みに基づく確率に従って、2つの個体を選択する(ステップS7)。すなわち、評価値が高い個体ほど重みが大きく、世代計算部105によって選択されやすくなる。
When the
次に、世代計算部105は、選択した2つの個体の一部を入れ替えて、新たな個体を生成する(ステップS8)。交叉の方法としては、世代計算部105が2つの個体で、充電器単位に充電スケジュールを入れ替えることが好ましい。これにより、充電器単位で交叉を行うことで、仮制約条件の一つである、充電器それぞれが同時に複数の二次電池を充電してはならないという条件に違反しない範囲で新たな個体を得ることができる。
Next, the
また、世代計算部105は、ステップS6で突然変異操作を行うことを決定した場合(ステップS6:突然変異)、複数の個体の中から、評価値算出部104が算出した評価値に応じた重みに基づく確率に従って個体を1つ選択する(ステップS9)。
In addition, when the
次に、世代計算部105は、選択した個体の一部を書き換えることで、調整値のパターンを新たに生成する(ステップS10)。突然変異の方法としては、選択した個体において、ある充電器がある二次電池を充電するという部分をランダムに選択し、当該選択した部分と当該充電器が何れの二次電池も充電しない部分とを入れ替えることが好ましい。これにより、仮制約条件の一つである、充電器それぞれが同時に複数の二次電池を充電してはならないという条件に違反しない範囲で新たな個体を得ることができる。
Next, the
また、世代計算部105は、ステップS6で選択操作を行うことを決定した場合(ステップS6:選択)、複数の個体の中から、評価値算出部104が算出した評価値に応じた重みに基づく確率に従って1つの個体を抽出する(ステップS11)。
In addition, when the
世代計算部105は、上述したステップS6〜ステップS11の処理により個体を抽出すると、当該個体について仮制約条件記憶部101が記憶する仮制約条件を満たすか否かを判定する(ステップS12)。そして、世代計算部105は、仮制約条件を満たす個体をN個抽出するまで、上記ステップS6〜ステップS11の処理を繰り返し実行する。
他方、世代計算部105は、仮制約条件を満たす個体をN個抽出すると、ステップS2に戻り、各個体について電力制御シミュレーションを行う。
When the
On the other hand, when the
上記処理を繰り返し実行することで、ステップS3において仮制約条件と制約条件とが等しくなると(ステップS3:YES)、評価値算出部104は、シミュレータ部103によるシミュレーション結果と、上述した評価関数を用いて、個体ごとに評価値を算出する(ステップS13)。そして、解導出部107は、所定の終了条件を満たしたか否かを判定する(ステップS14)。終了条件の例としては、例えば仮制約条件と制約条件とが等しくなってから所定回数の世代計算が行われた場合や、評価値算出部104が算出した評価値の最大値と最小値の差が所定値未満になることなどが挙げられる。
When the temporary constraint condition and the constraint condition become equal in step S3 by repeatedly executing the above processing (step S3: YES), the evaluation
解導出部107は、終了条件を満たしていないと判定した場合(ステップS14:NO)、ステップS6〜ステップS12に係る世代計算を実行する。他方、解導出部107は、終了条件を満たすと判定した場合(ステップS14:YES)、世代計算部105が生成した個体のうち、評価値が最も高い個体を特定し、当該個体に基づいて充電スケジュールを生成する(ステップS15)。
If the
このように、本発明の第1の実施形態に係るスケジュール生成装置100によれば、個体生成部102は、制約条件より相対的に緩い条件である仮制約条件を満たす個体を初期解として生成する。これにより、スケジュール生成装置100は、制約条件が厳しい場合であっても、初期解を容易に生成することができる。また、本発明の第1の実施形態に係るスケジュール生成装置100によれば、解導出部107は、仮制約条件と制約条件とが等しくなった後で、解となる個体を特定する。これにより、スケジュール生成装置100は、制約条件を満たす適正な解を得ることができる。
