JP2014159201A - Air-conditioning control device for vehicle - Google Patents

Air-conditioning control device for vehicle Download PDF

Info

Publication number
JP2014159201A
JP2014159201A JP2013030182A JP2013030182A JP2014159201A JP 2014159201 A JP2014159201 A JP 2014159201A JP 2013030182 A JP2013030182 A JP 2013030182A JP 2013030182 A JP2013030182 A JP 2013030182A JP 2014159201 A JP2014159201 A JP 2014159201A
Authority
JP
Japan
Prior art keywords
air
compressor
vehicle
stop
cold storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013030182A
Other languages
Japanese (ja)
Other versions
JP6156776B2 (en
Inventor
Hideki Hashigaya
英樹 橋ヶ谷
Kensuke Momose
堅祐 百瀬
Kazusada Kondo
和定 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2013030182A priority Critical patent/JP6156776B2/en
Priority to CN201410054807.3A priority patent/CN103994617B/en
Priority to DE102014002274.9A priority patent/DE102014002274A1/en
Publication of JP2014159201A publication Critical patent/JP2014159201A/en
Application granted granted Critical
Publication of JP6156776B2 publication Critical patent/JP6156776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • B60H1/00778Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed the input being a stationary vehicle position, e.g. parking or stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/005Regenerative cooling means, e.g. cold accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • F25B2327/001Refrigeration system using an engine for driving a compressor of the internal combustion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To exhibit both cooling performance and drivability by estimating cold storage amount of an evaporator and optimizing stop control of a compressor.SOLUTION: An air-conditioning control device for a vehicle includes: a compressor 4 operated by power of an internal combustion engine mounted to the vehicle to compress a refrigerant; an evaporator 8 that has a cold storage element 13 and can convert part of cold air of the refrigerant into a cold blast and store the remainder of the cold air in the cold storage element 13 during a cooling operation; and control means 29 for performing air-conditioning control of inside of a cabin by the cold air stored in the cold storage element 13 while the compressor 4 is stopped. The air-conditioning control device further includes cold storage amount calculation means 39 for calculating the amount of the cold air stored in the cold storage element 13, and the control means performs stop control of the compressor in operation, on the basis of a stop condition that changes in accordance with the cold storage amount calculated by the cold storage amount calculation means.

Description

この発明は車両用空調制御装置に係り、特に、内燃機関の動力により駆動されて冷媒を圧縮する圧縮機の停止時期や停止時間を最適化することで、冷房性能とドライバビリティとの両立を図った車両用空調制御装置に関する。   The present invention relates to a vehicle air conditioning control device, and in particular, by optimizing the stop timing and stop time of a compressor that is driven by the power of an internal combustion engine and compresses a refrigerant, to achieve both cooling performance and drivability. The present invention relates to a vehicle air conditioning control device.

内燃機関の動力により走行する車両には、内燃機関の動力により駆動されて冷媒を圧縮する圧縮機を備え、冷媒と車室内に吹き出される空気との間で熱交換するエバポレータを備え、エバポレータによって冷媒の冷気を冷風に変換することで冷房機能を実現する空調装置を制御する車両用空調制御装置を搭載しているものがある。
一方で、昨今は、自動停止条件成立時に内燃機関を自動停止させるとともに自動再始動条件成立時に内燃機関を自動再始動させるアイドルストップ車両が増加している。アイドルストップ車両においては、燃費向上のために内燃機関を停止させた場合、空調装置の圧縮機の動力が失われることにより冷房機能が停止し、夏場などの車外温度が高い状況では内燃機関停止後、すぐに冷風の吹出しができなくなるという問題がある。
A vehicle that is driven by the power of the internal combustion engine includes a compressor that is driven by the power of the internal combustion engine and compresses the refrigerant, and includes an evaporator that exchanges heat between the refrigerant and the air blown into the vehicle interior. Some of them are equipped with a vehicle air-conditioning control device that controls an air-conditioning device that realizes a cooling function by converting the cold air of the refrigerant into cold air.
On the other hand, recently, an idle stop vehicle that automatically stops the internal combustion engine when the automatic stop condition is satisfied and automatically restarts the internal combustion engine when the automatic restart condition is satisfied is increasing. In an idle stop vehicle, when the internal combustion engine is stopped to improve fuel efficiency, the cooling function stops due to loss of power of the compressor of the air conditioner. There is a problem that cold air cannot be blown out immediately.

この問題に対する解決策の一つとして、蓄冷素子を備えたエバポレータを有する空調装置がある。この蓄冷素子を備えたエバポレータは、冷房作動時にエバポレータが持つ冷媒の冷気を全て冷風に変換することはできないという点を利用したものであり、冷風に変換できずエバポレータに残った冷気を蓄冷素子に蓄える機能を備えている。このエバポレータで蓄えた冷気を用いることにより、アイドルストップ車両による内燃機関の停止中に車室内に冷風を吹出すことが可能となる。(特開2011−68190号公報)   One solution to this problem is an air conditioner having an evaporator with a cold storage element. The evaporator equipped with this cool storage element utilizes the fact that it is not possible to convert all of the cool air of the evaporator into cool air during cooling operation. It has a function to store. By using the cold air stored in the evaporator, it is possible to blow cold air into the vehicle compartment while the internal combustion engine is stopped by the idle stop vehicle. (JP 2011-68190 A)

特開2011−68190号公報JP 2011-68190 A

ところで、一般に、内燃機関の動力で走行する車両は、内燃機関の動力により空調装置の圧縮機を駆動するため、冷房作動時には圧縮機の負荷により、車両の走行に使われる内燃機関の動力が減少されることを避けられない。内燃機関の動力の減少は、ドライバビリティの悪化を招くことになるため、対策として乗員がアクセルペダルを踏み込んだときは圧縮機を停止して加速感を向上させる制御や、乗員がブレーキペダルを踏み込んだときは圧縮機を停止して吸気負圧を利用したブレーキのマスターバックによる踏力アシスト能力を増加させる制御などが存在し、これらを総称しエアコンカット制御と呼んでいる。
しかし、上記エアコンカット制御により圧縮機を停止させた場合は、冷媒を圧縮できないためエバポレータの温度が上昇することとなり、空調装置の吹き出し風の温度が上昇し、冷房性能が低下してしまうという問題がある。
このように、冷房性能とドライバビリティとはトレードオフの関係にあり、ドライバビリティを優先して圧縮機を停止する時間を長く設定した場合は、冷房能力が低下することで、乗員に不快感を与える可能性がある。逆に、冷房性能を向上させるために圧縮機を停止する時間を短く設定した場合は、内燃機関の動力が圧縮機に使用されてドライバビリティが悪化し、乗員に不快感を与える可能性がある。
By the way, in general, since a vehicle traveling with the power of the internal combustion engine drives the compressor of the air conditioner by the power of the internal combustion engine, the power of the internal combustion engine used for traveling of the vehicle decreases due to the load of the compressor during the cooling operation. It cannot be avoided. Decreasing the power of the internal combustion engine will lead to deterioration of drivability, so as a countermeasure, when the occupant depresses the accelerator pedal, control to stop the compressor and improve the acceleration feeling, or the occupant depresses the brake pedal. In such a case, there is a control for increasing the pedaling force assisting ability by stopping the compressor and using a brake master back using the intake negative pressure, and these are collectively referred to as an air conditioner cut control.
However, when the compressor is stopped by the air conditioner cut control, the refrigerant cannot be compressed, so the temperature of the evaporator rises, the temperature of the blown air from the air conditioner rises, and the cooling performance decreases. There is.
In this way, there is a trade-off between cooling performance and drivability, and if the compressor is shut down for a long time with priority given to drivability, the cooling capacity will be reduced, causing discomfort to the passengers. There is a possibility to give. On the other hand, when the time for stopping the compressor is set short in order to improve the cooling performance, the power of the internal combustion engine is used for the compressor and the drivability deteriorates, which may cause discomfort to the passengers. .

この発明は、エバポレータの蓄冷量を推定し、圧縮機の停止制御を最適化することにより、冷房性能とドライバビリティとの両立を実現することを目的とする。   An object of the present invention is to realize both cooling performance and drivability by estimating the amount of cold stored in the evaporator and optimizing the stop control of the compressor.

