JP2014159733A - Thermoplastic resin laminated polyolefin foamed heat insulation material for metal roof, metal roof, and building - Google Patents

Thermoplastic resin laminated polyolefin foamed heat insulation material for metal roof, metal roof, and building Download PDF

Info

Publication number
JP2014159733A
JP2014159733A JP2014033692A JP2014033692A JP2014159733A JP 2014159733 A JP2014159733 A JP 2014159733A JP 2014033692 A JP2014033692 A JP 2014033692A JP 2014033692 A JP2014033692 A JP 2014033692A JP 2014159733 A JP2014159733 A JP 2014159733A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
metal roof
metal
mass
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014033692A
Other languages
Japanese (ja)
Inventor
Muneaki Tsukada
宗暁 塚田
Kenji Ueno
賢司 上野
Kaoru Mori
森  薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Pef Products Inc
Original Assignee
Toray Pef Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Pef Products Inc filed Critical Toray Pef Products Inc
Priority to JP2014033692A priority Critical patent/JP2014159733A/en
Publication of JP2014159733A publication Critical patent/JP2014159733A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic resin laminated polyolefin foamed heat insulation material for a metal roof, having high quality, capable of preventing changes, such as cracking, chipping, and bubble collapsing, caused by ultraviolet degradation even when used over a long period at a place subjected to, directly or indirectly, influence of ultraviolet rays included in sunlight, and maintaining heat-insulating and dew-proofing characteristics, and to provide a metal roof and a building including the thermoplastic resin laminated polyolefin foamed heat insulation material.SOLUTION: A thermoplastic resin laminated polyolefin foamed heat insulation material for a metal roof is formed by laminating a polyolefin resin foam layer and a thermoplastic resin layer. The thermoplastic resin layer includes a light blocking agent, and further includes an ultraviolet absorber and/or a light stabilizer.

Description

本発明は金属屋根に用いるポリオレフィン系樹脂発泡体に耐候性を有した熱可塑性樹脂層を設けた金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材、それを用いた金属屋根および建築物に関するものである。 TECHNICAL FIELD The present invention relates to a thermoplastic resin-laminated polyolefin foam insulation for metal roof, in which a thermoplastic resin layer having weather resistance is provided on a polyolefin resin foam used for a metal roof, and a metal roof and a building using the same. is there.

ポリオレフィン系樹脂発泡体は断熱性、緩衝性、圧縮回復性に優れ、その特性から施工性が良く、冷暖房機器の配管用断熱材、水道管凍結防止用断熱材、金属屋根断熱材など保温、保冷、断熱、防露の分野で広く使用されている。
金属屋根においては、金属の特性上熱を伝えやすい性質があり、室内は外気温に相当する伝熱のため夏季は温度上昇、冬季は温度降下がみられ、最適な室内温度を維持するには多くのエネルギー消費を伴う空調管理を行う必要があった。また雰囲気の湿度と外気温度によっては金属屋根の室内側に結露が発生し、場合によっては結露水の滴下による室内環境の悪化や室内の電子機器の故障などを生ずることがあった。
そのため金属屋根の室内側には断熱や防露を目的に各種の断熱材が用いられ、中でも断熱や防露特性に優れ、更に加工性にも優れたプラスチック樹脂中に気泡を有する発泡体が好適に用いられている。プラスチック樹脂の発泡体においては、断熱や防露特性に関連する厚みの回復性や加工時の適度な柔軟性を有することからポリオレフィン系樹脂発泡体が好適に用いられているが、ポリオレフィン系樹脂は太陽光に含まれる紫外線により劣化しやすく、直接または間接的に太陽光の影響を受ける部分では紫外線劣化により発泡体の気泡構造が崩壊し、長期に断熱や防露特性を維持することが困難であった。
そこで、断熱や防露特性を維持し更に紫外線劣化を防止する耐候性能を付与するため様々な対応技術が開示されてきた。
例えばポリウレタン樹脂製発泡材で構成された断熱発泡層の面に、ポリウレタン等の高強度樹脂製の補強防水層を吹付等により設け、更にこの補強防水層の表面に耐紫外線等の耐太陽光性の表面層を、塗布又は吹付等により設けた屋根の施工構造が開示されているが(特許文献1参照)、吹付け施工のポリウレタン樹脂は柔軟性に劣り、運搬や取付け等の施工作業時に材料や人体等による局部的圧縮を受けた場合、厚み回復がなく、当該部は断熱性能が低下する問題があった。
また合成樹脂発泡体の少なくとも一方表面上にケイソウ土を含有する無機質層を設けてなる耐火・耐候性断熱材が開示されているが(特許文献2参照)、無機質を主体とする層では衝撃による割れ、亀裂が発生しやすく、薄膜の無機質層では運搬等の施工作業時に割れ、亀裂が発生しやすく、厚膜の無機質層では重量が増加し運搬等の施工作業性が低下する問題があった。
Polyolefin resin foam is excellent in heat insulation, buffering, and compression recovery, and has good workability due to its characteristics. Heat insulation and insulation for pipe insulation of air conditioning equipment, insulation for water pipe freezing prevention, metal roof insulation, etc. Widely used in the field of insulation, dew prevention.
The metal roof has the property of easily transferring heat due to the characteristics of the metal, and the temperature rises in the summer due to heat transfer equivalent to the outside temperature, and the temperature drops in the winter, so that the optimum indoor temperature can be maintained. It was necessary to perform air conditioning management with much energy consumption. Further, depending on the humidity of the atmosphere and the outside air temperature, dew condensation may occur on the indoor side of the metal roof, and in some cases, the indoor environment may be deteriorated due to dripping of dew condensation water, or the electronic equipment in the room may be damaged.
Therefore, various heat insulating materials are used on the indoor side of the metal roof for the purpose of heat insulation and dew prevention. Among them, a foam having bubbles in a plastic resin having excellent heat insulation and dew prevention properties and excellent workability is preferable. It is used for. In plastic resin foams, polyolefin resin foams are preferably used because they have thickness recoverability related to heat insulation and dewproof properties and moderate flexibility during processing. It is easy to deteriorate due to the ultraviolet rays contained in the sunlight, and the foam structure of the foam collapses due to the ultraviolet rays deterioration in the part that is directly or indirectly affected by sunlight, and it is difficult to maintain the heat insulation and dew-proof characteristics for a long time. there were.
Accordingly, various corresponding techniques have been disclosed in order to provide weather resistance that maintains heat insulation and dew proof characteristics and further prevents UV degradation.
For example, a reinforced waterproof layer made of high-strength resin such as polyurethane is provided by spraying on the surface of the heat insulating foam layer made of polyurethane resin foam material, and further, the surface of this reinforced waterproof layer is resistant to sunlight such as ultraviolet rays. Although the construction structure of the roof in which the surface layer is provided by coating or spraying is disclosed (see Patent Document 1), the polyurethane resin of spray construction is inferior in flexibility and is a material during construction work such as transportation and mounting. When subjected to local compression by a human body or the like, there is no thickness recovery, and there is a problem that the heat insulation performance of the part is lowered.
Further, a fireproof / weatherproof heat insulating material is disclosed in which an inorganic layer containing diatomaceous earth is provided on at least one surface of a synthetic resin foam (see Patent Document 2). Cracks and cracks are likely to occur. Thin film inorganic layers are susceptible to cracks and cracks during construction work such as transportation. Thick film inorganic layers have increased weight and reduced transportation workability. .

特開2008−169688号公報JP 2008-169688 A 特開平1−208125号公報JP-A-1-208125

本発明は、かかる従来技術の背景に鑑み、直接または間接的に太陽光に含まれる紫外線の影響を受ける場所で長期に渡り使用しても紫外線劣化による亀裂、欠落、気泡崩壊等の変化がなく、断熱や防露特性の維持が可能な優れた高品位の金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材、それを用いた金属屋根および建築物を提供することにある。 In view of the background of such prior art, the present invention has no change such as cracks, omissions, bubble collapse, etc. due to ultraviolet deterioration even when used for a long period of time directly or indirectly under the influence of ultraviolet rays contained in sunlight. Another object of the present invention is to provide an excellent high-quality thermoplastic resin-laminated polyolefin-based foam insulation for metal roof, which can maintain heat insulation and dew-proof characteristics, and a metal roof and a building using the same.

本発明はかかる課題を解決するために、次の手段を採用するものである。即ち、本発明は、
ポリオレフィン系樹脂発泡体層と熱可塑性樹脂層とが積層された金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材であって、前記熱可塑性樹脂層は、光遮蔽剤を含み、かつ紫外線吸収剤および/または光安定剤を含んでいる金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材を特徴としている。
The present invention employs the following means in order to solve such problems. That is, the present invention
A thermoplastic resin-laminated polyolefin foam insulation for metal roof in which a polyolefin resin foam layer and a thermoplastic resin layer are laminated, wherein the thermoplastic resin layer includes a light shielding agent, and an ultraviolet absorber and It features a thermoplastic resin-laminated polyolefin-based foam insulation for metal roofs that contains a light stabilizer.

本発明の金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材を用いることで、直接または間接的に太陽光に含まれる紫外線の影響を受ける場所で効率的かつ長期に紫外線劣化による亀裂、欠落、気泡崩壊等の表面状態変化のないに優れた断熱材とすることが可能であり、また前記太陽光を受ける部位の断熱材に施工した塗装、被覆カバー材等の遮光施工が不要となるため施工時のトータルコストダウンにも有効である。 By using the thermoplastic resin-laminated polyolefin foam insulation for metal roofs of the present invention, cracks, omissions and bubbles due to UV degradation efficiently and in a long term in places directly or indirectly affected by UV contained in sunlight It is possible to make an excellent heat insulating material without any change in the surface condition such as collapse, and it is not necessary to perform light shielding work such as painting and covering cover material applied to the heat insulating material in the part receiving sunlight. It is also effective in reducing the total cost of

本発明の金属屋根(折り曲げ加工済み)の概略断面図である。It is a schematic sectional drawing of the metal roof (folded) of this invention. 金属ロール(1)を用いて製造した本発明の金属屋根(用部材)の概略断面図である。It is a schematic sectional drawing of the metal roof (member) of this invention manufactured using the metal roll (1). 図2に記載の金属屋根用部材を熱可塑性樹脂層形成側からみた概略平面図である。It is the schematic plan view which looked at the member for metal roofs of FIG. 2 from the thermoplastic resin layer formation side. 金属ロール(2)を用いて製造した本発明の金属屋根(用部材)の概略断面図である。It is a schematic sectional drawing of the metal roof (member) of this invention manufactured using the metal roll (2). 図4に記載の金属屋根用部材を熱可塑性樹脂層形成側からみた概略平面図である。It is the schematic plan view which looked at the member for metal roofs of FIG. 4 from the thermoplastic resin layer formation side. 金属ロール(3)を用いて製造した本発明の金属屋根(用部材)の概略断面図である。It is a schematic sectional drawing of the metal roof (member) of this invention manufactured using the metal roll (3). 図6に記載の金属屋根用部材を熱可塑性樹脂層形成側からみた概略平面図である。It is the schematic plan view which looked at the member for metal roofs of FIG. 6 from the thermoplastic resin layer formation side. 本発明の金属屋根(折り曲げ加工済み)を用いた屋外機器用雨避け構造物の概略図である。It is the schematic of the rain-avoidance structure for outdoor equipment using the metal roof of the present invention (already folded). 図8に記載の金属屋根付近を示す概略断面図である。It is a schematic sectional drawing which shows the metal roof vicinity of FIG. 金属ロール(2)を用い、貫通孔加工した製造した本発明の金属屋根(用部材)の概略断面図である。It is a schematic sectional drawing of the metal roof (member for use) of this invention manufactured by carrying out the through-hole process using the metal roll (2). 金属ロール(2)を用い、貫通孔加工した製造した本発明の金属屋根(用部材)の概略平面図である。It is a schematic plan view of the metal roof (member for use) of the present invention produced by processing through holes using the metal roll (2).