As described above, according to the
また、本発明の第1の実施形態に係るスケジュール生成装置100によれば、評価値算出部104は、仮制約条件が制約条件と等しくなるまで、ピーク電力が小さいほど高い評価を示す評価値を導出する仮評価関数を用いて評価値を算出する。すなわち評価値算出部104は、仮制約条件が制約条件と等しくなるまで、個体が制約条件を満たす値に近いほど高い評価を示す評価値を導出する仮評価関数を用いて評価値を算出する。これにより、世代計算によって得られる個体を、世代計算を経るごとに制約条件を満たす個体に近づけることができる。
Further, according to the
また、本発明の第1の実施形態に係るスケジュール生成装置100によれば、世代計算部105は、仮制約条件の少なくとも1つの条件に違反しない範囲で、遺伝的操作を実行する。これにより、無条件に遺伝的操作を行う場合と比較して、世代計算部105による遺伝的操作の回数を相対的に減らすことができ、全体の計算時間を短くすることができる。
Further, according to the
《第2の実施形態》
次に、本発明の第2の実施形態について説明する。
一般に、夜間の電気代は、日中の電気代と比較して安価に設定されることが多い。そのため、二次電池の充電を夜間に行うことで、電気代を安価に抑えられる可能性が高い。第2の実施形態に係るスケジュール生成装置100は、このように個体のうち評価値が変動しやすい部分が経験則として分かっている場合に、当該部分が操作の対象となる確率が高くなるように操作を行うことで、短い計算時間で、適正な充電スケジュールを得るものである。
<< Second Embodiment >>
Next, a second embodiment of the present invention will be described.
In general, the nighttime electricity bill is often set at a lower cost than the daytime electricity bill. Therefore, there is a high possibility that the electricity bill can be reduced at a low cost by charging the secondary battery at night. In the
具体的には、第2の実施形態に係る世代計算部105は、個体について非充電部分を充電部分に変更する突然変異を行う場合に、電気代が安い時間帯の非充電部分が選択される可能性が高い確率に基づいて、突然変異操作を行う。
Specifically, the
このように、本発明の第2の実施形態によれば、世代計算部105における突然変異操作の対象となる部分が選択される確率が、時間帯によって異なる。これにより、世代計算部105が、電気代を安くするという評価関数に基づく評価値が高い個体を生成する確率を高めることができ、全体の計算時間を短くすることができる。
As described above, according to the second embodiment of the present invention, the probability that the part to be subjected to the mutation operation in the
《第3の実施形態》
次に、本発明の第3の実施形態について説明する。
図4は、本発明の第3の実施形態に係る充電制御システム10の構成を示す概略ブロック図である。
充放電制御システムは、第2の実施形態に係るスケジュール生成装置100と、複数の充電器200とを備え、スケジュール生成装置100と各充電器200とは有線または無線で接続される。各充電器200は、充電制御部201と使用情報取得部202とを備える。
<< Third Embodiment >>
Next, a third embodiment of the present invention will be described.
