JP2014159497A - Chemical heat storage material, method of producing the same and chemical heat storage structure - Google Patents

Chemical heat storage material, method of producing the same and chemical heat storage structure Download PDF

Info

Publication number
JP2014159497A
JP2014159497A JP2013029742A JP2013029742A JP2014159497A JP 2014159497 A JP2014159497 A JP 2014159497A JP 2013029742 A JP2013029742 A JP 2013029742A JP 2013029742 A JP2013029742 A JP 2013029742A JP 2014159497 A JP2014159497 A JP 2014159497A
Authority
JP
Japan
Prior art keywords
heat storage
chemical heat
storage material
metal salt
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013029742A
Other languages
Japanese (ja)
Inventor
Masakazu Aoki
正和 青木
Takashi Shimazu
孝 志満津
Takashi Yamauchi
崇史 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2013029742A priority Critical patent/JP2014159497A/en
Publication of JP2014159497A publication Critical patent/JP2014159497A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new chemical heat storage material whose consistency with a heat medium storage material can be more improved and which enables efficiency of a chemical heat storage system to be more improved.SOLUTION: The chemical heat storage material is provided which is a chemical heat storage material generating or absorbing heat by occluding or releasing a heat medium. The chemical heat storage material contains a composite metal salt (MX, n:an average valency of M) being a metal halide which is composed of a metal element (M) and a halogen element (X), at least one of the elements consisting of two or more elements. The composite metal salt has an average electronegativity difference (ΔEa=EXa-EMa) of 0.3 to 2.16 or 2.21 to 3.2, the electronegativity difference being obtained by subtracting the average electronegativity of the metal element (EMa) from the average electronegativity of the halogen element (EXa). An example of the chemical heat storage material is Ca(ClBr)which is an alkali earth metal composite halide. A method of producing the chemical heat storage material and a chemical heat storage structure using the same are also provided.

Description

本発明は、複金属塩からなる化学蓄熱材、その製造方法およびそれを用いた化学蓄熱構造体に関する。   The present invention relates to a chemical heat storage material comprising a double metal salt, a production method thereof, and a chemical heat storage structure using the same.

環境意識の高揚に伴い、省エネルギー化やエネルギー効率の向上を図る研究開発が盛んになされている。その一つに、蓄熱密度が大きく、保温しなくても長期間の蓄熱が可能な化学蓄熱材を用いた化学蓄熱システムが着目されている。これによると、各種の機器やプラントから生じる比較的低温な廃熱(または排熱)等も有効に活用し得る。   With the heightened awareness of the environment, research and development aimed at saving energy and improving energy efficiency are being actively pursued. As one of them, a chemical heat storage system using a chemical heat storage material that has a large heat storage density and can store heat for a long period of time without keeping heat is attracting attention. According to this, relatively low-temperature waste heat (or exhaust heat) generated from various devices and plants can be effectively utilized.

化学蓄熱システムは、化学蓄熱材と熱媒貯蔵材の間で熱媒(アンモニアまたは水等)を移動させることにより、蓄熱(吸熱)と放熱(発熱)を行う。このシステムの高効率化やコンパクト化を図るには、化学蓄熱材と熱媒貯蔵材の間で、作動温度や作動圧力の整合(マッチング)を図ることが重要となる。このため化学蓄熱材には、単に蓄熱密度が高いのみならず、熱媒貯蔵材に整合した作動温度や作動圧力の下で、熱媒を効率的に吸蔵または放出し得るものであることが求められる。   The chemical heat storage system performs heat storage (heat absorption) and heat dissipation (heat generation) by moving a heat medium (such as ammonia or water) between the chemical heat storage material and the heat medium storage material. In order to increase the efficiency and compactness of this system, it is important to match the operating temperature and the operating pressure between the chemical heat storage material and the heat medium storage material. For this reason, chemical heat storage materials are required not only to have a high heat storage density, but also to be able to efficiently occlude or release the heat medium at an operating temperature and pressure consistent with the heat medium storage material. It is done.

この化学蓄熱材には、従来、水との反応により水酸化物を形成する酸化カルシウム(生石灰)等が一般的に用いられていたが、最近では、より低温域で作動可能なアンモニア錯体(アンミン錯体)を形成する金属塩化物などが利用されつつある。もっとも、塩化カルシウム(CaCl)等の単金属塩のみからなる化学蓄熱材では、その作動温度や作動圧力が固定的であり、必ずしも熱媒貯蔵材に整合的であるとは限らず、化学蓄熱システムの効率的な運転には限界があった。そこで複数種の単金属塩を用いた化学蓄熱材が提案されており、これに関連する記載が例えば下記の特許文献にある。 Conventionally, calcium oxide (quick lime) that forms hydroxide by reaction with water has been generally used for this chemical heat storage material, but recently, an ammonia complex (ammine) that can operate at lower temperatures. Metal chlorides forming a complex) are being used. However, in a chemical heat storage material composed only of a single metal salt such as calcium chloride (CaCl 2 ), its operating temperature and pressure are fixed and not necessarily consistent with the heat medium storage material. There was a limit to the efficient operation of the system. Therefore, chemical heat storage materials using a plurality of types of single metal salts have been proposed. For example, the following patent document describes the related description.

特許3111667号公報Japanese Patent No. 311667 特公昭59−25159号公報Japanese Patent Publication No.59-25159 特開平1−302077号公報JP-A-1-302077 特表2007−531209号公報Special Table 2007-531209 米国特許5289690号公報US Pat. No. 5,289,690

特許文献1には、CaClとCaBrを溶解、濃縮および乾燥させたカルシウム塩混合物が、それらの単なる混合物よりも、アンモニア(NH)放出温度が高くなる旨の記載がある。もっとも、この特許文献では、そのカルシウム塩混合物の結晶構造や作用等が明らかではない。また、そのカルシウム塩混合物は、アンモニアを放出する際の配位数変化がCaCl単体(CaCl・4NH + 4NH ⇔ CaCl・8NH )よりも小さく、可逆的に使用できる蓄熱密度も小さい。 Patent Document 1 describes that a calcium salt mixture obtained by dissolving, concentrating and drying CaCl 2 and CaBr 2 has a higher ammonia (NH 3 ) release temperature than a simple mixture thereof. However, in this patent document, the crystal structure and action of the calcium salt mixture are not clear. Calcium salt mixture thereof, coordination number changes when release ammonia is less than CaCl 2 alone (CaCl 2 · 4NH 3 + 4NH 3 ⇔ CaCl 2 · 8NH 3), also the heat storage density can be reversibly used small.

特許文献2には、塩化ナトリウム(NaCl)や塩化カリウム(KCl)を、溶融状態の塩化亜鉛(ZnCl)へ適量混在させることにより、NHと反応するZnClの蒸気圧や溶融温度を低下させ得る旨の記載がある。しかし、この場合のNaClやKClは、NHを吸蔵・放出する溶融ZnClの安定化を単に図っているに過ぎない。つまり、特許文献2は特性の異なる新たな化学蓄熱材を提供するものではない。 In Patent Document 2, sodium vapor (NaCl) and potassium chloride (KCl) are mixed in an appropriate amount of molten zinc chloride (ZnCl 2 ) to lower the vapor pressure and melting temperature of ZnCl 2 that reacts with NH 3. There is a description that can be made. However, NaCl or KCl in this case merely serves to stabilize molten ZnCl 2 that absorbs and releases NH 3 . That is, Patent Document 2 does not provide a new chemical heat storage material having different characteristics.

特許文献3〜5には、化学蓄熱システム等に関する開示があり、それに用いる化学蓄熱材の一例として金属ハロゲン化物を挙げている。しかし、化学蓄熱材自体に関する具体的な記載はない。   Patent Documents 3 to 5 disclose a chemical heat storage system and the like, and metal halides are cited as an example of a chemical heat storage material used therefor. However, there is no specific description regarding the chemical heat storage material itself.

本発明はこのような事情に鑑みて為されたものであり、従来の単金属塩からなる化学蓄熱材とは熱媒吸放出反応が生じる圧力・温度領域や配位数変化が異なり、熱媒貯蔵材により整合的で、化学蓄熱システムを効率的に作動させ得る新たな化学蓄熱材およびその製造方法を提供することを目的とする。また、その化学蓄熱材を用いた化学蓄熱構造体を提供することを目的とする。   The present invention has been made in view of such circumstances, and differs from a conventional chemical heat storage material made of a single metal salt in a pressure / temperature region in which a heat-medium absorption / release reaction occurs and a change in coordination number. An object of the present invention is to provide a new chemical heat storage material that is more consistent with the storage material and can efficiently operate the chemical heat storage system, and a method for manufacturing the same. Moreover, it aims at providing the chemical thermal storage structure using the chemical thermal storage material.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、単金属塩である塩化カルシウム(CaCl)と臭化カルシウム(CaBr)から、それらの混合金属塩とは異なる複金属塩であるCa(Cl0.5Br0.5(またはCaClBr)を合成することに成功した。この複金属塩は、従来の単金属塩とは異なる条件下で熱媒吸放出反応を生じ、大きな配位数変化を示した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of extensive research and trial and error, the present inventor is different from mixed metal salts of calcium chloride (CaCl 2 ) and calcium bromide (CaBr 2 ), which are single metal salts. We have successfully synthesized Ca (Cl 0.5 Br 0.5 ) 2 (or CaClBr), which is a double metal salt. This double metal salt caused a heat medium absorption / release reaction under conditions different from those of conventional single metal salts, and showed a large change in coordination number. By developing this result, the present invention described below has been completed.

《化学蓄熱材》
(1)本発明の化学蓄熱材は、熱媒の吸蔵または放出により発熱または吸熱する化学蓄熱材であって、金属元素(M)とハロゲン元素(X)とからなりそれらの少なくとも一方が二種以上の元素からなる金属ハロゲン化物である複金属塩(MX、n:Mの平均価数)を含み、該複金属塩は、該ハロゲン元素の平均電気陰性度(EXa)から該金属元素の平均電気陰性度(EMa)を差し引いた平均電気陰性度差(ΔEa=EXa−EMa)が0.3〜2.16または2.21〜3.2であることを特徴とする。
《Chemical heat storage material》
(1) The chemical heat storage material of the present invention is a chemical heat storage material that generates heat or absorbs heat by occlusion or release of a heat medium, and is composed of a metal element (M) and a halogen element (X), at least one of which is two types A double metal salt (MX n , n: average valence of M), which is a metal halide composed of the above elements, and the double metal salt is obtained from the average electronegativity (EXa) of the halogen element. An average electronegativity difference (ΔEa = EXa−EMa) obtained by subtracting the average electronegativity (EMa) is 0.3 to 2.16 or 2.21 to 3.2.