本発明の金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材(以下、単に金属屋根用断熱材ということがある)とは、所定の形状に折り曲げ加工した金属屋根に好適に適用しうる断熱材であり、ポリオレフィン系樹脂発泡体層と熱可塑性樹脂層とが積層された構成を有している。
この熱可塑性樹脂層には、該ポリオレフィン系樹脂発泡体に効率的かつ長期に直接または間接的に太陽光に含まれる紫外線の影響を受ける場所での使用に耐えうる耐候性を付与するため、光遮蔽剤を含んでおり、かつ、紫外線吸収剤および/または光安定剤を含んでいる。従って、本発明の金属屋根用断熱材を金属板に積層して金属屋根とする場合は、ポリオレフィン系樹脂発泡体層が金属板と接するように積層し、熱可塑性樹脂層が表面層となるように構成する。
かかる紫外線吸収剤や光安定剤は、紫外線による高分子のラジカル発生の抑制やラジカル捕捉により熱可塑性樹脂層やポリオレフィン系樹脂発泡体層の紫外線による劣化を軽減する効果を発揮するもので、光遮蔽剤は、光遮蔽によりポリオレフィン系樹脂発泡体層へ紫外線や可視光線の透過を軽減する効果を発揮する。このように光遮蔽剤と共に、紫外線吸収剤および/または光安定剤を含む熱可塑性樹脂層をポリオレフィン系樹脂発泡体層に設けることで、これらの相乗効果により紫外線による劣化を効果的に軽減することが可能となり、その結果、長期耐候性能を付与することが可能となる。
本発明に用いる紫外線吸収剤はベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系、シアノアクリレート系が好ましく、更に前記紫外線吸収剤の中で10質量%減量温度が250℃以上で且つ分子量が250以上を満たす特性のものが好ましい。10質量%減量温度が250℃未満であれば熱可塑性樹脂と溶融混練する際、一部分解し耐候性能が低下する場合や一部分解により加熱溶融加工時の分散不良、混練不良といった不具合が発生する場合がある。また、分子量が250未満であれば熱可塑性樹脂層表面へのブリード量が多くなり、長期の耐候性能が低下する場合や加熱溶融加工時の分散不良、混練不良、加工機器の各所ロールへの付着による工程不安定といった不具合が発生する場合がある。なお10質量%減量温度は熱天秤を用い10℃/分の昇温速度で加熱した時、初期質量に対し10質量%減量したときの温度を示す。また分子量はゲルパーミエーションクロマトグラフィーを用い標準ポリスチレン換算で表した数平均分子量を示す。
かかるベンゾフェノン系紫外線吸収剤の具体例としては、2−ヒドロキシ−4−オクチルオキシベンゾフェノン、4−ドデシルオキシ−2−ヒドロキシベンゾフェノン、4−ベンジルオキシ−2−ヒドロキシベンゾフェノン、1,4−ビス(4−ベンゾイル−3−ヒドロキシフェノキシ)−ブタンが例示され、ベンゾトリアゾール系紫外線吸収剤の具体例としては5−クロロ−2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)−2H−ベンゾトリアゾール、2−(3−t−ブチル−2−ヒドロキシ−5−メチリフェニル)−5−クロロ−2H−ベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミドイルメチル)フェノール、2−(2−ヒドロキシ−5−t−オクチルフェニル)−2H−ベンゾトリアゾール、2−(2−ヒドロキシ−4−オクチルオキシフェニル)−2H−ベンゾトリアゾールが例示され、ベンゾエート系紫外線吸収剤の具体例としては2’,4’−ジ−t−ブチルフェニル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエートが例示され、シアノアクリレート系紫外線吸収剤の具体例としては2’−エチルヘキシル2−シアノ−3,3−ジフェニルアクリレートが例示される。
本発明に用いる光安定剤はヒンダードアミン系が好ましく、更に10質量%減量温度が250℃以上で且つ分子量が400以上を満たす特性のものが好ましい。10質量%減量温度が250℃未満であれば熱可塑性樹脂と溶融混練する際、一部分解し耐候性能が低下する場合や一部分解により加熱溶融加工時の分散不良、混練不良といった不具合が発生する場合がある。また、分子量が400未満であれば熱可塑性樹脂層表面へのブリード量が多くなり長期の耐候性能が低下する場合や加熱溶融加工時の分散不良、混練不良、加工機器の各所ロールへの付着による工程不安定といった不具合が発生する場合がある。なお10質量%減量温度は熱天秤を用い10℃/分の昇温速度で加熱した時、初期質量に対し10質量%減量したときの温度を示す。分子量はゲルパーミエーションクロマトグラフィーを用い標準ポリスチレン換算で表した数平均分子量を示す。
かかるヒンダードアミン系光安定剤は特に限定されないが、具体的には例えば、ポリ[{(6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4ジイル){(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}}、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セパケート、2,2,6,6−テトラメチル−4−ピペリジル−無水マレイン酸重縮合物、1,6−ヘキサンジアミン,N,N’−ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−,ポリマーズモルホリン−2,4,6−トリクロロ−1,3,5−トリアジンが例示される。
前記紫外線吸収剤や光安定剤は単独で用いても2種類以上を併用してもよい。なお、ここでいう「単独で用いても2種類以上を併用してもよい」とは、紫外線吸収剤のみを用いても、光安定剤のみを用いても、それらを共に用いてもよい、という意味の他に、紫外線吸収剤のみを用いる場合でも複数種の紫外線吸収剤を用いてもよい(光安定剤の場合も同様)という意味を含んでいる。
また単独または2種類以上併用した紫外線吸収剤および光安定剤の総含有量(単独で用いた場合はその含有量)は熱可塑性樹脂100質量部に対し0.1〜5質量部が好ましく、更に、0.3〜2質量部が好ましい。総含有量が0.1質量部未満であれば耐候性能が劣る場合や均一分散が困難となる場合があり、一方5質量部を超えると表面へのブリード量が多くなり長期の耐候性能が低下する場合や加熱溶融加工時の分散不良、混練不良、加工機器の各所ロールへの付着による工程不安定といった不具合が発生する場合がある。
本発明に用いる光遮蔽剤は効果的な光遮蔽性能を有した無機系粒子が好ましく、天然由来の鉱物や土類等を粉砕したものや人工的に合成した金属化合物が例示され、また加えて熱可塑性樹脂層表面に付着する霧、霜、結露水等の水粒の集合体である水滴形成を抑制する性能を有したものが好ましく、紫外線と反応し空気中の水素から親水基を作ることが可能な光触媒効果のある粒子や陰イオンとして水酸化物イオンを持つ金属化合物粒子が例示される。更に具体的には酸化チタン、酸化亜鉛、酸化鉄、硫化鉄、酸化セリウム、酸化アルミニウム、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、カオリン、炭酸カルシウム、モンモリロナイト、セリサイト、合成雲母、白雲母、金雲母およびカーボンブラックからなる群から選ばれる少なくとも1種を含むことが好ましい。
前記光遮蔽剤は単独で用いても2種類以上を併用してもよく、該光遮蔽剤の含有量は熱可塑性樹脂100質量部に対し2〜50質量部が好ましく、更に、5〜20質量部が好ましい。含有量が2質量部未満であれば紫外線の透過を抑制する効果が劣る場合や均一な分散が困難となる場合があり、一方50質量部を超えると引張強度、引裂強度、伸度等の機械的特性が著しく低下する場合や加熱溶融加工等の方法で熱可塑性樹脂に添加する時に分散不良、混練不良といった工程上、品質上の不具合が発生する場合がある。また熱可塑性樹脂への分散性を向上させるため光遮蔽剤表面に種々の表面処理剤、分散剤等を用いてもよい。
本発明に用いる熱可塑性樹脂とは、加熱により軟化し冷却により固化する特性を有する樹脂で、熱可塑性樹脂としては特に限定されないが、例えばポリエチレン、 ポリエチレンテレフタラート、 ポリ塩化ビニル、 ポリ塩化ビニリデン、 ポリ乳酸、 ポリプロピレン、 ポリアミド、 ポリカーボネート、 ポリテトラフルオロエチレン、 ポリウレタン、 ポリスチレン、 ポリエステル、ABS樹脂、 アクリル樹脂、 ポリアセタール樹脂あるいは前記樹脂の共重合体等が例示される。
更には、金属板に適用して金属屋根とする場合は、主に強度維持を目的に各種の方法で金属板に所定の形状に折り曲げ加工を行うが、折り曲げ加工に好適な熱可塑性樹脂としてポリエチレン系樹脂や軟質塩化ビニル樹脂が例示される。
かかるポリエチレン系樹脂としては特に限定されないが、例えばエチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、エチレン−ジエン共重合体、エチレン−プロピレン−ジエン3元共重合体、エチレン−オクテン共重合体、低密度ポリエチレン、エチレンと炭素数が4〜12のα−オレフィンとを共重合した直鎖状のポリエチレン、高密度ポリエチレン等が例示され、それぞれ単独あるいは2種類以上を組み合わせて使用することができる。エチレンに共重合させるα−オレフィンについては特に限定されないが、たとえばプロピレン、1−ブテン、1−ペンテン、3,3−ジメチル−1−ブテン、4−メチル−1−ペンテン、4,4−ジメチル−1−ペンテン、1−デセン、1−ドデセン、1−テトラデセン、1−オクタデセン等が好ましい。
かかる軟質塩化ビニル樹脂とは塩化ビニル樹脂に可塑剤を添加した樹脂で、可塑剤は特に限定されないが、例えばフタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジイソデシル等のフタル酸エステルやアジピン酸ジオクチル、アジピン酸ジイソノニル等のアジピン酸エステルやポリエステル、リン酸エステル、クエン酸エステル等が例示される。可塑剤は塩化ビニル樹脂100質量部に対し5〜100質量部含有せしめることが好ましい。含有量が5質量部未満であれば剛性が高く金属屋根に折り曲げ加工時に所定形状とならない場合があり、一方100質量部を超えると引張強度、引裂強度、伸度等の機械的特性が著しく低下するため破れ、裂け、剥がれ等の外観不良が発生する場合がある。
紫外線吸収剤や光安定剤、光遮蔽剤を熱可塑性樹脂に混合する方法は特に限定されないが、単軸押出機や二軸押出機等の種々の押出機やニーダーやカレンダーロール等の混合機を用い、熱可塑性樹脂が軟化する温度以上、かつ前記添加剤の10質量%減量温度以下の温度で溶融させ混合、混練する方法が好ましい。
またかかる熱可塑性樹脂層に鮮明な色調による意匠性を付与するため黄土、アンバー等の有色粘土を用いた土性顔料や紺青、郡青、コバルト青等の青系発色顔料、更に発色性に優れる石油化学合成から作られる有機系顔料を添加してもよい。
本発明のポリオレフィン系樹脂発泡体層を構成するポリオレフィン系樹脂発泡体は、ポリオレフィン系樹脂とガスとの混合体であり、その製造方法は特に限定されないが、押出機内でガスあるいは気化する溶剤を溶融させ高圧下で押出しながら発泡する押出発泡法、ガスあるいは気化する溶剤を含有した樹脂粒子を予備発泡し更に金型内で発泡融着するビーズ発泡法、高圧容器内でポリオレフィン系樹脂にガスを溶解し常圧で加熱し発泡するガス含浸法といった溶剤気散法やポリオレフィン系樹脂と熱分解型化学発泡剤を溶融混錬し常圧加熱にて発泡する常圧発泡法、押出機内で熱分解型化学発泡剤を加熱分解し高圧下で押出ながら発泡する押出発泡法、プレス金型内で熱分解型化学発泡剤を加熱分解し減圧しながら発泡するプレス発泡法といった発泡剤分解法等が例示される。
ここで示すポリオレフィン系樹脂は特に限定されないが、例えばエチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、エチレン−ジエン共重合体、エチレン−プロピレン−ジエン3元共重合体、エチレン−オクテン共重合体、低密度ポリエチレン、エチレンと炭素数が4〜12のα−オレフィンとを共重合した直鎖状のポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、オレフィン系熱可塑性エラストマー等が例示され、それぞれ単独あるいは2種類以上を組み合わせて使用することができる。エチレンに共重合させるα−オレフィンについては特に限定されないが、たとえばプロピレン、1−ブテン、1−ペンテン、3,3−ジメチル−1−ブテン、4−メチル−1−ペンテン、4,4−ジメチル−1−ペンテン、1−デセン、1−ドデセン、1−テトラデセン、1−オクタデセン等が好ましい。
前記溶剤気散法に用いるガスあるいは気化する溶剤は特に限定するものではなく、例えば有機、無機系の各種があり、有機系物理発泡剤としてはプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、イソヘキサン、シクロヘキサン等の脂肪族炭化水素、シクロプロパン、シクロブタン、シクロペンタン等の環式脂肪族炭化水素、シクロロフルオロメタン、ジクロロジフルオロメタン、ジクロロテトラフルオロエタン、トリクロロフルオロメタン、テトラフルオロエタン等のハロゲン化炭化水素が例示され、無機系物理発泡剤としては炭酸ガス、窒素、ヘリウム等が例示され、それぞれ単独あるいは2種類以上を組み合わせて使用することができる。
また、発泡剤分解法に用いる熱分解型化学発泡剤とは、熱を加えることで分解しガスを放出する化学発泡剤であれば特に限定するものではなく、例えば有機、無機系の各種があり、有機系にはアゾジカルボンアミド、N,N’−ジニトロソペンタメチレンテトラミン、P,P’−オキシベンゼンスルフォニルヒドラジドなど、無機系には重炭酸ナトリウム、炭酸アンモニウム、重炭酸アンモニウム、カルシウムアジドなどが例示され、それぞれ単独あるいは2種類以上を組み合わせて使用することができ、必要に応じて熱分解型発泡剤の分解性を改善する尿素、脂肪酸の金属塩、亜鉛華等の発泡助剤を添加してもよい。
かかるポリオレフィン系樹脂発泡体は、電離性放射線を照射し架橋させる電子線架橋法、ジクミルパーオキサイド、ターシャリーブチルパーベンゾエート、ジターシャリーブチルパーオキサイド等の有機過酸化物を混練し発泡時に該有機過酸化物を分解し架橋させる化学架橋法、シラン基を持つポリオレフィン系樹脂を混合し加熱水分と接触することで架橋させるシラン架橋法などの方法を用いポリオレフィン系樹脂架橋発泡体としてもよく、必要に応じて架橋特性を改善するジビニルベンゼン、トリメチロールプロパントリメタクリレート等の架橋助剤を用いてもよい。
本発明に用いるポリオレフィン系樹脂発泡体層の厚みは1〜20mmが好ましく、更には2〜5mmが好ましい。厚みが1mm未満であれば断熱性を付与することが困難な場合があり、一方、厚みが20mmを超えると金属屋根の形状に即した折り曲げ加工が困難となる場合がある。ここで示す厚みとは、JIS K 7222(2001年版JISハンドブック記載)準じた測定方法で測定した数値を示す。
本発明に用いるポリオレフィン系樹脂発泡体層の見掛け密度は10〜100kg/mが好ましく、更には20〜50kg/mが好ましい。見掛け密度が10kg/mより小さい場合、圧縮特性や強伸度等の機械的特性が低下し、施工や補修時に加えた力により、厚み減少や発泡体の切断により断熱性能が補えない場合があり、一方見かけ密度が100kg/mを超える場合、適度な断熱性能を付与することが困難な場合がある。ここで示す見掛け密度とは、JIS K 7222(2001年版JISハンドブック記載)準じた測定方法で測定した数値を示す。
本発明に用いるポリオレフィン系樹脂発泡体層の圧縮永久歪は15%以下が好ましく、更には10%以下が好ましい。圧縮永久歪が15%を超えると、運搬や取付け等の施工作業時に材料や人体等により局部圧縮を受けた場合、厚みが減少し適度な断熱性能を得られない場合や、取り付けフレーム等の施工構造で断熱材に接触する部分や空調配管等屋根施工後に取り付ける配管等のフレームや固定用アングル等の接合部周辺で厚みが減少し適度な断熱性能を得られない場合がある。ここで示す圧縮永久歪とは、JIS K 6767(2001年版JISハンドブック記載)準じた測定方法で測定した数値を示す。
なお、圧縮永久歪の値は小さいほど好ましく、0%が最も好ましい。ここで、圧縮永久歪を小さくする手法としては、例えば、発泡体の密度を高くする方法、発泡体を構成する樹脂組成に非晶性樹脂を多く用いる方法、発泡時の搬送における機械的ストレスの低減等により気泡形状を均一な応力分散が可能な球体形状近傍の形状とする方法、厚さ方向に機械的に延伸させ気泡形状を厚さ方向に長い形状にする方法等を例示することができ、これにより圧縮永久歪を少なくとも2%にまで小さくすることが可能となる。
本発明の金属屋根用断熱材の熱可塑性樹脂層とポリオレフィン系樹脂発泡体層とを積層する方法は特に限定されず、種々の方法を用いて積層してよい。具体的積層方法としては、予めTダイを用いた単軸押出機や二軸押出機等の押出機やカレンダーロール等で未延伸のフィルム状に成形した熱可塑性樹脂層を溶媒系、水系等の液状、ゲル状、固形状の接着剤や粘着テープを介してポリオレフィン系樹脂発泡体層と積層する方法や、熱風、ヒータ等の熱源による加熱、火炎処理等でポリオレフィン系樹脂発泡体の表面を溶融後、予め未延伸フィルム状に成型した該樹脂層と圧着により溶着する方法、あるいはTダイを用いた押出機等を用いフィルム状に押し出した該樹脂層を同時に該ポリオレフィン系樹脂発泡体層と冷却圧着し積層する方法が例示される。
かかる熱可塑性樹脂層の厚みは0.05〜2mmの範囲であることが好ましく、更に0.1〜1mmが好ましい。厚みが0.05mm未満であれば紫外線の透過を抑制する効果が劣り紫外線劣化による崩壊が発生する場合や金属屋根に折り曲げ加工時に該樹脂層が破れる場合があり、一方2mmを超えると剛性が強くなりポリオレフィン系樹脂発泡体層や金属屋根に加工する金属板との積層する際に剥がれ、シワ等の外観不良が発生する場合や、金属屋根に折り曲げ加工する際に曲げ不良、剥がれ等の外観不良が発生する場合がある。ここで示す厚みとは一辺が2cmの正方形に裁断した熱可塑性樹脂層を自動比重測定装置を用いて液浸前質量と液浸法による比重を測定し、液浸前質量を液浸法による比重で除した数値を求め、この数値を更に裁断した面積で除して求めた値である。厚みを測定する該樹脂層はポリオレフィン系樹脂発泡体層と積層する前に採取したものが好ましいが、積層した樹脂層を剥してキシレンやテトラリン等のポリオレフィン系樹脂が溶解する溶剤を用いて剥した積層面の樹脂層以外を極力溶解除去したものを用いてもよい。
また本発明の金属屋根用断熱材は、物品との接触面積を小さくし傷を軽減する効果や金属屋根に折り曲げ加工した時の表面皺を目立たなくする意匠性向上効果といった施工時の作業効率を向上せしめる効果、更には熱可塑性樹脂層表面に付着する霧、霜、結露水等の水粒の集合体である水滴形成を抑制する効果を付与するため、熱可塑性樹脂層に各種模様を設けてもよい。各種模様を設ける方法は特に限定されないが、上記方法で作成した金属屋根用断熱材の熱可塑性樹脂層側を熱風、ヒータ等の熱源により加熱した後、該樹脂層側に配置したロール表面を梨地加工や規則的凹凸形状に刻印した金属ロールで加圧し、該ロールの模様を該樹脂層に転写する方法、押出機等を用い溶融状態とした熱可塑性樹脂層をポリオレフィン系樹脂発泡体層と冷却圧着する際、熱可塑性樹脂層側に配置したロール表面を梨地加工や規則的凹凸形状に刻印した金属ロールで加圧し該ロールの模様を熱可塑性樹脂層に転写する方法が例示される。
本発明の金属屋根用断熱材は、必要に応じて例えば難燃剤、難燃助剤、分散剤、顔料、離型剤、造核剤など各種添加剤を熱可塑性樹脂層及び/又はポリオレフィン系樹脂発泡体層に単独あるいは2種類以上を併用して用いてもよい。
本発明の金属屋根用断熱材を適用可能な金属屋根(金属板)は特に限定されず、種々の金属屋根を用いることができる。具体的な金属屋根としては、金属素材が鉄、クロムとニッケル含有したオーステナイト系やクロム含有したフェライト系等のステンレス、アルミニウム合金、亜鉛合金、銅、チタニウム等に、腐食等による強度低下や形状変形等の耐久性低下を軽減するため、前記金属素材に表面処理として溶融亜鉛や溶融アルミニウム等のメッキやポリエステル樹脂やフッ素樹脂やポリ塩化ビニル樹脂等の塗膜を施した金属屋根材料を、折板、瓦棒葺き、立平葺、平葺、フラットルーフ、縦葺、横葺、金属瓦等の所定の形状で所定の工法により施工するものが例示される。
本発明の金属屋根用断熱材は、そのポリオレフィン系樹脂発泡体層が金属板に接するように積層され金属屋根が形成されるが、その積層方法は特に限定されず、種々の方法を用いて積層できる。具体的積層方法としては、溶媒系、水系等の液状、ゲル状、固形状の接着剤や粘着剤を介して積層する方法や熱風、ヒータ等の熱源による加熱、火炎処理等で金属屋根やポリオレフィン系樹脂発泡体の表面を加熱して溶融積層する方法が例示される。
また、必要に応じて前記ポリオレフィン系樹脂発泡体層の表面改質を行ってもよい。かかる表面改質の方法は特に限定されないが、高周波電源により供給される高周波・高電圧出力を放電電極を介し印加することで物理的な表面改質と極性官能基生成による化学的な表面改質の相乗効果が得られるコロナ放電処理方法、減圧下で不活性ガス等を用いグロー放電により表面改質するプラズマ処理方法、不揮発分の少ない低粘度液体からなる種々の下地処理剤を用いたプライマー処理方法、クロム酸やナトウリウム−ナフタレン溶液等を用いた化学的処理法が例示される。
本発明の金属屋根用断熱材と金属板を接するように積層する際、混入する空気の残存を軽減し接触面積を安定的に維持する方法として、ポリオレフィン系樹脂発泡体層と熱可塑性樹脂層とを貫通する貫通孔を有した金属屋根用断熱材とすることが好ましい。
かかる金属屋根用断熱材に設ける個々の貫通孔の大きさは、熱可塑性樹脂層表面部分に開いた貫通孔の投影面積が0.05mm〜20mmが好ましく、更には0.2mm〜5mmが好ましい。貫通孔の投影面積が0.05mm未満であれば、金属屋根用断熱材と金属板を接するように積層する際に混入する空気を効果的に排出できない場合があり、貫通孔の投影面積が20mmを超える場合は貫通孔により透過する紫外線が増加しポリオレフィン系樹脂発泡体の紫外線劣化による物性低下で金属屋根用断熱材が剥がれ落ちる場合や、部分的に断熱材がない貫通孔部の断熱性能が著しく低下する場合がある。ここで示す熱可塑性樹脂層部分に開いた貫通孔の投影面積の測定方法は、0.05mm〜5.0mmの範囲においては撮影機器等を用いて熱可塑性樹脂層側から撮影し原寸大に画像処理した貫通孔の2次元画像ときょう雑物計測図表(JIS P 8208(1998年版JISハンドブック記載))を比較し、最も大きさと形状が近似しているものをきょう雑物計測図表から選択してその面積を求た値であり、5.0mmを超える細孔はCCDカメラを用いた表面欠陥検査装置を使用し、反射光にて採取した2次元画像情報から演算にて面積を求めた値である。
また金属屋根用断熱材に設ける貫通孔の間隔は、隣り合う貫通孔同士の間隔が1cm〜20cmが好ましく、更には3cm〜10cmが好ましい。隣り合う貫通孔同士の間隔が1cm未満であれば、貫通孔により透過する紫外線が増加しポリオレフィン系樹脂発泡体の紫外線劣化による物性低下で金属屋根用断熱材が剥がれ落ちる場合や、部分的に断熱材がない貫通孔部の断熱性能が著しく低下する場合がある。また、隣り合う貫通孔同士の間隔が20cmを超える場合は金属屋根用断熱材と金属板を接するように積層する際に混入する空気を効果的に排出できない場合がある。
貫通孔を設ける方法は特に限定されないが、金属屋根用断熱材の総厚みより長く、鋭利な先端を有する金属棒を金属ロールに配し、該ロールを回転させながら金属屋根用断熱材を通し連続的に貫通孔を設ける方法や、金属屋根用断熱材の総厚みより長く、鋭利な先端を有する金属棒を金属板に配し、該金属板を上下稼働させながら金属屋根用断熱材を通し連続的に貫通孔を設ける方法が例示される。
本発明の金属屋根用断熱材やこれを用いた金属屋根を所定の形状に加工する方法は特に限定されず、種々の方法を用いることができる。具体的には金属屋根用断熱材を積層した金属板(金属屋根用部材)を、油圧式折曲機、ベンダー加工機、ロールフォーミング成型機等の加工機器を介して加工する方法や、前記加工機器を介して予め金属屋根の形状に加工した金属板に金属屋根用断熱材を積層する方法が例示される。また、予め金属屋根の形状に加工した金属板に金属屋根用断熱材を積層する場合は、該断熱材を真空成型機、圧縮成型機等の成型機器を介して該金属板(金属屋根)の形状に即した形状に成型してから積層してもよい。
本発明の金属屋根用断熱材はポリオレフィン系樹脂発泡体層の表面や断面が露出しないように被覆することが望ましい。
かかる発泡体層を被覆する方法は特に限定されないが、例えば予めTダイを用いた単軸押出機や二軸押出機等の押出機やカレンダーロール等で未延伸のフィルム状に成形した上記の熱可塑性樹脂層を溶媒系、水系等の液状、ゲル状、固形状の接着剤や粘着テープを介して、該発泡体層の表面や断面が露出した部分を被覆する方法、ヒータ等の熱源による加熱、火炎処理等で該発泡体層の表面や断面を溶融後、予め未延伸フィルム状に成型した上記の熱可塑性樹脂層を圧着により溶着する方法が例示される。
また、該発泡体層の表面や断面が露出した部分を加熱し、成型等で圧縮成型し表面近傍に存在する気泡を潰しておく方法も好ましい。
本発明の金属屋根用断熱材は、熱可塑性樹脂層面から波長範囲が295〜450nmの紫外線を2,016MJ/m照射した後においても該樹脂層表面に亀裂、欠落、剥がれ等の表面状態変化がないことが好ましい。具体的な試験方法は、水冷式メタルハライドランプを光源とした波長範囲が295〜450nmの紫外線を照射する超促進耐候試験機(アイスーパーUVテスターSUV−W151:岩崎電気株式会社製)を用いて、紫外線強度を1,000W/m、照射時間4時間と結露時間4時間の繰返し試験とし、照射条件として温度63℃、相対湿度50%に設定した促進試験において、2,016MJ/mの紫外線照射量に相当する総試験時間1,120時間の繰返し暴露試験を行い紫外線を照射した後、該樹脂層表面の状態変化を目視観察する方法を用いることが好ましい。
本発明の金属屋根用断熱材は、断熱性や緩衝性、圧縮回復性等が良好であることに加え、紫外線劣化を軽減する特性を有し、施工時の取り扱いが容易で作業効率も向上するという効果を奏する。そして特に、間接的(場合によっては直接的)に太陽光が到達する軒下等の部分に好適に使用可能であり、また、車庫、屋外機器用雨避け構造物、駅舎等、壁面部がなく金属屋根の裏面から太陽光の影響を受けやすい建築物や、通常の壁面部が存在する建築物であっても、窓等の採光部からの影響を受ける部分が存在する場合や、換気口等の存在により屋内であっても太陽光の影響を受ける場合であっても好適に使用可能である。
すなわち、本発明の金属屋根用断熱材を用いた金属屋根を好適に用いることができる建築物として、例えば、軒下を有する建築物、車庫(カーポート)、屋外機器用雨避け構造物、駅舎、採光部を有する建築物、換気口を有する建築物がある。
The thermoplastic resin-laminated polyolefin-based foam heat insulating material for metal roof of the present invention (hereinafter sometimes simply referred to as metal roof heat insulating material) is a heat insulating material that can be suitably applied to a metal roof that has been bent into a predetermined shape. Yes, it has a configuration in which a polyolefin resin foam layer and a thermoplastic resin layer are laminated.
This thermoplastic resin layer gives the polyolefin resin foam an effective and weather resistance that can withstand use in a place that is directly or indirectly affected by ultraviolet rays contained in sunlight for a long period of time. It contains a screening agent and contains an ultraviolet absorber and / or a light stabilizer. Therefore, when the metal roof heat insulating material of the present invention is laminated on a metal plate to form a metal roof, the polyolefin resin foam layer is laminated so as to be in contact with the metal plate, and the thermoplastic resin layer becomes a surface layer. Configure.
Such UV absorbers and light stabilizers are effective in suppressing the generation of polymer radicals by UV rays and reducing the degradation of thermoplastic resin layers and polyolefin resin foam layers by UV rays by radical scavenging. The agent exhibits the effect of reducing the transmission of ultraviolet rays and visible light to the polyolefin resin foam layer by light shielding. In this way, by providing a thermoplastic resin layer containing a UV absorber and / or a light stabilizer together with a light shielding agent on the polyolefin resin foam layer, degradation due to UV rays can be effectively reduced by these synergistic effects. As a result, long-term weather resistance can be imparted.
The ultraviolet absorber used in the present invention is preferably a benzophenone series, benzotriazole series, benzoate series, or cyanoacrylate series. Further, among the ultraviolet absorbents, the 10% by weight reduction temperature is 250 ° C. or higher and the molecular weight is 250 or higher. Are preferred. If the 10 mass% weight loss temperature is less than 250 ° C, when melt-kneading with a thermoplastic resin, if it partially decomposes and the weather resistance decreases, or if some problems such as poor dispersion or kneading during heat-melt processing occur due to partial decomposition There is. In addition, if the molecular weight is less than 250, the amount of bleed to the surface of the thermoplastic resin layer will increase, and long-term weather resistance will deteriorate, poor dispersion during heat-melt processing, poor kneading, adhesion to rolls in various parts of processing equipment Problems such as process instability may occur. In addition, 10 mass% reduction | decrease temperature shows the temperature when 10 mass% reduction | decrease is carried out with respect to initial mass when it heats at the temperature increase rate of 10 degree-C / min using a thermobalance. Moreover, molecular weight shows the number average molecular weight represented by standard polystyrene conversion using the gel permeation chromatography.