FIG. 4 is a schematic block diagram showing the configuration of the charging
The charge / discharge control system includes a
充電制御部201は、スケジュール生成装置100の解導出部107が生成した充電スケジュールを取得し、当該充電スケジュールに従ってEVの二次電池を充電する。
The charging
使用情報取得部202は、利用者からスケジュール生成装置100がスケジュールの生成に用いる各パラメータを取得する。パラメータの例としては、例えば契約電力、仮契約電力、設備の単位時間ごとの消費電力などが挙げられる。また、使用情報取得部202は、二次電池と接続されている時間や二次電池の充電率を取得し、これらの情報に基づいて、EVが使用されている時間帯やEVの消費電力を推定し、当該情報をシミュレータ部103によるシミュレーションのパラメータとして用いても良い。
The usage information acquisition unit 202 acquires parameters used by the
このように、第3の実施形態に係る充放電制御システムによれば、第2の実施形態に係るスケジュール生成装置100が生成した充電スケジュールに従って二次電池の充電を行うことができる。また第3の実施形態に係る充放電制御システムによれば、充電スケジュールの生成のための情報をスケジュール生成装置100に入力することができる。
Thus, according to the charge / discharge control system according to the third embodiment, the secondary battery can be charged according to the charge schedule generated by the
なお、本発明の第3の実施形態では、使用情報取得部202が充電器200に設けられる場合について説明したが、これに限られず、例えばスケジュール生成装置100が使用情報取得部202を備えていても良い。
In the third embodiment of the present invention, the case where the usage information acquisition unit 202 is provided in the
また、本発明の第3の実施形態では、スケジュール生成装置100と充電器200とを別個に備える場合について説明したが、これに限られず、複数の充電器200のうち1つがスケジュール生成装置100の機能を備えるものであっても良い。
In the third embodiment of the present invention, the case where the
以上、図面を参照してこの発明のいくつかの実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 Although several embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to that described above, and various designs can be made without departing from the scope of the present invention. It is possible to make changes.
例えば、上述した実施形態では、本発明に係る解探索装置をスケジュール生成装置100に実装する場合について説明したが、これに限られず、遺伝的アルゴリズムを用いる他の装置に解探索装置を実装しても良い。具体的には、経路探索において適正な経路を探索する装置、工場の生産計画を策定する装置、部材断面積を最小化する構造物の構造を策定する装置などに、本発明に係る解探索装置を実装しても良い。
For example, in the above-described embodiment, the case where the solution search apparatus according to the present invention is implemented in the
また、上述した実施形態では、設備が充電器200を複数備える場合について説明したが、これに限られず、スケジュール生成装置100は、充電器200を1つだけ備える設備について充電スケジュールを生成しても良い。
Moreover, although embodiment mentioned above demonstrated the case where an installation was provided with two or
また、上述した実施形態では、充電器200がEVに搭載された二次電池を充電する場合について説明したが、これに限られず、充電器200は無停電源装置などその他の二次電池に充電を行うものであっても良い。
Moreover, although embodiment mentioned above demonstrated the case where the
また、上述した実施形態では、スケジュール生成装置100が、二次電池の充電スケジュールを生成する場合について説明したが、これに限られず、スケジュール生成装置100は、これに加えて二次電池の放電を制御する放電スケジュールを生成しても良い。
Moreover, although embodiment mentioned above demonstrated the case where the schedule production |
なお、上述のスケジュール生成装置100は内部に、コンピュータシステムを有している。そして、上述した各処理部の動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
The above-described
また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。 The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.
10…充電制御システム 100…スケジュール生成装置 101…仮制約条件記憶部 102…個体生成部 103…シミュレータ部 104…評価値算出部 105…世代計算部 106…条件変更部 107…解導出部 200…充電器 201…充電制御部 202…使用情報取得部
DESCRIPTION OF
Claims (13)
前記制約条件より緩い条件である仮制約条件を満たす個体を生成する個体生成部と、
所定の評価関数を用いて、前記個体について評価値を算出する評価値算出部と、
前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行する世代計算部と、
前記世代計算部が前記世代計算を実行したときに、前記仮制約条件を前記制約条件に近い条件に変更する条件変更部と、
前記仮制約条件が前記制約条件と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体から解を導き出す解導出部と
を備えることを特徴とする解探索装置。 A solution search device for searching for a solution that satisfies a constraint condition,
An individual generation unit for generating an individual satisfying a temporary constraint condition that is a condition looser than the constraint condition;
An evaluation value calculation unit for calculating an evaluation value for the individual using a predetermined evaluation function;
The individual is selected based on the probability based on the evaluation value calculated by the evaluation value calculation unit, and generation generation for generating a new individual that satisfies the temporary constraint condition through a genetic operation related to a genetic algorithm is repeatedly executed. The generation calculator,
A condition changing unit that changes the temporary constraint condition to a condition close to the constraint condition when the generation calculation unit executes the generation calculation;
A solution search apparatus comprising: a solution derivation unit that derives a solution from an individual generated by the generation calculation of the generation calculation unit after the temporary constraint condition becomes equal to the constraint condition.