この発明は、車両に搭載された内燃機関の動力により駆動されて冷媒を圧縮する圧縮機と、蓄冷素子を備え、かつ冷房作動中に前記冷媒の冷気の一部を冷風に変換し、残りの冷気を前記蓄冷素子に蓄えることが可能なエバポレータと、前記圧縮機の停止中に前記蓄冷素子に蓄えられた冷気により車室内を空調制御する制御手段を備えた車両用空調制御装置において、前記蓄冷素子に蓄えられた冷気の量を算出する蓄冷量算出手段を備え、前記制御手段は、前記蓄冷量算出手段により算出される蓄冷量に応じて変化する停止条件に基づき、作動中の前記圧縮機を停止制御することを特徴とする。   The present invention includes a compressor that is driven by the power of an internal combustion engine mounted on a vehicle and compresses the refrigerant, and a cold storage element, and converts part of the cold air of the refrigerant into cold air during cooling operation, and the rest In the vehicle air conditioning control device, comprising: an evaporator capable of storing cold air in the cold storage element; and a control means for controlling air conditioning of a vehicle interior by the cold air stored in the cold storage element while the compressor is stopped. The compressor is provided with cold storage amount calculation means for calculating the amount of cold air stored in the element, and the control means is based on a stop condition that changes according to the cold storage amount calculated by the cold storage amount calculation means. Is controlled to stop.

この発明は、エバポレータの蓄冷素子の蓄冷量を推定し、その蓄冷量に基づいて作動中の圧縮機を停止する時期あるいは停止する時間を最適化することにより、より長い時間圧縮機を停止させることができるものである。
この発明は、エバポレータの蓄冷量に基づいて圧縮機の停止制御を細かく設定でき、圧縮機の停止する時間を長くできることにより燃費が向上する。
This invention estimates a cold storage amount of a cold storage element of an evaporator and optimizes the time or time to stop a compressor in operation based on the cold storage amount, thereby stopping the compressor for a longer time. Is something that can be done.
According to the present invention, the stop control of the compressor can be finely set based on the cold storage amount of the evaporator, and the fuel consumption can be improved by extending the time during which the compressor is stopped.

図1は車両用空調制御装置によるシステム構成図である。(実施例)FIG. 1 is a system configuration diagram of a vehicle air conditioning control device. (Example) 図2(A)は蓄冷量を算出するための係数αを示す図、図2(B)は蓄冷量により算出される蓄冷レベルを示す図である。(実施例)FIG. 2A is a diagram illustrating a coefficient α for calculating the amount of cold storage, and FIG. 2B is a diagram illustrating a cold storage level calculated from the amount of cold storage. (Example) 図3は車両用空調制御装置による空調制御構成図である。(実施例)FIG. 3 is a block diagram of the air conditioning control by the vehicle air conditioning control device. (Example) 図4(A)は加速走行時停止条件の成立・不成立の関係を示す図、図4(B)は車速条件の閾値Bを示す図、図4(C)はアクセル開度条件の閾値Cを示す図である。(実施例)4A is a diagram showing the relationship between the establishment and non-establishment of the stop condition during acceleration travel, FIG. 4B is a diagram showing the threshold B of the vehicle speed condition, and FIG. 4C is the threshold C of the accelerator opening condition. FIG. (Example) 図5は加速走行時停止条件の成立・不成立確定のフローチャートである。(実施例)FIG. 5 is a flowchart for determining whether the acceleration stop condition is satisfied or not. (Example) 図6(A)は全開走行時停止条件の成立・不成立の関係を示す図、図6(B)はアクセル開度条件の閾値Eを示す図である。(実施例)FIG. 6A is a diagram showing the relationship between establishment and non-establishment of the stop condition during full-open travel, and FIG. 6B is a diagram showing the threshold E of the accelerator opening condition. (Example) 図7は全開走行時停止条件の成立・不成立確定のフローチャートである。(実施例)FIG. 7 is a flowchart of the establishment / non-establishment of the stop condition at the time of full open travel. (Example) 図8(A)はブレーキ負圧確保時停止条件の成立・不成立の関係を示す図、図8(B)はブレーキ負圧条件の閾値Gを示す図である。(実施例)FIG. 8A is a diagram showing the relationship between establishment and non-establishment of the stop condition when securing brake negative pressure, and FIG. 8B is a diagram showing the threshold G of the brake negative pressure condition. (Example) 図9はブレーキ負圧確保時停止条件の成立・不成立確定のフローチャートである。(実施例)FIG. 9 is a flowchart of the establishment / non-establishment of the stop condition when the brake negative pressure is secured. (Example) 図10は走行状態による圧縮機の停止条件の成立・不成立の関係を示す図である。(実施例)FIG. 10 is a diagram illustrating a relationship between establishment and non-establishment of the compressor stop condition depending on the running state. (Example) 図11は走行状態による圧縮機の停止条件の成立・不成立判定のフローチャートである。(実施例)FIG. 11 is a flowchart for determining whether the compressor stop condition is satisfied or not according to the running state. (Example)