Specific examples of such benzophenone-based ultraviolet absorbers include 2-hydroxy-4-octyloxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 4-benzyloxy-2-hydroxybenzophenone, 1,4-bis (4- Benzoyl-3-hydroxyphenoxy) -butane is exemplified, and specific examples of the benzotriazole ultraviolet absorber include 5-chloro-2- (3,5-di-t-butyl-2-hydroxyphenyl) -2H-benzo Triazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole, 2- (2H-benzotriazol-2-yl) -4-methyl-6- (3 , 4,5,6-tetrahydrophthalimidoylmethyl) phenol, 2- (2-hydroxy-5) t-octylphenyl) -2H-benzotriazole and 2- (2-hydroxy-4-octyloxyphenyl) -2H-benzotriazole are exemplified, and specific examples of the benzoate ultraviolet absorber include 2 ′, 4′-di -T-butylphenyl 3,5-di-t-butyl-4-hydroxybenzoate is exemplified, and 2'-ethylhexyl 2-cyano-3,3-diphenyl acrylate is exemplified as a specific example of the cyanoacrylate ultraviolet absorber. Is done.
The light stabilizer used in the present invention is preferably a hindered amine type, and more preferably has a characteristic that the 10% by weight reduction temperature satisfies 250 ° C. or more and the molecular weight satisfies 400 or more. If the 10 mass% weight loss temperature is less than 250 ° C, when melt-kneading with a thermoplastic resin, if it partially decomposes and the weather resistance decreases, or if some problems such as poor dispersion or kneading during heat-melt processing occur due to partial decomposition There is. In addition, if the molecular weight is less than 400, the amount of bleed to the surface of the thermoplastic resin layer increases and long-term weather resistance performance deteriorates, or due to poor dispersion during kneading and heat processing, kneading failure, or adhesion to various rolls of processing equipment. Problems such as process instability may occur. In addition, 10 mass% reduction | decrease temperature shows the temperature when 10 mass% reduction | decrease is carried out with respect to initial mass when it heats at the temperature increase rate of 10 degree-C / min using a thermobalance. The molecular weight indicates the number average molecular weight expressed in terms of standard polystyrene using gel permeation chromatography.
Such a hindered amine light stabilizer is not particularly limited. Specifically, for example, poly [{(6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4 Diyl) {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}}, bis (2,2, 6,6-tetramethyl-4-piperidyl) separate, 2,2,6,6-tetramethyl-4-piperidyl-maleic anhydride polycondensate, 1,6-hexanediamine, N, N′-bis (1 , 2,2,6,6-pentamethyl-4-piperidyl)-, polymers morpholine-2,4,6-trichloro-1,3,5-triazine.
The ultraviolet absorbers and light stabilizers may be used alone or in combination of two or more. In addition, the term "may be used alone or in combination of two or more" as used herein means that only an ultraviolet absorber may be used, only a light stabilizer may be used, or both may be used. In addition to the meaning, it means that a plurality of kinds of ultraviolet absorbers may be used even when only the ultraviolet absorber is used (the same applies to the case of a light stabilizer).
Moreover, 0.1-5 mass parts is preferable with respect to 100 mass parts of thermoplastic resins, and the total content of the ultraviolet absorber and light stabilizer used alone or in combination of two or more kinds (the content when used alone) is preferable. 0.3 to 2 parts by mass is preferable. If the total content is less than 0.1 parts by mass, the weather resistance may be inferior or uniform dispersion may be difficult. On the other hand, if the total content exceeds 5 parts by mass, the amount of bleeding on the surface increases and the long-term weather resistance decreases. In some cases, problems such as poor dispersion during heat-melt processing, poor kneading, and process instability due to adhesion to processing equipment rolls may occur.
The light shielding agent used in the present invention is preferably inorganic particles having effective light shielding performance, and examples thereof include those obtained by pulverizing naturally-derived minerals and earths and artificially synthesized metal compounds. Those having the ability to suppress the formation of water droplets, which are aggregates of water droplets such as mist, frost, and condensed water adhering to the surface of the thermoplastic resin layer, are preferred, and react with ultraviolet rays to form hydrophilic groups from hydrogen in the air. Examples thereof include particles having a photocatalytic effect and metal compound particles having hydroxide ions as anions. More specifically, titanium oxide, zinc oxide, iron oxide, iron sulfide, cerium oxide, aluminum oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, kaolin, calcium carbonate, montmorillonite, sericite, synthetic mica, muscovite, It is preferable to include at least one selected from the group consisting of phlogopite and carbon black.
The light shielding agent may be used alone or in combination of two or more. The content of the light shielding agent is preferably 2 to 50 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin. Part is preferred. If the content is less than 2 parts by mass, the effect of suppressing the transmission of ultraviolet rays may be inferior or uniform dispersion may be difficult. On the other hand, if the content exceeds 50 parts by mass, a machine such as tensile strength, tear strength, elongation, etc. In some cases, the mechanical properties may deteriorate significantly, and when added to the thermoplastic resin by a method such as heat-melt processing, problems in quality such as dispersion failure and kneading failure may occur. Various surface treatment agents, dispersants and the like may be used on the surface of the light shielding agent in order to improve dispersibility in the thermoplastic resin.
The thermoplastic resin used in the present invention is a resin that has the property of being softened by heating and solidified by cooling, and is not particularly limited as a thermoplastic resin. For example, polyethylene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, poly Examples include lactic acid, polypropylene, polyamide, polycarbonate, polytetrafluoroethylene, polyurethane, polystyrene, polyester, ABS resin, acrylic resin, polyacetal resin, or a copolymer of the resin.
Furthermore, when it is applied to a metal plate to form a metal roof, the metal plate is bent into a predetermined shape by various methods mainly for the purpose of maintaining the strength. Polyethylene is used as a thermoplastic resin suitable for bending. Examples thereof include soft resins and soft vinyl chloride resins.
The polyethylene resin is not particularly limited, but for example, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-diene copolymer, ethylene-propylene-diene terpolymer, ethylene-octene copolymer. Examples include polymers, low-density polyethylene, linear polyethylene copolymerized with ethylene and α-olefins having 4 to 12 carbon atoms, high-density polyethylene, etc., each being used alone or in combination of two or more. Can do. The α-olefin copolymerized with ethylene is not particularly limited. For example, propylene, 1-butene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, 4,4-dimethyl- 1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like are preferable.
Such a soft vinyl chloride resin is a resin obtained by adding a plasticizer to a vinyl chloride resin, and the plasticizer is not particularly limited. Examples include adipic acid esters such as diisononyl acid, polyesters, phosphoric acid esters, and citric acid esters. The plasticizer is preferably contained in an amount of 5 to 100 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. If the content is less than 5 parts by mass, the metal roof may have high rigidity and may not have a predetermined shape when bent. On the other hand, if the content exceeds 100 parts by mass, mechanical properties such as tensile strength, tear strength, and elongation are significantly reduced. Therefore, appearance defects such as tearing, tearing and peeling may occur.
The method of mixing the ultraviolet absorber, light stabilizer, and light shielding agent with the thermoplastic resin is not particularly limited, but various extruders such as single screw extruders and twin screw extruders and mixers such as kneaders and calender rolls may be used. A method of melting, mixing and kneading is preferably used at a temperature equal to or higher than the temperature at which the thermoplastic resin is softened and equal to or lower than the 10% by mass reduction temperature of the additive.
In addition, in order to give the thermoplastic resin layer a design with a clear color tone, earthy pigments using colored clays such as ocher and amber, blue coloring pigments such as bitumen, district blue, cobalt blue, etc., and further excellent color developability. Organic pigments made from petrochemical synthesis may be added.
The polyolefin resin foam constituting the polyolefin resin foam layer of the present invention is a mixture of a polyolefin resin and a gas, and its production method is not particularly limited, but it melts a gas or a solvent to be vaporized in an extruder. Extrusion foaming method that foams while extruding under high pressure, bead foaming method that pre-foams resin particles containing gas or solvent to be vaporized, and further foams and fuses them in the mold, and dissolves gas in polyolefin resin in high pressure container Solvent diffusion method such as gas impregnation method that foams by heating at normal pressure, normal pressure foaming method by melting and kneading polyolefin resin and pyrolytic chemical foaming agent and foaming by normal pressure heating, pyrolysis type in extruder An extrusion foaming method in which a chemical foaming agent is thermally decomposed and foamed while being extruded under high pressure, and a press foaming method in which a thermally decomposable chemical foaming agent is thermally decomposed in a press mold and foamed under reduced pressure. Blowing agent decomposition method or the like Tsu is exemplified.
The polyolefin resin shown here is not particularly limited. For example, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-diene copolymer, ethylene-propylene-diene terpolymer, ethylene-octene. Copolymer, low density polyethylene, linear polyethylene copolymerized with ethylene and α-olefin having 4 to 12 carbon atoms, high density polyethylene, polypropylene, ethylene-propylene copolymer, olefin thermoplastic elastomer, etc. Can be used, and each can be used alone or in combination of two or more. The α-olefin copolymerized with ethylene is not particularly limited. For example, propylene, 1-butene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, 4,4-dimethyl- 1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like are preferable.
The gas used in the solvent evaporation method or the solvent to be vaporized is not particularly limited. For example, there are various organic and inorganic types, and examples of the organic physical foaming agent include propane, normal butane, isobutane, normal pentane, isopentane, normal. Aliphatic hydrocarbons such as hexane, isohexane, cyclohexane, cycloaliphatic hydrocarbons such as cyclopropane, cyclobutane, cyclopentane, cyclofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane, trichlorofluoromethane, tetrafluoroethane, etc. Halogenated hydrocarbons are exemplified, and examples of the inorganic physical foaming agent include carbon dioxide, nitrogen, helium and the like, and each can be used alone or in combination of two or more.
The pyrolytic chemical foaming agent used in the foaming agent decomposing method is not particularly limited as long as it is a chemical foaming agent that decomposes and releases gas when heat is applied. For example, there are various organic and inorganic types. Organic systems include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, P, P′-oxybenzenesulfonyl hydrazide, and inorganic systems include sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, calcium azide, etc. Each can be used alone or in combination of two or more types, and if necessary, foaming aids such as urea, fatty acid metal salts, zinc white and the like that improve the decomposability of the pyrolytic foaming agent can be added. May be.
Such polyolefin resin foams are prepared by kneading an organic peroxide such as electron beam crosslinking method, dicumyl peroxide, tertiary butyl perbenzoate, ditertiary butyl peroxide, etc., by irradiating with ionizing radiation. A polyolefin resin cross-linked foam may be used by using a chemical cross-linking method that decomposes and cross-links peroxides, or a silane cross-linking method that mixes a polyolefin resin having a silane group and cross-links it with heated moisture. Depending on the above, a crosslinking aid such as divinylbenzene or trimethylolpropane trimethacrylate which improves the crosslinking properties may be used.
The polyolefin resin foam layer used in the present invention preferably has a thickness of 1 to 20 mm, more preferably 2 to 5 mm. If the thickness is less than 1 mm, it may be difficult to impart heat insulation properties. On the other hand, if the thickness exceeds 20 mm, it may be difficult to bend the metal roof according to the shape. The thickness shown here indicates a numerical value measured by a measuring method according to JIS K 7222 (described in the 2001 edition JIS handbook).
The apparent density of the polyolefin resin foam layer used in the present invention is 10 to 100 kg / m. 3 Is preferable, and further 20 to 50 kg / m 3 Is preferred. Apparent density is 10kg / m 3 If it is smaller, mechanical properties such as compression properties and high elongation will decrease, and the heat applied during construction and repair may not be able to compensate for heat insulation performance due to thickness reduction or foam cutting, while the apparent density is 100 kg. / M 3 If it exceeds the range, it may be difficult to impart appropriate heat insulating performance. The apparent density shown here indicates a numerical value measured by a measuring method according to JIS K 7222 (described in the 2001 edition JIS handbook).
The compression set of the polyolefin resin foam layer used in the present invention is preferably 15% or less, and more preferably 10% or less. If the compression set exceeds 15%, if the material is subject to local compression during transportation, installation, or other construction work, the thickness will decrease and appropriate insulation performance will not be obtained. There may be a case where the thickness decreases in the vicinity of the joint part such as a frame or a fixing angle such as a part of the structure that comes into contact with the heat insulating material or a pipe such as an air conditioning pipe that is attached after roof construction, or a fixing angle. The compression set shown here indicates a numerical value measured by a measuring method according to JIS K 6767 (described in the 2001 edition of the JIS handbook).