(2)本発明の化学蓄熱材は、単金属塩(一種の金属イオン(カチオン)と一種のアニオンがイオン結合した化合物)の単なる混合物ではなく、複数の金属元素および/または複数のハロゲン元素が、原子レベルで複合化(イオン結合)した複金属塩からなる。 (2) The chemical heat storage material of the present invention is not a mere mixture of a single metal salt (a compound in which a kind of metal ion (cation) and a kind of anion is ion-bonded), but a plurality of metal elements and / or a plurality of halogen elements. It consists of a double metal salt compounded (ion bonded) at the atomic level.

この複金属塩は、化学蓄熱材として用いられてきた単金属塩やその混合物(混合金属塩)とは異なる種々の特性を示し得る。例えば、結晶構造、熱媒吸放出反応を生じる平衡圧力、その際の配位数変化等が従来の単金属塩と異なる。また、その平衡圧力や配位数変化などは、複金属塩を構成する元素の比率(複合比)を調整することにより変更可能である。従って本発明によれば、熱媒貯蔵材の作動特性ひいては化学蓄熱システムの効率化に適した、高蓄熱密度の化学蓄熱材を提供可能となる。   This double metal salt can exhibit various characteristics different from those of single metal salts and mixtures thereof (mixed metal salts) that have been used as chemical heat storage materials. For example, the crystal structure, the equilibrium pressure that causes the heat medium absorption / release reaction, the change in coordination number, and the like are different from those of the conventional single metal salt. Further, the equilibrium pressure, the coordination number change, and the like can be changed by adjusting the ratio (composite ratio) of the elements constituting the double metal salt. Therefore, according to the present invention, it is possible to provide a chemical heat storage material having a high heat storage density, which is suitable for improving the operating characteristics of the heat medium storage material and thus the efficiency of the chemical heat storage system.

(3)このように本発明に係る複金属塩が、従来の単金属塩とは異なる特性を発現する理由は必ずしも定かではないが、現状では次のように考えられる。すなわち、カチオンとアニオンの平均イオン半径比と電気陰性度比が適切な値となり、配位数変化が大きな結晶構造と格子体積を有するようになったためと考えられる。 (3) The reason why the double metal salt according to the present invention exhibits characteristics different from those of the conventional single metal salt is not necessarily clear, but at present, it is considered as follows. That is, it is considered that the average ionic radius ratio and the electronegativity ratio of the cation and the anion have appropriate values, and the crystal structure and lattice volume have a large change in coordination number.

(4)本発明の化学蓄熱材は、上述した複金属塩を含むものであればよく、二種以上の複金属塩からなるもの、複金属塩と単金属塩が混在したものなどでもよい。複金属塩に他の金属塩等を混在させて化学蓄熱材の成分を調整することにより、熱媒貯蔵材との整合性、熱媒吸放出反応の平衡域、熱媒の配位数変化等のさらなる最適化を図り得る。 (4) The chemical heat storage material of the present invention only needs to contain the above-described double metal salt, and may be composed of two or more double metal salts, or a mixture of double metal salts and single metal salts. By adjusting the components of the chemical heat storage material by mixing other metal salts with the double metal salt, consistency with the heat medium storage material, the equilibrium region of the heat medium absorption and release reaction, changes in the coordination number of the heat medium, etc. Can be further optimized.

《化学蓄熱材の製造方法》
上述した本発明の化学蓄熱材は、例えば、次のような本発明の製造方法により得られる。すなわち、上述した化学蓄熱材は、二種以上の金属塩を混合した混合金属塩を焼成する焼成工程により得ることが可能である。焼成工程により、金属塩に含まれてた金属イオン(例えばCa2+、Sr2+)やハロゲンイオン(例えばCl、Br、I等)がそれぞれ拡散して、単なる混合金属塩よりも熱力学的に安定な複金属塩(例えばCa(Cl1−yBr、yは複合比であり0<y<1)が生成されると考えられる。
《Method for producing chemical heat storage material》
The above-described chemical heat storage material of the present invention is obtained, for example, by the following production method of the present invention. That is, the above-described chemical heat storage material can be obtained by a firing step of firing a mixed metal salt obtained by mixing two or more kinds of metal salts. Through the firing process, metal ions (for example, Ca 2+ , Sr 2+ ) and halogen ions (for example, Cl , Br , I −, etc.) contained in the metal salt are diffused, so that thermodynamics is more than a simple mixed metal salt. Stable metal salt (for example, Ca (Cl 1-y Br y ) 2 , y is a composite ratio, and 0 <y <1) is considered to be generated.

また本発明の製造方法は、前記焼成工程前に混合金属塩を加圧成形した成形体を得る成形工程をさらに備え、前記焼成工程はその成形体を焼成した焼成体を得る工程としてもよい。これにより、より均一的な化学蓄熱材を得ることが可能となる。なお、得られた焼成体をそのまま化学蓄熱材として用いても良いし、それを解砕、粉砕したものを化学蓄熱材として用いてもよい。   Moreover, the manufacturing method of this invention is further equipped with the shaping | molding process which obtains the molded object which pressure-molded the mixed metal salt before the said baking process, and the said baking process is good also as a process of obtaining the sintered body which baked the molded object. Thereby, a more uniform chemical heat storage material can be obtained. In addition, you may use the obtained sintered body as a chemical heat storage material as it is, and you may use what was crushed and grind | pulverized as a chemical heat storage material.

《化学蓄熱構造体》
(1)本発明は、上述した化学蓄熱材およびその製造方法としてのみならず、その化学蓄熱材からなる化学蓄熱構造体としても把握できる。すなわち本発明は、上述した化学蓄熱材と該化学蓄熱材を保持するバインダーとからなることを特徴とする化学蓄熱構造体としても把握できる。これにより反応器等の仕様に応じた形態をもち、機械的強度に優れた化学蓄熱構造体が得られる。
《Chemical heat storage structure》
(1) The present invention can be grasped not only as the above-described chemical heat storage material and its manufacturing method, but also as a chemical heat storage structure comprising the chemical heat storage material. That is, this invention can be grasped | ascertained also as a chemical heat storage structure characterized by consisting of the chemical heat storage material mentioned above and the binder holding this chemical heat storage material. As a result, a chemical heat storage structure having a form according to the specifications of the reactor and the like and excellent in mechanical strength is obtained.

(2)この化学蓄熱構造体は、さらに、化学蓄熱材およびバインダーよりも熱伝導性に優れる高熱伝導材を含むものであると好適である。高熱伝導材を含むことにより、化学蓄熱構造体と外部との熱交換速度が大きくなり、熱媒吸放出反応が促進されて化学蓄熱システムの高効率化が図られる。なお、バインダーと高熱伝導材は、別材料である必要はなく、同一材料でもよい。例えば、高熱伝導材である炭素繊維をバインダーとして使用することもできる。 (2) It is preferable that the chemical heat storage structure further includes a high heat conductive material that is more excellent in thermal conductivity than the chemical heat storage material and the binder. By including the high heat conductive material, the heat exchange rate between the chemical heat storage structure and the outside is increased, and the heat medium absorption / release reaction is promoted, so that the chemical heat storage system is highly efficient. Note that the binder and the high thermal conductive material do not need to be separate materials, and may be the same material. For example, carbon fiber which is a high thermal conductive material can be used as a binder.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。但し、平均電気陰性度(EMa、EXa)または平均電気陰性度差(ΔEa)については上限値および下限値を含まないものとする。本明細書に記載した種々の数値や数値範囲に含まれる任意の数値を適当に選択または抽出し、それらを新たな下限値または上限値として「a〜b」のような数値範囲を任意に新設し得る。
<Others>
Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. However, the average electronegativity (EMa, EXa) or the average electronegativity difference (ΔEa) does not include an upper limit value and a lower limit value. Arbitrary numerical values included in various numerical values and numerical ranges described in this specification are appropriately selected or extracted, and a numerical range such as “ab” is arbitrarily set as a new lower limit or upper limit. Can do.

試料1のX線回折パターンを示すグラフである。3 is a graph showing an X-ray diffraction pattern of Sample 1.

発明の実施形態を挙げて本発明をより詳しく説明する。本明細書中から任意に選択した一つまたは二つ以上の内容を上述した本発明の構成として付加し得る。本明細書で説明する内容は、化学蓄熱材のみならず、その製造方法や化学蓄熱構造体にも適宜適用される。製造方法に関する構成は、プロダクトバイプロセスとして理解すれば物に関する構成になり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. One or more contents arbitrarily selected from the present specification may be added as the above-described configuration of the present invention. The contents described in the present specification are appropriately applied not only to the chemical heat storage material but also to the manufacturing method and the chemical heat storage structure. A configuration related to a manufacturing method can be a configuration related to an object if understood as a product-by-process. Which embodiment is the best depends on the target, required performance, and the like.

《化学蓄熱材》
(1)MX
本発明に係る複金属塩は、MX(M:金属元素、X:ハロゲン元素、n:Mの平均価数)と表され、MまたはXの少なくとも一方が二種以上の元素からなる複金属塩である。ここでMの平均価数(n)とは、複数の金属元素がそれぞれ金属イオンとなったときのイオン価数の平均値である。例えば、二種の金属元素(M1、M2)と一種のハロゲン元素(X)とからなり、M1のイオン価数:m1、M2のイオン価数:m2、金属元素の全原子数に対するM1の原子数の割合(複合比):x(0<x<1)である複金属塩(M1M21−x)の場合、n=m1×x+m2×(1−x)となる。
《Chemical heat storage material》
(1) MX n
The double metal salt according to the present invention is represented by MX n (M: metal element, X: halogen element, n: average valence of M), and at least one of M or X is composed of two or more elements. Salt. Here, the average valence (n) of M is an average value of ionic valences when a plurality of metal elements respectively become metal ions. For example, it consists of two kinds of metal elements (M1, M2) and one kind of halogen element (X), and the M1 ion valence: m1, the M2 ion valence: m2, and the M1 atom relative to the total number of atoms of the metal element Number ratio (composite ratio): In the case of a double metal salt (M1 x M2 1-x X n ) where x (0 <x <1), n = m1 × x + m2 × (1-x).