以下、図面に基づいて、この発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図11は、この発明の実施例を示すものである。図1において、車両1は、走行用の動力を発生する内燃機関2を搭載しており、空調装置3を搭載している。この車両1の空調装置3は、内燃機関1の動力により駆動されて冷媒を圧縮する圧縮機4を備え、空調ダクト5により形成される空調通路6に、空気を送給するブロアファン7と、冷媒の気化潜熱を利用して冷気を生成するエバポレータ8と、内燃機関2の冷却水の熱を利用して熱気を生成するヒータコア9とを配設している。
前記圧縮機4は、内燃機関2の動力により駆動されて冷媒を圧縮する。圧縮された冷媒は、コンデンサ10とレシーバ11とにより冷却・液化され、前記エバポレータ8に供給される。エバポレータ8において空気との熱交換で昇温膨張した冷媒は、圧縮機4に回収されて再び圧縮される。前記ブロアファン7は、ファンモータ12により駆動され、空調通路6の空気を車室に供給する。前記エバポレータ8は、蓄冷素子13(例えば、パラフィンなど)を備え、かつ冷房作動中に冷媒の冷気の一部を冷風に変換し、残りの冷気を蓄冷素子13に蓄えることが可能である。前記ヒータコア9は、暖房作動中に空調通路6の空気を熱風に変換する。ヒータコア9は、一側に偏らせることで空調通路6をヒータコア通路14とバイパス通路15とに2分している。
前記空調通路6には、ブロアファン7の上流側に吸込口ダンパ16を設け、中間のヒータコア9の上流側にエアミックスダンパ17を設け、ヒータコア9の下流側に吹出口ダンパ18・19を設けている。
前記吸込口ダンパ16は、吸込口アクチュエータ20により作動され、内気吸込口21から吸い込んだ車室内の空気(内気)と外気吸込口22から吸い込んだ車室外の空気(外気)とを空調通路6に選択的に導入する。前記エアミックスダンパ17は、エアミックスアクチュエータ23により作動され、ヒータコア通路14に流れる熱風とバイパス通路15に流れる冷風との割合を調整し、車室に冷房用あるいは暖房用として吹き出される空調空気の吹出温度を調整する。前記吹出口ダンパ18・19は、吹出口アクチュエータ24・25により作動され、空調モードに応じて、各吹出口26・27・28から空調空気を選択的に吹き出させる。
前記エンジン2、圧縮機4、ファンモータ12、吸込口アクチュエータ20、エアミックスアクチュエータ23、吹出口アクチュエータ24・25は、制御手段29に接続している。制御手段29には、空調装置3を駆動・停止する空調スイッチ30、アクセルペダルの踏込み状態であるアクセル開度を検出するアクセル開度センサ31、車両1の車速を検出する車速センサ32、内燃機関2の吸気負圧を利用してブレーキペダルの踏力をアシストするマスターバックのブレーキ負圧を検出するブレーキ負圧センサ33、エバポレータ8の温度を検出するエバポレータ温度センサ34を接続している。
前記制御手段29は、アクセル開度センサ31、車速センサ32とともに内燃機関2を自動停止・自動再始動する内燃機関自動停止制御装置35を構成する。内燃機関自動停止制御装置35を構成する制御手段29は、自動停止手段36と、自動再始動手段37とを備えている。制御手段29は、自動停止手段36によって、所定条件(自動停止条件:例えば、停車時など)成立時に燃料噴射弁や点火装置を制御して内燃機関2を自動停止させ、自動再始動手段37によって、異なる所定条件(自動再自動条件:例えば、発進時など)成立時に燃料噴射弁や点火装置・スタータモータを制御して自動停止している内燃機関2を自動再始動させる。
よって、この車両1は、所定条件成立時に内燃機関2を停止するアイドルストップ車両である。
1 to 11 show an embodiment of the present invention. In FIG. 1, a vehicle 1 is equipped with an internal combustion engine 2 that generates power for traveling, and an air conditioner 3. The air conditioner 3 of the vehicle 1 includes a compressor 4 that is driven by the power of the internal combustion engine 1 and compresses the refrigerant, and a blower fan 7 that supplies air to the air conditioning passage 6 formed by the air conditioning duct 5; An evaporator 8 that generates cold air using the latent heat of vaporization of the refrigerant and a heater core 9 that generates hot air using the heat of the cooling water of the internal combustion engine 2 are disposed.
The compressor 4 is driven by the power of the internal combustion engine 2 to compress the refrigerant. The compressed refrigerant is cooled and liquefied by the condenser 10 and the receiver 11 and supplied to the evaporator 8. The refrigerant that has been heated and expanded by heat exchange with air in the evaporator 8 is recovered by the compressor 4 and compressed again. The blower fan 7 is driven by a fan motor 12 and supplies air from the air conditioning passage 6 to the passenger compartment. The evaporator 8 includes a cold storage element 13 (for example, paraffin or the like), converts a part of the cold air of the refrigerant into cold air during the cooling operation, and can store the remaining cold air in the cold storage element 13. The heater core 9 converts the air in the air conditioning passage 6 into hot air during heating operation. The heater core 9 divides the air conditioning passage 6 into a heater core passage 14 and a bypass passage 15 by being biased to one side.
The air conditioning passage 6 is provided with a suction port damper 16 upstream of the blower fan 7, an air mix damper 17 is provided upstream of the intermediate heater core 9, and air outlet dampers 18 and 19 are provided downstream of the heater core 9. ing.
The air inlet damper 16 is operated by an air inlet actuator 20, and air in the vehicle compartment (inside air) sucked from the inside air inlet 21 and air outside the vehicle compartment (outside air) sucked from the outside air inlet 22 into the air conditioning passage 6. Selectively introduce. The air mix damper 17 is actuated by an air mix actuator 23, adjusts the ratio of hot air flowing through the heater core passage 14 and cold air flowing through the bypass passage 15, and controls the conditioned air blown into the passenger compartment for cooling or heating. Adjust the blowing temperature. The air outlet dampers 18 and 19 are actuated by air outlet actuators 24 and 25 to selectively blow out conditioned air from the air outlets 26, 27, and 28 according to the air conditioning mode.
The engine 2, the compressor 4, the fan motor 12, the inlet actuator 20, the air mix actuator 23, and the outlet actuators 24 and 25 are connected to the control means 29. The control means 29 includes an air conditioner switch 30 for driving / stopping the air conditioner 3, an accelerator position sensor 31 for detecting the accelerator position that is the depressed state of the accelerator pedal, a vehicle speed sensor 32 for detecting the vehicle speed of the vehicle 1, and an internal combustion engine. The brake negative pressure sensor 33 for detecting the master back brake negative pressure for assisting the depression force of the brake pedal using the intake negative pressure 2 and the evaporator temperature sensor 34 for detecting the temperature of the evaporator 8 are connected.
The control means 29 constitutes an internal combustion engine automatic stop control device 35 that automatically stops and restarts the internal combustion engine 2 together with the accelerator opening sensor 31 and the vehicle speed sensor 32. The control means 29 constituting the internal combustion engine automatic stop control device 35 includes an automatic stop means 36 and an automatic restart means 37. The control unit 29 controls the fuel injection valve and the ignition device to automatically stop the internal combustion engine 2 when a predetermined condition (automatic stop condition: for example, when the vehicle is stopped) is established by the automatic stop unit 36, and automatically restarts the internal combustion engine 2. When the different predetermined conditions (automatic re-automatic conditions: for example, when starting) are satisfied, the fuel injection valve, the ignition device / starter motor are controlled to automatically restart the internal combustion engine 2 that has been automatically stopped.
Therefore, the vehicle 1 is an idle stop vehicle that stops the internal combustion engine 2 when a predetermined condition is satisfied.

また、前記制御手段29は、圧縮機4、ファンモータ12、吸込口アクチュエータ20、エアミックスアクチュエータ23、吹出口アクチュエータ24・25、空調スイッチ30、アクセル開度センサ31、車速センサ32、ブレーキ負圧センサ33、エバポレータ温度センサ34とともに、車両用空調制御装置38を構成する。車両用空調制御装置38は、内燃機関2の動力により駆動されて冷媒を圧縮する前記圧縮機4と、蓄冷素子13を備え、かつ冷房作動中に冷媒の冷気の一部を冷風に変換し、残りの冷気を蓄冷素子13に蓄えることが可能な前記エバポレータ8と、圧縮機4の停止中に蓄冷素子13に蓄えられた冷気により車室内を空調制御する前記制御手段29を備えている。
車両用空調制御装置38を構成する制御手段29は、前記蓄冷素子13に蓄えられた冷気の量を算出する蓄冷量算出手段39を備え、蓄冷量算出手段39が算出した蓄冷量に応じて変化する停止条件に基づき圧縮機4を停止制御する圧縮機停止制御手段40を備えている。前記制御手段29は、蓄冷量算出手段39によって蓄冷素子13の蓄冷量を算出し、圧縮機停止制御手段40によって蓄冷量算出手段39が算出した蓄冷量に応じて変化する停止条件に基づき、作動中の圧縮機4を停止制御する。前記停止条件は、圧縮機停止制御手段40によって、車両1(アイドルストップ車両)の走行状態に応じて設定される。
なお、上記の走行状態(例えば、加速走行時、全開走行時、ブレーキ負圧確保時など)に応じて設定される停止条件により圧縮機4を停止する制御は、エアコンカット制御とも呼ばれる。
The control means 29 includes the compressor 4, the fan motor 12, the suction port actuator 20, the air mix actuator 23, the air outlet actuators 24 and 25, the air conditioning switch 30, the accelerator opening sensor 31, the vehicle speed sensor 32, the brake negative pressure. Together with the sensor 33 and the evaporator temperature sensor 34, a vehicle air-conditioning control device 38 is configured. The vehicle air-conditioning control device 38 includes the compressor 4 that is driven by the power of the internal combustion engine 2 to compress the refrigerant, and the cool storage element 13, and converts a part of the cool air of the refrigerant into cold air during the cooling operation. The evaporator 8 capable of storing the remaining cool air in the cool storage element 13 and the control means 29 for controlling the air conditioning of the vehicle interior by the cool air stored in the cool storage element 13 while the compressor 4 is stopped are provided.
The control means 29 constituting the vehicle air-conditioning control device 38 includes a cold storage amount calculation means 39 for calculating the amount of cold air stored in the cold storage element 13, and changes according to the cold storage amount calculated by the cold storage amount calculation means 39. Compressor stop control means 40 for controlling the stop of the compressor 4 based on the stop condition is provided. The control unit 29 calculates the cold storage amount of the cold storage element 13 by the cold storage amount calculation unit 39, and operates based on the stop condition that changes according to the cold storage amount calculated by the cold storage amount calculation unit 39 by the compressor stop control unit 40. The compressor 4 inside is stopped and controlled. The stop condition is set by the compressor stop control means 40 in accordance with the traveling state of the vehicle 1 (idle stop vehicle).
Note that the control for stopping the compressor 4 according to the stop condition set in accordance with the above-described travel state (for example, during acceleration travel, during full-open travel, when brake negative pressure is secured, etc.) is also referred to as air conditioner cut control.