The value of compression set is preferably as small as possible, and most preferably 0%. Here, as a technique for reducing the compression set, for example, a method of increasing the density of the foam, a method of using a large amount of an amorphous resin in the resin composition constituting the foam, and mechanical stress in conveyance during foaming Examples include a method of making the bubble shape a shape in the vicinity of a sphere shape capable of uniform stress distribution by reduction, a method of extending the bubble shape mechanically in the thickness direction and making the bubble shape long in the thickness direction, etc. This makes it possible to reduce the compression set to at least 2%.
The method for laminating the thermoplastic resin layer and the polyolefin resin foam layer of the metal roof heat insulating material of the present invention is not particularly limited, and may be laminated using various methods. As a specific laminating method, a thermoplastic resin layer formed into an unstretched film shape with an extruder such as a single-screw extruder or a twin-screw extruder using a T-die or a calender roll in advance is solvent-based, water-based, or the like. The surface of the polyolefin resin foam is melted by laminating with the polyolefin resin foam layer via liquid, gel, solid adhesive or adhesive tape, heating with a heat source such as hot air or a heater, flame treatment, etc. Thereafter, the resin layer that has been molded into an unstretched film in advance is welded by pressure bonding, or the resin layer that has been extruded into a film using an extruder using a T-die is simultaneously cooled with the polyolefin resin foam layer. The method of press-bonding and laminating is exemplified.
The thermoplastic resin layer preferably has a thickness in the range of 0.05 to 2 mm, more preferably 0.1 to 1 mm. If the thickness is less than 0.05 mm, the effect of suppressing the transmission of ultraviolet rays is inferior, and collapse due to ultraviolet degradation may occur or the resin layer may be torn during bending on a metal roof, while if it exceeds 2 mm, the rigidity is strong. When peeling with a polyolefin resin foam layer or a metal plate to be processed into a metal roof, appearance defects such as wrinkles occur, and when bending to a metal roof, bending defects, appearance defects such as peeling May occur. The thickness shown here is a measurement of the pre-immersion mass and the specific gravity of the thermoplastic resin layer cut into a square with a side of 2 cm using an automatic specific gravity measuring device, and the pre-immersion mass is determined by the specific gravity of the immersion method. This is a value obtained by dividing a numerical value obtained by dividing the numerical value by an area obtained by further cutting. The resin layer whose thickness is to be measured is preferably collected before being laminated with the polyolefin resin foam layer, but the laminated resin layer is peeled off using a solvent that dissolves the polyolefin resin such as xylene or tetralin. You may use what melt | dissolved and removed as much as possible except the resin layer of a laminated surface.
In addition, the heat insulating material for metal roof of the present invention has a work efficiency during construction, such as an effect of reducing the contact area with the article and reducing scratches, and an effect of improving the design property of making the surface flaws inconspicuous when bent on the metal roof. Various patterns are provided on the thermoplastic resin layer in order to give the effect of improving water droplet formation, which is an aggregate of water droplets such as mist, frost, and condensed water adhering to the surface of the thermoplastic resin layer. Also good. The method of providing various patterns is not particularly limited, but after heating the thermoplastic resin layer side of the heat insulating material for metal roof created by the above method with a heat source such as hot air or a heater, the surface of the roll disposed on the resin layer side is satin Pressing with a metal roll stamped into a processed or regular uneven shape, transferring the pattern of the roll to the resin layer, cooling the thermoplastic resin layer in a molten state using an extruder, etc. and cooling with the polyolefin resin foam layer An example is a method in which the surface of a roll disposed on the thermoplastic resin layer side is pressed with a metal roll stamped with a satin finish or a regular concavo-convex shape and the pattern of the roll is transferred to the thermoplastic resin layer.
The heat insulating material for metal roof according to the present invention may include various additives such as a flame retardant, a flame retardant aid, a dispersant, a pigment, a mold release agent, and a nucleating agent as necessary, as a thermoplastic resin layer and / or a polyolefin resin. You may use for a foam layer individually or in combination of 2 or more types.
The metal roof (metal plate) to which the heat insulating material for metal roof of the present invention can be applied is not particularly limited, and various metal roofs can be used. Specific metal roofs include stainless steel, aluminum alloys, zinc alloys, copper, titanium, etc., which are made of iron, chromium and nickel containing austenitic or chromium containing ferritic steels, etc. In order to reduce the durability deterioration of the metal roof material, the metal material is coated with a coating such as molten zinc or molten aluminum or coated with polyester resin, fluororesin or polyvinyl chloride resin as a surface treatment. Examples of such a construction are as follows: roofing, roofing, vertical, flat roof, vertical, horizontal, metal roofing, etc.
The heat insulating material for metal roof of the present invention is laminated so that the polyolefin resin foam layer is in contact with the metal plate to form a metal roof, but the laminating method is not particularly limited, and laminating using various methods. it can. Specific lamination methods include solvent, aqueous and other liquid, gel-like, solid-type adhesives and adhesives, hot air, heating with a heat source such as a heater, flame treatment, etc. The method of heating and laminating the surface of a resin foam is exemplified.
Moreover, you may perform the surface modification of the said polyolefin resin foam layer as needed. The surface modification method is not particularly limited, but physical surface modification and chemical surface modification by generating polar functional groups by applying a high-frequency / high-voltage output supplied by a high-frequency power source through a discharge electrode. Corona discharge treatment method that can achieve a synergistic effect of the above, plasma treatment method that uses an inert gas or the like under reduced pressure to modify the surface by glow discharge, and primer treatment using various surface treatment agents composed of low-viscosity liquids with low nonvolatile content Examples thereof include a chemical treatment method using a chromic acid or sodium-naphthalene solution.
When laminating the metal roof heat insulating material and the metal plate in contact with each other according to the present invention, a polyolefin resin foam layer and a thermoplastic resin layer are used as a method for reducing the residual air to be mixed and stably maintaining the contact area. It is preferable to use a heat insulating material for a metal roof having a through hole penetrating it.
The size of each through hole provided in the heat insulating material for metal roof is such that the projected area of the through hole opened in the surface portion of the thermoplastic resin layer is 0.05 mm. 2 ~ 20mm 2 Is preferable, and further 0.2 mm 2 ~ 5mm 2 Is preferred. The projected area of the through hole is 0.05mm 2 If it is less than that, the air mixed in when the metal roof heat insulating material and the metal plate are in contact with each other may not be effectively discharged, and the projected area of the through hole is 20 mm. 2 In the case where the heat resistance of the metal roof is peeled off due to a decrease in physical properties due to UV deterioration of the polyolefin resin foam, or the heat insulation performance of the through hole part that does not have the heat insulation material partially. It may be significantly reduced. The measurement method of the projected area of the through hole opened in the thermoplastic resin layer portion shown here is 0.05 mm. 2 ~ 5.0mm 2 In the range of, the two-dimensional image of the through-holes taken from the thermoplastic resin layer side and photographed from the thermoplastic resin layer using an imaging device, etc., and the contaminant measurement chart (JIS P 8208 (1998 edition JIS handbook description)) are compared. This is the value obtained by selecting the most approximate size and shape from the dust measurement chart and determining the area, 5.0 mm 2 The pores exceeding 1 are values obtained by calculating the area from two-dimensional image information collected with reflected light using a surface defect inspection apparatus using a CCD camera.
Moreover, as for the space | interval of the through-hole provided in the heat insulating material for metal roofs, the space | interval of adjacent through-holes has preferable 1 cm-20 cm, Furthermore, 3 cm-10 cm are preferable. If the distance between adjacent through holes is less than 1 cm, the ultraviolet rays transmitted through the through holes are increased, and the metal roof insulation material is peeled off due to deterioration of physical properties due to ultraviolet deterioration of the polyolefin resin foam, or partially insulated. The heat insulation performance of the through-hole part without a material may be significantly reduced. Moreover, when the space | interval of adjacent through-holes exceeds 20 cm, the air mixed when laminating | stacking so that a heat insulating material for metal roofs and a metal plate may be unable to be discharged | emitted may be unable.
The method of providing the through hole is not particularly limited, but a metal rod having a sharp tip that is longer than the total thickness of the metal roof heat insulating material is disposed on the metal roll, and the metal roof heat insulating material is continuously passed while rotating the roll. A through-hole or a metal rod with a sharp tip that is longer than the total thickness of the metal roof insulation material and placed on the metal plate, and continuously through the metal roof insulation material while moving the metal plate up and down In particular, a method of providing a through hole is exemplified.
The method for processing the heat insulating material for metal roof of the present invention and the metal roof using the same is not particularly limited, and various methods can be used. Specifically, a method of processing a metal plate (metal roof member) laminated with a metal roof heat insulating material via a processing device such as a hydraulic bending machine, a bender processing machine, a roll forming machine, or the processing The method of laminating the heat insulating material for metal roof on the metal plate previously processed into the shape of the metal roof through the equipment is exemplified. Moreover, when laminating a heat insulating material for a metal roof on a metal plate that has been processed into the shape of a metal roof in advance, the heat insulating material is applied to the metal plate (metal roof) via a molding device such as a vacuum forming machine or a compression molding machine. You may laminate | stack, after shape | molding in the shape according to a shape.
The heat insulating material for metal roof of the present invention is preferably coated so that the surface and cross section of the polyolefin resin foam layer are not exposed.
The method for coating the foam layer is not particularly limited. For example, the above-described heat formed into an unstretched film with an extruder such as a single-screw extruder or a twin-screw extruder using a T-die or a calender roll. A method of covering the surface or cross-section of the foam layer with a solvent, water or other liquid, gel or solid adhesive or adhesive tape, heating with a heat source such as a heater An example is a method in which after the surface or cross section of the foam layer is melted by flame treatment or the like, the thermoplastic resin layer previously molded into an unstretched film is welded by pressure bonding.
Also preferred is a method in which the surface of the foam layer or the portion where the cross section is exposed is heated and compression molded by molding or the like to crush bubbles present in the vicinity of the surface.
The heat insulating material for metal roof of the present invention emits 2,016 MJ / m of ultraviolet rays having a wavelength range of 295 to 450 nm from the surface of the thermoplastic resin layer. 2 Even after the irradiation, it is preferable that the surface of the resin layer does not change such as cracks, lacks, and peels. A specific test method uses a super accelerated weathering tester (eye super UV tester SUV-W151: manufactured by Iwasaki Electric Co., Ltd.) that irradiates ultraviolet rays having a wavelength range of 295 to 450 nm using a water-cooled metal halide lamp as a light source. UV intensity is 1,000 W / m 2 In an accelerated test with an irradiation time of 4 hours and a dew condensation time of 4 hours, and an accelerated test with the irradiation conditions set at a temperature of 63 ° C. and a relative humidity of 50%, 2,016 MJ / m 2 It is preferable to use a method of visually observing the state change of the surface of the resin layer after performing a repeated exposure test for a total test time of 1,120 hours corresponding to the amount of UV irradiation and irradiating with UV rays.
The heat insulating material for metal roof according to the present invention has good heat insulating properties, cushioning properties, compression recovery properties, etc., and has the property of reducing UV deterioration, and is easy to handle during construction and improves work efficiency. There is an effect. In particular, it can be suitably used for parts such as under the eaves where sunlight reaches indirectly (in some cases, directly). Also, there are no wall parts such as garages, rain-preventing structures for outdoor equipment, and station buildings. Even if it is a building that is susceptible to sunlight from the back of the roof, or a building that has a normal wall surface, there are parts that are affected by the lighting part such as windows, Even if it is indoors or is affected by sunlight, it can be suitably used.
That is, as a building that can suitably use a metal roof using the heat insulating material for metal roof of the present invention, for example, a building having an eaves, a garage (carport), a rain avoidance structure for outdoor equipment, a station building, There are buildings with daylighting units and buildings with ventilation openings.