前記解導出部は、前記評価値算出部が前記評価関数を用いて算出した評価値に基づいて、前記世代計算部の前記世代計算によって生成された個体から解を導き出す
ことを特徴とする請求項1に記載の解探索装置。 The evaluation value calculation unit uses a temporary evaluation function for deriving an evaluation value indicating a higher evaluation as the individual is closer to a value satisfying the constraint condition until the temporary constraint condition is equal to the constraint condition. An evaluation value is calculated for the individual, and after the temporary constraint condition is equal to the constraint condition, an evaluation value is calculated for the individual using the evaluation function,
The solution derivation unit derives a solution from an individual generated by the generation calculation of the generation calculation unit based on the evaluation value calculated by the evaluation value calculation unit using the evaluation function. The solution search apparatus according to 1.
ことを特徴とする請求項1または請求項2に記載の解探索装置。 The solution search device according to claim 1, wherein the generation calculation unit executes the genetic operation within a range that does not violate at least one of the temporary constraint conditions.
ことを特徴とする請求項1から請求項3の何れか1項に記載の解探索装置。 The generation calculation unit, when performing a mutation operation in the genetic operation, based on a predetermined probability that the portion of the individual whose evaluation value is likely to vary is likely to be the target of the genetic operation The solution search device according to any one of claims 1 to 3, wherein the genetic operation is performed.
個体生成部が、前記制約条件より緩い条件である仮制約条件を満たす個体を生成するステップと、
評価値算出部が、所定の評価関数を用いて、前記個体について評価値を算出するステップと、
世代計算部が、前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行するステップと、
条件変更部が、前記世代計算部が前記世代計算を実行したときに、前記仮制約条件を前記制約条件に近い条件に変更するステップと、
解導出部が、前記仮制約条件が前記制約条件と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体から解を導き出すステップと
を有することを特徴とする解探索方法。 A solution search method using a solution search device for searching for a solution that satisfies a constraint condition,
An individual generating unit generating an individual satisfying a temporary constraint condition that is a condition looser than the constraint condition;
An evaluation value calculating unit calculating an evaluation value for the individual using a predetermined evaluation function;
A generation in which a generation calculation unit selects the individual based on the probability based on the evaluation value calculated by the evaluation value calculation unit, and generates a new individual that satisfies the temporary constraint condition through a genetic operation related to a genetic algorithm A step of repeatedly performing the calculation;
A condition changing unit, when the generation calculating unit executes the generation calculation, changing the temporary constraint condition to a condition close to the constraint condition;
A solution derivation unit comprising: deriving a solution from an individual generated by the generation calculation of the generation calculation unit after the temporary constraint condition is equal to the constraint condition.
所定の制約条件より緩い条件である仮制約条件を満たす個体を生成する個体生成部、
所定の評価関数を用いて、前記個体について評価値を算出する評価値算出部、
前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行する世代計算部、
前記世代計算部が前記世代計算を実行したときに、前記仮制約条件を前記制約条件に近い条件に変更する条件変更部、
前記仮制約条件が前記制約条件と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体から解を導き出す解導出部
として機能させるためのプログラム。 Computer
An individual generation unit that generates an individual that satisfies a temporary constraint condition that is looser than a predetermined constraint condition;
An evaluation value calculation unit that calculates an evaluation value for the individual using a predetermined evaluation function,
The individual is selected based on the probability based on the evaluation value calculated by the evaluation value calculation unit, and generation generation for generating a new individual that satisfies the temporary constraint condition through a genetic operation related to a genetic algorithm is repeatedly executed. Generation calculator,
A condition changing unit that changes the temporary constraint condition to a condition close to the constraint condition when the generation calculation unit executes the generation calculation;
A program for functioning as a solution derivation unit for deriving a solution from an individual generated by the generation calculation of the generation calculation unit after the temporary constraint condition becomes equal to the constraint condition.