次に、車両用空調制御装置38による空調制御を説明する。
蓄冷素子を有しないエバポレータを搭載した空調装置の車両用空調制御装置において、ドライバビリティ向上を目的とした圧縮機を停止する制御は、圧縮機を停止する頻度および停止する時間を伸ばすほど効果を得やすいが、そうすることにより冷房性能が悪化するという問題がある。
しかし、図1に示すように、蓄冷素子13を備えたエバポレータ8を搭載した空調装置3の車両用空調制御装置38においては、蓄冷素子13の蓄冷量が十分であれば圧縮機4の停止中もある程度の時間は蓄冷素子13に蓄えた冷気により冷風を吹き出すことができる。そのため、車両用空調制御装置38は、蓄冷素子13の蓄冷量を算出し(図2)、算出した蓄冷素子13の蓄冷量に応じて、圧縮機4の停止制御を実施する閾値を走行状態により可変させて設定して圧縮機4の停止制御を行うことで(図3〜図11)、圧縮機4の停止頻度、停止時間を可能な限り増加させる。その際、走行状態による閾値は、冷房能力が悪化しないレベルになるよう設定する。
この実施例では、ドライバビリティ向上のための圧縮機4の停止制御として、
(1)加速走行時における停止制御(加速力向上用)
(2)全開走行時における停止制御(アクセル全開時の加速力向上用)
(3)ブレーキ負圧確保時における停止制御(ブレーキアシスト能力向上用)
について記載する。
Next, air conditioning control by the vehicle air conditioning controller 38 will be described.
In a vehicle air-conditioning control system for an air-conditioning system equipped with an evaporator that does not have a cool storage element, the control to stop the compressor for the purpose of improving drivability is more effective as the frequency of stopping the compressor and the time for stopping the compressor are increased. Although it is easy, there is a problem that cooling performance deteriorates by doing so.
However, as shown in FIG. 1, in the vehicle air conditioning control device 38 of the air conditioner 3 equipped with the evaporator 8 provided with the cool storage element 13, the compressor 4 is stopped if the cool storage amount of the cool storage element 13 is sufficient. However, cold air can be blown out by the cold air stored in the cold storage element 13 for a certain amount of time. Therefore, the vehicle air-conditioning control device 38 calculates the cold storage amount of the cold storage element 13 (FIG. 2), and sets the threshold value for executing the stop control of the compressor 4 according to the calculated cold storage amount of the cold storage element 13 according to the traveling state. By varying and setting the stop control of the compressor 4 (FIGS. 3 to 11), the stop frequency and stop time of the compressor 4 are increased as much as possible. At this time, the threshold value according to the running state is set so that the cooling capacity does not deteriorate.
In this embodiment, as a stop control of the compressor 4 for improving drivability,
(1) Stop control during acceleration travel (for improving acceleration force)
(2) Stop control during full-open travel (for improving acceleration when the accelerator is fully open)
(3) Stop control when securing brake negative pressure (for improving brake assist capability)
Is described.

車両用空調制御装置38は、蓄冷量算出手段39によって、図2(A)に示す表からエバポレータ温度に応じて蓄冷量を算出する係数αを求め、求めた係数αとこの係数αを求めたときのエバポレータ温度が継続していた時間とから蓄冷量算出式により蓄冷量[%]を算出する。
・蓄冷量[%]=蓄冷量(前回)[%]+係数α[%]*時間[sec]
車両用空調制御装置38は、算出した蓄冷量[%]から、図2(B)に示す表より現在の蓄冷レベル(例えば、1〜7)を算出する。なお、エバポレータ温度が閾値A[℃]を越えている場合は、蓄冷量[%]を0[%]に設定する。(制御関数1)
The vehicle air-conditioning control device 38 obtains the coefficient α for calculating the amount of cold storage according to the evaporator temperature from the table shown in FIG. The amount of cold storage [%] is calculated from the time during which the evaporator temperature has continued with the formula for calculating the amount of cold storage.
-Cold storage amount [%] = Cold storage amount (previous) [%] + coefficient α [%] * time [sec]
The vehicle air-conditioning control device 38 calculates the current cold storage level (for example, 1 to 7) from the calculated cold storage amount [%] from the table shown in FIG. When the evaporator temperature exceeds the threshold A [° C.], the cold storage amount [%] is set to 0 [%]. (Control function 1)

車両用空調制御装置38は、圧縮機停止制御手段40によって、図3に示すように、前記制御関数1を用いて求めた現在のエバポレータ8の蓄冷素子13における蓄冷レベルとアクセル開度センサ31が検出したアクセル開度と車速センサ32が検出した車速とから制御関数2により設定した加速走行時の停止条件を判断し、前記蓄冷レベルと前記アクセル開度とから制御関数3により設定した全開走行時の停止条件を判断し、前記蓄冷レベルと前記車速とブレーキ負圧センサ33が検出したブレーキ負圧とから制御関数4により設定したブレーキ負圧確保時の停止条件を判断し、前記加速走行時の停止条件の判断と前記全開走行時の停止条件の判断と前記ブレーキ負圧確保時の停止条件の判断と空調スイッチ30のON・OFF信号とによって制御関数5により圧縮機4の停止条件を判断し、圧縮機4の停止制御を行う。
これにより、車両用空調制御装置38は、エバポレータ温度から求めた現在のエバポレータ8の蓄冷レベル(制御関数1)に応じて、ドライバビリティ向上用のエアコンカット制御である、加速走行時における圧縮機4の停止制御(制御関数2)、全開走行時における圧縮機4の停止制御(制御関数3)、ブレーキ負圧確保時における圧縮機4の停止制御(制御関数4)のそれぞれが成立するタイミングを変化させ、圧縮機4の停止制御の時間を増加させることで(制御関数5)、冷房能力の低下を最低限に抑制しながら、ドライバビリティの向上を実現する。
As shown in FIG. 3, the vehicle air-conditioning control device 38 uses the compressor stop control means 40 to obtain the cold storage level and the accelerator opening sensor 31 in the cold storage element 13 of the current evaporator 8 obtained using the control function 1. A stop condition at the time of acceleration traveling set by the control function 2 is determined from the detected accelerator opening and the vehicle speed detected by the vehicle speed sensor 32, and the fully open traveling set by the control function 3 from the cold storage level and the accelerator opening. Stop condition is determined from the cold storage level, the vehicle speed, and the brake negative pressure detected by the brake negative pressure sensor 33, and the stop condition when the brake negative pressure set by the control function 4 is secured is determined. Based on the judgment of the stop condition, the judgment of the stop condition at the time of the fully open traveling, the judgment of the stop condition at the time of securing the brake negative pressure, and the ON / OFF signal of the air conditioning switch 30 Determining a stop condition of the compressor 4 by the control function 5 Te performs stop control of the compressor 4.
Thereby, the vehicle air-conditioning control device 38 is a compressor 4 during acceleration traveling, which is air-conditioner cut control for improving drivability, in accordance with the current cold storage level (control function 1) of the evaporator 8 obtained from the evaporator temperature. The timing at which the stop control of the compressor 4 (control function 2), the stop control of the compressor 4 during fully open travel (control function 3), and the stop control of the compressor 4 when the brake negative pressure is secured (control function 4) is changed. Thus, by increasing the stop control time of the compressor 4 (control function 5), improvement in drivability is realized while suppressing a decrease in cooling capacity to a minimum.

前記車両用空調制御装置38は、加速走行時における圧縮機4の停止制御において、図4(B)に示す表から蓄冷レベルに応じて車速条件の閾値Bを設定し、図4(C)に示す表から蓄冷レベルに応じてアクセル開度条件の閾値Cを設定し、車速<閾値B及びアクセル開度>閾値Cの条件成立後の経過時間の閾値Dを設定し、図4(A)に示すように、閾値B、閾値C、閾値Dによる加速走行時における圧縮機4の停止条件(以下「加速走行時停止条件」と記す。)の成立・不成立を確定する。(制御関数2)
加速走行時における圧縮機4の停止制御は、乗員が加速性能を欲していると判断した場合に、圧縮機4を停止することにより加速性能を向上させる制御であり、その閾値として、「車速が一定値(閾値B)未満にある状態」で、乗員が「アクセル開度を一定値(閾値C)を超えて開けた状態」であるかを判定する。加速走行時における圧縮機4の停止制御においては、先に算出した蓄冷レベル(1〜7)が高いほど、車速の閾値Bとアクセル開度の閾値Cとを停止条件が成立し易くなるような値に設定する。
In the stop control of the compressor 4 during acceleration traveling, the vehicle air conditioning control device 38 sets the vehicle speed condition threshold value B according to the cold storage level from the table shown in FIG. From the table shown, the threshold value C of the accelerator opening condition is set according to the cold storage level, the threshold value D of the elapsed time after the condition of vehicle speed <threshold B and accelerator opening> threshold C is established, and FIG. As shown, the establishment / non-establishment of the stop condition (hereinafter referred to as “acceleration travel stop condition”) of the compressor 4 during acceleration travel by the threshold B, threshold C, and threshold D is determined. (Control function 2)
The stop control of the compressor 4 during acceleration traveling is a control for improving the acceleration performance by stopping the compressor 4 when it is determined that the occupant wants the acceleration performance. It is determined whether or not the occupant is in a “state in which the accelerator opening is opened beyond a certain value (threshold C)” in a “state that is less than a certain value (threshold B)”. In the stop control of the compressor 4 during acceleration travel, the higher the cold storage level (1-7) calculated earlier, the more easily the stop condition is established between the vehicle speed threshold B and the accelerator opening threshold C. Set to value.