以下、本発明を実施例を用いて更により詳細に説明するが、以下の実施例は一例であり、本願発明がこれら実施例により限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated still in detail using an Example, the following Example is an example and this invention is not limited by these Examples.

本発明における加工方法、評価方法は次の通りである。
「金属ロール」
(1)表面を硬質クロームメッキ加工し、鏡面仕上げした金属ロール。
(2)上下面の2面が正方形で側面4面が等脚台形である凹状6面体であり、刻印底面の一辺が0.8mmの正方形、深さが1.0ミリ、ロール表面側が一辺が2.5mmの正方形を規則的な配列で金属ロール表面全体に連続的に刻印した規則的凹凸模様刻印金属ロール(四角錐形状)。
(3)表面を梨地加工した金属ロール。
「押出ラミネート方法」
熱可塑性樹脂層に接する金属ロールに上記金属ロール(1)〜(3)のいずれかを用い、ポリオレフィン系樹脂発泡体層に接するロール表面にシリコーン樹脂で覆ったゴムロールを配置し、ゴムロールを600kPaの圧力で圧接した2本のロール間に押出した熱可塑性樹脂とポリオレフィン系樹脂発泡体を同時に供給し積層した。
「接着ラミネート方法」
ポリオレフィン系樹脂発泡体にドクターナイフで塗布量を調整するナチュラルロールコーターを用い、粘着剤としてBPS5375(東洋インキ製造株式会社製)100質量部とBHS8515(東洋インキ製造株式会社製)1.7質量部を混合したものをフィルム状の熱可塑性樹脂に塗布した後、30〜60℃に設定した熱風循環式乾燥機中で5〜10分間の十分な乾燥を行い、600kPaの圧力で圧接した2本のシリコーン樹脂で覆ったゴムロール間に粘着剤を塗布した熱可塑性樹脂とポリオレフィン系樹脂発泡体を同時に供給し積層した。粘着剤塗布量は乾燥後の質量で50〜70g/mの範囲で塗布した。
「金属板との積層方法」
ドクターナイフで塗布量を調整するナチュラルロールコーターを用い、接着剤としてサイビノールEX−8(サイデン化学株式会社製)を金属板に塗布し、40〜80℃に設定した熱風循環式乾燥機中で1〜10分間の十分な乾燥を行った後、押出ラミネートしたオレフィン系樹脂発泡体の発泡体面と金属板の接着剤塗布面を合わせ、400kPaの圧力で圧接した2本のゴムロール間に供給し積層した。接着剤塗布量は乾燥後の質量で50〜70g/mの範囲で塗布した。
The processing method and evaluation method in the present invention are as follows.
"Metal roll"
(1) A metal roll whose surface is hard chrome plated and mirror finished.
(2) A concave hexahedron with two upper and lower surfaces being square and four side surfaces being isosceles trapezoids, a square with one side of the stamped bottom of 0.8 mm, a depth of 1.0 mm, and one side on the roll surface side A regular concavo-convex pattern stamped metal roll (quadrangular pyramid shape) in which 2.5 mm squares are continuously stamped on the entire surface of the metal roll in a regular arrangement.
(3) A metal roll whose surface is textured.
"Extrusion lamination method"
Using any one of the metal rolls (1) to (3) as a metal roll in contact with the thermoplastic resin layer, a rubber roll covered with a silicone resin is disposed on the roll surface in contact with the polyolefin resin foam layer, and the rubber roll is 600 kPa. The extruded thermoplastic resin and polyolefin resin foam were simultaneously fed and laminated between two rolls pressed by pressure.
"Adhesive lamination method"
Using a natural roll coater that adjusts the coating amount with a doctor knife on a polyolefin resin foam, 100 parts by mass of BPS5375 (manufactured by Toyo Ink Manufacturing Co., Ltd.) and 1.7 parts by mass of BHS8515 (manufactured by Toyo Ink Manufacturing Co., Ltd.) Is applied to a film-like thermoplastic resin, followed by sufficient drying for 5 to 10 minutes in a hot air circulating drier set at 30 to 60 ° C., and two pressure welds at a pressure of 600 kPa. A thermoplastic resin coated with an adhesive and a polyolefin resin foam were simultaneously supplied and laminated between rubber rolls covered with a silicone resin. The pressure-sensitive adhesive was applied in the range of 50 to 70 g / m 2 in terms of the mass after drying.
"Lamination method with metal plate"
Using a natural roll coater that adjusts the coating amount with a doctor knife, Cybinol EX-8 (manufactured by Saiden Chemical Co., Ltd.) as an adhesive was applied to a metal plate, and 1 in a hot air circulating dryer set at 40-80 ° C. After sufficient drying for 10 minutes, the foam surface of the extrusion-laminated olefin resin foam and the adhesive-coated surface of the metal plate were combined and fed between two rubber rolls pressed at a pressure of 400 kPa for lamination. . The amount of adhesive applied was 50 to 70 g / m 2 in terms of the mass after drying.