また、複金属塩が複数のハロゲン元素からなる場合もある。ハロゲン元素のイオン価数は通常いずれも−1であるから、例えば、二種のハロゲン元素(X1、X2)からなる複金属塩は、ハロゲン元素の全原子数に対するX1の原子数の割合(複合比)をy(0<y<1)として、M(X1X21−yと表される。さらに、二種の金属元素と二種のハロゲン元素からなる複金属塩であればM1M21−x(X1X21−yと表される。いずれにしても、Mの平均価数(n)は前述したように、各金属元素の価数(mi)とその存在割合(pi)の積の総和Σmi・pi(i=1、2、3・・・、Σpi=1)として算出される。 Further, the double metal salt may be composed of a plurality of halogen elements. Since the ionic valence of a halogen element is usually -1, for example, a double metal salt composed of two types of halogen elements (X1, X2) has a ratio of the number of X1 atoms to the total number of atoms of the halogen element (composite). The ratio is expressed as M (X1 y X2 1-y ) n where y (0 <y <1). Further, a double metal salt composed of two kinds of metal elements and two kinds of halogen elements is represented as M1 x M2 1-x (X1 y X2 1-y ) n . In any case, the average valence (n) of M is the sum Σmi · pi (i = 1, 2, 3) of the product of the valence (mi) of each metal element and the existence ratio (pi), as described above. ..., Σpi = 1).

(2)電気陰性度
電気陰性度は、各原子が電子を引きつける強さであり、各元素毎に定まっている。化学蓄熱材を構成する複金属塩に関して電気陰性度に着眼した理由は次の通りである。熱媒(アンモニアまたは水)分子は、複金属塩中の金属イオン(カチオン)とハロゲンイオン(アニオン)の間に侵入するため、カチオンとアニオンの電気陰性度差に起因する両者の結合力(クーロン力)と熱媒分子の侵入しやすさ(安定性)には関係があると考えたからである。
(2) Electronegativity Electronegativity is the strength with which each atom attracts electrons, and is determined for each element. The reason for focusing on the electronegativity regarding the double metal salt constituting the chemical heat storage material is as follows. Since the heat transfer medium (ammonia or water) molecules enter between the metal ion (cation) and the halogen ion (anion) in the double metal salt, the binding force between the two due to the difference in electronegativity between the cation and the anion (Coulomb) This is because there is a relationship between the force) and the ease of entry of the heat transfer molecule (stability).

本明細書でいうハロゲン元素の平均電気陰性度(EXa)は、複金属塩を構成する各ハロゲン元素の電気陰性度の平均値であり、金属元素の平均電気陰性度(EMa)は複金属塩を構成する各金属元素の電気陰性度の平均値である。例えば、本発明の複金属塩が二種の金属元素(M1、M2)と一種のハロゲン元素(X)とからなり、金属元素の全原子数に対するM1の原子数の割合(複合比)がx(0<x<1)である場合(M1M21−x)、M1の電気陰性度:EM1、M2の電気陰性度:EM2、Xの電気陰性度:EXとすると、EXa=EX、EMa=EM1×x+EM2×(1−x)、ΔEa=EX−{EM1×x+EM2×(1−x)}となる。 The average electronegativity (EXa) of the halogen element referred to in this specification is the average value of the electronegativity of each halogen element constituting the double metal salt, and the average electronegativity (EMa) of the metal element is the double metal salt. It is the average value of the electronegativity of each metal element which comprises. For example, the double metal salt of the present invention comprises two kinds of metal elements (M1, M2) and one kind of halogen element (X), and the ratio (composite ratio) of the number of M1 atoms to the total number of atoms of the metal element is x. (0 <x <1) (M1 x M2 1-x X n ), M1 electronegativity: EM1, M2 electronegativity: EM2, X electronegativity: EX, EXa = EX , EMa = EM1 × x + EM2 × (1-x), ΔEa = EX− {EM1 × x + EM2 × (1-x)}.

また、本発明の複金属塩が一種の金属元素(M)と複数のハロゲン元素(X1、X2)とからなり、ハロゲン元素の全原子数に対するX1の原子数の割合(複合比)がy(0<y<1)である場合(M(X1X21−y)、Mの電気陰性度:EM、X1の電気陰性度:EX1、X2の電気陰性度:EX2とすると、EMa=EM、EXa=EX1×y+EX2×(1−y)、ΔEa={EX1×y+EX2×(1−y)}−EMとなる。 The double metal salt of the present invention comprises a kind of metal element (M) and a plurality of halogen elements (X1, X2), and the ratio (composite ratio) of the number of X1 atoms to the total number of halogen element atoms is y ( When 0 <y <1) (M (X1 y X2 1-y ) n ), when M electronegativity: EM, X1 electronegativity: EX1, X2 electronegativity: EX2, EMa = EM, EXa = EX1 * y + EX2 * (1-y), [Delta] Ea = {EX1 * y + EX2 * (1-y)}-EM.

さらに本発明の複金属塩が二種の金属元素(M1、M2)と二種のハロゲン元素(X1、X2)からなる場合(M1M21−x(X1X21−y)、同様にEMa=EM1×x+EM2×(1−x)、EXa=EX1×y+EX2×(1−y)、ΔEa={EX1×y+EX2×(1−y)}−{EM1×x+EM2×(1−x)}となる。 Further, when the double metal salt of the present invention comprises two kinds of metal elements (M1, M2) and two kinds of halogen elements (X1, X2) (M1 x M2 1-x (X1 y X2 1-y ) n ), Similarly, EMa = EM1 * x + EM2 * (1-x), EXa = EX1 * y + EX2 * (1-y), [Delta] Ea = {EX1 * y + EX2 * (1-y)}-{EM1 * x + EM2 * (1-x) }.

ところで、本発明の複金属塩に係る平均電気陰性度差(ΔEa)を0.3〜2.16または2.21〜3.2とした理由は次の通りである。ΔEaがこれらの範囲を逸脱すると、侵入する熱媒(アンモニアまたは水)の安定性が低下する。ΔEaは1.0〜2.16または2.21〜2.6であるとより好ましい。   By the way, the reason why the average electronegativity difference (ΔEa) according to the double metal salt of the present invention is 0.3 to 2.16 or 2.21 to 3.2 is as follows. When ΔEa deviates from these ranges, the stability of the intruding heat medium (ammonia or water) decreases. ΔEa is more preferably 1.0 to 2.16 or 2.21 to 2.6.

なお、本明細書でいう平均電気陰性度や平均電気陰性度差は、ポーリング(Pauling)により定義された計算式に沿って算出された電気陰性度に基づいて求めた。この定義によれば、例えば、F:3.98、Cl:3.16、Br:2.96、I:2.66であり、Be:1.57、Mg:1.31、Ca:1.00、Sr:0.95、Ba:0.89である。これらの電気陰性度に基づいて複金属塩のΔEaを算出した例を挙げると、例えば、Ca(Cl0.5Br0.5:ΔEa=2.06、Ca0.5Sr0.5Cl:ΔEa=2.18、Ca0.3Sr0.7Cl:ΔEa=2.195となる。 In addition, the average electronegativity and the average electronegativity difference as used in this specification were calculated | required based on the electronegativity calculated along the calculation formula defined by Pauling (Pauling). According to this definition, for example, F: 3.98, Cl: 3.16, Br: 2.96, I: 2.66, Be: 1.57, Mg: 1.31, Ca: 1. 00, Sr: 0.95, Ba: 0.89. Examples of calculating the double metal salt ΔEa based on these electronegativity are, for example, Ca (Cl 0.5 Br 0.5 ) 2 : ΔEa = 2.06, Ca 0.5 Sr 0.5 Cl 2 : ΔEa = 2.18, Ca 0.3 Sr 0.7 Cl 2 : ΔEa = 2.195.

(3)結晶構造
本発明に係る複金属塩は、構成元素に応じて種々の結晶構造をとり得る。例えば、CaF型、SrI型、CaCl型、SrBr型、PbCl型、CdCl型、CdI型等の結晶構造を有する。複金属塩の結晶構造は限定されず、その結晶構造は、基本となる単金属塩の結晶構造と異なる場合もあるし、同じ場合もある。ただし、結晶構造が同じ場合でも、複金属塩の格子体積は単金属塩とは異なる値を示す。これにより、複金属塩は単金属塩とは異なる特性(平衡圧力、配位数変化等)を発現し得る。複金属塩の結晶構造の具体例を示すと、Ca(Cl0.5Br0.5:CaCl型、Ca0.5Sr0.5Cl:SrI型、Ca0.3Sr0.7Cl:SrBr型となる。
(3) Crystal Structure The double metal salt according to the present invention can have various crystal structures depending on the constituent elements. For example, it has a crystal structure such as CaF 2 type, SrI 2 type, CaCl 2 type, SrBr 2 type, PbCl 2 type, CdCl 2 type, CdI 2 type. The crystal structure of the double metal salt is not limited, and the crystal structure may be different from or the same as the crystal structure of the basic single metal salt. However, even when the crystal structures are the same, the lattice volume of the double metal salt is different from that of the single metal salt. Thereby, a double metal salt can express the characteristics (equilibrium pressure, a coordination number change, etc.) different from a single metal salt. Specific examples of the crystal structure of the double metal salt are Ca (Cl 0.5 Br 0.5 ) 2 : CaCl 2 type, Ca 0.5 Sr 0.5 Cl 2 : SrI 2 type, Ca 0.3 Sr. 0.7 Cl 2 : SrBr 2 type.

複金属塩は、特定の作動域で熱媒の配位数変化が急変するほど、熱媒貯蔵材に整合的な蓄熱密度が高くなり好ましい。そこで複金属塩は、熱媒を吸蔵または放出する熱媒吸放出反応が平衡状態となる平衡域の近傍(前後)で、熱媒の配位数が少なくとも4以上、5以上さらには6以上変化する結晶構造を有すると好適である。   The double metal salt is preferable because the heat storage density consistent with the heat medium storage material becomes higher as the change in the coordination number of the heat medium changes more rapidly in a specific operating range. Therefore, in the double metal salt, the coordination number of the heat medium changes at least 4 or more, 5 or more, or 6 or more in the vicinity (before and after) of the equilibrium region in which the heat medium absorption / release reaction for occluding or releasing the heat medium is in an equilibrium state. It is preferable to have a crystal structure.