車両用空調制御装置38は、図5に示すように、加速走行時停止条件の成立・不成立確定のプログラムがスタートすると(100)、加速走行時停止条件が不成立であるかを判断する(101)。
この判断(101)がYES(条件不成立)の場合は、蓄冷レベルに応じて車速条件の閾値Bを求め(102)、蓄冷レベルに応じてアクセル開度条件の閾値Cを求め(103)、車速が閾値B未満であるかを判断する(104)。
この判断(104)がYES(閾値B未満)の場合は、アクセル開度が閾値C超えであるかを判断する(105)。
この判断(105)がYES(閾値C超え)の場合は、加速走行時停止条件を成立と確定し(106)、判断(101)にリターンする(107)。
一方、前記加速走行時停止条件の不成立の判断(101)がNO(条件成立)の場合は、車速<閾値B及びアクセル開度>閾値Cの条件成立後の経過時間を計時する加速走行時停止タイマをカウントアップ(計時続行)し(108)、経過時間が閾値D未満であるかを判断する(109)。
前記判断(109)がYES(閾値D未満)の場合は、加速走行時停止条件を成立と確定し(110)、判断(101)にリターンする(107)。
また、前記車速が閾値B未満であるかの判断(104)がNO(閾値B以上)の場合、前記アクセル開度が閾値C超えであるかの判断(105)がNO(閾値D以下)の場合、前記経過時間が閾値D未満であるかの判断(109)がNO(閾値D以上)の場合は、加速走行時停止タイマの計時を「0」に戻し(111)、加速走行時停止条件を不成立と確定し(112)、判断(101)にリターンする(107)。
As shown in FIG. 5, the vehicle air-conditioning control device 38, when the program for determining whether the acceleration stop condition is satisfied or not is started (100), determines whether the acceleration stop condition is not satisfied (101). .
If this determination (101) is YES (condition is not satisfied), the vehicle speed condition threshold value B is determined according to the cold storage level (102), the accelerator opening condition threshold value C is determined according to the cold storage level (103), and the vehicle speed is determined. Is less than the threshold value B (104).
If this determination (104) is YES (less than threshold B), it is determined whether the accelerator opening is above threshold C (105).
If this determination (105) is YES (exceeding the threshold value C), the stop condition during acceleration traveling is established (106), and the process returns to determination (101) (107).
On the other hand, if the determination (101) that the acceleration travel stop condition is not satisfied is NO (the condition is satisfied), the acceleration travel stop that measures the elapsed time after the vehicle speed <threshold B and accelerator opening> threshold C is satisfied. The timer counts up (continues timing) (108), and it is determined whether the elapsed time is less than the threshold value D (109).
If the determination (109) is YES (less than the threshold value D), the acceleration stop condition is determined to be satisfied (110), and the process returns to the determination (101) (107).
If the determination (104) whether the vehicle speed is less than the threshold B is NO (threshold B or more), the determination (105) whether the accelerator opening is greater than the threshold C is NO (threshold D or less). In this case, when the determination whether the elapsed time is less than the threshold value D (109) is NO (threshold value D or more), the time count of the acceleration travel stop timer is returned to “0” (111), and the acceleration travel stop condition Is not established (112), and the process returns to the decision (101) (107).

前記車両用空調制御装置38は、全開走行時における圧縮機4の停止制御において、図6(B)に示す表から蓄冷レベルに応じてアクセル開度条件の閾値Eを設定し、アクセル開度>閾値Eの条件成立後の経過時間の閾値Fを設定し、図6(A)に示すように、閾値E、閾値Fによる全開走行時における圧縮機4の停止条件(以下「全開走行時停止条件」と記す。)の成立・不成立を確定する。(制御関数3)
全開走行時における圧縮機4の停止制御は、乗員が加速性能を最大限まで欲していると判断した場合に、圧縮機4を停止することにより加速性能を最大まで発揮する制御であり、その閾値として、乗員が「アクセル開度を相当に高い値(閾値E)まで開けた」かを判定する。全開走行時における圧縮機4の停止制御においては、先に算出した蓄冷レベル(1〜7)が高いほど、アクセル開度の閾値Eを停止条件が成立し易くなるような値に設定する。
The vehicle air-conditioning control device 38 sets the accelerator opening condition threshold value E according to the cold storage level from the table shown in FIG. A threshold value F of the elapsed time after the condition of the threshold value E is established, and as shown in FIG. 6 (A), as shown in FIG. ")") Is confirmed. (Control function 3)
The stop control of the compressor 4 at the time of the fully open traveling is a control that exhibits the acceleration performance to the maximum by stopping the compressor 4 when it is determined that the occupant desires the acceleration performance to the maximum. It is determined whether or not the occupant has opened the accelerator opening to a considerably high value (threshold E). In the stop control of the compressor 4 during the full-open travel, the accelerator opening threshold E is set to a value that makes it easier to satisfy the stop condition as the previously calculated cold storage level (1-7) is higher.

車両用空調制御装置38は、図7に示すように、全開走行時停止条件の成立・不成立確定のプログラムがスタートすると(200)、全開走行時停止条件が不成立であるかを判断する(201)。
この判断(201)がYES(条件不成立)の場合は、蓄冷レベルに応じてアクセル開度条件の閾値Eを求め(202)、アクセル開度が閾値E超えであるかを判断する(203)。
この判断(203)がYES(閾値E超え)の場合は、全開走行時停止条件を成立と確定し(204)、判断(201)にリターンする(205)。
一方、前記全開走行時停止条件の不成立の判断(201)がNO(条件成立)の場合は、アクセル開度>閾値Eの条件成立後の経過時間を計時する全開走行時停止タイマをカウントアップ(計時続行)し(206)、経過時間が閾値F未満であるかを判断する(207)。
前記判断(207)がYES(閾値E未満)の場合は、全開走行時停止条件を成立と確定し(208)、判断(201)にリターンする(205)。
また、前記アクセル開度が閾値E超えであるかの判断(203)がNO(閾値E以下)の場合、前記経過時間が閾値F未満であるかの判断(207)がNO(閾値E以上)の場合は、全開走行時停止タイマの計時を「0」に戻し(209)、全開走行時停止条件を不成立と確定し(210)、判断(201)にリターンする(205)。
As shown in FIG. 7, the vehicle air-conditioning control device 38 determines whether or not the stop condition at the time of fully open travel is not satisfied (201) when the program for determining whether or not the stop condition at fully open travel is satisfied (200). .
When this determination (201) is YES (condition is not satisfied), a threshold value E of the accelerator opening condition is obtained according to the cold storage level (202), and it is determined whether the accelerator opening is over the threshold value E (203).
If the determination (203) is YES (exceeding the threshold value E), the stop condition at the time of full-open running is established (204), and the process returns to the determination (201) (205).
On the other hand, if the determination (201) that the stop condition during full-open travel is not satisfied is NO (condition is satisfied), a stop timer during full-open travel that counts the elapsed time after the condition of accelerator opening> threshold E is satisfied ( (Timekeeping continues) (206), and it is determined whether the elapsed time is less than the threshold F (207).
If the determination (207) is YES (less than the threshold value E), it is determined that the stop condition during full-open travel is satisfied (208), and the process returns to determination (201) (205).
Further, when the determination (203) whether the accelerator opening is greater than the threshold E is NO (threshold E or less), the determination (207) whether the elapsed time is less than the threshold F is NO (threshold E or more). In this case, the timing of the stop timer at the time of full opening is returned to “0” (209), the stop condition at the time of full opening is not established (210), and the process returns to the determination (201) (205).