本発明における物性測定方法は次の通りである。
「ポリオレフィン系樹脂発泡体層の厚み、見掛け密度」
JIS K 7222(2001年版JISハンドブック記載)に準じた測定方法で測定した。
「ポリオレフィン系樹脂発泡体層の圧縮永久歪」
JIS K 6767(2001年版JISハンドブック記載)に準じた測定方法で測定した。
「熱可塑性樹脂層の厚み」
ポリオレフィン系樹脂発泡体層との積層前に採取した熱可塑性樹脂層を2cmの正方形に裁断し、自動比重測定装置(メトラー・トレド株式会社製SGM−6)を用いて液浸前質量および比重を測定し、下式により熱可塑性樹脂層の厚みを求めた。
熱可塑性樹脂層の厚み=液浸前質量/(比重×2cmの正方形に裁断した面積)
10点について上記の測定を行い、その平均値を熱可塑性樹脂層の厚みとした。
「90°折曲げ試験後の外観性」
一辺が80mmで厚みが6mmであるJIS G3192(2005年版JISハンドブック記載)の等辺山形鋼を長さ10cmに切断した台座に、幅5cm、長さ12cmに切断した平板状の金属板と積層した試験片を置き、先端を曲率半径6mmに加工した厚み6mmで幅10cmの金属板を試験片の中心に当て、ハンマー等で力を加え試験片を概ね90°に曲げた。試験は両方向の面で行い金属板と反対する側の表面を肉眼で観察した。表面状態に変化が見られなかったものを良好と判断し、表面に亀裂、割れ等があったものを不良と判定した。
「暴露試験」
平板状の金属板に金属屋根用断熱材を積層した試験片を超促進耐候試験機(アイスーパーUVテスターSUV−W151:岩崎電気株式会社製)を用いて、紫外線強度を1,000W/m、照射時間4時間と結露時間4時間の繰返し試験とし、照射条件として温度63℃、相対湿度50%とした促進試験において、2,016MJ/mの紫外線照射量に相当する総試験時間1,120時間の繰返し暴露試験を行い紫外線を照射した。試験片の照射面は金属板と反対する面に行い、試料台への固定は端面のポリオレフィン系樹脂発泡体層の露出部分を無くすため外周を後述する実施例2に示す熱可塑性樹脂層の片面に粘着剤としてバインゾールR−8900(一方社油脂工業株式会社製)100質量部に対し架橋剤B−45(一方社油脂工業株式会社製)1.7質量部混合したものを乾燥質量で50〜70g/mとなるよう塗布し熱風循環式乾燥機中で充分に乾燥させたテープを用いて被覆した。
「暴露試験後の外観性」
暴露試験後の試験片について照射面側の表面を肉眼およびマイクロスコープで100倍まで拡大して観察した。表面状態やポリオレフィン系樹脂発泡体の気泡状態に変化が見られなかったものを良好と判断し、表面に亀裂、欠落等の変化や上記発泡体の気泡減少や消滅があったものを不良と判定した。なお、彩色した樹脂層の色調変化については判断基準外とした。
「圧縮回復率」
厚みを測定した暴露試験後の試験片に直径2cmの金属製丸棒を用い面加重3kg/cmとなる荷重を照射面側に30秒間加え、無荷重で10分間放置後を用いて厚みを測定し、加重後の厚みを加重前厚みで除した数値を百分率で表示したものを圧縮回復率とした。この時の厚みはダイヤルシックネスゲージG−2(株式会社尾崎製作所社製)を用いて測定した。
「総合判定」
90°折曲げ試験後の外観性、暴露試験後の外観性が共に良好、かつ圧縮回復率が60%以上のものを合格と判断した。90°折曲げ試験後の外観性、暴露試験後の外観性のいずれかが不良または圧縮回復率が50%未満のものを不合格と判断した。
[実施例1]
熱可塑性樹脂として、粉砕機を用い最大長辺を2mm以下に粉砕したMFRが8g/10分、密度が0.925g/cmの直鎖状低密度ポリエチレン(東ソー株式会社製ニポロン−L M60)100質量部に紫外線吸収剤として2−(3−t−ブチル−2−ヒドロキシ−5−メチリフェニル)−5−クロロ−2H−ベンゾトリアゾール(シプロ化成株式会社製SEESORB703)0.3質量部、光遮蔽剤として酸化チタン(石原産業株式会社製タイぺークR−980)3質量部、顔料としてC.I.ピグメントイエロー53(長瀬産業株式会社製イルガカラーYellow 10401)0.2質量部をスーパーミキサーで混合後、150〜250℃に加熱した40mmφの二軸押出機で溶融混練し、ノズルから押出すことにより直径2mmの棒状のストランドを作り、水冷後長さ3mmにカッティングして紫外線吸収剤と光遮蔽剤とを含む熱可塑性樹脂組成物を作成した。該樹脂組成物を160〜230℃に加熱した65mmφの単軸押出機に投入しTダイを介してシート状に押し出した直後、電子線架橋の長尺発泡体トーレペフ 40040−KY00(東レ株式会社製)を共に金属ロール(1)を用いて押出ラミネートし熱可塑性樹脂積層ポリオレフィン系発泡体(金属屋根用断熱材)を得た。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表1に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.35mmの塗装溶融亜鉛めっき鋼板(日新製鋼株式会社製月星カラー B40)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表1に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例2]
紫外線吸収剤として2−(3−t−ブチル−2−ヒドロキシ−5−メチリフェニル)−5−クロロ−2H−ベンゾトリアゾール(シプロ化成株式会社製SEESORB703)0.6質量部、光安定剤としてビス(2,2,6,6−テトラメチル−4−ピペリジル)セパケート(旭電化工業株式会社製アデカスタブLA−77Y)0.6質量部、光遮蔽剤として酸化チタン(石原産業株式会社製タイぺークR−980)10質量部、顔料としてピグメントブルー−15(長瀬産業株式会社製イルガライトBlue BSP)0.2質量部、金属ロール(2)を用いて押出ラミネートしたほかは実施例1と同様にして金属屋根用断熱材を得た。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表1に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.6mmの塗装溶融亜鉛めっき鋼板(日新製鋼株式会社製月星カラー B40)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表1に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例3]
熱可塑性樹脂としてMFRが9.4g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン(日本ポリエチレン株式会社製ノバテックLD LC720)100質量部、紫外線吸収剤は用いず光安定剤としてビス(2,2,6,6−テトラメチル−4−ピペリジル)セパケート(旭電化工業株式会社製アデカスタブLA−77Y)4.0質量部、光遮蔽剤として酸化亜鉛(住友大阪セメント株式会社製ZnO−350)20質量部用い、顔料は用いず、電子線架橋の長尺発泡体トーレペフ 40080−AY00(東レ株式会社製)を用い、金属ロール(3)を用いて押出ラミネートしたほかは実施例1と同様に金属屋根用断熱材を得た。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表1に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.6mmの塗装溶融亜鉛めっき鋼板(日新製鋼株式会社製月星カラー B40)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表1に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例4]
熱可塑性樹脂としてMFRが2.0g/10分、酢酸ビニル含量が6質量%のエチレン酢酸ビニル共重合体(日本ポリエチレン株式会社製ノバテックEVA LV244)100質量部、紫外線吸収剤として2’,4’−ジ−t−ブチルフェニル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート(シプロ化成株式会社製SEESORB712)0.3質量部、光安定剤として2,2,6,6−テトラメチル−4−ピペリジル−無水マレイン酸重縮合物(シプロ化成株式会社製SEESORB805)0.1質量部、光遮蔽剤として酸化セリウム(多木化学株式会社製ニードラルW−100)3質量部、顔料としてカーボンブラック(東海カーボン株式会社製トーカブラック#7360SB)1.0質量部、無架橋の長尺発泡体ミナフォーム #120(酒井化学株式会社製)、金属ロール(2)を用いて押出ラミネートしたほかは実施例1と同様にして金属屋根用断熱材を得た。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表1に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み1.2mmの溶融アルミニウムめっき鋼板(日新製鋼株式会社製耐候用アルスターカラー T502)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表1に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例5]
熱可塑性樹脂としてMFRが3.5g/10分、密度が0.898g/cmのメタロセンプラストマー(日本ポリエチレン株式会社製カーネル KF360T)100質量部、紫外線吸収剤は用いず、光安定剤としてポリ[{(6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4ジイル){(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}}(チバ・スペシャリティ・ケミカルズ株式会社製キマソーブ944LD)0.2質量部、光遮蔽剤として酸化マグネシウム(神島化学工業株式会社製スターマグU)15質量部、顔料としてピグメントレッド−57−1(長瀬産業株式会社製イルガライトRubine 4BP)0.2質量部、電子線架橋の長尺発泡体トーレペフ 13060−AM00(東レ株式会社製)、金属ロール(3)を用いて押出ラミネートしたほかは実施例1と同様にして金属屋根用断熱材を得た。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表2に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.5mmの塗装溶融55%アルミニウム−亜鉛合金めっき鋼板(日新製鋼株式会社製月星GLカラー N50GL)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表2に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例6]
熱可塑性樹脂として塩化ビニル樹脂(ヴイテック株式会社製MT1100)70質量部、可塑剤としてアジピン酸ジイソノニル(株式会社ジェイ・プラス製DINA)30質量部、紫外線吸収剤として4−ドデシルオキシ−2−ヒドロキシベンゾフェノン(シプロ化成株式会社製SEESORB103)2.0質量部、光安定剤として2,2,6,6−テトラメチル−4−ピペリジル−無水マレイン酸重縮合物(シプロ化成株式会社製SEESORB805)0.1質量部、光遮蔽材としてカオリン(竹原化学工業株式会社製サテントン5)10質量部、顔料としてカーボンブラック(東海カーボン株式会社製トーカブラック#7360SB)1.0質量部を170℃に加熱した加圧式ニーダーで溶融混練した後、金属ロール(1)を用いたカレンダー成型機でフィルム状に成形した。このフィルムを用いて接着ラミネート法で電子線架橋の長尺発泡体トーレペフ 15030−AG00(東レ株式会社製)に積層し、金属屋根用断熱材を得た。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表2に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.6mmの塗装溶融亜鉛めっき鋼板(日新製鋼株式会社製月星カラー B40)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表2に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例7]
熱可塑性樹脂として塩化ビニル樹脂(ヴイテック株式会社製MT1100)60質量部、可塑剤としてフタル酸ジイソノニル(株式会社ジェイ・プラス製DINP)40質量部、紫外線吸収剤として2’−エチルヘキシル2−シアノ−3,3−ジフェニルアクリレート(シプロ化成株式会社製SEESORB502)1.0質量部、光遮蔽剤として白雲母(山口雲母工業所社製SYA−21R)10質量部、光安定剤と顔料は用いず、化学架橋の長尺発泡体ハイエチレンスーパー(日立化成株式会社製)用いて接着ラミネートしたほかは実施例6と同様にして金属屋根用断熱材を得た。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表2に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.3mmの塗装ステンレス鋼板(日新製鋼株式会社製カラーソフテン F1A1)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表2に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例8]
熱可塑性樹脂として塩化ビニル樹脂(ヴイテック株式会社製MT1100)80質量部、可塑剤としてアジピン酸系ポリエステル(株式会社ジェイ・プラス製D643)20質量部、光安定剤としてポリ[{(6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4ジイル){(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}}(チバ・スペシャリティ・ケミカルズ株式会社製キマソーブ944LD)1.0質量部、光遮蔽剤としてセリサイト(岩瀬コスファ株式会社製ソフトセリサイトT−6)15質量部、紫外線吸収剤と顔料は用いず、電子線架橋の長尺発泡体トーレペフ 30040−AS60(東レ株式会社製)用いて接着ラミネートしたほかは実施例6と同様にして金属屋根用断熱材を得た。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表2に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.4mmの溶融亜鉛めっきステンレス鋼板(日新製鋼株式会社製タフテンZ)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表2に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例9]
実施例1に記載した方法で作成した幅87cm、長さ10mの金属屋根用断熱材と、幅90cm、長さ150cm、厚み0.35mmの塗装溶融亜鉛めっき鋼板(日新製鋼株式会社製月星カラー B40)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を作成した。この部材を頂点間間隔が76mmの大波形状に丸波成型機を用いて折り曲げ加工を行い金属屋根を得た。この金属屋根のポリオレフィン系樹脂発泡体の断面が露出する部分は、実施例2に示す熱可塑性樹脂層の片面に粘着剤としてバインゾールR−8900(一方社油脂工業株式会社製)100質量部に対し架橋剤B−45(一方社油脂工業株式会社製)1.7質量部混合したものを乾燥質量で50〜70g/mとなるよう塗布し熱風循環式乾燥機中で充分に乾燥させたテープを用いて被覆した。
上記方法で作成した金属屋根を、幅1.4m、奥行き0.9m、高さ1.6mの屋外機器用雨避け構造物の屋根材として用いた。屋外機器用雨避け構造物の概要図を図8に示す。金属屋根の取り付けは屋外機器用雨避け構造物の天井に配置した支柱に水平方向に固定した円柱状の金属パイプにシーリングパッキン付パイプボルトで固定した。金属屋根の取り付け概要図を図9に示す。
[実施例10]
金属ロール(2)を用いて押出ラミネートしたほかは実施例1と同様にして金属屋根用断熱材得た。鋭利な先端に加工した直径2mm、長さ30mmの金属棒を縦方向と横方向にそれぞれ5cm間隔で金属ロールの円周に整列配置した貫通孔加工ロールへ前記の金属屋根用断熱材を通し連続的に貫通孔加工を施した金属屋根用断熱材を得た。個々の貫通孔の投影面積は鋼尺と共に撮影した貫通孔を、撮影した鋼尺目盛と現物の鋼尺目盛が合致するよう画像処理した貫通孔画像ときょう雑物計測図表を比較し、最も大きさと形状が近似しているものを選択して求めた結果、いずれも2.5mmであった。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表3に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.35mmの塗装溶融亜鉛めっき鋼板(日新製鋼株式会社製月星カラー B40)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表3に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例11]
紫外線吸収剤として2−(3−t−ブチル−2−ヒドロキシ−5−メチリフェニル)−5−クロロ−2H−ベンゾトリアゾール(シプロ化成株式会社製SEESORB703)0.6質量部、光安定剤として2,2,6,6−テトラメチル−4−ピペリジル−無水マレイン酸重縮合物(シプロ化成株式会社製SEESORB805)0.6質量部、光遮蔽剤として水酸化マグネシウム(神島化学工業株式会社製マグシーズN−3)10質量部としたほかは実施例1と同様にして金属屋根用断熱材を得た。鋭利な先端に加工した直径1mm、長さ20mmの金属棒を縦方向と横方向にそれぞれ10cm間隔で金属ロールの円周に整列配置した貫通孔加工ロールへ前記の金属屋根用断熱材を通し連続的に貫通孔加工を施した金属屋根用断熱材を得た。個々の貫通孔の投影面積は鋼尺と共に撮影した貫通孔を、撮影した鋼尺目盛と現物の鋼尺目盛が合致するよう画像処理した貫通孔画像ときょう雑物計測図表を比較し、最も大きさと形状が近似しているものを選択して求めた結果、0.5〜0.7mmの範囲であった。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表3に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.6mmの塗装溶融亜鉛めっき鋼板(日新製鋼株式会社製月星カラー B40)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表3に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例12]
紫外線吸収剤として2−(3−t−ブチル−2−ヒドロキシ−5−メチリフェニル)−5−クロロ−2H−ベンゾトリアゾール(シプロ化成株式会社製SEESORB703)0.6質量部、光安定剤として2,2,6,6−テトラメチル−4−ピペリジル−無水マレイン酸重縮合物(シプロ化成株式会社製SEESORB805)0.6質量部、光遮蔽剤として酸化鉄(神島化学工業株式会社製マグシーズN−3)5質量部と白雲母(山口雲母工業所社製SYA−21R)5質量部、顔料は用いず、金属ロール(3)を用いて押出ラミネートしたほかは実施例1と同様にして金属屋根用断熱材を得た。鋭利な先端に加工した直径3.5mm、長さ40mmの金属棒を縦方向と横方向にそれぞれ15cm間隔で金属ロールの円周に整列配置した貫通孔加工ロールへ前記の金属屋根用断熱材を通し連続的に貫通孔加工を施した金属屋根用断熱材を得た。個々の貫通孔の投影面積を表面欠陥検査装置(株式会社アヤハエンジニアリング製FITS−Ct)を用い測定した結果、7.5〜8.3mmの範囲であった。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表3に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.6mmの塗装溶融亜鉛めっき鋼板(日新製鋼株式会社製月星カラー B40)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表3に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
[実施例13]
熱可塑性樹脂としてMFRが2.5g/10分、酢酸ビニル含量が46質量%のエチレン酢酸ビニル共重合体(三井・デュポンポリケミカル株式会社製エバフレックスEV45LX)100質量部、紫外線吸収剤として2−(3−t−ブチル−2−ヒドロキシ−5−メチリフェニル)−5−クロロ−2H−ベンゾトリアゾール(シプロ化成株式会社製SEESORB703)0.6質量部、光安定剤として2,2,6,6−テトラメチル−4−ピペリジル−無水マレイン酸重縮合物(シプロ化成株式会社製SEESORB805)0.6質量部、光遮蔽剤として酸化チタン(石原産業株式会社製タイぺークR−980)10質量部と水酸化マグネシウム(神島化学工業株式会社製マグシーズN−3)40質量部、顔料は用いず、添加剤として臭素系難燃剤エチレンビスペンタブロモベンゼン(株式会社鈴裕化学製ファイアカットP−801)10質量部、化学架橋の長尺発泡体ハイエチレンスーパー(日立化成株式会社製)用い、金属ロール(2)を用いて押出ラミネートしたほかは実施例1と同様にして金属屋根用断熱材を得た。鋭利な先端に加工した直径2mm、長さ30mmの金属棒を縦方向と横方向それぞれに5cm間隔で金属ロールの円周に整列配置した貫通孔加工ロールへ前記の金属屋根用断熱材を通し連続的に貫通孔加工を施した金属屋根用断熱材を得た。個々の貫通孔の投影面積は鋼尺と共に撮影した貫通孔を、撮影した鋼尺目盛と現物の鋼尺目盛が合致するよう画像処理した貫通孔画像ときょう雑物計測図表を比較し、最も大きさと形状が近似しているものを選択して求めた結果、いずれも2.5mmであった。このときのポリオレフィン系樹脂発泡体層の厚み、見掛け密度、圧縮永久歪、熱可塑性樹脂層の厚みは表3に示すとおりである。
上記方法で得た金属屋根用断熱材と厚み0.6mmの塗装溶融亜鉛めっき鋼板(日新製鋼株式会社製月星カラー B40)を、ポリオレフィン系樹脂発泡体層が該鋼板と接するように積層し、折り曲げ加工を行う前の平板状の金属屋根用部材を得た。評価結果は表3に示す通りであり、上記方法で得た金属屋根用部材は総合判定で合格であった。
The physical property measuring method in the present invention is as follows.
"Thickness and apparent density of polyolefin resin foam layer"
It measured by the measuring method according to JISK7222 (2001 edition JIS handbook description).
"Compression set of polyolefin resin foam layer"
It measured by the measuring method according to JISK6767 (2001 edition JIS handbook description).
"Thickness of thermoplastic resin layer"
The thermoplastic resin layer collected before lamination with the polyolefin resin foam layer is cut into a 2 cm square, and the mass and specific gravity before immersion are measured using an automatic specific gravity measuring device (SGM-6 manufactured by METTLER TOLEDO). The thickness of the thermoplastic resin layer was determined by the following equation.
Thickness of thermoplastic resin layer = mass before immersion / (specific gravity × area cut into 2 cm square)
The above measurement was performed for 10 points, and the average value was defined as the thickness of the thermoplastic resin layer.
“Appearance after 90 ° bending test”
A test in which a flat metal plate cut into a width of 5 cm and a length of 12 cm is laminated on a pedestal cut into a length of 10 cm from an equilateral angled steel of JIS G3192 (described in the 2005 edition of the JIS handbook) having a side of 80 mm and a thickness of 6 mm. A piece was placed, a metal plate having a thickness of 6 mm and a width of 10 cm, whose tip was processed to a curvature radius of 6 mm, was applied to the center of the test piece, and a force was applied with a hammer or the like to bend the test piece to approximately 90 °. The test was performed in both directions, and the surface opposite to the metal plate was observed with the naked eye. Those in which no change was observed in the surface state were judged as good, and those in which cracks, cracks, etc. were found on the surface were judged as bad.
"Exposure test"
Using a super accelerated weathering tester (eye super UV tester SUV-W151: manufactured by Iwasaki Electric Co., Ltd.), a test piece obtained by laminating a heat insulating material for a metal roof on a flat metal plate is used for an ultraviolet intensity of 1,000 W / m 2. In an accelerated test with an irradiation time of 4 hours and a dew condensation time of 4 hours, and an accelerated test in which the irradiation conditions were a temperature of 63 ° C. and a relative humidity of 50%, the total test time corresponding to an ultraviolet irradiation amount of 2,016 MJ / m 2 A 120-hour repeated exposure test was conducted and ultraviolet rays were irradiated. The irradiation surface of the test piece is made on the surface opposite to the metal plate, and fixing to the sample stage is performed on one side of the thermoplastic resin layer shown in Example 2 described later in order to eliminate the exposed portion of the polyolefin resin foam layer on the end surface. As a pressure-sensitive adhesive, 100 parts by mass of Vinesol R-8900 (manufactured by Yushi Kogyo Co., Ltd.) and 1.7 parts by mass of cross-linking agent B-45 (manufactured by Yushi Kogyo Co., Ltd.) were mixed in a dry mass of 50 to The film was coated with a tape which was applied to 70 g / m 2 and sufficiently dried in a hot air circulation dryer.
"Appearance after exposure test"
The test piece after the exposure test was observed by magnifying the surface on the irradiation surface side to 100 times with the naked eye and a microscope. Judged that the surface condition and the foam state of the polyolefin resin foam did not change were judged as good, and the surface was cracked, missing, etc., and the foam was reduced or disappeared as bad. did. It should be noted that the color tone change of the colored resin layer was excluded from the criteria for judgment.
"Compression recovery rate"
Thickness was measured by using a metal round bar with a diameter of 2 cm for the test piece after the exposure test for measuring the thickness, applying a load of 3 kg / cm 2 on the surface to the irradiated surface for 30 seconds, and leaving it for 10 minutes with no load. Measured, and the value obtained by dividing the thickness after weighting by the thickness before weighting, expressed as a percentage, was taken as the compression recovery rate. The thickness at this time was measured using a dial thickness gauge G-2 (manufactured by Ozaki Manufacturing Co., Ltd.).
"Comprehensive judgment"
Appearance after the 90 ° bending test and appearance after the exposure test were both good and the compression recovery rate was determined to be 60% or more. Any of the appearance after the 90 ° bending test and the appearance after the exposure test was judged to be defective or the one having a compression recovery rate of less than 50%.
[Example 1]
As a thermoplastic resin, a linear low-density polyethylene (Nipolon-LM60 manufactured by Tosoh Corporation) having an MFR of 8 g / 10 min and a density of 0.925 g / cm 3 pulverized to a maximum length of 2 mm or less using a pulverizer. 100 parts by mass of 0.3 part by mass of 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole (SEESORB703 manufactured by Cypro Kasei Co., Ltd.) as a UV absorber, light shielding 3 parts by mass of titanium oxide (Ishihara Sangyo Co., Ltd. Taipaque R-980) as the agent and C.I. I. By mixing 0.2 parts by mass of Pigment Yellow 53 (Irga Color Yellow 10401 manufactured by Nagase Sangyo Co., Ltd.) with a super mixer, melt-kneading with a 40 mmφ twin screw extruder heated to 150 to 250 ° C., and extruding from a nozzle A rod-shaped strand having a diameter of 2 mm was prepared, and after cooling with water, the strand was cut to a length of 3 mm to prepare a thermoplastic resin composition containing an ultraviolet absorber and a light shielding agent. Immediately after the resin composition was put into a 65 mmφ single-screw extruder heated to 160 to 230 ° C. and extruded into a sheet through a T-die, an electron beam cross-linked long foam torepef 40040-KY00 (manufactured by Toray Industries, Inc.) ) Were extruded and laminated using a metal roll (1) to obtain a thermoplastic resin-laminated polyolefin foam (heat insulating material for metal roof). Table 1 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
The heat insulating material for metal roof obtained by the above method and a coated hot-dip galvanized steel sheet having a thickness of 0.35 mm (Misssei Color B40 manufactured by Nisshin Steel Co., Ltd.) are laminated so that the polyolefin resin foam layer is in contact with the steel sheet. Then, a flat metal roof member before bending was obtained. The evaluation results are as shown in Table 1, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 2]
0.6 part by mass of 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole (SEESORB703 manufactured by Cypro Kasei Co., Ltd.) as a UV absorber, and bis ( 2,2,6,6-tetramethyl-4-piperidyl) separate (Adeka Stub LA-77Y manufactured by Asahi Denka Kogyo Co., Ltd.), 0.6 parts by weight, titanium oxide (Ishihara Sangyo Co., Ltd., Taipaque R as a light shielding agent) -980) 10 parts by mass, Pigment Blue-15 (Irgarite Blue BSP manufactured by Nagase Sangyo Co., Ltd.) 0.2 parts by mass, and extrusion lamination using a metal roll (2) A metal roof insulation was obtained. Table 1 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
Laminate the heat insulating material for metal roof obtained by the above method and a coated hot-dip galvanized steel sheet with a thickness of 0.6 mm (Month Star Color B40 manufactured by Nisshin Steel Co., Ltd.) so that the polyolefin resin foam layer is in contact with the steel sheet. Then, a flat metal roof member before bending was obtained. The evaluation results are as shown in Table 1, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 3]
100 parts by mass of a high-pressure low-density polyethylene (Novatech LD LC720 manufactured by Nippon Polyethylene Co., Ltd.) having an MFR of 9.4 g / 10 min and a density of 0.922 g / cm 3 as a thermoplastic resin, without using an ultraviolet absorber, a light stabilizer 4.0 parts by mass of bis (2,2,6,6-tetramethyl-4-piperidyl) separate (Adeka Stub LA-77Y manufactured by Asahi Denka Kogyo Co., Ltd.), zinc oxide (manufactured by Sumitomo Osaka Cement Co., Ltd.) as a light shielding agent Except for using 20 parts by mass of ZnO-350), using no pigment, using an electron beam cross-linked long foam Torepef 40080-AY00 (manufactured by Toray Industries, Inc.), and extruding and laminating using a metal roll (3). In the same manner as in No. 1, a metal roof heat insulating material was obtained. Table 1 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
Laminate the heat insulating material for metal roof obtained by the above method and a coated hot-dip galvanized steel sheet with a thickness of 0.6 mm (Month Star Color B40 manufactured by Nisshin Steel Co., Ltd.) so that the polyolefin resin foam layer is in contact with the steel sheet. Then, a flat metal roof member before bending was obtained. The evaluation results are as shown in Table 1, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 4]
100 parts by mass of an ethylene vinyl acetate copolymer (Novatec EVA LV244, manufactured by Nippon Polyethylene Co., Ltd.) having an MFR of 2.0 g / 10 min as a thermoplastic resin and a vinyl acetate content of 6% by mass, and 2 ′ and 4 ′ as an ultraviolet absorber. -0.3 part by mass of di-t-butylphenyl 3,5-di-t-butyl-4-hydroxybenzoate (SEESORB712 manufactured by Cypro Kasei Co., Ltd.), 2,2,6,6-tetramethyl- as a light stabilizer 0.1 parts by mass of 4-piperidyl-maleic anhydride polycondensate (SEPRORB805 manufactured by Sipro Kasei Co., Ltd.), 3 parts by mass of cerium oxide (Needral W-100 manufactured by Taki Chemical Co., Ltd.) as a light shielding agent, and carbon black as a pigment (Tokai Black # 7360SB manufactured by Tokai Carbon Co., Ltd.) 1.0 part by mass, non-crosslinked long foam Minafoam A heat insulating material for metal roof was obtained in the same manner as in Example 1 except that extrusion lamination was performed using # 120 (manufactured by Sakai Chemical Co., Ltd.) and a metal roll (2). Table 1 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
The metal roof heat insulating material obtained by the above method and a 1.2 mm thick hot-dip aluminized steel sheet (Nisshin Steel Co., Ltd. weatherproof Ulster color T502) are laminated so that the polyolefin resin foam layer is in contact with the steel sheet. Then, a flat metal roof member before bending was obtained. The evaluation results are as shown in Table 1, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 5]
100 parts by mass of a metallocene plastomer (kernel KF360T manufactured by Nippon Polyethylene Co., Ltd.) having an MFR of 3.5 g / 10 min and a density of 0.898 g / cm 3 as a thermoplastic resin, without using an ultraviolet absorber, and as a light stabilizer [{(6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4diyl) {(2,2,6,6-tetramethyl-4-piperidyl) Imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}} (Ciba Specialty Chemicals Kimasorb 944LD) 0.2 parts by weight, magnesium oxide (Kamishima as a light shielding agent) Chemical Industry Co., Ltd. Star Mug U) 15 parts by mass, Pigment Red-57-1 as a pigment (Irgarite Rubine, Nagase Sangyo Co., Ltd.) BP) 0.2 parts by mass, electron beam cross-linked long foam Torepefu 13060-AM00 (manufactured by Toray Industries, Inc.), metal laminate (3), and extrusion laminate using metal roll (3). Insulation was obtained. Table 2 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
The heat insulating material for metal roof obtained by the above method and a 0.5% thick coated molten 55% aluminum-zinc alloy plated steel sheet (Nisshin Steel Co., Ltd. Moon Star GL color N50GL) are used, and the polyolefin resin foam layer is the steel sheet. A flat metal roof member before bending was obtained. The evaluation results are as shown in Table 2, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 6]
70 parts by mass of a vinyl chloride resin (MT1100 manufactured by V-Tech Co., Ltd.) as a thermoplastic resin, 30 parts by mass of diisononyl adipate (DINA manufactured by J. Plus) as a plasticizer, and 4-dodecyloxy-2-hydroxybenzophenone as an ultraviolet absorber (SEPRORB103 manufactured by Sipro Kasei Co., Ltd.) 2.0 parts by mass, 2,2,6,6-tetramethyl-4-piperidyl-maleic anhydride polycondensate (SEESORB 805 manufactured by Sipro Kasei Co., Ltd.) 0.1 as a light stabilizer 10 parts by mass of kaolin (Satinton 5 manufactured by Takehara Chemical Industry Co., Ltd.) as a light shielding material and 1.0 part by mass of carbon black (Toka Black # 7360SB manufactured by Tokai Carbon Co., Ltd.) as a pigment are heated to 170 ° C. After melt-kneading with a kneader, the metal roll (1) was used. It was molded into a film in the Render molding machine. This film was laminated on an electron beam cross-linked long foam Torepef 15030-AG00 (manufactured by Toray Industries, Inc.) by an adhesive laminating method to obtain a heat insulating material for a metal roof. Table 2 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
Laminate the heat insulating material for metal roof obtained by the above method and a coated hot-dip galvanized steel sheet with a thickness of 0.6 mm (Month Star Color B40 manufactured by Nisshin Steel Co., Ltd.) so that the polyolefin resin foam layer is in contact with the steel sheet. Then, a flat metal roof member before bending was obtained. The evaluation results are as shown in Table 2, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 7]
60 parts by mass of a vinyl chloride resin (MT1100 manufactured by V-Tech Co., Ltd.) as a thermoplastic resin, 40 parts by mass of diisononyl phthalate (DINP manufactured by J. Plus) as a plasticizer, and 2′-ethylhexyl 2-cyano-3 as an ultraviolet absorber , 3-diphenyl acrylate (SEESORB502, manufactured by Cypro Kasei Co., Ltd.) 1.0 part by weight, muscovite (Yamaguchi Mica Industrial Co., Ltd., SYA-21R) 10 parts by weight, without using light stabilizers and pigments, A heat insulating material for a metal roof was obtained in the same manner as in Example 6 except that it was bonded and laminated using a cross-linked long foam high ethylene super (manufactured by Hitachi Chemical Co., Ltd.). Table 2 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
The heat insulating material for metal roof obtained by the above method and a coated stainless steel plate having a thickness of 0.3 mm (Color Soften F1A1 manufactured by Nisshin Steel Co., Ltd.) are laminated so that the polyolefin resin foam layer is in contact with the steel plate and bent. A flat metal roof member before processing was obtained. The evaluation results are as shown in Table 2, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 8]
80 parts by mass of vinyl chloride resin (MT1100 manufactured by V-Tech Co., Ltd.) as the thermoplastic resin, 20 parts by mass of adipic acid-based polyester (D643 manufactured by Jay Plus Co., Ltd.) as the plasticizer, and poly [{(6- (1 , 1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4diyl) {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2 , 2,6,6-tetramethyl-4-piperidyl) imino}} (Ciba Specialty Chemicals Kimasorb 944LD) 1.0 part by weight, sericite as a light shielding agent (Soft Sericite manufactured by Iwase Cosfa Co., Ltd.) T-6) 15 parts by mass, without using UV absorber and pigment, electron beam cross-linked long foam Torepefu 30040-AS60 (Toray Industries, Inc.) A heat insulating material for a metal roof was obtained in the same manner as in Example 6 except that the adhesive lamination was performed. Table 2 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
Laminate the metal roof heat insulating material obtained by the above method and 0.4mm thick hot dip galvanized stainless steel plate (Nisshin Steel Co., Ltd. Tough Ten Z) so that the polyolefin resin foam layer is in contact with the steel plate, and bend A flat metal roof member before processing was obtained. The evaluation results are as shown in Table 2, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 9]
A heat insulating material for a metal roof having a width of 87 cm and a length of 10 m prepared by the method described in Example 1, and a coated hot-dip galvanized steel sheet having a width of 90 cm, a length of 150 cm, and a thickness of 0.35 mm (manufactured by Nisshin Steel Co., Ltd. The color B40) was laminated so that the polyolefin resin foam layer was in contact with the steel sheet, and a flat metal roof member before bending was created. This member was bent into a large wave shape with a vertex interval of 76 mm using a round wave molding machine to obtain a metal roof. The part where the cross section of the polyolefin resin foam of this metal roof is exposed is 100 parts by mass of Vinesol R-8900 (manufactured by Yushi Kogyo Co., Ltd.) as an adhesive on one side of the thermoplastic resin layer shown in Example 2. A tape obtained by applying 1.7 parts by mass of a crosslinking agent B-45 (manufactured by Yushi Kogyo Co., Ltd.) to a dry mass of 50 to 70 g / m 2 and sufficiently drying in a hot-air circulating dryer. Was used to coat.
The metal roof created by the above method was used as a roofing material for a rain avoidance structure for outdoor equipment having a width of 1.4 m, a depth of 0.9 m, and a height of 1.6 m. A schematic diagram of a rain avoidance structure for outdoor equipment is shown in FIG. The metal roof was attached to a columnar metal pipe fixed in a horizontal direction on a column placed on the ceiling of a rain avoidance structure for outdoor equipment with a pipe bolt with sealing packing. FIG. 9 shows a schematic view of attaching a metal roof.
[Example 10]
A heat insulating material for metal roof was obtained in the same manner as in Example 1 except that extrusion lamination was performed using the metal roll (2). The metal roof heat insulating material is continuously passed through a through hole processing roll in which metal rods with a diameter of 2 mm and a length of 30 mm processed at a sharp tip are arranged in the circumferential direction of the metal roll at intervals of 5 cm in the vertical and horizontal directions. A heat insulating material for a metal roof which was subjected to through hole processing was obtained. The projected area of each through-hole is the largest compared with the through-hole image and the contaminant measurement chart in which the through-hole photographed with the steel ruler is image processed so that the photographed steel rule scale matches the actual steel rule scale. As a result of selecting and calculating the ones that are similar in shape to each other, the result was 2.5 mm 2 . Table 3 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
The heat insulating material for metal roof obtained by the above method and a coated hot-dip galvanized steel sheet having a thickness of 0.35 mm (Misssei Color B40 manufactured by Nisshin Steel Co., Ltd.) are laminated so that the polyolefin resin foam layer is in contact with the steel sheet. Then, a flat metal roof member before bending was obtained. The evaluation results are as shown in Table 3, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 11]
As an ultraviolet absorber, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole (SEESORB703 manufactured by Cypro Kasei Co., Ltd.) 0.6 parts by mass, and as a light stabilizer 2, 0.6 part by mass of 2,6,6-tetramethyl-4-piperidyl-maleic anhydride polycondensate (SEPRORB805 manufactured by Sipro Kasei Co., Ltd.), magnesium hydroxide as a light shielding agent (Magsees N- manufactured by Kamishima Chemical Co., Ltd.) 3) A metal roof heat insulating material was obtained in the same manner as in Example 1 except that the amount was 10 parts by mass. The metal roof heat insulating material is continuously passed through a through-hole processing roll in which metal rods having a diameter of 1 mm and a length of 20 mm processed at a sharp tip are aligned and arranged on the circumference of the metal roll at 10 cm intervals in the vertical and horizontal directions. A heat insulating material for a metal roof which was subjected to through hole processing was obtained. The projected area of each through-hole is the largest compared with the through-hole image and the contaminant measurement chart in which the through-hole photographed with the steel ruler is image processed so that the photographed steel rule scale matches the actual steel rule scale. As a result of selecting and obtaining the ones that are close to the shape, it was in the range of 0.5 to 0.7 mm 2 . Table 3 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
Laminate the heat insulating material for metal roof obtained by the above method and a coated hot-dip galvanized steel sheet with a thickness of 0.6 mm (Month Star Color B40 manufactured by Nisshin Steel Co., Ltd.) so that the polyolefin resin foam layer is in contact with the steel sheet. Then, a flat metal roof member before bending was obtained. The evaluation results are as shown in Table 3, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 12]
As an ultraviolet absorber, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole (SEESORB703 manufactured by Cypro Kasei Co., Ltd.) 0.6 parts by mass, and as a light stabilizer 2, 0.6 parts by mass of 2,6,6-tetramethyl-4-piperidyl-maleic anhydride polycondensate (SEESORB805 manufactured by Cypro Kasei Co., Ltd.), iron oxide as a light shielding agent (Magsees N-3 manufactured by Kamishima Chemical Co., Ltd.) ) 5 parts by weight and muscovite (Yamaguchi Mica Industry Co., Ltd., SYA-21R) 5 parts by weight, without using pigment, for metal roofing in the same manner as in Example 1 except that extrusion lamination was performed using a metal roll (3) Insulation was obtained. The metal roof heat insulating material is applied to a through-hole processing roll in which metal rods having a diameter of 3.5 mm and a length of 40 mm processed at a sharp tip are aligned and arranged on the circumference of the metal roll at 15 cm intervals in the vertical and horizontal directions. A heat insulating material for a metal roof having through holes processed continuously was obtained. As a result of measuring the projected area of each through-hole using a surface defect inspection apparatus (FITS-Ct manufactured by Ayaha Engineering Co., Ltd.), it was in the range of 7.5 to 8.3 mm 2 . Table 3 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
Laminate the heat insulating material for metal roof obtained by the above method and a coated hot-dip galvanized steel sheet with a thickness of 0.6 mm (Month Star Color B40 manufactured by Nisshin Steel Co., Ltd.) so that the polyolefin resin foam layer is in contact with the steel sheet. Then, a flat metal roof member before bending was obtained. The evaluation results are as shown in Table 3, and the metal roof member obtained by the above method passed the comprehensive judgment.
[Example 13]
100 parts by mass of an ethylene vinyl acetate copolymer (Mitsui-Dupont Polychemical Co., Ltd., EVAFLEX EV45LX) having an MFR of 2.5 g / 10 min as a thermoplastic resin and a vinyl acetate content of 46% by mass; 0.6 parts by mass of (3-t-butyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole (SEESORB703 manufactured by Cypro Kasei Co., Ltd.), 2,2,6,6- as a light stabilizer Tetramethyl-4-piperidyl-maleic anhydride polycondensate (SEESORB805 manufactured by Cypro Kasei Co., Ltd.) 0.6 parts by mass, titanium oxide (Ishihara Sangyo Co., Ltd. Taipaque R-980) 10 parts by mass as a light shielding agent, Magnesium hydroxide (Magsees N-3 manufactured by Kamijima Chemical Co., Ltd.) 40 parts by mass, no pigment used, odor as additive -Based flame retardant ethylenebispentabromobenzene (Suzuhiro Chemical Co., Ltd. Fire Cut P-801) 10 parts by mass, chemically crosslinked long foam high ethylene super (manufactured by Hitachi Chemical Co., Ltd.), metal roll (2) A heat insulating material for metal roof was obtained in the same manner as in Example 1 except that it was extruded and laminated. The metal roof heat insulating material is continuously passed through a through-hole processing roll in which metal rods with a diameter of 2 mm and a length of 30 mm processed at a sharp tip are aligned and arranged on the circumference of the metal roll at intervals of 5 cm in each of the vertical and horizontal directions. A heat insulating material for a metal roof which was subjected to through hole processing was obtained. The projected area of each through-hole is the largest compared with the through-hole image and the contaminant measurement chart in which the through-hole photographed with the steel ruler is image processed so that the photographed steel rule scale matches the actual steel rule scale. As a result of selecting and calculating the ones that are similar in shape to each other, the result was 2.5 mm 2 . Table 3 shows the thickness, apparent density, compression set, and thermoplastic resin layer thickness of the polyolefin resin foam layer at this time.
Laminate the heat insulating material for metal roof obtained by the above method and a coated hot-dip galvanized steel sheet with a thickness of 0.6 mm (Month Star Color B40 manufactured by Nisshin Steel Co., Ltd.) so that the polyolefin resin foam layer is in contact with the steel sheet. Then, a flat metal roof member before bending was obtained. The evaluation results are as shown in Table 3, and the metal roof member obtained by the above method passed the comprehensive judgment.

Figure 2014159733
Figure 2014159733

Figure 2014159733
Figure 2014159733

Figure 2014159733
Figure 2014159733

[比較例1]
熱可塑性樹脂を押出ラミネートしない以外は実施例1と同様にして金属屋根用積層体を得た。評価結果は表4に示す通りであり、暴露試験の外観性でポリオレフィン系樹脂発泡体層表面に無数の亀裂が生じ、部分的に黄変し極端に厚みが薄く気泡が崩壊・消滅し不良判定であった。圧縮回復率は紫外線劣化した上記発泡体層の弾性が失われ回復率は38%であった。これらの結果から総合判定は不合格であった。
[比較例2]
紫外線吸収剤を用いない以外は実施例1と同様にして金属屋根用積層体を得た。評価結果は表4に示す通りであり、暴露試験の外観性で熱可塑性樹脂層の欠落が散発しポリオレフィン系樹脂発泡体層の露出が見られ、この発泡体露出部では発泡体が黄変し極端に厚みが薄く気泡が崩壊・消滅していた。また熱可塑性樹脂層には無数の亀裂もあり不良判定であった。圧縮回復率は紫外線劣化した上記発泡体層の弾性が失われ回復率は43%であった。これらの結果から総合判定は不合格であった。
[比較例3]
光遮蔽剤を用いない以外は実施例1と同様にして金属屋根用積層体を得た。評価結果は表4に示す通りであり、暴露試験の外観性でポリオレフィン系樹脂発泡体層が黄変し極端に厚みが薄く気泡が崩壊・消滅した部分があり不良判定であった。圧縮回復率は紫外線劣化した上記発泡体層の弾性が失われ回復率は49%であった。これらの結果から総合判定は不合格であった。
[比較例4]
発泡体層として吹付け発泡ウレタン(ヘンケルジャパン株式会社製シスタM5230)を厚み0.35mmの塗装溶融亜鉛めっき鋼板(日新製鋼株式会社製月星カラー B40)に発泡体層厚みが約4mmとなるよう吹付け30分放置した。熱可塑性樹脂層としてA液とB液とを同量に混合したウレタン樹脂(日新レジン株式会社製ホビーキャストNX透明)100質量部に紫外線吸収剤として2−(3−t−ブチル−2−ヒドロキシ−5−メチリフェニル)−5−クロロ−2H−ベンゾトリアゾール(シプロ化成株式会社製SEESORB703)0.3質量部、光遮蔽剤として酸化チタン(石原産業株式会社製タイぺークR−980)3質量部、顔料としてC.I.ピグメントイエロー53(長瀬産業株式会社製イルガカラーYellow 10401)0.2質量部を攪拌混合し、刷毛を用いて吹付け発泡ウレタンに薄膜となるよう塗布し、金属屋根用発泡断熱材を得た。評価結果は表4に示す通りであり、90°折曲げ試験後の外観性で熱可塑性樹脂層に多数の割れや亀裂が発生し、また上記発泡断熱材にも部分的に割れが発生したため不良判定であった。圧縮回復率は上記発泡断熱材に弾性がなく回復率は35%であった。これらの結果から総合判定は不合格であった。
[Comparative Example 1]
A metal roof laminate was obtained in the same manner as in Example 1 except that the thermoplastic resin was not extrusion laminated. The evaluation results are as shown in Table 4, and due to the appearance of the exposure test, innumerable cracks occurred on the surface of the polyolefin resin foam layer, partially yellowing, the thickness was extremely thin, and the bubbles collapsed / disappeared. Met. As for the compression recovery rate, the elasticity of the foam layer deteriorated by ultraviolet rays was lost, and the recovery rate was 38%. From these results, the comprehensive judgment was rejected.
[Comparative Example 2]
A metal roof laminate was obtained in the same manner as in Example 1 except that no ultraviolet absorber was used. The evaluation results are as shown in Table 4. In the appearance of the exposure test, the lack of the thermoplastic resin layer sporadically occurred, and the polyolefin resin foam layer was exposed, and the foam was yellowed at the exposed foam portion. The bubble was extremely thin and the bubbles collapsed and disappeared. In addition, the thermoplastic resin layer had innumerable cracks and was judged as defective. As for the compression recovery rate, the elasticity of the foam layer deteriorated by ultraviolet rays was lost, and the recovery rate was 43%. From these results, the comprehensive judgment was rejected.
[Comparative Example 3]
A metal roof laminate was obtained in the same manner as in Example 1 except that the light shielding agent was not used. The evaluation results are as shown in Table 4. The appearance of the exposure test was poor because there was a portion where the polyolefin resin foam layer turned yellow, the thickness was extremely thin, and the bubbles collapsed and disappeared. As for the compression recovery rate, the elasticity of the foam layer deteriorated by ultraviolet rays was lost, and the recovery rate was 49%. From these results, the comprehensive judgment was rejected.
[Comparative Example 4]
Spray foaming urethane (Sister M5230 manufactured by Henkel Japan Co., Ltd.) as a foam layer is applied to a coated hot-dip galvanized steel sheet (Nisshin Steel Co., Ltd. Moon Star Color B40) having a thickness of about 4 mm. The spray was left for 30 minutes. As a thermoplastic resin layer, urethane resin (Nisshin Resin Co., Ltd. Hobby Cast NX transparent) 100 parts by mass mixed with A liquid and B liquid in the same amount as 2- (3-t-butyl-2- Hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole (SEPRORB 703 manufactured by Cypro Kasei Co., Ltd.) 0.3 parts by mass, titanium oxide as a light shielding agent (Taipeke R-980 manufactured by Ishihara Sangyo Co., Ltd.) 3 parts by mass Part, C.I. I. 0.2 parts by weight of Pigment Yellow 53 (Irga Color Yellow 10401 manufactured by Nagase Sangyo Co., Ltd.) was stirred and mixed, and applied to a foamed urethane by using a brush so as to form a thin film, thereby obtaining a foam insulation for metal roof. The evaluation results are as shown in Table 4, and many cracks and cracks occurred in the thermoplastic resin layer due to the appearance after the 90 ° bending test, and partial cracks also occurred in the foam heat insulating material. It was a judgment. As for the compression recovery rate, the foamed heat insulating material was not elastic and the recovery rate was 35%. From these results, the comprehensive judgment was rejected.

Figure 2014159733
Figure 2014159733

1 金属板
2 ポリオレフィン系樹脂発泡体層
3 表面が鏡面である熱可塑性樹脂層
4 表面に規則的凹凸模様を有する熱可塑性樹脂層
5 表面に梨地模様を有する熱可塑性樹脂層
6 屋外機器用雨避け構造物
7 金属屋根
8 片面に粘着剤を塗布した熱可塑性樹脂層テープ
9 円柱状の金属パイプ
10 パイプボルト
11 曲座
12 シーリングパッキン
13 貫通孔
DESCRIPTION OF SYMBOLS 1 Metal plate 2 Polyolefin-type resin foam layer 3 The thermoplastic resin layer 4 whose surface is a mirror surface 4 The thermoplastic resin layer 5 which has a regular uneven pattern on the surface 5 The thermoplastic resin layer which has a satin pattern on the surface 6 Avoid rain for outdoor equipment Structure 7 Metal roof 8 Thermoplastic resin layer tape 9 coated with adhesive on one side 9 Cylindrical metal pipe 10 Pipe bolt 11 Curved seat 12 Sealing packing 13 Through hole

本発明はかかる課題を解決するために、次の手段を採用するものである。即ち、本発明は、ポリオレフィン系樹脂発泡体層と熱可塑性樹脂層とが積層された金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材であって、圧縮回復率が64〜93%であり、前記熱可塑性樹脂層は、光遮蔽剤を含み、かつ紫外線吸収剤および/または光安定剤を含んでいる金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材を特徴としている。 The present invention employs the following means in order to solve such problems. That is, the present invention is a thermoplastic resin-laminated polyolefin foam insulation for metal roof in which a polyolefin resin foam layer and a thermoplastic resin layer are laminated, and the compression recovery rate is 64 to 93%, The thermoplastic resin layer is characterized by a thermoplastic resin-laminated polyolefin-based foam insulation for a metal roof that contains a light shielding agent and contains an ultraviolet absorber and / or a light stabilizer.

Claims (7)

ポリオレフィン系樹脂発泡体層と熱可塑性樹脂層とが積層された金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材であって、前記熱可塑性樹脂層は、光遮蔽剤を含み、かつ紫外線吸収剤および/または光安定剤を含んでいる金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材。 A thermoplastic resin-laminated polyolefin foam insulation for metal roof in which a polyolefin resin foam layer and a thermoplastic resin layer are laminated, wherein the thermoplastic resin layer includes a light shielding agent, and an ultraviolet absorber and A thermoplastic resin-laminated polyolefin-based foam heat insulating material for metal roof containing a light stabilizer. 紫外線吸収剤および光安定剤の総含有量が、熱可塑性樹脂100質量部に対し0.1〜5質量部であり、光遮蔽剤の含有量が、熱可塑性樹脂100質量部に対し2〜50質量部である、請求項1に記載の金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材。 The total content of the ultraviolet absorber and the light stabilizer is 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and the content of the light shielding agent is 2 to 50 with respect to 100 parts by mass of the thermoplastic resin. The thermoplastic resin-laminated polyolefin-based foam heat insulating material for metal roof according to claim 1, which is a mass part. 熱可塑性樹脂層の厚みが0.05〜2mmの範囲である、請求項1または2に記載の金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材。 The thermoplastic resin-laminated polyolefin-based foam heat insulating material for metal roof according to claim 1 or 2, wherein the thickness of the thermoplastic resin layer is in the range of 0.05 to 2 mm. ポリオレフィン系樹脂発泡体層の厚みが1〜20mmの範囲にあり、見かけ密度が10〜100kg/mの範囲にあり、かつ圧縮永久歪が15%以下の範囲にある、請求項1〜3のいずれかに記載の金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材。 The thickness of the polyolefin-based resin foam layer is in the range of 1 to 20 mm, the apparent density is in the range of 10 to 100 kg / m 3 , and the compression set is in the range of 15% or less. The thermoplastic resin-laminated polyolefin-based foam heat insulating material for metal roof according to any one of the above. ポリオレフィン系樹脂発泡体層と熱可塑性樹脂層とを貫通する貫通孔を有する、請求項1〜4のいずれかに記載の金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材。 The thermoplastic resin-laminated polyolefin-based foam heat insulating material for metal roof according to any one of claims 1 to 4, having a through hole penetrating the polyolefin-based resin foam layer and the thermoplastic resin layer. 請求項1〜5のいずれかに記載の金属屋根用熱可塑性樹脂積層ポリオレフィン系発泡断熱材のポリオレフィン系樹脂発泡体層が金属板に接するように積層された金属屋根。 The metal roof laminated | stacked so that the polyolefin resin foam layer of the thermoplastic resin lamination | stacking polyolefin foam insulation material for metal roofs in any one of Claims 1-5 may contact | connect a metal plate. 請求項6に記載の金属屋根を用いた建築物。 A building using the metal roof according to claim 6.
JP2014033692A 2008-09-02 2014-02-25 Thermoplastic resin laminated polyolefin foamed heat insulation material for metal roof, metal roof, and building Pending JP2014159733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014033692A JP2014159733A (en) 2008-09-02 2014-02-25 Thermoplastic resin laminated polyolefin foamed heat insulation material for metal roof, metal roof, and building

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008224449 2008-09-02
JP2008224449 2008-09-02
JP2014033692A JP2014159733A (en) 2008-09-02 2014-02-25 Thermoplastic resin laminated polyolefin foamed heat insulation material for metal roof, metal roof, and building

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009193918A Division JP2010084508A (en) 2008-09-02 2009-08-25 Thermoplastic resin laminated polyolefin foamed heat insulation material for metal roof, metal roof, and building

Publications (1)

Publication Number Publication Date
JP2014159733A true JP2014159733A (en) 2014-09-04

Family

ID=42248736

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009193918A Pending JP2010084508A (en) 2008-09-02 2009-08-25 Thermoplastic resin laminated polyolefin foamed heat insulation material for metal roof, metal roof, and building
JP2014033692A Pending JP2014159733A (en) 2008-09-02 2014-02-25 Thermoplastic resin laminated polyolefin foamed heat insulation material for metal roof, metal roof, and building

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009193918A Pending JP2010084508A (en) 2008-09-02 2009-08-25 Thermoplastic resin laminated polyolefin foamed heat insulation material for metal roof, metal roof, and building

Country Status (1)

Country Link
JP (2) JP2010084508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772811B1 (en) * 2016-04-06 2017-08-29 박해성 A method of manufacturing a metal base integrally molded with a heat insulating material,

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210493A (en) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The Light reflecting member and manufacturing method thereof
JP6190731B2 (en) * 2014-01-30 2017-08-30 古河電気工業株式会社 Composite structure
KR20170036089A (en) * 2014-09-30 2017-03-31 세키스이가세이힝코교가부시키가이샤 Expanded article, and expanded particles used to produce same
JP6534645B2 (en) * 2016-03-30 2019-06-26 積水化成品工業株式会社 Shock absorbing foam and shock absorbing material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112330A (en) * 1984-06-29 1986-01-20 積水化学工業株式会社 Manufacture of heat-insulating table flap
JPH11199693A (en) * 1998-01-14 1999-07-27 Sekisui Chem Co Ltd Foam and its production
JP2001132891A (en) * 1999-11-05 2001-05-18 Kurimoto Ltd Heat insulating material for planar heating body
JP2008030462A (en) * 2006-06-28 2008-02-14 Toray Pef Products Inc Weather resistant polyolefin resin laminated foam

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350671A (en) * 1998-06-11 1999-12-21 Achilles Corp Joint structure for heat insulating building material
JP4904526B2 (en) * 2006-09-07 2012-03-28 東レペフ加工品株式会社 Polyolefin-based resin laminate foam having deodorizing function, and cylindrical body or molded body comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112330A (en) * 1984-06-29 1986-01-20 積水化学工業株式会社 Manufacture of heat-insulating table flap
JPH11199693A (en) * 1998-01-14 1999-07-27 Sekisui Chem Co Ltd Foam and its production
JP2001132891A (en) * 1999-11-05 2001-05-18 Kurimoto Ltd Heat insulating material for planar heating body
JP2008030462A (en) * 2006-06-28 2008-02-14 Toray Pef Products Inc Weather resistant polyolefin resin laminated foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772811B1 (en) * 2016-04-06 2017-08-29 박해성 A method of manufacturing a metal base integrally molded with a heat insulating material,

Also Published As

Publication number Publication date
JP2010084508A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP2014159733A (en) Thermoplastic resin laminated polyolefin foamed heat insulation material for metal roof, metal roof, and building
CN110382607B (en) Foam and method for producing the same
JP2002293973A (en) Porous polypropylene film and method for producing the same
JP6303393B2 (en) Foam wallpaper
JP4904526B2 (en) Polyolefin-based resin laminate foam having deodorizing function, and cylindrical body or molded body comprising the same
JP2010190388A (en) Pipe cover
JP2012224978A (en) Metal plate for folded-plate roof, the folded-plate roof, and building
JP5152561B2 (en) Polyolefin resin laminated foam adhesive tape
CN113474401B (en) Polyolefin resin foam sheet and adhesive tape using same
JP5152555B2 (en) Weather-resistant polyolefin resin laminate foam
JP4178990B2 (en) Biodegradable resin crosslinked foam sheet and adhesive tape
WO2020195675A1 (en) Polyolefin resin foam sheet and method for producing same
JP2009051155A (en) Polyolefin-based resin laminated foam imparted with antifungal function, and cylindrical body or molding formed thereof
JP2015081446A (en) Foam wallpaper
JP6582504B2 (en) RESIN COMPOSITION, LAMINATED SHEET, LAMINATE, FOAM WALLPAPER AND METHOD FOR PRODUCING FOAM WALLPAPER
JP6492482B2 (en) Resin composition, resin sheet, laminated sheet and foamed wallpaper
JP6607064B2 (en) Multilayer resin sheet, laminate sheet, method for producing multilayer resin sheet, method for producing laminate sheet, and method for producing foamed wallpaper
JP3454739B2 (en) Crosslinked olefin resin foam and method for producing the same
JP6492494B2 (en) Resin composition, resin sheet, laminated sheet and foamed wallpaper
JP6607063B2 (en) Multilayer resin sheet, laminate sheet, method for producing multilayer resin sheet, method for producing laminate sheet, and method for producing foamed wallpaper
JP6358000B2 (en) Resin sheet, laminated sheet, foam wallpaper, and method for producing foam wallpaper
JPH11236463A (en) Cross-linked foamed product of polypropylene-based resin
JP6384224B2 (en) RESIN COMPOSITION, LAMINATED SHEET, LAMINATE, FOAM WALLPAPER AND METHOD FOR PRODUCING FOAM WALLPAPER
KR970000608Y1 (en) Panel system
JPH08309902A (en) Production of laminate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150609