単位時間に前記設備が電力系統から供給を受ける電力が所定の契約電力より高い電力である仮契約電力を超えないようにする、という条件を含む仮制約条件を満たす個体を生成する個体生成部と、
電気代が小さいほど高い評価を示す評価値を導出する評価関数を用いて、前記個体について評価値を算出する評価値算出部と、
前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行する世代計算部と、
前記世代計算部が前記世代計算を実行したときに、前記仮契約電力を前記契約電力に近い値に変更する条件変更部と、
前記仮契約電力が前記契約電力と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体に基づいて、前記充電スケジュールを生成する解導出部と
を備えることを特徴とするスケジュール生成装置。 A schedule generation device that generates a charging schedule for the secondary battery in a facility including the secondary battery,
An individual generating unit that generates an individual that satisfies a provisional constraint condition including a condition that power received by the facility from the power system per unit time does not exceed provisional contract power that is higher than predetermined contract power; and ,
Using an evaluation function for deriving an evaluation value indicating a higher evaluation as the electricity bill is smaller, an evaluation value calculation unit that calculates an evaluation value for the individual,
The individual is selected based on the probability based on the evaluation value calculated by the evaluation value calculation unit, and generation generation for generating a new individual that satisfies the temporary constraint condition through a genetic operation related to a genetic algorithm is repeatedly executed. The generation calculator,
A condition changing unit for changing the provisional contract power to a value close to the contract power when the generation calculation unit executes the generation calculation;
A schedule derivation unit comprising: a solution derivation unit configured to generate the charging schedule based on an individual generated by the generation calculation of the generation calculation unit after the provisional contract power becomes equal to the contract power. apparatus.
前記解導出部は、前記評価値算出部が前記評価関数を用いて算出した評価値に基づいて、前記世代計算部の前記世代計算によって生成された個体から解を導き出す
ことを特徴とする請求項7に記載のスケジュール生成装置。 The evaluation value calculation unit derives an evaluation value indicating a higher evaluation value as the maximum value of the power supplied from the power system to the facility per unit time is smaller until the temporary contract power becomes equal to the contract power. A function is used to calculate an evaluation value for the individual, and after the provisional contract power is equal to the contract power, the evaluation function is used to calculate an evaluation value for the individual,
The solution derivation unit derives a solution from an individual generated by the generation calculation of the generation calculation unit based on the evaluation value calculated by the evaluation value calculation unit using the evaluation function. 8. The schedule generation device according to 7.
前記仮制約条件は、前記充電器それぞれが同時に複数の二次電池を充電してはならないという条件を含み、
前記世代計算部は、前記遺伝的操作において交叉操作または突然変異操作を行う場合に、前記充電器単位で操作を行う
ことを特徴とする請求項7または請求項8に記載のスケジュール生成装置。 The facility includes a plurality of chargers for charging the secondary battery and the secondary battery,
The temporary constraint condition includes a condition that each of the chargers must not charge a plurality of secondary batteries at the same time,
The schedule generation device according to claim 7 or 8, wherein the generation calculation unit performs an operation in units of the charger when performing a crossover operation or a mutation operation in the genetic operation.
ことを特徴とする請求項7から請求項9の何れか1項に記載のスケジュール生成装置。 The generation calculation unit, when performing a mutation operation in the genetic operation, the genetic calculation based on a predetermined probability that a time zone in which the electricity bill is low among the individuals is a target of the genetic operation is high. The schedule generation device according to any one of claims 7 to 9, wherein a manual operation is performed.