前記車両用空調制御装置38は、ブレーキ負圧確保時における圧縮機4の停止制御において、図8(B)に示す表から蓄冷レベルに応じてブレーキ負圧確保条件の閾値Gを設定し、ブレーキ負圧<閾値Gの条件成立後の経過時間の閾値Hを設定し、図8(A)に示すように、閾値G、閾値Hによるブレーキ負圧確保時における圧縮機4の停止条件(以下「ブレーキ負圧確保時停止条件」と記す。)の成立・不成立を確定する。(制御関数4)
ブレーキ負圧確保時における圧縮機4の停止制御は、乗員がブレーキペダルを踏込んだ場合の踏力アシスト機能として、マスターバックのブレーキ負圧を利用している場合に、ブレーキ負圧が不足してアシストが機能しないことが無いよう、「ブレーキ負圧が一定値(閾値G)未満である」かを判定し、「ブレーキ負圧が一定値(閾値G)未満である」場合は圧縮機4の停止によりブレーキ負圧を確保する制御である。ブレーキ負圧確保時における圧縮機4の停止制御においては、先に算出した蓄冷レベル(1〜7)が高いほど、ブレーキ負圧の閾値Gを停止条件が成立し易くなるように設定する。なお、「ブレーキ負圧が一定値(閾値G)未満である」(ブレーキ負圧<閾値G)場合とは、ブレーキ負圧が閾値Gよりも大気圧側の値に近づいて弱くなった状態である。
In the stop control of the compressor 4 when the brake negative pressure is ensured, the vehicle air conditioning control device 38 sets a brake negative pressure securing condition threshold G according to the cold storage level from the table shown in FIG. A threshold value H of an elapsed time after the condition of negative pressure <threshold G is satisfied is set, and, as shown in FIG. "Stop condition when securing brake negative pressure" is determined). (Control function 4)
The stop control of the compressor 4 at the time of securing the brake negative pressure is because the brake negative pressure is insufficient when the master back brake negative pressure is used as a pedaling force assist function when the occupant steps on the brake pedal. It is determined whether the brake negative pressure is less than a certain value (threshold G) so that the assist does not function. If “the brake negative pressure is less than a certain value (threshold G)”, the compressor 4 This control ensures the brake negative pressure by stopping. In the stop control of the compressor 4 when securing the brake negative pressure, the brake negative pressure threshold G is set so that the stop condition is more easily established as the previously calculated cold storage level (1-7) is higher. Note that “the brake negative pressure is less than a certain value (threshold G)” (brake negative pressure <threshold G) means that the brake negative pressure approaches the value on the atmospheric pressure side of the threshold G and becomes weaker. is there.

車両用空調制御装置38は、図9に示すように、ブレーキ負圧確保時停止条件の成立・不成立確定のプログラムがスタートすると(300)、ブレーキ負圧確保時停止条件が不成立であるかを判断する(301)。
この判断(301)がYES(条件不成立)の場合は、蓄冷レベルに応じてブレーキ負圧確保条件の閾値Gを求め(302)、ブレーキ負圧が閾値G未満であるかを判断する(303)。
この判断(303)がYES(閾値G未満)の場合は、ブレーキ負圧確保時停止条件を成立と確定し(304)、判断(301)にリターンする(305)。
一方、前記ブレーキ負圧確保停止条件の不成立の判断(301)がNO(条件成立)の場合は、ブレーキ負圧<閾値Gの条件成立後の経過時間を計時するブレーキ負圧確保時停止タイマをカウントアップ(計時続行)し(306)、経過時間が閾値H未満であるかを判断する(307)。
前記判断(307)がYES(閾値G未満)の場合は、ブレーキ負圧確保時停止条件を成立と確定し(308)、判断(301)にリターンする(305)。
また、前記ブレーキ負圧が閾値G未満であるかの判断(303)がNO(閾値G以上)の場合、前記経過時間が閾値H未満であるかの判断(307)がNO(閾値H以上)の場合は、ブレーキ負圧確保時停止タイマの計時を「0」に戻し(309)、ブレーキ負圧確保時停止条件を不成立と確定し(310)、判断(301)にリターンする(305)。
As shown in FIG. 9, the vehicle air-conditioning control device 38 determines whether the stop condition for securing the brake negative pressure is not established when the program for determining whether the stop condition for securing the brake negative pressure is established or not (300). (301).
When this determination (301) is YES (condition is not satisfied), a threshold value G of the brake negative pressure ensuring condition is obtained according to the cold storage level (302), and it is determined whether the brake negative pressure is less than the threshold value G (303). .
If this determination (303) is YES (less than the threshold G), it is determined that the brake negative pressure securing stop condition is satisfied (304), and the process returns to determination (301) (305).
On the other hand, if the determination (301) that the brake negative pressure securing stop condition is not satisfied is NO (satisfied condition), a brake negative pressure securing stop timer that counts the elapsed time after the condition of brake negative pressure <threshold G is satisfied. Count up (continue timing) (306), and determine whether the elapsed time is less than the threshold value H (307).
If the determination (307) is YES (less than the threshold G), it is determined that the brake negative pressure securing stop condition is satisfied (308), and the process returns to the determination (301) (305).
Further, when the determination (303) whether the brake negative pressure is less than the threshold G is NO (threshold G or more), the determination (307) whether the elapsed time is less than the threshold H is NO (threshold H or more). In this case, the stop time of the brake negative pressure securing timer is reset to “0” (309), the brake negative pressure securing stop condition is determined to be unsatisfied (310), and the process returns to the determination (301) (305).

前記車両用空調制御装置38は、圧縮機4の停止制御において、図10に示すように、
空調スイッチ30のON・OFF、加速走行時停止条件の成立・不成立、または全開走行時停止条件の成立・不成立、あるいはブレーキ負圧確保時停止条件の成立・不成立による圧縮機4の停止条件の成立・不成立を判定する。(制御関数5)
上記各走行状態における圧縮機4の停止制御は、図2〜図9に示すように、現在の蓄冷レベルに従い閾値A〜Hを変化させた結果、図11に示すように、前述の加速走行時停止条件、全開走行時停止条件、ブレーキ負圧確保時停止条件のいずれかが成立しているかを判定する。加速走行時停止条件、全開走行時停止条件、ブレーキ負圧確保時停止条件の、少なくとも一つが成立していた場合は、圧縮機4を停止し、ドライバビリティの向上を図る。この際の圧縮機4を停止は、現在の蓄冷量を元に冷房性能の悪化を招かない程度に設定されたものである。
As shown in FIG. 10, the vehicle air conditioning control device 38 controls the stop of the compressor 4 as follows.
The stop condition of the compressor 4 is satisfied when the air conditioning switch 30 is turned ON / OFF, the stop condition during acceleration travel is satisfied / not satisfied, or the stop condition during full-open travel is satisfied / not satisfied, or the stop condition is satisfied / not satisfied when the brake negative pressure is secured.・ Determine failure. (Control function 5)
As shown in FIGS. 2 to 9, the stop control of the compressor 4 in each of the above running states is performed by changing the thresholds A to H according to the current cold storage level. It is determined whether one of the stop condition, the stop condition when fully running, or the stop condition when securing the brake negative pressure is satisfied. When at least one of the stop condition at the time of acceleration travel, the stop condition at the time of full open travel, and the stop condition at the time of securing the brake negative pressure is satisfied, the compressor 4 is stopped to improve drivability. The stop of the compressor 4 at this time is set to such an extent that the cooling performance is not deteriorated based on the current cold storage amount.