(4)親和性
本発明に係る複金属塩が二種以上の金属元素(M1、M2・・・)または二種以上のハロゲン元素(X1、X2・・・)からなる場合、それら元素は相互に親和性の高い元素であると好適である。これにより安定した複金属塩が合成され易い。また親和的な元素からなる二種以上の単金属塩を原料とする複金属塩は、組成や複合比に依るが、熱媒吸放出反応の作動域がそれら単金属塩の作動域の中間となり易い。従って、単金属塩の種類とそれらの配合比(複合比)を適切に選択した複金属塩を用いれば、単金属塩を用いた場合に生じていた作動域の空白域を補填し得る。その結果、熱媒貯蔵材との整合性の向上ひいては化学蓄熱システムの効率性の向上を図れ得る。なお、本明細書でいう親和性は、二種以上の元素が、単体として類似した特性を有するだけではなく、ハロゲン化物(単金属塩)として熱媒吸放出反応時に生じる熱量が近似していることも含む。例えば、そのハロゲン化物が熱媒である水と水和物を形成するときの生成熱量や熱媒であるアンモニアとアンミン錯体を形成するときの生成熱量が、二種以上の元素間で近似している場合に、本明細書では元素間に親和性があるという。
(4) Affinity When the double metal salt according to the present invention comprises two or more metal elements (M1, M2...) Or two or more halogen elements (X1, X2. It is preferable that the element has a high affinity for. Thereby, a stable double metal salt is easily synthesized. In addition, double metal salts made from two or more kinds of single metal salts composed of affinity elements depend on the composition and composite ratio, but the operating range of the heat medium absorption / release reaction is in the middle of those single metal salts. easy. Therefore, if a double metal salt in which the types of single metal salts and their blending ratios (composite ratios) are appropriately selected is used, it is possible to compensate for the blank area in the working range that has occurred when the single metal salt is used. As a result, it is possible to improve the consistency with the heat medium storage material, and thus improve the efficiency of the chemical heat storage system. In addition, the affinity referred to in this specification is not only that two or more elements have similar characteristics as a simple substance, but also approximates the amount of heat generated as a halide (single metal salt) during a heat medium absorption / release reaction. Including. For example, the amount of heat generated when the halide forms a hydrate with water as a heat medium and the amount of heat generated when an ammine complex with ammonia as a heat medium are approximated between two or more elements. In the present specification, there is an affinity between elements.

複数の元素が親和的である場合として、各元素が同族元素である場合、同価数のイオンとなり得る場合、電子配置が近い場合、相互に固溶体を生成する場合等がある。また単金属塩(ハロゲン化物)として、熱媒吸放出反応を生じる作動域、配位数または配位数変化等が近い場合等がある。   Examples of cases where a plurality of elements are affinity include cases where each element is a homogenous element, cases where it can be an ion with the same valence number, cases where the electron configuration is close, and cases where solid solutions are generated. In addition, as a single metal salt (halide), there may be a case where an operating range causing a heat medium absorption / release reaction, a coordination number, or a coordination number change is close.

複金属塩が二種以上のハロゲン元素からなる場合、そのハロゲン元素は、同族元素(第17族元素)の中でも親和的な塩素(Cl)、臭素(Br)またはヨウ素(I)のいずれか二種以上であると好適である。また複金属塩が二種以上の金属元素からなる場合、それら金属元素は親和的なアルカリ土類金属元素同士(Mg、Ca、Sr、Ba等)であると好ましい。このような場合の複金属塩の好例として、アルカリ土類金属元素と二種以上のハロゲン元素からなるアルカリ土類金属複ハロゲン化物(M(X1X21−y:0<y<1等)、二種以上のアルカリ土類金属元素とハロゲン元素からなる複アルカリ土類金属ハロゲン化物(M1M21−x:0<x<1等)がある。 In the case where the double metal salt is composed of two or more kinds of halogen elements, the halogen element is any one of chlorine (Cl), bromine (Br), and iodine (I) having affinity among the elements of the same group (Group 17 element). It is preferable that it is a seed or more. Moreover, when a double metal salt consists of 2 or more types of metal elements, it is preferable that these metal elements are affinity alkaline-earth metal elements (Mg, Ca, Sr, Ba, etc.). As a preferable example of the double metal salt in such a case, an alkaline earth metal double halide (M (X1 y X2 1-y ) 2 : 0 <y <1) composed of an alkaline earth metal element and two or more halogen elements. Etc.) and double alkaline earth metal halides (M1 x M2 1-x X 2 : 0 <x <1 etc.) composed of two or more kinds of alkaline earth metal elements and halogen elements.

このような複金属塩(MX)は、その結晶単位格子中に含まれる化学単位数(Z)で単位格子体積(V)を除した結晶指標値(V/Z)が50〜130Å、75〜90Åさらには77〜85Åとなる。ちなみに複金属塩は、複合比(上記のx、y等)に応じて、上述したように異なる結晶構造をとり得る。 Such a double metal salt (MX n ) has a crystal index value (V / Z) obtained by dividing the unit cell volume (V) by the number of chemical units (Z) contained in the crystal unit cell, 50 to 130 Å 3 , 75 to 90 cm 3 or 77 to 85 cm 3 . Incidentally, the double metal salt can have different crystal structures as described above depending on the composite ratio (the above x, y, etc.).

この他、本発明の複金属塩は、SrαBa1−αCl(0<α<1)、Sr(Cl1−βBrβ(0.25<β<1)、KSrCl 、KSrClでもよい。なお、α、βは複合比である。 In addition, double metal salts of the present invention, Sr α Ba 1-α Cl 2 (0 <α <1), Sr (Cl 1-β Br β) 2 (0.25 <β <1), K 2 SrCl 4 or KSr 2 Cl 5 may be used. Α and β are compound ratios.

(5)その他
本発明の化学蓄熱材は、複金属塩単体のみでも、複金属塩と単金属塩等との混合物でもよい。また、それら複金属塩や単金属塩は水和物またはアンミン錯体であってもよい。
(5) Others The chemical heat storage material of the present invention may be a double metal salt alone or a mixture of a double metal salt and a single metal salt. Further, these double metal salts and single metal salts may be hydrates or ammine complexes.

《化学蓄熱材の製造方法》
(1)原料
原料となる金属塩は、その種類を問わず、単金属塩のみでもよいし、複金属塩を含むものでもよい。この原料となる単金属塩として、例えば、LiCl、NaClまたはKClなどのアルカリ金属塩化物、LiBr、NaBrまたはKBrなどのアルカリ金属臭化物、LiI、NaIまたはKIなどのアルカリ金属ヨウ化物、MgCl 、CaCl 、SrClなどのアルカリ土類金属塩化物、MgBr 、CaBr 、SrBrなどのアルカリ土類金属臭化物、MgI 、CaI 、SrIなどのアルカリ土類金属ヨウ化物、MnCl、FeCl、CoCl、NiCl等の遷移金属塩化物、MnBr、FeBr、CoBr、NiBr等の遷移金属臭化物、MnI、FeI、CoI、NiI、等の遷移金属ヨウ化物などがある。これらの金属塩の組み合わせは自由であるが、上述したように親和的な金属塩の組み合わせが好ましい。
《Method for producing chemical heat storage material》
(1) Raw material The metal salt used as a raw material may be a single metal salt or a double metal salt regardless of the type. Examples of the single metal salt used as the raw material include alkali metal chlorides such as LiCl, NaCl and KCl, alkali metal bromides such as LiBr, NaBr and KBr, alkali metal iodides such as LiI, NaI and KI, MgCl 2 and CaCl. 2, alkaline earth metal chlorides such as SrCl 2, MgBr 2, CaBr 2, alkaline earth metal bromides such as SrBr 2, MgI 2, CaI 2, alkaline earth metal iodides such as SrI 2, MnCl 2, FeCl 2 , transition metal chlorides such as CoCl 2 , NiCl 2 , transition metal bromides such as MnBr 2 , FeBr 2 , CoBr 2 , NiBr 2 , transition metal iodides such as MnI 2 , FeI 2 , CoI 2 , NiI 2 , etc. There is. Although the combination of these metal salts is free, the combination of affinity metal salts is preferable as described above.

(2)成形工程
成形工程は、二種以上の金属塩を混合した混合金属塩を加圧成形した成形体を得る工程であり、任意になされる。この際の成形圧力は、例えば、40MPa以上さらには60MPa以上であると好ましい。成形圧力が過小では、二種以上の金属塩の接触が不十分となり、焼成工程における拡散の促進を十分には図れない。成形圧力の上限は問わないが、300MPa以下さらには150MPa以下とすると生産性がよい。また成形工程は、潮解を避けるために、水分濃度が0.3%以下、100ppm以下、10ppm以下さらには1ppm以下の低湿度環境下で行うと好ましい。
(2) Molding step The molding step is a step of obtaining a molded body obtained by press-molding a mixed metal salt obtained by mixing two or more kinds of metal salts, and is arbitrarily performed. The molding pressure at this time is preferably, for example, 40 MPa or more, further 60 MPa or more. If the molding pressure is too low, the contact between two or more metal salts becomes insufficient, and the diffusion in the firing process cannot be sufficiently promoted. The upper limit of the molding pressure is not limited, but productivity is good when it is 300 MPa or less, further 150 MPa or less. In order to avoid deliquescence, the molding step is preferably performed in a low humidity environment where the water concentration is 0.3% or less, 100 ppm or less, 10 ppm or less, or 1 ppm or less.

(3)焼成工程
焼成工程は、上記の混合金属塩を焼成する工程であり、複金属塩の構成元素を拡散させて原子レベルで複合化させるために必須な工程である。本工程前に成形工程を行う場合、焼成工程は上記の成形体を焼成した焼成体を得る工程となる。焼成温度は300〜800℃、500〜700℃さらには550〜650℃であると好ましい。焼成温度が過小では各元素の拡散が不十分となり、焼成温度が過大では生産性が低下し得る。また焼成工程は、大気成分との反応による化学蓄熱材の劣化を防ぐため、真空度1000Pa以下、100Pa以下さらには10Pa以下でなされると好ましい。
(3) Firing step The firing step is a step for firing the mixed metal salt, and is an essential step for diffusing the constituent elements of the double metal salt to form a composite at the atomic level. When performing a shaping | molding process before this process, a baking process becomes a process of obtaining the baked body which baked said molded object. The firing temperature is preferably 300 to 800 ° C, 500 to 700 ° C, and more preferably 550 to 650 ° C. If the firing temperature is too low, the diffusion of each element becomes insufficient, and if the firing temperature is too high, the productivity may be lowered. The firing step is preferably performed at a vacuum degree of 1000 Pa or less, 100 Pa or less, and further 10 Pa or less in order to prevent deterioration of the chemical heat storage material due to reaction with atmospheric components.

(4)その他
焼成工程で焼成体が得られる場合、それをそのまま化学蓄熱材として用いても良いが、適宜、解砕、粉砕等して化学蓄熱材として用いてもよい。さらには、複金属塩の粉末粒子を造粒したものを化学蓄熱材としてもよい。
(4) Others When a fired body is obtained in the firing step, it may be used as it is as a chemical heat storage material, but may be used as a chemical heat storage material by crushing, pulverizing, or the like as appropriate. Furthermore, what granulated the powder particle of double metal salt is good also as a chemical heat storage material.

《化学蓄熱構造体》
本発明の化学蓄熱構造体は、基本的に上述した複金属塩からなる化学蓄熱材とこの化学蓄熱材を保持するバインダーとからなり、適宜、高熱伝導材を含む。
《Chemical heat storage structure》
The chemical heat storage structure of the present invention basically comprises a chemical heat storage material composed of the above-described double metal salt and a binder that holds the chemical heat storage material, and appropriately includes a high heat conductive material.

(1)化学蓄熱材
原料となる化学蓄熱材(蓄熱粒子)は、上述した複金属塩の水和物やアンミン錯体でも良い。この化学蓄熱材は、粉末状または顆粒状であるが、その粒形や粒径等は問わない。もっとも、バインダーとの混合性や成形性等を考慮して、その粒径は電子顕微鏡で観察して1μm〜1mmであると好ましい。
(1) Chemical heat storage material The chemical heat storage material (heat storage particle) used as a raw material may be the double metal salt hydrate or ammine complex described above. The chemical heat storage material is in the form of powder or granules, but the particle shape, particle size, etc. are not limited. However, the particle size is preferably 1 μm to 1 mm when observed with an electron microscope in consideration of the miscibility with the binder and the moldability.

(2)バインダー
バインダーは、その種類を問わないが、無機材料が好ましい。また、ケイ酸塩や低融点ガラスなどを用いると好ましい。このケイ酸塩は、アルカリケイ酸塩が好ましく、例えば、メタケイ酸ナトリウム(NaSiO)、メタケイ酸リチウム(LiSiO)、メタケイ酸カリウム(KSiO)、オルトケイ酸ナトリウム(NaSiO)、メタニケイ酸ナトリウム(NaSi)などのいずれかであると好ましい。また低融点ガラスには、ホウ珪酸(鉛)ガラス、鉛酸化物系ガラス、ビスマス酸化物系ガラス、バナジウム酸化物系ガラスなどがある。さらには、炭素繊維をバインダーとして用いることも可能である。このときの炭素繊維は、高熱伝導材としても機能すると共に、化学蓄熱構造体の骨格構造を形成して、その機械的強度を向上させる。
(2) Binder The type of binder is not limited, but an inorganic material is preferable. Further, it is preferable to use silicate or low melting point glass. The silicate is preferably an alkali silicate, for example, sodium metasilicate (Na 2 SiO 3 ), lithium metasilicate (Li 2 SiO 3 ), potassium metasilicate (K 2 SiO 3 ), sodium orthosilicate (Na 4 SiO 4 ), sodium metasilicate (Na 2 Si 2 O 5 ) or the like. Examples of the low melting point glass include borosilicate (lead) glass, lead oxide glass, bismuth oxide glass, and vanadium oxide glass. Furthermore, it is also possible to use carbon fiber as a binder. The carbon fiber at this time also functions as a high heat conductive material, and forms a skeleton structure of a chemical heat storage structure to improve its mechanical strength.

(3)高熱伝導材
高熱伝導材を混在させることにより、化学蓄熱構造体中に熱伝導パスが形成され、その熱伝導性が向上する。高熱伝導材は、その種類を問わないが、例えば、炭素繊維や高熱伝導率のセラミックスなどである。炭素繊維は、アクリル繊維から作ったPAN系炭素繊維でも、ピッチから作ったPITCH系炭素繊維でも良い。セラミックスには、例えば、炭化ケイ素(SiC)、窒化アルミニウム(AlN)などがある。いずれの場合も、アンモニア等の熱媒中で安定なものが好ましい。
(3) High thermal conductivity material By mixing the high thermal conductivity material, a thermal conduction path is formed in the chemical heat storage structure, and the thermal conductivity is improved. The type of the high thermal conductive material is not limited, and examples thereof include carbon fiber and ceramics having high thermal conductivity. The carbon fiber may be a PAN-based carbon fiber made from acrylic fiber or a PITCH-based carbon fiber made from pitch. Examples of the ceramic include silicon carbide (SiC) and aluminum nitride (AlN). In any case, a stable one in a heat medium such as ammonia is preferable.

ちなみに、化学蓄熱構造体の熱伝導性が高いほど好ましい理由は次の通りである。化学蓄熱システムの性能は、化学蓄熱構造体と熱媒(水またはアンモニア等)との反応速度に左右される。この反応速度は、(i)熱媒の化学蓄熱構造体への浸透速度(吸収速度、放出速度)、(ii)水和物やアンミン錯体等の生成速度、(iii)化学蓄熱構造体と外部との熱交換速度による影響を受ける。この中でも熱交換速度が律速的であり、化学蓄熱システムの性能に大きく影響する。従って化学蓄熱構造体中に、熱伝導性や熱伝達性に優れる高熱伝導材(炭素繊維等)が適量存在すると、その熱交換速度が向上し、ひいては化学蓄熱システムの性能が向上し得る。   Incidentally, the reason why the higher thermal conductivity of the chemical heat storage structure is preferable is as follows. The performance of the chemical heat storage system depends on the reaction rate between the chemical heat storage structure and the heat medium (such as water or ammonia). This reaction rate is as follows: (i) Penetration rate (absorption rate, release rate) of heat medium to chemical heat storage structure, (ii) Formation rate of hydrate or ammine complex, etc. (iii) Chemical heat storage structure and external It is affected by the heat exchange rate. Among these, the heat exchange rate is rate-limiting and greatly affects the performance of the chemical heat storage system. Accordingly, when an appropriate amount of a high heat conductive material (carbon fiber or the like) excellent in heat conductivity and heat transfer exists in the chemical heat storage structure, the heat exchange rate can be improved, and consequently the performance of the chemical heat storage system can be improved.

《化学蓄熱構造体の製造方法》
本発明の化学蓄熱構造体の製造方法は、基本的に、上述した化学蓄熱材(蓄熱粒子)とバインダーさらには任意の高熱伝導材を混合する構造体混合工程と、得られた混合物を加圧成形する構造体成形工程とからなり、さらにその成形体を加熱して焼成体とする構造体焼成工程を備えると好適である。
<< Method for producing chemical heat storage structure >>
The method for producing a chemical heat storage structure of the present invention basically includes a structure mixing step of mixing the above-described chemical heat storage material (heat storage particles), a binder, and an arbitrary high heat conductive material, and pressurizing the obtained mixture. It is preferable to include a structure body forming step for forming, and further comprising a structure body firing step in which the formed body is heated to form a fired body.

(1)構造体混合工程
構造体混合工程は、例えば、化学蓄熱材とバインダーさらには高熱伝導材とを混合(または分散)させた混合物を得る工程である。混合方法は問わないが、損傷し易い炭素繊維等を含む場合は、原料を分散媒中に分散させた分散液から、その分散媒を除去して、混合物を得るとよい。なお、化学蓄熱材を構成する金属ハロゲン化物は水と反応して潮解等し易い。このため、その分散媒は、有機分散媒のように水分を含まないもの、例えば、アセトン、ヘプタン、ヘキサン、トルエン等が好ましい。いずれにしろ本工程は、低湿度環境下でなされるのが好ましい。この「低湿度環境下」は、雰囲気中の水分濃度が0.7%以下、0.3%以下さらには0.1%以下であると好ましい。
(1) Structure mixing step The structure mixing step is a step of obtaining a mixture obtained by mixing (or dispersing) a chemical heat storage material, a binder, and a high thermal conductivity material, for example. The mixing method is not limited, but when carbon fiber or the like that is easily damaged is included, the dispersion medium may be removed from the dispersion liquid in which the raw material is dispersed in the dispersion medium to obtain a mixture. In addition, the metal halide which comprises a chemical heat storage material reacts with water, and is easy to deliquesce. For this reason, the dispersion medium is preferably one that does not contain water like the organic dispersion medium, for example, acetone, heptane, hexane, toluene, and the like. In any case, this step is preferably performed in a low humidity environment. In this “low humidity environment”, the moisture concentration in the atmosphere is preferably 0.7% or less, 0.3% or less, and more preferably 0.1% or less.

(2)構造体成形工程
構造体成形工程は、化学蓄熱材とバインダー等の混合物を成形型のキャビティへ投入して加圧成形してもよいし、成形型を用いるまでもなくローラ等で圧縮成形してもよい。所望する化学蓄熱構造体の形状に応じた方法を採用するとよい。この際の成形圧力は、例えば、40〜300MPaさらには60〜250MPaであると好ましい。成形圧力が過小では、化学蓄熱構造体の体積あたりの熱出力や機械的強度の低下を招き、それが過大では、熱媒の吸脱に必要となる空孔率の確保が困難となる。本工程も低湿度環境下で行うのがよい。
(2) Structure forming process In the structure forming process, a mixture of a chemical heat storage material and a binder or the like may be put into a cavity of a forming mold and may be pressure-molded, or may be compressed with a roller or the like without using a forming mold. You may shape | mold. A method corresponding to the desired shape of the chemical heat storage structure may be employed. The molding pressure at this time is preferably 40 to 300 MPa or 60 to 250 MPa, for example. If the molding pressure is too low, the heat output per volume of the chemical heat storage structure and the mechanical strength will be reduced, and if it is too high, it will be difficult to ensure the porosity necessary for adsorption / desorption of the heat medium. This step is also preferably performed in a low humidity environment.