個体生成部が、単位時間に前記設備が電力系統から供給を受ける電力が所定の契約電力より高い値の仮契約電力を超えないようにする、という条件を含む仮制約条件を満たす個体を生成するステップと、
評価値算出部が、電気代が小さいほど高い評価を示す評価値を導出する評価関数を用いて、前記個体について評価値を算出するステップと、
世代計算部が、前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行するステップと、
条件変更部が、前記世代計算部が前記世代計算を実行したときに、前記仮契約電力を前記契約電力に近い値に変更するステップと、
解導出部が、前記仮契約電力が前記契約電力と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体に基づいて、前記充電スケジュールを生成するステップと
を有することを特徴とするスケジュール生成方法。 A schedule generation method using a schedule generation device that generates a charging schedule of the secondary battery in a facility including the secondary battery,
The individual generation unit generates an individual that satisfies a provisional constraint condition including a condition that the power supplied from the power system to the facility per unit time does not exceed a provisional contract power with a value higher than a predetermined contract power. Steps,
The evaluation value calculation unit calculates an evaluation value for the individual using an evaluation function for deriving an evaluation value indicating higher evaluation as the electricity cost is smaller;
A generation in which a generation calculation unit selects the individual based on the probability based on the evaluation value calculated by the evaluation value calculation unit, and generates a new individual that satisfies the temporary constraint condition through a genetic operation related to a genetic algorithm A step of repeatedly performing the calculation;
A condition changing unit, when the generation calculation unit executes the generation calculation, changing the temporary contract power to a value close to the contract power;
A solution derivation unit comprising: generating the charging schedule based on the individual generated by the generation calculation of the generation calculation unit after the provisional contract power becomes equal to the contract power. Schedule generation method.
二次電池を備える設備が単位時間に電力系統から供給を受ける電力が所定の契約電力より高い値の仮契約電力を超えないようにする、という条件を含む仮制約条件を満たす個体を生成する個体生成部、
電気代が小さいほど高い評価を示す評価値を導出する評価関数を用いて、前記個体について評価値を算出する評価値算出部、
前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して遺伝的アルゴリズムに係る遺伝的操作により、前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行する世代計算部、
前記世代計算部が前記世代計算を実行したときに、前記仮契約電力を前記契約電力に近い値に変更する条件変更部、
前記仮契約電力が前記契約電力と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体に基づいて、前記二次電池の充電スケジュールを生成する解導出部
として機能させるためのプログラム。 Computer
An individual that generates an individual that satisfies the provisional constraint condition including the condition that the equipment provided with the secondary battery does not exceed the provisional contract power that is higher than the predetermined contract power by the power supplied from the power system per unit time. Generator,
An evaluation value calculation unit for calculating an evaluation value for the individual using an evaluation function for deriving an evaluation value indicating a higher evaluation as the electricity cost is smaller,
A generation calculation for generating a new individual satisfying the temporary constraint condition is repeatedly executed by selecting the individual based on a probability based on the evaluation value calculated by the evaluation value calculation unit and performing a genetic operation related to a genetic algorithm. Generation calculator,
A condition changing unit that changes the provisional contract power to a value close to the contract power when the generation calculation unit executes the generation calculation;
A program for functioning as a solution derivation unit that generates a charging schedule for the secondary battery based on an individual generated by the generation calculation of the generation calculation unit after the provisional contract power becomes equal to the contract power .