車両用空調制御装置38は、図11に示すように、圧縮機4の停止条件の成立・不成立判定のプログラムがスタートすると(400)、エバポレータ温度センサ34が検出するエバポレータ温度を入力し(401)、蓄冷量を算出する係数αを算出し(402)、蓄冷量算出式により蓄冷量を算出し(403)、空調スイッチ30のON・OFF信号を入力する(404)。
さらに、車両用空調制御装置38は、加速走行時停止条件の成立・不成立情報を入力し(405)、全開走行時停止条件の成立・不成立情報を入力し(406)、ブレーキ負圧確保時停止条件の成立・不成立情報を入力し(407)、空調スイッチ30がOFF(空調装置3が停止)であるかを判断する(408)。
この判断(408)がYES(スイッチOFF)の場合は、圧縮機4の停止条件を成立とし(409)、判断(401)にリターンする(410)。
一方、前記空調スイッチ3がOFFであるかの判断(408)がNO(スイッチON)の場合は、空調装置3が駆動中であり、加速走行時停止条件が成立するか、または全開走行時停止条件が成立するか、あるいはブレーキ負圧確保時停止条件が成立するかを判断する(411)。
この判断(411)がYES(少なくとも一つの条件が成立)の場合は、圧縮機4の停止条件を成立とし(409)、圧縮機4を停止して判断(401)にリターンする(410)。この判断(411)がNO(すべての条件が不成立)の場合は、圧縮機4の停止条件を不成立とし(412)、圧縮機4を停止せずに判断(401)にリターンする(410)。
As shown in FIG. 11, when the program for determining whether or not the stop condition for the compressor 4 is satisfied is started (400), the vehicle air conditioning controller 38 inputs the evaporator temperature detected by the evaporator temperature sensor 34 (401). Then, the coefficient α for calculating the cold storage amount is calculated (402), the cold storage amount is calculated by the cold storage amount calculation formula (403), and the ON / OFF signal of the air conditioning switch 30 is input (404).
Further, the vehicle air-conditioning control device 38 inputs information on establishment / non-establishment of the stop condition during acceleration travel (405), inputs information on establishment / non-establishment of the stop condition during full-open travel (406), and stops when the brake negative pressure is secured. Information on the establishment / non-establishment of conditions is input (407), and it is determined whether the air conditioning switch 30 is OFF (the air conditioner 3 is stopped) (408).
If this determination (408) is YES (switch OFF), the stop condition of the compressor 4 is established (409), and the process returns to determination (401) (410).
On the other hand, if the determination (408) of whether the air conditioning switch 3 is OFF is NO (switch ON), the air conditioning apparatus 3 is being driven and the acceleration traveling stop condition is satisfied, or the suspension is stopped when fully opened. It is determined whether the condition is satisfied or whether the stop condition when the brake negative pressure is secured is satisfied (411).
If this determination (411) is YES (at least one condition is satisfied), the stop condition of the compressor 4 is satisfied (409), the compressor 4 is stopped, and the process returns to the determination (401) (410). When this determination (411) is NO (all conditions are not satisfied), the stop condition of the compressor 4 is not satisfied (412), and the compressor 4 is not stopped and the process returns to the determination (401) (410).

このように、車両用空調制御装置38は、エバポレータ8に備えられた蓄冷素子13の蓄冷量を求め(制御関数1)、求めた蓄冷量から走行状態に応じて設定した圧縮機4の停止条件を確定(制御関数2〜制御関数4)し、確定した停止条件の成立・不成立を判定(制御関数5)し、圧縮機4を停止制御する。
これにより、車両用空調制御装置38は、エバポレータ8の蓄冷量を推定し、その蓄冷量に基づいて作動中の圧縮機4を停止する時期あるいは停止する時間を最適化することができ、より長い時間圧縮機4を停止させることができる。
この車両用空調制御装置38は、エバポレータ8の蓄冷量に基づいて圧縮機4の停止制御を細かく設定でき、圧縮機4の停止する時間を長くできることにより燃費が向上する。
また、車両用空調制御装置38は、圧縮機4の停止条件を、車両1の走行状態(加速走行時、全開走行時、ブレーキ負圧確保時)に応じて設定している。
この車両用空調制御装置38は、車両1の走行状態に応じて圧縮機4の停止制御の設定を変化させることにより、各走行状態にとって最適な圧縮機4の停止制御が実行可能となり、圧縮機4の駆動による内燃機関2の動力消費を抑制してドライバビリティの向上が可能となる。これにより、車両用空調制御装置38は、冷房性能とドライバビリティとの両立を実現できる。
さらに、車両1は、所定条件(自動停止条件)成立時に内燃機関2を停止するアイドルストップ車両であるので、エバポレータ8に蓄えられた蓄冷量に基づき、所定条件の成立で内燃機関2を停止したときの圧縮機4の停止制御を最適化することができる。
なお、上述実施例においては、圧縮機4の停止制御の種類、制御関数の詳細については一例を示したのみに過ぎず、言及していないドライバビリティ向上用の制御を加えることもできる。また、上述実施例においては、空調スイッチ30、アクセル開度センサ31、車速センサ32、ブレーキ負圧センサ33、エバポレータ温度センサ34から制御の情報を入力したが、他の制御の入力要素を増減することもできる。さらに、圧縮機4の停止制御を判定する閾値を決定する際に、蓄冷量に加えて現在の車両環境(例えば、外気温度、内気温度、日射など)も加味して決定することもできる。
Thus, the vehicle air-conditioning control device 38 obtains the cold storage amount of the cold storage element 13 provided in the evaporator 8 (control function 1), and the stop condition of the compressor 4 set according to the running state from the obtained cold storage amount. Is determined (control function 2 to control function 4), whether or not the determined stop condition is satisfied is determined (control function 5), and the compressor 4 is controlled to stop.
Thereby, the vehicle air-conditioning control device 38 can estimate the cold storage amount of the evaporator 8 and can optimize the timing or the stop time of stopping the compressor 4 in operation based on the cold storage amount. The time compressor 4 can be stopped.
The vehicle air-conditioning control device 38 can finely set the stop control of the compressor 4 based on the cold storage amount of the evaporator 8, and the fuel consumption can be improved by extending the time during which the compressor 4 is stopped.
In addition, the vehicle air-conditioning control device 38 sets the stop condition of the compressor 4 according to the traveling state of the vehicle 1 (accelerated traveling, fully opened traveling, and when brake negative pressure is secured).
The vehicle air-conditioning control device 38 can execute the stop control of the compressor 4 that is optimum for each traveling state by changing the setting of the stop control of the compressor 4 according to the traveling state of the vehicle 1. The power consumption of the internal combustion engine 2 due to the driving of 4 is suppressed, and drivability can be improved. Thereby, the vehicle air-conditioning control device 38 can realize both cooling performance and drivability.
Further, since the vehicle 1 is an idle stop vehicle that stops the internal combustion engine 2 when a predetermined condition (automatic stop condition) is satisfied, the internal combustion engine 2 is stopped when the predetermined condition is satisfied based on the cold storage amount stored in the evaporator 8. The stop control of the compressor 4 at the time can be optimized.
In the above-described embodiment, the type of stop control of the compressor 4 and the details of the control function are only shown as an example, and control for improving drivability not mentioned can be added. In the above-described embodiment, control information is input from the air conditioning switch 30, the accelerator opening sensor 31, the vehicle speed sensor 32, the brake negative pressure sensor 33, and the evaporator temperature sensor 34. However, the input elements for other controls are increased or decreased. You can also Furthermore, when determining the threshold value for determining the stop control of the compressor 4, the current vehicle environment (for example, outside air temperature, inside air temperature, solar radiation, etc.) can be determined in addition to the cold storage amount.

この発明に係る車両用空調制御装置は、内燃機関の動力で圧縮機を駆動する空調装置を搭載した車両に適用可能である。   The vehicle air-conditioning control apparatus according to the present invention can be applied to a vehicle equipped with an air-conditioning apparatus that drives a compressor with the power of an internal combustion engine.

1 アイドリングストップ車両
2 内燃機関
3 空調装置
4 圧縮機
7 ブロアファン
8 エバポレータ
9 ヒータコア
13 蓄冷素子
29 制御手段
30 空調スイッチ
31 アクセル開度センサ
32 車速センサ
33 ブレーキ負圧センサ
34 エバポレータ温度センサ
35 内燃機関自動停止制御装置
36 自動停止手段
37 自動再始動手段
38 車両用空調制御装置
39 蓄冷量算出手段
40 圧縮機停止制御手段
DESCRIPTION OF SYMBOLS 1 Idling stop vehicle 2 Internal combustion engine 3 Air conditioner 4 Compressor 7 Blower fan 8 Evaporator 9 Heater core 13 Cold storage element 29 Control means 30 Air conditioning switch 31 Accelerator opening sensor 32 Vehicle speed sensor 33 Brake negative pressure sensor 34 Evaporator temperature sensor 35 Internal combustion engine automatic Stop control device 36 Automatic stop means 37 Automatic restart means 38 Vehicle air conditioning control device 39 Cold storage amount calculation means 40 Compressor stop control means

Claims (3)

車両に搭載された内燃機関の動力により駆動されて冷媒を圧縮する圧縮機と、蓄冷素子を備え、かつ冷房作動中に前記冷媒の冷気の一部を冷風に変換し、残りの冷気を前記蓄冷素子に蓄えることが可能なエバポレータと、前記圧縮機の停止中に前記蓄冷素子に蓄えられた冷気により車室内を空調制御する制御手段を備えた車両用空調制御装置において、前記蓄冷素子に蓄えられた冷気の量を算出する蓄冷量算出手段を備え、前記制御手段は、前記蓄冷量算出手段により算出される蓄冷量に応じて変化する停止条件に基づき、作動中の前記圧縮機を停止制御することを特徴とする車両用空調制御装置。   A compressor that is driven by the power of an internal combustion engine mounted on a vehicle and compresses the refrigerant, and a cool storage element, converts a part of the cool air of the coolant to cool air during cooling operation, and converts the remaining cool air to the cool storage In a vehicle air-conditioning control device comprising an evaporator that can be stored in an element and a control unit that controls air-conditioning of a vehicle interior by cold air stored in the cold-storage element while the compressor is stopped, the vehicle is stored in the cold-storage element The control unit is configured to stop the compressor in operation based on a stop condition that changes in accordance with the amount of cool storage calculated by the cold storage amount calculation unit. A vehicle air-conditioning control device. 前記停止条件は、前記車両の走行状態に応じて設定されることを特徴とする請求項1に記載の車両用空調制御装置。   The vehicle air conditioning control device according to claim 1, wherein the stop condition is set according to a traveling state of the vehicle. 前記車両は、所定条件成立時に前記内燃機関を停止するアイドルストップ車両であることを特徴とする請求項1に記載の車両用空調制御装置。   The vehicle air conditioning control device according to claim 1, wherein the vehicle is an idle stop vehicle that stops the internal combustion engine when a predetermined condition is satisfied.
JP2013030182A 2013-02-19 2013-02-19 Air conditioning control device for vehicles Active JP6156776B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013030182A JP6156776B2 (en) 2013-02-19 2013-02-19 Air conditioning control device for vehicles
CN201410054807.3A CN103994617B (en) 2013-02-19 2014-02-18 Car air-conditioner controls device
DE102014002274.9A DE102014002274A1 (en) 2013-02-19 2014-02-19 Vehicle air-conditioning control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030182A JP6156776B2 (en) 2013-02-19 2013-02-19 Air conditioning control device for vehicles

Publications (2)

Publication Number Publication Date
JP2014159201A true JP2014159201A (en) 2014-09-04
JP6156776B2 JP6156776B2 (en) 2017-07-05

Family

ID=51264005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030182A Active JP6156776B2 (en) 2013-02-19 2013-02-19 Air conditioning control device for vehicles

Country Status (3)

Country Link
JP (1) JP6156776B2 (en)
CN (1) CN103994617B (en)
DE (1) DE102014002274A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945843B1 (en) * 2017-01-20 2019-02-11 에스피엑스플로우테크놀로지 주식회사 Air dryer and air dryer system
CN116330931A (en) * 2023-05-30 2023-06-27 江苏炳凯富汽车零部件制造有限公司 Cold storage device of automobile air conditioner evaporator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015207514B4 (en) 2015-04-23 2023-12-28 Storopack Hans Reichenecker Gmbh Device for cooling a room
JP6363972B2 (en) * 2015-06-12 2018-07-25 株式会社デンソー Air conditioner for vehicles
KR101795410B1 (en) * 2016-07-04 2017-11-08 현대자동차 주식회사 Control apparatus and method for compressor of vehicle
KR102342345B1 (en) * 2017-04-05 2021-12-23 현대자동차주식회사 An air conditioner, a vehicle including the same and a method for controlling thereof
WO2018211647A1 (en) 2017-05-18 2018-11-22 日産自動車株式会社 Control method for vehicle air conditioning, and vehicle air conditioning device
CN108087131B (en) * 2017-11-21 2020-04-24 吉利汽车研究院(宁波)有限公司 Control method for balancing compressor effect on vehicle engine torque

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159936A (en) * 2001-11-26 2003-06-03 Denso Corp Air conditioner for vehicle
JP2005199932A (en) * 2004-01-16 2005-07-28 Toyota Motor Corp Control device for cooperation of vehicle power source with auxiliary machine
JP2009012721A (en) * 2007-07-09 2009-01-22 Denso Corp Control device for vehicular air-conditioning
US20090293521A1 (en) * 2008-05-28 2009-12-03 Gm Global Technology Operations, Inc. HVAC System Control for Improved Vehicle Fuel Economy
JP2011057120A (en) * 2009-09-11 2011-03-24 Mitsubishi Fuso Truck & Bus Corp Air conditioner for vehicle
JP2012154595A (en) * 2011-01-28 2012-08-16 Showa Denko Kk Evaporator including cold storage function

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2948898B1 (en) * 2009-08-07 2012-04-06 Renault Sa GLOBAL THERMAL CONTROL SYSTEM FOR MOTOR VEHICLE WITH ELECTRIC PROPULSION.
JP2011068190A (en) * 2009-09-24 2011-04-07 Denso Corp Air-conditioning control device for vehicle
DE102010037446A1 (en) * 2010-09-10 2012-03-15 Ford Global Technologies, Llc. Method for controlling an air conditioning system
JP5501421B2 (en) 2012-09-26 2014-05-21 ウィンワークス株式会社 Schedule table creation device, program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159936A (en) * 2001-11-26 2003-06-03 Denso Corp Air conditioner for vehicle
JP2005199932A (en) * 2004-01-16 2005-07-28 Toyota Motor Corp Control device for cooperation of vehicle power source with auxiliary machine
JP2009012721A (en) * 2007-07-09 2009-01-22 Denso Corp Control device for vehicular air-conditioning
US20090293521A1 (en) * 2008-05-28 2009-12-03 Gm Global Technology Operations, Inc. HVAC System Control for Improved Vehicle Fuel Economy
JP2011057120A (en) * 2009-09-11 2011-03-24 Mitsubishi Fuso Truck & Bus Corp Air conditioner for vehicle
JP2012154595A (en) * 2011-01-28 2012-08-16 Showa Denko Kk Evaporator including cold storage function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945843B1 (en) * 2017-01-20 2019-02-11 에스피엑스플로우테크놀로지 주식회사 Air dryer and air dryer system
CN116330931A (en) * 2023-05-30 2023-06-27 江苏炳凯富汽车零部件制造有限公司 Cold storage device of automobile air conditioner evaporator
CN116330931B (en) * 2023-05-30 2023-08-04 江苏炳凯富汽车零部件制造有限公司 Cold storage device of automobile air conditioner evaporator

Also Published As

Publication number Publication date
DE102014002274A1 (en) 2014-08-21
CN103994617B (en) 2016-09-28
CN103994617A (en) 2014-08-20
JP6156776B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6156776B2 (en) Air conditioning control device for vehicles
JP5772334B2 (en) Air conditioner for vehicles
JP5607576B2 (en) VEHICLE AIR CONDITIONING CONTROL DEVICE, VEHICLE AIR CONDITIONING CONTROL METHOD, AND VEHICLE AIR CONDITIONING CONTROL PROGRAM
US20130139532A1 (en) Air conditioner for vehicle
WO2011152139A1 (en) Vehicle air-conditioning device
WO2007145258A1 (en) Cooling system, and control method for the cooling system
JP6032073B2 (en) Air conditioning control device for vehicles
JP5494160B2 (en) Idle stop control device
JP2014159204A (en) Air conditioner for vehicle
JP2011152855A (en) Air-conditioning control device for vehicle
JP4669640B2 (en) Air conditioner for vehicles
JP2013001344A (en) Vehicle air conditioner
JP6597713B2 (en) Air conditioner for vehicles
JP5585825B2 (en) Vehicle air conditioning control device
JP6070068B2 (en) Air conditioning control device for vehicles
JP5381082B2 (en) Air conditioner for vehicles
JP2011189817A (en) Air-conditioning control device for vehicle
JP2009298239A (en) Vehicular air-conditioning control device
JP6079699B2 (en) Air conditioning control device for vehicles
JP4329487B2 (en) Vehicle auxiliary engine controller
JP2016013729A (en) Vehicle air-conditioning controller
JP5195378B2 (en) Air conditioning control device for vehicles
JP2010144704A (en) Air conditioner for vehicle
JP3936200B2 (en) Air conditioner for vehicles
JP3824824B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170515

R151 Written notification of patent or utility model registration

Ref document number: 6156776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170528