(3)構造体焼成工程
構造体焼成工程は、必須ではないが、本工程を行うことにより、化学蓄熱材とバインダー等が強固に結合した化学蓄熱構造体が得られる。焼成温度は、100〜300℃さらには150〜250℃であると好ましい。焼成温度が過小では強固な焼成体(化学蓄熱構造体)が得られず、焼成温度が過大では化学蓄熱材同士の焼結が過度に進行し、化学蓄熱構造体への熱媒の浸透が阻害されて好ましくない。焼成工程は、真空度1000Pa以下さらには100Pa以下でなされると好ましい。大気成分との反応による化学蓄熱材の劣化を防ぐためである。
(3) Structure firing step The structure firing step is not essential, but by performing this step, a chemical heat storage structure in which a chemical heat storage material and a binder or the like are firmly bonded is obtained. The firing temperature is preferably 100 to 300 ° C, more preferably 150 to 250 ° C. If the firing temperature is too low, a strong fired body (chemical heat storage structure) cannot be obtained. If the firing temperature is too high, sintering of the chemical heat storage materials proceeds excessively, impeding the penetration of the heat medium into the chemical heat storage structure. It is not preferable. The firing step is preferably performed at a degree of vacuum of 1000 Pa or less, further 100 Pa or less. This is to prevent deterioration of the chemical heat storage material due to reaction with atmospheric components.

実施例を挙げて本発明をより具体的に説明する。   The present invention will be described more specifically with reference to examples.

《試料の製造》
〈第一実施例:試料1〉
(1)混合工程
原料として、金属ハロゲン化物(アルカリ土類金属塩化物)である塩化カルシウムの水和物(CaCl・2HO)の粉末(アルドリッチ社製C5080)と臭化カルシウムの水和物(CaBr・2HO)の粉末(関東化学社製鹿特級)とを用意した。これら粉末をモル比が1:1となるように秤量し、メノウ鉢で混合して混合粉末を得た。なお、この混合工程は、(株)美和製作所のグローブボックスを用いて水分濃度:1ppm以下の低湿度環境下で行った。
<Production of sample>
<First Example: Sample 1>
(1) Mixing step As raw materials, calcium chloride hydrate (CaCl 2 .2H 2 O) powder (Aldrich C5080), which is a metal halide (alkaline earth metal chloride), and hydration of calcium bromide (CaBr 2 · 2H 2 O) powder (Kanto Chemical Co., Ltd. deer special grade) was prepared. These powders were weighed so that the molar ratio was 1: 1 and mixed in an agate bowl to obtain a mixed powder. This mixing step was performed in a low humidity environment with a moisture concentration of 1 ppm or less using a glove box manufactured by Miwa Seisakusho.

(2)成形工程
混合粉末を0.7tonf/cm(68.6MPa)で加圧して、15×15×3mmのシート状の成形体を得た。この成形工程は、前述したグローブボックスを用いて、水分濃度:1ppm以下の低湿度環境下で行った。
(2) Molding step The mixed powder was pressurized with 0.7 tonf / cm 2 (68.6 MPa) to obtain a 15 × 15 × 3 mm sheet-like molded body. This forming step was performed in a low humidity environment with a moisture concentration of 1 ppm or less using the above-described glove box.

(3)焼成工程
この成形体を450℃で焼成した焼成体を得た。この焼成工程は10Pa以下の真空処理炉内で行った。こうして得られた焼成体を試料1として、後述する各種の測定に供した。なお、X線回折測定用サンプルには、この焼成体を粉砕したものを用いた。
(3) Firing step A fired body obtained by firing the compact at 450 ° C. was obtained. This firing step was performed in a vacuum processing furnace of 10 Pa or less. The fired body thus obtained was used as sample 1 for various measurements described below. In addition, what grind | pulverized this sintered body was used for the sample for X-ray diffraction measurement.

〈比較例:試料C1〜C3〉
(1)試料C1
CaCl粉末(アルドリッチ社製のC4901)とCaBr・2HOの粉末(関東化学社製鹿特級)を10Pa以下の真空処理炉内で200℃に加熱し脱水したCaBr粉末を、モル比が1:1となるように秤量して、薬さじを用いて混合した。こうして得られた混合粉末を試料C1とした。なお、原料粉末の混合は、前述したグローブボックスを用いて、水分濃度:1ppm以下の低湿度環境下で行った。
<Comparative example: Samples C1 to C3>
(1) Sample C1
CaCl 2 powder (C4901 made by Aldrich) and CaBr 2 · 2H 2 O powder (Kanto Chemical Co., Ltd. deer special grade) were heated to 200 ° C. in a vacuum processing furnace of 10 Pa or less and dehydrated CaBr 2 powder in a molar ratio. Was weighed to 1: 1 and mixed using a spoon. The mixed powder thus obtained was designated as Sample C1. In addition, mixing of the raw material powder was performed in a low humidity environment with a moisture concentration of 1 ppm or less using the above-described glove box.

(2)試料C2および試料C3
上記のCaClの粉末自体を試料C2、上記のCaBrの粉末自体を試料C3とした。試料C1〜C3についても、試料1と同様の測定に供した。
(2) Sample C2 and Sample C3
The CaCl 2 powder itself was used as Sample C2, and the CaBr 2 powder itself was used as Sample C3. Samples C1 to C3 were also subjected to the same measurement as Sample 1.

《測定》
(1)X線回折
試料1の化学蓄熱材(粉末)についてX線回折測定を行った。こうして得られたX線回折パターンを図1に示す。なお、測定はブルカー社製D8ADVANCEにより、CuKα線源を用いて、450℃・真空中(10Pa以下)で行った。なお、試料の脱落を防ぐためにAlシートで試料をカバーし、試料の格子定数を算出するための基準物質としてSi粉末を試料に混合した。
<Measurement>
(1) X-ray diffraction The chemical heat storage material (powder) of Sample 1 was subjected to X-ray diffraction measurement. The X-ray diffraction pattern thus obtained is shown in FIG. In addition, the measurement was performed by 450 degreeC and the vacuum (10 Pa or less) using the CuK alpha ray source by Bruker D8ADVANCE. In order to prevent the sample from falling off, the sample was covered with an Al sheet, and Si powder was mixed with the sample as a reference material for calculating the lattice constant of the sample.

(2)格子定数
各試料のV/Zに係る単位格子体積(V)を特定するため、X線回折測定から得られたプロファイルから試料の結晶糸と各回折線の回折指数を同定し、最小2乗法を用いて、各試料の結晶の格子定数を算出した。
(2) Lattice constant In order to specify the unit cell volume (V) related to V / Z of each sample, the crystal yarn of the sample and the diffraction index of each diffraction line are identified from the profile obtained from the X-ray diffraction measurement. The lattice constant of the crystal of each sample was calculated using the square method.

(3)圧力-組成等温線測定
試料1〜C3の化学蓄熱材を反応器に充填して、容量法に基づき、等温(60℃)下における圧力(10〜650kPa)と組成(アンモニア配位数)の関係を調べた。各試料の結果を図2に重ねて示した。この測定は、具体的には次のようにして行った。試料を水分濃度1ppm以下の低湿度環境下で反応器(内容積約5cc)に充填して密封した。反応器をハンドメイドのジーベルツ型装置に接続し、反応器内を真空排気した。ウォータバスを用いて、反応器の試料充填部を60℃に加熱し、NHを650kPaまで加圧し、その状態から測定を開始した。ちなみに、ここで用いた反応器はステンレス製で、アンモニアガスの供給脱気のためのバルブや圧力計を具備している。
(3) Pressure-composition isotherm measurement The chemical heat storage materials of Samples 1 to C3 were charged into a reactor, and the pressure (10 to 650 kPa) and composition (ammonia coordination number) under isothermal (60 ° C.) based on the capacity method. ) Was investigated. The results for each sample are shown in FIG. Specifically, this measurement was performed as follows. The sample was filled in a reactor (internal volume of about 5 cc) in a low humidity environment with a moisture concentration of 1 ppm or less and sealed. The reactor was connected to a handmade Siebels type apparatus, and the inside of the reactor was evacuated. Using a water bath, the sample filling portion of the reactor was heated to 60 ° C., NH 3 was pressurized to 650 kPa, and measurement was started from this state. Incidentally, the reactor used here is made of stainless steel and includes a valve and a pressure gauge for supplying and degassing ammonia gas.

《評価》
(1)結晶構造
図1に示すX線回折パターンから明らかなように、試料1ではCaClとCaBrと同じCaCl型結晶構造を有する化合物相のみが観測された。図1のパターンから算出された格子体積186.8Åであり、CaCl 、CaBr の格子体積(それぞれ167.8Å、196.3Å)の間の値であった。以上のことから、試料1は、CaCl とCaBr の混合粉末とは異なり、構成元素が原子レベルで結合した新たな金属複ハロゲン化物(Ca(Cl0.5Br0.5)であるといえる。この金属複ハロゲン化物の平均電気陰性度差は前述したとおり、ΔEa=2.06である。ちなみに、複金属塩ではないが、単金属塩であるCaClはΔEa=2.16、CaBrはΔEa=1.96である。
<Evaluation>
(1) As it is clear from the X-ray diffraction pattern shown in crystal structure diagram 1, only the compound phase having the same CaCl 2 type crystal structure and CaCl 2 and CaBr 2 Sample 1 was observed. A lattice volume 186.8A 3 calculated from the pattern of Figure 1, CaCl 2, CaBr 2 of cell volume (respectively 167.8Å 3, 196.3Å 3) was a value between. From the above, unlike the mixed powder of CaCl 2 and CaBr 2 , sample 1 is a new metal double halide (Ca (Cl 0.5 Br 0.5 ) 2 ) in which constituent elements are bonded at the atomic level. It can be said that there is. The average electronegativity difference of this metal double halide is ΔEa = 2.06 as described above. Incidentally, although it is not a double metal salt, CaCl 2 which is a single metal salt has ΔEa = 2.16, and CaBr 2 has ΔEa = 1.96.

(2)V/Z
各試料について格子定数から求めた単位格子体積(V)を、各試料の化学単位数(Z)で除して結晶指標値(V/Z)を求めた。試料1のV/Zは93.4Å(V:186.8Å/Z:2)であった。一方、試料C2(CaCl)のV/Zは83.9Å(V:167.8Å/Z:2)であり、試料C3(CaBr)のV/Zは98.2Å(V:196.3Å/Z:2)であった。これらのことから、試料1のV/Zは試料C2と試料C3の間にあることがわかる。
(2) V / Z
The crystal index value (V / Z) was obtained by dividing the unit cell volume (V) obtained from the lattice constant for each sample by the number of chemical units (Z) of each sample. The V / Z of sample 1 was 93.4 cm 3 (V: 186.8 cm 3 / Z: 2). On the other hand, V / Z of sample C2 (CaCl 2 ) is 83.9 Å 3 (V: 167.8 / 3 / Z: 2), and V / Z of sample C3 (CaBr 2 ) is 98.2 Å 3 (V: 196.3Å 3 / Z: 2). From these, it can be seen that V / Z of sample 1 is between sample C2 and sample C3.

以上のことから、CaCl・2HOとCaBr・2HOの混合物を成形、焼成することにより、カルシウムイオン(Ca2+)、塩素イオン(Cl)および臭素イオン(Br)の拡散が促進されて、単なるCaClとCaBrの混合物よりも、熱力学的に安定な結晶構造の金属複ハロゲン化物(Ca(Cl0.5Br0.5)が生成されたといえる。 From the above, the diffusion of calcium ions (Ca 2+ ), chlorine ions (Cl ), and bromine ions (Br ) can be achieved by molding and firing a mixture of CaCl 2 .2H 2 O and CaBr 2 .2H 2 O. Thus, it can be said that a metal double halide (Ca (Cl 0.5 Br 0.5 ) 2 ) having a crystal structure which is thermodynamically more stable than a simple mixture of CaCl 2 and CaBr 2 was generated.

一方、試料C1の場合、アンモニア吸放出反応が平衡状態となる平衡アンモニア圧力に応じて、次のような4ステップの反応となった。
(反応C1−1/アンモニア圧力:30kPa)
0.5CaBr・2NH+2NH ⇔ 0.5CaBr・6NH
(反応C1−2/アンモニア圧力:260kPa)
0.5CaCl・2NH+NH ⇔ 0.5CaCl・4NH
(反応C1−3/アンモニア圧力:470kPa)
0.5CaCl・4NH+2NH ⇔ 0.5CaCl・8NH
(反応C1−4/アンモニア圧力:600kPa)
0.5CaBr・6NH+NH ⇔ 0.5CaBr・8NH
On the other hand, in the case of Sample C1, the following four-step reaction was performed according to the equilibrium ammonia pressure at which the ammonia absorption / release reaction reached an equilibrium state.
(Reaction C1-1 / Ammonia pressure: 30 kPa)
0.5CaBr 2 · 2NH 3 + 2NH 3 ⇔ 0.5CaBr 2 · 6NH 3
(Reaction C1-2 / Ammonia pressure: 260 kPa)
0.5CaCl 2 · 2NH 3 + NH 3 0.5 0.5CaCl 2 · 4NH 3
(Reaction C1-3 / Ammonia pressure: 470 kPa)
0.5CaCl 2 · 4NH 3 + 2NH 3 ⇔ 0.5CaCl 2 · 8NH 3
(Reaction C1-4 / Ammonia pressure: 600 kPa)
0.5CaBr 2 · 6NH 3 + NH 3 0.5 0.5CaBr 2 · 8NH 3

試料C1の化学蓄熱材を用いると、一つの平衡圧力下で生じるアンモニア吸放出反応に伴う配位数変化が1〜2に過ぎない。つまり、アンモニア吸放出反応一回あたりの吸熱または放熱が小さく、蓄熱密度も小さくなる。また、大きな配位数変化(6)を得るためには、アンモニア圧力を少なくとも30〜600kPaの広範囲(圧力差570kPa)で変化させて、反応C1−1〜反応C1−4を連続的に進行させる必要があり、効率的ではない。   When the chemical heat storage material of the sample C1 is used, the coordination number change accompanying the ammonia absorption / release reaction occurring under one equilibrium pressure is only 1 to 2. That is, the heat absorption or heat release per ammonia absorption / release reaction is small, and the heat storage density is also small. Moreover, in order to obtain a large coordination number change (6), the ammonia pressure is changed over a wide range (pressure difference 570 kPa) of at least 30 to 600 kPa, and the reactions C1-1 to C1-4 are continuously advanced. Needed and not efficient.

また試料C2の場合、アンモニア吸放出反応が平衡アンモニア圧力に応じて次のような2ステップの反応となる。
(反応C2−1/アンモニア圧力:260kPa)
CaCl・2NH+2NH ⇔ CaCl・4NH
(反応C2−2/アンモニア圧力:470kPa)
CaCl・4NH+4NH ⇔ CaCl・8NH
In the case of the sample C2, the ammonia absorption / release reaction is the following two-step reaction according to the equilibrium ammonia pressure.
(Reaction C2-1 / Ammonia pressure: 260 kPa)
CaCl 2 · 2NH 3 + 2NH 3 Ca CaCl 2 · 4NH 3
(Reaction C2-2 / Ammonia pressure: 470 kPa)
CaCl 2 · 4NH 3 + 4NH 3 Ca CaCl 2 · 8NH 3

この場合も同様に、一つの平衡圧力下で生じるアンモニア吸放出反応に伴う配位数変化が2または4であり、アンモニア吸放出反応一回あたりの吸熱または放熱が小さい。また、大きな配位数変化(6)を得るためには、アンモニア圧力を少なくとも260〜470kPaの広範囲(圧力差210kPa)で変化させて、反応C2−1および反応C2−2を連続的に進行させる必要があり、やはり効率的ではない。   In this case as well, the coordination number change associated with the ammonia absorption / release reaction that occurs under one equilibrium pressure is 2 or 4, and the heat absorption or heat release per ammonia absorption / release reaction is small. Also, in order to obtain a large coordination number change (6), the ammonia pressure is changed over a wide range of at least 260 to 470 kPa (pressure difference 210 kPa), and the reactions C2-1 and C2-2 are continuously advanced. It is necessary and still not efficient.

さらに試料C3の場合、図2からわかるように、アンモニア吸放出反応が平衡アンモニア圧力に応じて次のような2ステップの反応となる。
(反応C3−1/アンモニア圧力:30kPa)
CaBr・2NH+4NH ⇔ CaBr・6NH
(反応C3−2/アンモニア圧力:600kPa)
CaBr・6NH+2NH ⇔ CaBr・8NH
Further, in the case of the sample C3, as can be seen from FIG. 2, the ammonia absorption / release reaction is a two-step reaction according to the equilibrium ammonia pressure as follows.
(Reaction C3-1 / Ammonia pressure: 30 kPa)
CaBr 2 · 2NH 3 + 4NH 3 ⇔ CaBr 2 · 6NH 3
(Reaction C3-2 / Ammonia pressure: 600 kPa)
CaBr 2 · 6NH 3 + 2NH 3 ⇔ CaBr 2 · 8NH 3

この場合、一つの平衡圧力下で生じるアンモニア吸放出反応に伴う配位数変化が2または4であるが、さらに大きな配位数変化(6)を得るために、アンモニア圧力を少なくとも30〜600kPaの広範囲(圧力差570kPa)で変化させて、反応C3−1および反応C3−2を連続的に進行させる必要がある。   In this case, the coordination number change due to the ammonia adsorption / release reaction occurring under one equilibrium pressure is 2 or 4, but in order to obtain a larger coordination number change (6), the ammonia pressure is at least 30 to 600 kPa. It is necessary to make reaction C3-1 and reaction C3-2 proceed continuously by changing over a wide range (pressure difference 570 kPa).

このように、試料1のような複金属塩からなる化学蓄熱材は、従来の単金属塩やそれらの混合金属塩とは異なり、平衡アンモニア圧力の近傍で大きな配位数変化を生じる。従って本発明の化学蓄熱材を用いることにより、化学蓄熱システムの効率の向上を図ることが可能となる。また、単金属塩とは異なる平衡アンモニア圧力を示すため、従来の単金属塩では整合性が低かった熱媒貯蔵材との整合性が向上する。   Thus, unlike a conventional single metal salt or a mixed metal salt thereof, a chemical heat storage material made of a double metal salt such as Sample 1 causes a large change in coordination number near the equilibrium ammonia pressure. Therefore, by using the chemical heat storage material of the present invention, the efficiency of the chemical heat storage system can be improved. In addition, since the equilibrium ammonia pressure is different from that of the single metal salt, the consistency with the heat medium storage material, which has a low consistency with the conventional single metal salt, is improved.

Claims (14)