単位時間に前記設備が電力系統から供給を受ける電力が所定の契約電力より高い電力である仮契約電力を超えないようにする、という条件を含む仮制約条件を満たす個体を生成する個体生成部と、
電気代が小さいほど高い評価を示す評価値を導出する評価関数を用いて、前記個体について評価値を算出する評価値算出部と、
前記評価値算出部が算出した評価値に基づく確率に基づいて前記個体を選択して、遺伝的アルゴリズムに係る遺伝的操作により前記仮制約条件を満たす新たな個体を生成する世代計算を繰り返し実行する世代計算部と、
前記世代計算部が前記世代計算を実行したときに、前記仮契約電力を前記契約電力に近い値に変更する条件変更部と、
前記仮契約電力が前記契約電力と等しくなった後に、前記世代計算部の前記世代計算によって生成された個体に基づいて、前記充電スケジュールを生成する解導出部と
を備えるスケジュール生成装置と、
前記解導出部が生成した充電スケジュールに従って前記二次電池の充電を行う充電器と
を備えることを特徴とする充電制御システム。 A charge control system for controlling charging of the secondary battery in a facility including the secondary battery,
An individual generating unit that generates an individual that satisfies a provisional constraint condition including a condition that power received by the facility from the power system per unit time does not exceed provisional contract power that is higher than predetermined contract power; and ,
Using an evaluation function for deriving an evaluation value indicating a higher evaluation as the electricity bill is smaller, an evaluation value calculation unit that calculates an evaluation value for the individual,
The individual is selected based on the probability based on the evaluation value calculated by the evaluation value calculation unit, and generation generation for generating a new individual that satisfies the temporary constraint condition through a genetic operation related to a genetic algorithm is repeatedly executed. The generation calculator,
A condition changing unit for changing the provisional contract power to a value close to the contract power when the generation calculation unit executes the generation calculation;
A schedule generation device comprising: a solution derivation unit that generates the charging schedule based on an individual generated by the generation calculation of the generation calculation unit after the provisional contract power becomes equal to the contract power;
A charging control system comprising: a charger that charges the secondary battery according to a charging schedule generated by the solution deriving unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013031187A JP6327498B2 (en) | 2013-02-20 | 2013-02-20 | Solution search device, solution search method and program, schedule generation device, schedule generation method and program, and charging control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013031187A JP6327498B2 (en) | 2013-02-20 | 2013-02-20 | Solution search device, solution search method and program, schedule generation device, schedule generation method and program, and charging control system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014160399A true JP2014160399A (en) | 2014-09-04 |
JP6327498B2 JP6327498B2 (en) | 2018-05-23 |
Family
ID=51612042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013031187A Active JP6327498B2 (en) | 2013-02-20 | 2013-02-20 | Solution search device, solution search method and program, schedule generation device, schedule generation method and program, and charging control system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6327498B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019191887A (en) * | 2018-04-24 | 2019-10-31 | 富士通株式会社 | Method, program and apparatus for optimization computation |
EP3674959A1 (en) | 2018-12-26 | 2020-07-01 | Fujitsu Limited | Optimization calculation method and information processing apparatus |
JP2021103417A (en) * | 2019-12-25 | 2021-07-15 | 株式会社豊田中央研究所 | Optimization device, optimization method, and computer program |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004250961A (en) * | 2003-02-19 | 2004-09-09 | Toshiba Corp | Optimum operational control system for wide area plant |
JP2012213316A (en) * | 2011-03-30 | 2012-11-01 | General Electric Co <Ge> | System and method for optimal load planning of electric vehicle charging |
-
2013
- 2013-02-20 JP JP2013031187A patent/JP6327498B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004250961A (en) * | 2003-02-19 | 2004-09-09 | Toshiba Corp | Optimum operational control system for wide area plant |
JP2012213316A (en) * | 2011-03-30 | 2012-11-01 | General Electric Co <Ge> | System and method for optimal load planning of electric vehicle charging |
Non-Patent Citations (2)
Title |
---|
掛水 貴之 ほか: "TS法によるコンタクトセンター要員シフト作成法", 第68回(平成18年)全国大会講演論文集(2) 人工知能と認知科学, JPN6016035773, March 2006 (2006-03-01), pages 2 - 133, ISSN: 0003400068 * |
高濱 徹行 ほか: "ε制約遺伝的アルゴリズムによる制約付き最適化", 情報処理学会論文誌 第47巻 第6号, JPN6016035772, June 2006 (2006-06-01), pages 1861 - 1871, ISSN: 0003400067 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019191887A (en) * | 2018-04-24 | 2019-10-31 | 富士通株式会社 | Method, program and apparatus for optimization computation |