熱媒の吸蔵または放出により発熱または吸熱する化学蓄熱材であって、
金属元素(M)とハロゲン元素(X)とからなりそれらの少なくとも一方が二種以上の元素からなる金属ハロゲン化物である複金属塩(MX、n:Mの平均価数)を含み、
該複金属塩は、該ハロゲン元素の平均電気陰性度(EXa)から該金属元素の平均電気陰性度(EMa)を差し引いた平均電気陰性度差(ΔEa=EXa−EMa)が0.3〜2.16または2.21〜3.2であることを特徴とする化学蓄熱材。
A chemical heat storage material that generates heat or absorbs heat by occlusion or release of a heat medium,
A double metal salt (MX n , n: average valence of M) which is a metal halide composed of a metal element (M) and a halogen element (X), at least one of which is composed of two or more elements,
The double metal salt has an average electronegativity difference (ΔEa = EXa−EMa) obtained by subtracting the average electronegativity (EMa) of the metal element from the average electronegativity (EXa) of the halogen element from 0.3 to 2. Chemical heat storage material characterized by being .16 or 2.21-3.2.
前記熱媒は、アンモニアまたは水であり、
該アンモニアを吸蔵することによりアンミン錯体(MX・aNH 、a:アンモニアの配位数)または該水を吸蔵することにより水和物(MX・bHO 、b:水の配位数)となる請求項1に記載の化学蓄熱材。
The heating medium is ammonia or water,
By storing the ammonia, an ammine complex (MX n · aNH 3 , a: coordination number of ammonia) or hydrated by storing the water (MX n · bH 2 O, b: coordination number of water) The chemical heat storage material according to claim 1.
前記複金属塩は、前記熱媒の吸蔵または放出により該熱媒の配位数が少なくとも4以上変化する結晶構造を有する請求項1または2に記載の化学蓄熱材。   3. The chemical heat storage material according to claim 1, wherein the double metal salt has a crystal structure in which the coordination number of the heat medium changes by at least 4 by occlusion or release of the heat medium. 前記複金属塩は、結晶単位格子中に含まれるMXの化学単位数(Z)で単位格子体積(V)を除した結晶指標値(V/Z)が50〜130Åとなる結晶構造を有する請求項1〜3のいずれかに記載の化学蓄熱材。 The double metal salt has a crystal structure in which the crystal index value (V / Z) obtained by dividing the unit cell volume (V) by the number of chemical units (Z) of MX n contained in the crystal unit cell is 50 to 130 3. The chemical heat storage material according to any one of claims 1 to 3. 前記複金属塩は、CaF型、SrI型、CaCl型、SrBr型、PbCl型、CdCl型またはCdI型のいずれかの結晶構造を有する請求項1〜4のいずれかに記載の化学蓄熱材。 The double metal salt has a crystal structure of any one of CaF 2 type, SrI 2 type, CaCl 2 type, SrBr 2 type, PbCl 2 type, CdCl 2 type, or CdI 2 type. The chemical heat storage material described. 前記金属元素は、アルカリ土類金属元素である請求項1〜5のいずれかに記載の化学蓄熱材。   The chemical heat storage material according to claim 1, wherein the metal element is an alkaline earth metal element. 前記複金属塩は、アルカリ土類金属元素と二種以上のハロゲン元素からなるアルカリ土類金属複ハロゲン化物である請求項1〜6のいずれかに記載の化学蓄熱材。   The chemical heat storage material according to any one of claims 1 to 6, wherein the double metal salt is an alkaline earth metal double halide composed of an alkaline earth metal element and two or more halogen elements. 前記アルカリ土類金属複ハロゲン化物は、Ca(Cl1−yBr(0<y<1)である請求項7に記載の化学蓄熱材。 The chemical heat storage material according to claim 7, wherein the alkaline earth metal double halide is Ca (Cl 1-y Br y ) 2 (0 <y <1). 前記アルカリ土類金属複ハロゲン化物は、Sr(Cl1−yBr(0<y<1)である請求項7に記載の化学蓄熱材。 The chemical heat storage material according to claim 7, wherein the alkaline earth metal double halide is Sr (Cl 1-y Br y ) 2 (0 <y <1). 二種以上の金属塩を混合した混合金属塩を焼成する焼成工程を備え、
請求項1〜9のいずれかに記載の化学蓄熱材が得られることを特徴とする化学蓄熱材の製造方法。
Comprising a firing step of firing a mixed metal salt obtained by mixing two or more metal salts;
A method for producing a chemical heat storage material, wherein the chemical heat storage material according to claim 1 is obtained.
さらに、前記焼成工程前に前記混合金属塩を加圧成形した成形体を得る成形工程を備え、
前記焼成工程は、該成形体を焼成した焼成体を得る工程である請求項10に記載の化学蓄熱材の製造方法。
Furthermore, a molding step for obtaining a molded body obtained by pressure molding the mixed metal salt before the firing step is provided,
The method for producing a chemical heat storage material according to claim 10, wherein the firing step is a step of obtaining a fired body obtained by firing the molded body.
請求項1〜9のいずれかに記載の化学蓄熱材と該化学蓄熱材を保持するバインダーとからなることを特徴とする化学蓄熱構造体。   It consists of the chemical heat storage material in any one of Claims 1-9, and the binder holding this chemical heat storage material, The chemical heat storage structure characterized by the above-mentioned. 前記バインダーは、化学蓄熱材よりも熱伝導性に優れる高熱伝導材である炭素繊維からなる請求項12に記載の化学蓄熱構造体。   The chemical heat storage structure according to claim 12, wherein the binder is made of carbon fiber, which is a high heat conductive material that is more excellent in thermal conductivity than a chemical heat storage material. さらに、前記化学蓄熱材および前記バインダーよりも熱伝導性に優れる高熱伝導材を含む請求項12または13に記載の化学蓄熱構造体。   Furthermore, the chemical heat storage structure of Claim 12 or 13 containing the high heat conductive material which is more excellent in heat conductivity than the said chemical heat storage material and the said binder.
JP2013029742A 2013-02-19 2013-02-19 Chemical heat storage material, method of producing the same and chemical heat storage structure Pending JP2014159497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013029742A JP2014159497A (en) 2013-02-19 2013-02-19 Chemical heat storage material, method of producing the same and chemical heat storage structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013029742A JP2014159497A (en) 2013-02-19 2013-02-19 Chemical heat storage material, method of producing the same and chemical heat storage structure

Publications (1)

Publication Number Publication Date
JP2014159497A true JP2014159497A (en) 2014-09-04

Family

ID=51611433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013029742A Pending JP2014159497A (en) 2013-02-19 2013-02-19 Chemical heat storage material, method of producing the same and chemical heat storage structure

Country Status (1)

Country Link
JP (1) JP2014159497A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042768A1 (en) * 2017-08-29 2019-03-07 Technische Universitaet Wien Method for thermo-chemical energy storage
EP3560892A1 (en) 2018-04-27 2019-10-30 Toyota Jidosha Kabushiki Kaisha Heat storage material, method for production of heat storage material, and chemical heat pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716797A (en) * 1980-07-03 1982-01-28 Hitachi Zosen Corp Heat accumulating and discharging method
JPH01302077A (en) * 1988-02-29 1989-12-06 Uwe Rockenfeller Heat exchange system
JPH06136357A (en) * 1992-07-15 1994-05-17 Nok Corp Production of chemical heat-storage material
JP2012082291A (en) * 2010-10-08 2012-04-26 Toyota Central R&D Labs Inc Chemical thermal storage medium and method for manufacturing the same
WO2012108343A1 (en) * 2011-02-10 2012-08-16 株式会社豊田中央研究所 Chemical heat accumulator and method for producing same
JP5768887B2 (en) * 2011-08-23 2015-08-26 株式会社豊田中央研究所 Chemical heat storage material, manufacturing method thereof, and chemical heat storage structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716797A (en) * 1980-07-03 1982-01-28 Hitachi Zosen Corp Heat accumulating and discharging method
JPH01302077A (en) * 1988-02-29 1989-12-06 Uwe Rockenfeller Heat exchange system
JPH06136357A (en) * 1992-07-15 1994-05-17 Nok Corp Production of chemical heat-storage material
JP2012082291A (en) * 2010-10-08 2012-04-26 Toyota Central R&D Labs Inc Chemical thermal storage medium and method for manufacturing the same
WO2012108343A1 (en) * 2011-02-10 2012-08-16 株式会社豊田中央研究所 Chemical heat accumulator and method for producing same
JP5768887B2 (en) * 2011-08-23 2015-08-26 株式会社豊田中央研究所 Chemical heat storage material, manufacturing method thereof, and chemical heat storage structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042768A1 (en) * 2017-08-29 2019-03-07 Technische Universitaet Wien Method for thermo-chemical energy storage
AT520368A1 (en) * 2017-08-29 2019-03-15 Univ Wien Tech Process for thermochemical energy storage
AT520368B1 (en) * 2017-08-29 2022-12-15 Univ Wien Tech Process for thermochemical energy storage
EP3560892A1 (en) 2018-04-27 2019-10-30 Toyota Jidosha Kabushiki Kaisha Heat storage material, method for production of heat storage material, and chemical heat pump
KR20190125182A (en) 2018-04-27 2019-11-06 도요타지도샤가부시키가이샤 Heat storage material, method for production of heat storage material, and chemical heat pump

Similar Documents

Publication Publication Date Title
Shkatulov et al. Core–shell encapsulation of salt hydrates into mesoporous silica shells for thermochemical energy storage
Møller et al. Inexpensive thermochemical energy storage utilising additive enhanced limestone
JP5768887B2 (en) Chemical heat storage material, manufacturing method thereof, and chemical heat storage structure
CN103194179A (en) Composite phase change heat storage material and preparation method thereof
JP5765346B2 (en) Chemical heat storage body and method for producing the same
Qiu et al. Preparation and thermal performance of phase change material with high latent heat and thermal conductivity based on novel binary inorganic eutectic system
JP5521967B2 (en) Chemical heat storage body and method for producing the same
Zhao et al. Enhancement of heat and mass transfer of potassium carbonate-based thermochemical materials for thermal energy storage
Mohapatra et al. Salt in matrix for thermochemical energy storage-A review
Zhang et al. Fast hydrogen release under moderate conditions from NaBH 4 destabilized by fluorographite
JP2014159497A (en) Chemical heat storage material, method of producing the same and chemical heat storage structure
Zhou et al. Investigation on pH/temperature-manipulated hydrothermally reduced graphene oxide aerogel impregnated with MgCl2 hydrates for low-temperature thermochemical heat storage
Huang et al. Remarkable low-temperature dehydration kinetics of rare-earth-ion-doped Ca (OH) 2 for thermochemical energy storage
Doh et al. Analysis on the formation of Li 4 SiO 4 and Li 2 SiO 3 through first principle calculations and comparing with experimental data related to lithium battery
JP5712549B2 (en) Chemical heat storage body and method for producing the same
Zaki et al. Investigation of Ca12Al14O33 Mayenite for hydration/dehydration thermochemical energy storage
JP6036730B2 (en) Method for producing composite metal halide and chemical heat storage material
JP2016098234A (en) Chemical thermal storage material and manufacturing method therefor
JP4628705B2 (en) Thermal storage material
RU2729004C1 (en) Material for heat accumulation, method of making material for heat accumulation and chemical heat pump
Mahroug et al. Li4 (OH) 3Br/MgO shape stabilized composite as novel high temperature thermal energy storage material
Palacios et al. Water sorption-based thermochemical storage materials: A review from material candidates to manufacturing routes
Yan et al. Screening of organic lithium precursors for producing high-performance Li4SiO4-based thermochemical energy storage materials: Experimental and kinetic investigations
Ling et al. Performance improvement of Na4SiO4 doped with Li2CO3-K2CO3 for high-temperature CO2 capture and thermochemical energy storage
JP2018168223A (en) Chemical thermal storage medium and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206