JP7067240B2 (en) | 2018-04-24 | 2022-05-16 | 富士通株式会社 | Optimization calculation method, optimization calculation program and optimization calculation device |
US11367005B2 (en) | 2018-04-24 | 2022-06-21 | Fujitsu Limited | Optimization calculation method and optimization calculation apparatus |
EP3674959A1 (en) | 2018-12-26 | 2020-07-01 | Fujitsu Limited | Optimization calculation method and information processing apparatus |
JP2020106957A (en) * | 2018-12-26 | 2020-07-09 | 富士通株式会社 | Optimization calculation method, optimization calculation apparatus and optimization calculation program |
US11386332B2 (en) | 2018-12-26 | 2022-07-12 | Fujitsu Limited | Optimization calculation method and information processing apparatus |
JP7137074B2 (en) | 2018-12-26 | 2022-09-14 | 富士通株式会社 | Optimization calculation method, optimization calculation device, and optimization calculation program |
JP2021103417A (en) * | 2019-12-25 | 2021-07-15 | 株式会社豊田中央研究所 | Optimization device, optimization method, and computer program |
JP7350650B2 (en) | 2019-12-25 | 2023-09-26 | 株式会社豊田中央研究所 | Optimization device, optimization method, and computer program |
Also Published As
Publication number | Publication date |
---|---|
JP6327498B2 (en) | 2018-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | State space model of aggregated electric vehicles for frequency regulation | |
US9331503B2 (en) | Systems and methods of controlling battery deterioration by controlling battery state-of-health during power exchange | |
JP6176113B2 (en) | Battery control system, battery control device, battery control method, and program | |
Alhelou et al. | Multi agent electric vehicle control based primary frequency support for future smart micro-grid | |
WO2017000853A1 (en) | Active power distribution network multi-time scale coordinated optimization scheduling method and storage medium | |
JP4203602B2 (en) | Operation support method and apparatus for power supply equipment | |
WO2012127585A1 (en) | Operation schedule creating method, operation schedule creating apparatus, and operation schedule creating program | |
JPWO2016084347A1 (en) | Energy management apparatus, energy management method and program | |
Karmiris et al. | Peak shaving control method for energy storage | |
CN102769155A (en) | Ordered electric automobile charging method orientated to active intelligent distribution network | |
US20150268643A1 (en) | Quantifying the Impact of Constraints on a Grid-Tied Microgrid Using Optimal Control | |
JP6327498B2 (en) | Solution search device, solution search method and program, schedule generation device, schedule generation method and program, and charging control system | |
Naidji et al. | Efficient allocation strategy of energy storage systems in power grids considering contingencies | |
Zhang et al. | HESS sizing methodology for an existing thermal generator for the promotion of AGC response ability | |
CN114899856A (en) | Method, system, equipment and medium for adjusting power of electric vehicle charging pile | |
JP5095036B1 (en) | Hydroelectric power generation plan adjustment apparatus, hydroelectric power generation plan adjustment method, and program | |
JP2016220450A (en) | Power supply controller, power supply system, power source control method, and program | |
JP2013150473A (en) | System, device and program for controlling supply and demand for power system | |
de Quevedo et al. | Joint expansion planning of distribution networks, EV charging stations and wind power generation under uncertainty | |
Ali et al. | Multiobjective optimized smart charge controller for electric vehicle applications | |
Hijjo et al. | Battery management system in isolated microgrids considering forecast uncertainty | |
JP6705319B2 (en) | Integrated control device, integrated control system, integrated control method, and integrated control program | |
Mitsukuri et al. | Study on Voltage Regulation in a Distribution System Using Electric Vehicles—Optimal Real and Reactive Power Dispatch by Centralized Control | |
Daud et al. | An optimal state of charge feedback control strategy for battery energy storage in hourly dispatch of PV sources | |
CN105958479B (en) | A kind of microgrid energy management optimization method containing sodium-sulphur battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150918 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160913 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20161115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170502 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170512 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20170609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180405 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6327498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |