JP2014158456A - Transgenic plant cultured cell subjected to rational metabolism flow switching, and biosynthesis method using the same - Google Patents
Transgenic plant cultured cell subjected to rational metabolism flow switching, and biosynthesis method using the same Download PDFInfo
- Publication number
- JP2014158456A JP2014158456A JP2013031650A JP2013031650A JP2014158456A JP 2014158456 A JP2014158456 A JP 2014158456A JP 2013031650 A JP2013031650 A JP 2013031650A JP 2013031650 A JP2013031650 A JP 2013031650A JP 2014158456 A JP2014158456 A JP 2014158456A
- Authority
- JP
- Japan
- Prior art keywords
- cells
- cell
- metabolic
- cultured cell
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 210000004748 cultured cell Anatomy 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims description 12
- 230000004060 metabolic process Effects 0.000 title abstract 2
- 230000009261 transgenic effect Effects 0.000 title abstract 2
- 230000015572 biosynthetic process Effects 0.000 title description 12
- 230000002503 metabolic effect Effects 0.000 claims abstract description 24
- 229930000044 secondary metabolite Natural products 0.000 claims abstract description 24
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 18
- 230000001851 biosynthetic effect Effects 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 210000004027 cell Anatomy 0.000 claims description 60
- 238000004519 manufacturing process Methods 0.000 abstract description 16
- 230000024053 secondary metabolic process Effects 0.000 abstract 1
- 108010004302 agmatine coumaroyltransferase Proteins 0.000 description 27
- 239000000725 suspension Substances 0.000 description 26
- 241000196324 Embryophyta Species 0.000 description 24
- 239000002609 medium Substances 0.000 description 24
- SFUVCMKSYKHYLD-UHFFFAOYSA-N N-feruloylputrescine Natural products COC1=CC(C=CC(=O)NCCCCN)=CC=C1O SFUVCMKSYKHYLD-UHFFFAOYSA-N 0.000 description 18
- SFUVCMKSYKHYLD-FNORWQNLSA-N Subaphyllin Chemical compound COC1=CC(\C=C\C(=O)NCCCCN)=CC=C1O SFUVCMKSYKHYLD-FNORWQNLSA-N 0.000 description 18
- 230000012010 growth Effects 0.000 description 17
- AKIHYQWCLCDMMI-VMPITWQZSA-N (E)-p-coumaroylagmatine Chemical compound NC(N)=NCCCCNC(=O)\C=C\C1=CC=C(O)C=C1 AKIHYQWCLCDMMI-VMPITWQZSA-N 0.000 description 16
- AKIHYQWCLCDMMI-UHFFFAOYSA-N cis-p-coumaroyl-agmatine Natural products NC(=N)NCCCCNC(=O)C=CC1=CC=C(O)C=C1 AKIHYQWCLCDMMI-UHFFFAOYSA-N 0.000 description 16
- 239000002207 metabolite Substances 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 13
- 239000000284 extract Substances 0.000 description 13
- 238000004128 high performance liquid chromatography Methods 0.000 description 13
- 229920005610 lignin Polymers 0.000 description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- UBMDAKWARMURDL-FNORWQNLSA-N feruloylagmatine Chemical compound COC1=CC(\C=C\C(=O)NCCCCN=C(N)N)=CC=C1O UBMDAKWARMURDL-FNORWQNLSA-N 0.000 description 9
- UBMDAKWARMURDL-UHFFFAOYSA-N trans-feruloylagmatine Natural products COC1=CC(C=CC(=O)NCCCCNC(N)=N)=CC=C1O UBMDAKWARMURDL-UHFFFAOYSA-N 0.000 description 9
- 239000005972 6-Benzyladenine Substances 0.000 description 8
- QYPPJABKJHAVHS-UHFFFAOYSA-N Agmatine Natural products NCCCCNC(N)=N QYPPJABKJHAVHS-UHFFFAOYSA-N 0.000 description 8
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 8
- KIDHWZJUCRJVML-UHFFFAOYSA-N Putrescine Natural products NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 8
- 238000001819 mass spectrum Methods 0.000 description 8
- 238000000862 absorption spectrum Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 239000000543 intermediate Substances 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 6
- 206010020649 Hyperkeratosis Diseases 0.000 description 6
- QYPPJABKJHAVHS-UHFFFAOYSA-P agmatinium(2+) Chemical compound NC(=[NH2+])NCCCC[NH3+] QYPPJABKJHAVHS-UHFFFAOYSA-P 0.000 description 6
- 229930005346 hydroxycinnamic acid Natural products 0.000 description 6
- -1 hydroxycinnamic acid putrescine amide Chemical class 0.000 description 6
- 235000010359 hydroxycinnamic acids Nutrition 0.000 description 6
- CJHDBEPXEKGBDW-VMPITWQZSA-N p-coumaroylputrescine Chemical compound NCCCCNC(=O)\C=C\C1=CC=C(O)C=C1 CJHDBEPXEKGBDW-VMPITWQZSA-N 0.000 description 6
- CJHDBEPXEKGBDW-UHFFFAOYSA-N p-coumarylputrescine Natural products NCCCCNC(=O)C=CC1=CC=C(O)C=C1 CJHDBEPXEKGBDW-UHFFFAOYSA-N 0.000 description 6
- 239000005700 Putrescine Substances 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 5
- 230000037353 metabolic pathway Effects 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- NGSWKAQJJWESNS-UHFFFAOYSA-N 4-coumaric acid Chemical compound OC(=O)C=CC1=CC=C(O)C=C1 NGSWKAQJJWESNS-UHFFFAOYSA-N 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 150000001793 charged compounds Chemical class 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical group COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920000768 polyamine Polymers 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000002137 ultrasound extraction Methods 0.000 description 3
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- VLEGKXSJUXLEJG-UHFFFAOYSA-N 2-hydroxy-3-phenylprop-2-enamide Chemical class NC(=O)C(O)=CC1=CC=CC=C1 VLEGKXSJUXLEJG-UHFFFAOYSA-N 0.000 description 2
- NGSWKAQJJWESNS-ZZXKWVIFSA-M 4-Hydroxycinnamate Natural products OC1=CC=C(\C=C\C([O-])=O)C=C1 NGSWKAQJJWESNS-ZZXKWVIFSA-M 0.000 description 2
- DFYRUELUNQRZTB-UHFFFAOYSA-N Acetovanillone Natural products COC1=CC(C(C)=O)=CC=C1O DFYRUELUNQRZTB-UHFFFAOYSA-N 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 241001330002 Bambuseae Species 0.000 description 2
- 102000053187 Glucuronidase Human genes 0.000 description 2
- 108010060309 Glucuronidase Proteins 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- 239000000538 analytical sample Substances 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 235000001785 ferulic acid Nutrition 0.000 description 2
- 229940114124 ferulic acid Drugs 0.000 description 2
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229930015704 phenylpropanoid Natural products 0.000 description 2
- 150000002995 phenylpropanoid derivatives Chemical class 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000012264 purified product Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- NGSWKAQJJWESNS-ZZXKWVIFSA-N trans-4-coumaric acid Chemical compound OC(=O)\C=C\C1=CC=C(O)C=C1 NGSWKAQJJWESNS-ZZXKWVIFSA-N 0.000 description 2
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- FYLHBMBOIMQLJO-UHFFFAOYSA-N 2-methylseleninyl-n-phenylbenzamide Chemical compound C[Se](=O)C1=CC=CC=C1C(=O)NC1=CC=CC=C1 FYLHBMBOIMQLJO-UHFFFAOYSA-N 0.000 description 1
- DMZOKBALNZWDKI-JBNLOVLYSA-N 4-Coumaroyl-CoA Natural products S(C(=O)/C=C/c1ccc(O)cc1)CCNC(=O)CCNC(=O)[C@@H](O)C(CO[P@@](=O)(O[P@@](=O)(OC[C@H]1[C@@H](OP(=O)(O)O)[C@@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C DMZOKBALNZWDKI-JBNLOVLYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000544043 Blyxa aubertii Species 0.000 description 1
- IOZRQYMROYHVAY-ZZXKWVIFSA-N C(\C=C\C1=CC=C(C=C1)O)(=O)C1C(=O)N(C(C1)=O)O Chemical compound C(\C=C\C1=CC=C(C=C1)O)(=O)C1C(=O)N(C(C1)=O)O IOZRQYMROYHVAY-ZZXKWVIFSA-N 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- GBXZVJQQDAJGSO-KBJLHTFASA-N Feruloyl-CoA Natural products S(C(=O)/C=C/c1cc(OC)c(O)cc1)CCNC(=O)CCNC(=O)[C@H](O)C(CO[P@@](=O)(O[P@](=O)(OC[C@@H]1[C@H](OP(=O)(O)O)[C@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C GBXZVJQQDAJGSO-KBJLHTFASA-N 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 229930186391 Hordatine Natural products 0.000 description 1
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 241000745988 Phyllostachys Species 0.000 description 1
- 240000005827 Phyllostachys nigra Species 0.000 description 1
- 235000010717 Phyllostachys nigra Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 150000001851 cinnamic acid derivatives Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 101150054900 gus gene Proteins 0.000 description 1
- GRRNUXAQVGOGFE-NZSRVPFOSA-N hygromycin B Chemical compound O[C@@H]1[C@@H](NC)C[C@@H](N)[C@H](O)[C@H]1O[C@H]1[C@H]2O[C@@]3([C@@H]([C@@H](O)[C@@H](O)[C@@H](C(N)CO)O3)O)O[C@H]2[C@@H](O)[C@@H](CO)O1 GRRNUXAQVGOGFE-NZSRVPFOSA-N 0.000 description 1
- 229940097277 hygromycin b Drugs 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- ZFQWJXFJJZUVPI-UHFFFAOYSA-N tert-butyl n-(4-aminobutyl)carbamate Chemical compound CC(C)(C)OC(=O)NCCCCN ZFQWJXFJJZUVPI-UHFFFAOYSA-N 0.000 description 1
- DMZOKBALNZWDKI-MATMFAIHSA-N trans-4-coumaroyl-CoA Chemical compound O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)\C=C\C1=CC=C(O)C=C1 DMZOKBALNZWDKI-MATMFAIHSA-N 0.000 description 1
- GBXZVJQQDAJGSO-NBXNMEGSSA-N trans-feruloyl-CoA Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)OP(O)(O)=O)=C1 GBXZVJQQDAJGSO-NBXNMEGSSA-N 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本発明は、遺伝子組換え植物培養細胞に関し、特に元の植物培養細胞に有する二次代謝物の代謝フローをスイッチングさせることで得られる生合成法に係る。 The present invention relates to genetically engineered plant cultured cells, and more particularly to a biosynthetic method obtained by switching the metabolic flow of secondary metabolites contained in the original plant cultured cells.
近年、石油由来の溶媒を大量に使用する化学合成に依存しない生物的物質生産法の研究が盛んに行われている。
これまでは、そのような生産法としては遺伝子組換えにより目的物質の生合成遺伝子(群)を導入する手法(合成生物学)が潮流となっている。
この場合、主として遺伝子組換え操作や培養が容易であり、細胞の増殖が速い等の理由により、微生物が宿主として用いられている。
しかし、有用物質の中には植物体に由来するものも多くあり、そのような有用物質の生合成遺伝子(群)をこれまでのように微生物を宿主として発現させ、物質を生産することには限界がある。
そこで、本発明者らは、これまでに確立した植物培養細胞の代謝能の解析や遺伝子組換え技術(特許文献1)を応用することで本発明に至った。
なお、本発明者が調査した範囲では、関連する特許文献,学術論文は見当たらなかった。
In recent years, research on biological material production methods that do not rely on chemical synthesis using a large amount of petroleum-derived solvents has been actively conducted.
Until now, as such a production method, a technique (synthetic biology) in which a biosynthetic gene (group) of a target substance is introduced by gene recombination has been a trend.
In this case, a microorganism is used as a host mainly because the gene recombination operation and culture are easy, and the growth of cells is fast.
However, many useful substances are derived from plants, and the biosynthetic genes (groups) of such useful substances are expressed in microorganisms as hosts to produce substances. There is a limit.
Thus, the present inventors have reached the present invention by applying the analysis of metabolic ability of plant culture cells and the gene recombination technique (Patent Document 1) established so far.
It should be noted that no related patent documents or academic papers were found in the range investigated by the present inventors.
本発明は、植物培養細胞が本来有する二次代謝物の代謝フローを、合理的に新たな外来二次代謝物の産生へとスイッチングさせることを目的とする。 An object of the present invention is to rationally switch the metabolic flow of secondary metabolites inherent in plant cultured cells to production of new foreign secondary metabolites.
本発明は、植物培養細胞が本来有する活発な代謝フローを合理的に利用することがねらいであり、本発明に係る形質転換植物培養細胞は、植物培養細胞が産生する二次代謝産物の代謝中間体を基質とする外来二次代謝生合成遺伝子を導入したことを特徴とする。
このような形質転換植物培養細胞を用いると、元の植物培養細胞に本来有していた代謝フロー中の中間体産生能力を活用することができ、この中間体を基質として新たに有用な二次代謝物(外来二次代謝物)を生合成することができる。
具体的には、植物培養細胞が産生する二次代謝産物の代謝中間体を基質とする外来二次代謝生合成遺伝子を導入し、元の植物培養細胞が産生する二次代謝産物に替えて新たな二次代謝産物を産生させることを特徴とする。
本発明に用いることができる植物培養細胞は、植物の組織細胞を培養増殖したものをいい、植物の種類や組織の部位に特に制限はないが、新たに生合成する物質の基質となる中間体が代謝フロー中に存在するものをいう。
この元の植物培養細胞を宿主にして、元の代謝フロー中に合成される中間体を基質とするような生合成に関わる遺伝子を導入することで、新たな二次代謝物を生合成することができる。
その際、培養細胞の形質転換方法は特に限定されない。
植物組織からの培養細胞の誘導方法や培養細胞の形質転換方法は、本発明者らが先に提案した特許文献1の内容を用いてもよい。
The present invention aims to rationally use the active metabolic flow inherent in plant cultured cells, and the transformed plant cultured cells according to the present invention are metabolized intermediates of secondary metabolites produced by plant cultured cells. It is characterized by introducing an exogenous secondary metabolic biosynthetic gene using the body as a substrate.
By using such a transformed plant culture cell, it is possible to utilize the intermediate production ability in the metabolic flow originally possessed by the original plant culture cell. Metabolites (foreign secondary metabolites) can be biosynthesized.
Specifically, an exogenous secondary metabolic biosynthetic gene that uses a metabolic intermediate of a secondary metabolite produced by a plant culture cell as a substrate is introduced and replaced with the secondary metabolite produced by the original plant culture cell. It is characterized by producing a secondary metabolite.
The plant cultured cells that can be used in the present invention are those obtained by culturing and growing plant tissue cells, and there are no particular restrictions on the type of plant or the site of the tissue. Is present in the metabolic flow.
Biosynthesis of a new secondary metabolite by introducing a gene involved in biosynthesis using the original plant cultured cell as a host and using an intermediate synthesized in the original metabolic flow as a substrate Can do.
At that time, the method for transforming cultured cells is not particularly limited.
The contents of Patent Document 1 previously proposed by the present inventors may be used as a method for inducing cultured cells from plant tissue and a method for transforming cultured cells.
本発明に係る形質転換植物培養細胞及びこれを用いた合理的代謝フロースイッチングによる生合成法は、元々の植物培養細胞が本来有する二次代謝物の産生能力を発揮させることで、代謝フロー中に多く産生する中間体を基質として外部から導入した組換え遺伝子により新たな二次代謝物を生合成できるので、外部から基質を供給する必要がない。 The transformed plant cultured cell according to the present invention and the biosynthetic method using rational metabolic flow switching using the transformed cell culture cell exhibit the ability to produce secondary metabolites inherent in the original plant cultured cell, thereby enabling Since a new secondary metabolite can be biosynthesized by a recombinant gene introduced from outside using a large amount of intermediate as a substrate, it is not necessary to supply the substrate from the outside.
本発明は、植物組織から誘導した培養細胞が本来有する二次代謝物の産生能力を活用するものであり、以下タケ植物由来の培養細胞を例に説明するが、本培養細胞に限定されるものではない。
<ハチクH4懸濁培養細胞における主要二次代謝産物の同定>
ハチク(Phyllostachys nigra)タケノコ由来のH4懸濁細胞は、MS(Murashige and Skoog)培地にsucroseを3%、Picloramを10μM添加し、KH2PO4濃度を通常の4倍である680mg/lに改変したMS液体培地(以後、MS P680 Picと略記)を用いて、25℃、暗条件、110rpmで培養した。
培養8日目のH4懸濁細胞約100mgに、メタノール/2%酢酸1mlを加えて10分間超音波抽出後、遠心後の上清をHPLC分析に供した。
その結果、図1のクロマトグラムに示すように、保持時間5.4分に検出される主要未知化合物を見出した。
The present invention takes advantage of the production ability of secondary metabolites inherent to cultured cells derived from plant tissues, and will be described below by taking, as an example, a cultured cell derived from a bamboo plant, but is limited to this cultured cell. is not.
<Identification of major secondary metabolites in Hachiku H4 suspension cultured cells>
H4 suspension cells derived from beech (Phyllostachys nigra) bamboo shoots were added to MS (Murashige and Skoog) medium with 3% sucrose and 10 μM Picram, and the KH 2 PO 4 concentration was changed to 680 mg / l, which is 4 times the normal concentration. Using the prepared MS liquid medium (hereinafter abbreviated as MS P680 Pic), the cells were cultured at 25 ° C. under dark conditions at 110 rpm.
1 ml of methanol / 2% acetic acid was added to about 100 mg of H4 suspension cells on the 8th day of culture and subjected to ultrasonic extraction for 10 minutes. The centrifuged supernatant was subjected to HPLC analysis.
As a result, as shown in the chromatogram of FIG. 1, a main unknown compound detected at a retention time of 5.4 minutes was found.
次に、この未知化合物の単離・構造決定を行った。
H4懸濁細胞を上記条件下で培養し、培養6日目の培養液1Lから吸引ろ過によって湿重量97.4gの細胞を回収した。
このものをメタノール/2%酢酸1L中、室温で1時間超音波抽出し、吸引ろ過によって細胞残渣を除いた抽出液を濃縮後、ヘキサンで3回脱脂した。
合一した水層を濃縮し、フィルターろ過したものを分取HPLCによる精製に供した。
HPLC条件は以下の通りである(カラム:TSKgel ODS-80Ts 5μm(20×250mm)、溶媒:14%アセトニトリル/0.1% TFA,流速:5ml/min,検出波長:280nm)。
回収したフラクションを濃縮後、凍結乾燥することで58.5mgの精製物が得られた。
マススペクトル分析においてm/z=265[M+H]+の分子イオンピークが検出されたことから、本化合物の分子量は264であり、UV吸収スペクトル(λmax:217nm、233nm、294nm、319nm)の特徴およびマススペクトルのフラグメントイオン(m/z=177)から、本化合物はケイ皮酸の誘導体であるフェルラ酸ユニットを有していると推定された。
さらに図2に示すNMRスペクトルに基づいて、本化合物の構造はferuloylputrescineであると推定された。
Next, this unknown compound was isolated and its structure was determined.
H4 suspension cells were cultured under the conditions described above, and cells having a wet weight of 97.4 g were recovered from 1 L of the culture solution on the sixth day of culture by suction filtration.
This was subjected to ultrasonic extraction in 1 L of methanol / 2% acetic acid at room temperature for 1 hour. The extract from which cell debris was removed by suction filtration was concentrated, and then defatted with hexane three times.
The combined aqueous layer was concentrated, and the filtered solution was subjected to purification by preparative HPLC.
The HPLC conditions are as follows (column: TSKgel ODS-80Ts 5 μm (20 × 250 mm), solvent: 14% acetonitrile / 0.1% TFA, flow rate: 5 ml / min, detection wavelength: 280 nm).
The collected fraction was concentrated and freeze-dried to obtain 58.5 mg of purified product.
Since a molecular ion peak of m / z = 265 [M + H] + was detected in the mass spectrum analysis, the molecular weight of this compound was 264, and the characteristics of the UV absorption spectrum (λ max : 217 nm, 233 nm, 294 nm, 319 nm) From the mass spectrum fragment ion (m / z = 177), it was estimated that this compound had a ferulic acid unit which is a derivative of cinnamic acid.
Furthermore, based on the NMR spectrum shown in FIG. 2, the structure of this compound was estimated to be feruloylputrescine.
次に、推定構造の証明のため、feruloylputrescineを化学合成した。
Ferulic acidとBoc-putrescineを脱水縮合剤であるN,N'-dicyclohexylcarbodiimide(DCC)の存在下で反応させ、Boc-feruloylputrescineとした後、強酸性条件下で脱保護を行うことでferuloylputrescineを得た。
このもののNMRスペクトルを図3に示す。
Next, feruloylputrescine was chemically synthesized to prove the predicted structure.
Feruloicputrescine was obtained by reacting Ferulic acid with Boc-putrescine in the presence of N, N'-dicyclohexylcarbodiimide (DCC), a dehydrating condensing agent, to form Boc-feruloylputrescine, followed by deprotection under strongly acidic conditions. .
The NMR spectrum of this product is shown in FIG.
1H−、13C−NMRのいずれにおいても、細胞抽出物から精製したもの(図2)と合成標品(図3)のスペクトルデータは完全に一致した。
さらに、マススペクトル(m/z=265[M+H]+)、UV吸収スペクトル(λmax:218nm、234nm、293nm、319nm)、およびHPLCクロマトグラム上での保持時間(図4)のいずれにおいても一致がみられたことから、H4懸濁細胞中に見出された主要未知化合物の構造をferuloylputrescineと同定した。
In both 1 H- and 13 C-NMR, the spectral data of the purified product from the cell extract (FIG. 2) and the synthetic sample (FIG. 3) were completely consistent.
Furthermore, the mass spectrum (m / z = 265 [M + H] + ), UV absorption spectrum (λ max : 218 nm, 234 nm, 293 nm, 319 nm), and retention time on the HPLC chromatogram (FIG. 4) are consistent. As a result, the structure of the main unknown compound found in H4 suspension cells was identified as feruloylputrescine.
活発な細胞増殖が促されるMS P680 Pic培地に対して、植物ホルモンを含まず培地中の無機塩類濃度のみを1/2に改変した1/2MS培地(以後、1/2MS Freeと略記)や10μMの6-benzyladenine(BA)を添加した1/2MS培地(以後、1/2MS BAと略記)中でH4懸濁細胞を培養すると、細胞のリグニン化が促進されることが見出されている(Shinjiro Ogita, Taiji Nomura, Takao Kishimoto and Yasuo Kato (2012) A Novel xylogenic suspension culture model for exploring lignifications in Phyllostachys bamboo. Plant Methods, 8, 40 (1-9))。
そこで、リグニン化促進条件において培養したH4懸濁細胞の抽出物を分析し、feruloylputrescine以外の主要二次代謝産物の有無を調べた。
1/2MS Free培地での培養8日目の懸濁細胞抽出物をHPLC分析に供したところ、図5に示すようにferuloylputrescineに加え、保持時間4.8分のピークが増殖促進条件(図1)に比べて顕著に増大していることが認められた。
Compared to MS P680 Pic medium that promotes active cell growth, 1/2 MS medium (hereinafter abbreviated as 1 / 2MS Free) or 10 μM, which does not contain plant hormones, and only the inorganic salt concentration in the medium is changed to 1/2. It has been found that culturing H4 suspension cells in 1 / 2MS medium supplemented with 6-benzyladenine (BA) (hereinafter abbreviated as 1 / 2MSBA) promotes ligninization of the cells ( Shinjiro Ogita, Taiji Nomura, Takao Kishimoto and Yasuo Kato (2012) A Novel xylogenic suspension culture model for exploring lignifications in Phyllostachys bamboo. Plant Methods, 8, 40 (1-9)).
Then, the extract of the H4 suspension cell cultured on the lignin promotion conditions was analyzed, and the presence or absence of main secondary metabolites other than feruloylputrescine was investigated.
When the suspension cell extract on the 8th day of culture in ½ MS Free medium was subjected to HPLC analysis, a peak of retention time of 4.8 minutes was added to feruloylputrescine as shown in FIG. ) Was observed to be significantly increased.
Rt.4.8のマススペクトル分析において、m/z=235[M+H]+の分子イオンピークが検出されたことから、本化合物の分子量は234であり、UV吸収スペクトル(λmax:223nm、291nm)の特徴およびマススペクトルのフラグメントイオン(m/z=147)から本化合物はp-coumaroylputrescineであると推定された。
推定構造の証明のため、p-coumaric acidを原料として上記feruloylputrescineの合成と同様の方法によって、p-coumaroylputrescineを化学合成した。
合成標品のマススペクトル(m/z=235[M+H]+)、UV吸収スペクトル(λmax:223nm、291nm)および図6に示したHPLCクロマトグラム上での保持時間はいずれもRt.4.8のものと一致したことから、本化合物の構造をp-coumaroylputrescineと同定した。
Rt. In the mass spectrum analysis of 4.8, a molecular ion peak of m / z = 235 [M + H] + was detected, and thus the molecular weight of this compound was 234, and the UV absorption spectrum (λ max : 223 nm, 291 nm) From the characteristic and mass spectrum fragment ions (m / z = 147), the compound was estimated to be p-coumaroylputrescine.
In order to prove the predicted structure, p-coumaroylputrescine was chemically synthesized using p-coumaric acid as a raw material by the same method as the synthesis of feruloylputrescine.
The mass spectrum (m / z = 235 [M + H] + ), UV absorption spectrum (λ max : 223 nm, 291 nm) and the retention time on the HPLC chromatogram shown in FIG. Since it agreed with 4.8, the structure of this compound was identified as p-coumaroylputrescine.
<H4細胞の形質転換>
次に代謝フローのスイッチングを検討した。
H4懸濁細胞における主要二次代謝産物としてヒドロキシ桂皮酸アミドであるp-coumaroylputrescineとferuloylputrescineが同定されたが、一般的にヒドロキシ桂皮酸アミド類はヒドロキシ桂皮酸CoAエステルとアミン化合物の酵素的縮合によって生合成されることから、図7に代謝フローを示すようにH4懸濁細胞ではフェニルプロパノイド代謝系とポリアミン代謝系が非常に活発であると考えられる。
そこで、これらの生合成中間体を基質とする外来の二次代謝生合成酵素を導入し、H4細胞の代謝経路を改変することを試みた。
導入する遺伝子として、ヒドロキシ桂皮酸CoAエステルと、putrescine生合成中間体であるagmatineの縮合反応を触媒するagmatine coumaroyltransferase(ACT)をコードするオオムギのHvACT1遺伝子(Taiji Nomura, Akihiro Ishizuka, Kazunori Kishida, A. K. M. Rafiqul Islam, Takashi R. Endo, Hajime Iwamura and Atsushi Ishihara (2007) Chromosome arm location of the genes for the biosynthesis of hordatines in barley. Genes & Genetic Systems, 82: 455-464)を選定した。
推定されるスイッチングフローを図7に示す。
<Transformation of H4 cells>
Next, switching of metabolic flow was examined.
Hydroxycinnamic acid amides, p-coumaroylputrescine and feruloylputrescine, have been identified as the major secondary metabolites in H4 suspension cells. In general, hydroxycinnamic amides are obtained by enzymatic condensation of hydroxycinnamic acid CoA ester with an amine compound. Since it is biosynthesized, it is considered that the phenylpropanoid metabolic system and the polyamine metabolic system are very active in H4 suspension cells as shown in the metabolic flow in FIG.
Therefore, an exogenous secondary metabolic biosynthetic enzyme using these biosynthetic intermediates as a substrate was introduced to try to modify the metabolic pathway of H4 cells.
HvACT1 gene of barley encoding agmatine coumaroyltransferase (ACT) catalyzing the condensation reaction of hydroxycinnamic acid CoA ester and putrescine biosynthesis intermediate agmatine (Taiji Nomura, Akihiro Ishizuka, Kazunori Kishida, AKM Rafiqul) Islam, Takashi R. Endo, Hajime Iwamura and Atsushi Ishihara (2007) Chromosome arm location of the genes for the biosynthesis of hordatines in barley. Genes & Genetic Systems, 82: 455-464).
The estimated switching flow is shown in FIG.
HvACT1遺伝子をcauliflower mosaic virus 35Sプロモーターの制御下で高発現させるため、pIG121−Hmプラスミド(Shozo Ohta, Satoru Mita, Tsukaho Hattori and Kenzo Nakamura (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant and Cell Physiology, 31: 805-813)のGUS遺伝子領域をHvACT1遺伝子に置換したHvACT1/pIG121Hmプラスミドを作成し、金粒子をキャリアーとしたパーティクルガン法によって、MS P680 Pic培地中、培養9〜10日目のH4懸濁細胞の形質転換を行った。
形質転換後の培養は、細胞の増殖状態に応じて1〜3週間後に50〜100mg/lハイグロマイシンBを含むMS P680 Pic/0.3%ゲランガム固体培地にて行い、増殖がみられた細胞を適宜移植した。
抗生物質を添加した固体選抜培地にて良好な増殖が見られた細胞を一次選抜株とし、その後3〜4週間ごとに継代培養を続け、安定した増殖性を示した系統から二次選抜を行い、形質転換細胞カルス10株(#2、3、8、13、15、17、22、24、31、32)を得た。
In order to highly express the HvACT1 gene under the control of the cauliflower mosaic virus 35S promoter, the pIG121-Hm plasmid (Shozo Ohta, Satoru Mita, Tsukaho Hattori and Kenzo Nakamura (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter HvACT1 / pIG121Hm plasmid in which the GUS gene region of Plant and Cell Physiology, 31: 805-813) is replaced with the HvACT1 gene, and the particle gun method using gold particles as a carrier by MS In P680 Pic medium, H4 suspension cells on the 9th to 10th day of culture were transformed.
Culture after transformation was carried out in MS P680 Pic / 0.3% gellan gum solid medium containing 50-100 mg / l hygromycin B after 1 to 3 weeks depending on the growth state of the cells. Were transplanted as appropriate.
Cells that showed good growth in a solid selection medium supplemented with antibiotics were selected as primary selection strains, and then subcultured every 3 to 4 weeks, followed by secondary selection from strains that showed stable growth. This was carried out to obtain 10 transformed callus strains (# 2, 3, 8, 13, 15, 17, 22, 24, 31, 32).
<ACT組換え細胞における代謝物分析>
選抜された形質転換細胞10株について、ACT反応産物であるp-coumaroylagmatineおよびferuloylagmatineの生成を調べるため、これら分析標品の化学合成を行った。
p-coumaric acidまたはferulic acidとN-hydroxysccinimideをDCC存在下で反応させ、活性エステル(p-coumaroyl-N-hydroxysuccinimide ester、feruloyl-N-hydroxysuccinimide ester)を調製し、このものをagmatineと反応させることで、p-coumaroylagmatineおよびferuloylagmatineを得た。
カルス細胞100〜150mgをエッペンチューブに取り、細胞100mgあたり1mlのメタノール/2%酢酸を加えて10分間超音波抽出し、遠心後の上清をHPLC分析に供した。
図8に示すように分析標品との保持時間の一致を指標に、p-coumaroylagmatineおよびferuloylagmatineを定量したところ、ACT組換え株#2、3、8、15、22、31の6株において、これら化合物の顕著な生成が認められた。
その際、生成していたのは主にp-coumaroylagmatineであり、feruloylagmatineの生成量は極微量であった。
この結果はHvACT1酵素の基質特異性と一致するものであった。
すなわち、HvACT1酵素がferuloyl-CoAよりもp-coumaroyl-CoAをよい基質とすることから、p-coumaroylagmatineが優先的に合成されたものと考えられる。
<Metabolite analysis in ACT recombinant cells>
In order to examine the production of p-coumaroylagmatine and feruloylagmatine, which are ACT reaction products, from the selected 10 transformed cells, chemical analysis of these analytical samples was performed.
Reacting p-coumaric acid or ferulic acid with N-hydroxysccinimide in the presence of DCC to prepare active esters (p-coumaroyl-N-hydroxysuccinimide ester, feruloyl-N-hydroxysuccinimide ester) and reacting them with agmatine Thus, p-coumaroylagmatine and feruloylagmatine were obtained.
Callus cells (100 to 150 mg) were placed in an Eppendorf tube, 1 ml of methanol / 2% acetic acid was added per 100 mg of cells and subjected to ultrasonic extraction for 10 minutes, and the supernatant after centrifugation was subjected to HPLC analysis.
As shown in FIG. 8, p-coumaroylagmatine and feruloylagmatine were quantified using the coincidence of the retention time with the analytical sample as an index. In 6 strains of ACT recombinant strains # 2, 3, 8, 15, 22, and 31, Significant production of these compounds was observed.
At that time, p-coumaroylagmatine was mainly produced, and the amount of feruloylagmatine produced was extremely small.
This result was consistent with the substrate specificity of the HvACT1 enzyme.
That is, it is considered that p-coumaroylagmatine was preferentially synthesized because the HvACT1 enzyme uses p-coumaroyl-CoA as a better substrate than feruloyl-CoA.
<ACT組換え懸濁細胞における代謝物分析>
カルスにおいてp-coumaroylagmatineの生成が確認された上記6株を、MS P680 Pic液体培地を用いた懸濁培養に移し、2週間ごとに同培地で継代培養した。
そのうち、安定した増殖が見られた#22株について、増殖促進条件(MS P680 Pic)およびリグニン化促進条件(1/2MS Free)でそれぞれ培養し、培養8日目の細胞抽出物をHPLC分析に供した。
結果を図9に示す。
<Metabolite analysis in ACT recombinant suspension cells>
The above 6 strains, in which the production of p-coumaroylagmatine was confirmed in callus, were transferred to suspension culture using MS P680 Pic liquid medium and subcultured in the same medium every 2 weeks.
Among them, the # 22 strain in which stable growth was observed was cultured under growth promotion conditions (MS P680 Pic) and lignin promotion conditions (1/2 MS Free), and the cell extract on the 8th day of culture was subjected to HPLC analysis. Provided.
The results are shown in FIG.
H4懸濁細胞野生株(図1、図5)と比較すると、いずれの培養条件においてもp-coumaroylputrescineとferuloylputrescineが減少し、保持時間7.0分、7.8/7.9分のピークが新たに検出された。
特にリグニン化促進条件(1/2MS Free)において両ピークの増大が認められた。
Rt.7.0はp-coumaroylagmatineと、Rt.7.8/7.9はferuloylagmatineと保持時間が一致することを上記カルス細胞抽出物の分析の際に確認しているが、正確を期すためマススペクトルおよびUV吸収スペクトルを測定し、標品との比較を行った。
Rt.7.0のマススペクトル分析ではm/z=277[M+H]+のp-coumaroylagmatine標品と同一の分子イオンピークが検出され、UV吸収スペクトル(λmax:224nm、293nm)も標品と同一であった。
Rt.7.8/7.9のマススペクトル分析ではm/z=307[M+H]+のferuloylagmatine標品と同一の分子イオンピークが検出され、UV吸収スペクトル(λmax:218nm、234nm、293nm、317nm)も標品と同一であった。
以上の結果から、Rt.7.0をp-coumaroylagmatine、Rt.7.8/7.9をferuloylagmatineと同定した。
Compared with the wild type H4 suspension cell line (FIGS. 1 and 5), p-coumaroylputrescine and feruloylputrescine decreased in any culture condition, and peaks of retention time of 7.0 minutes and 7.8 / 7.9 minutes were observed. Newly detected.
In particular, an increase in both peaks was observed under the conditions for promoting lignin (1/2 MS Free).
Rt. 7.0 is p-coumaroylagmatine, Rt. 7.8 / 7.9 confirmed that the retention time was the same as that of feruloylagmatine in the analysis of the above callus cell extract, but for the sake of accuracy, the mass spectrum and UV absorption spectrum were measured. A comparison was made.
Rt. The mass spectrum analysis of 7.0 detected the same molecular ion peak as that of the p-coumaroylagmatine sample with m / z = 277 [M + H] + , and the UV absorption spectrum (λ max : 224 nm, 293 nm) was also the same as the sample. there were.
Rt. In the mass spectral analysis of 7.8 / 7.9, the same molecular ion peak as that of the feruloylagmatine sample at m / z = 307 [M + H] + was detected, and the UV absorption spectrum (λ max : 218 nm, 234 nm, 293 nm, 317 nm) Was the same as the standard.
From the above results, Rt. 7.0 is p-coumaroylagmatine, Rt. 7.8 / 7.9 was identified as feruloylagmatine.
<H4懸濁細胞野生株およびACT組換え株における代謝物蓄積量の経時分析>
上記実験の結果、増殖促進条件とリグニン化促進条件で代謝物組成が異なることが示唆された。
また、H4懸濁細胞は2週間おきに継代していることから、増殖/リグニン化の各培養条件下における一連の培養期間中の代謝物蓄積量の変動を経時的に調べることとした。
増殖促進条件としてMS P680 Pic培地を、リグニン化促進条件として1/2MS Free培地および1/2MS BA培地を用いた。
また、ACT組換え株として上記安定増殖株#22に加え、#15も分析に供した。
2週間継代培養したH4懸濁細胞の野生株およびACT組換え株(#15、22)をそれぞれMS P680 Pic培地、1/2MS Free培地、1/2MS BA培地で細胞密度(ここではsedimented cell volume = SCV:沈降細胞量を用いる)を2.5%に合わせ、300ml容三角フラスコ中、培地量100mlで培養を開始した(各条件8本ずつ)。
0日目から16日目まで1日おきに1フラスコ分を回収し、SCV測定および細胞抽出物中の主要代謝物のHPLCによる定量を行った。
SCVに基づく細胞の増殖曲線を図10に示す。
<Antral analysis of metabolite accumulation in H4 suspension cell wild-type strain and ACT recombinant strain>
As a result of the above experiments, it was suggested that the metabolite composition differs between the growth promotion condition and the lignin promotion condition.
In addition, since H4 suspension cells were subcultured every two weeks, the change in the amount of accumulated metabolite during a series of culture periods under each growth / lignin culture condition was examined over time.
MS P680 Pic medium was used as the growth promotion condition, and 1/2 MS Free medium and 1/2 MS BA medium were used as the lignin promotion conditions.
In addition to the above-mentioned stable growth strain # 22, # 15 was also subjected to analysis as an ACT recombinant strain.
The cell density (in this case, sedimented cell) of the wild-type H4 suspension cells and the ACT recombinant strains (# 15, 22) subcultured for 2 weeks in MS P680 Pic medium, 1/2 MS Free medium, and 1/2 MS BA medium, respectively. (volume = SCV: using the amount of precipitated cells) was adjusted to 2.5%, and culture was started in a 300 ml Erlenmeyer flask with a medium volume of 100 ml (each for 8 conditions).
One flask was collected every other day from day 0 to day 16 and subjected to SCV measurement and quantification of major metabolites in the cell extract by HPLC.
The cell growth curve based on SCV is shown in FIG.
増殖促進条件に注目すると、野生株においては図10aに示すように培養14日目でSCVは約80%に達し増殖は停止しているが、ACT組換え株では図10b,cに示すように#15、22ともに野生株に比べて増殖の立ち上がりが遅く、培養16日目になっても増殖が続いており、増殖周期が野生株に比べて長くなっているものと思われた。
また、リグニン化促進条件のうち1/2MS Free培地では野生株とACT組換え株で差はみられないが、1/2MS BA培地では野生株に比べてACT組換え株の増殖が抑制されていることが分かった。
主要代謝物蓄積量の経時変化を図11〜13に示す。
Focusing on the growth promotion conditions, in the wild strain, as shown in FIG. 10a, the SCV reached about 80% on the 14th day of culture and the growth stopped, but in the ACT recombinant strain, as shown in FIGS. 10b and 10c. In both # 15 and # 22, the rise of growth was slower than that of the wild strain, and the growth continued even after the 16th day of culture, and the growth cycle seemed to be longer than that of the wild strain.
In addition, among the conditions for promoting lignin, there was no difference between the wild strain and the ACT recombinant strain in the 1 / 2MS Free medium, but the growth of the ACT recombinant strain was suppressed in the 1 / 2MS BA medium compared to the wild strain. I found out.
Changes with time in the accumulated amount of major metabolites are shown in FIGS.
野生株において、図11に示すように増殖促進条件ではferuloylputrescineの蓄積がわずかに認められる程度であったが、リグニン化促進条件では1/2MS Free、1/2MS BAのいずれでも培養に伴って大幅なferuloylputrescineの増加がみられた。
一方、図12に示すようにACT組換え株#22においては、いずれの培養条件でも野生株の主要代謝産物であったferuloylputrescineが顕著に減少し、それに代わってACT反応産物であるp-coumaroylagmatineが高蓄積しており、特に1/2MS BA条件における蓄積量が最も高かった。
その際、上記のACT組換えカルス細胞と同様に、蓄積量はp-coumaroylagmatineに比べて低いながらferuloylagmatineの生成も認められた。
この結果は、フェニルプロパノイド代謝経路および、arginineからagmatineを経由してputrescineを生成するポリアミン代謝経路が活発な細胞にagmatineを基質とするACT酵素を導入したことによって、ヒドロキシ桂皮酸putrescineアミド生合成系がヒドロキシ桂皮酸agmatineアミド生合成系にスイッチングされたことによるものであると考えられる(図7)。
図13に示すようにACT組換え株#15においてもACT反応産物であるp-coumaroylagmatineの高蓄積が見られたが、#22株ではp-coumaroylagmatineの生成はferuloylputrescineの減少を伴っていたのに対して、#15株ではferuloylputrescineの減少を伴わず、依然としてその蓄積がみられた。
#15株ではp-coumaroylagmatineの生成量がいずれの培養条件においても#22株の2倍ほど高いが、これは#15株のポリアミン代謝経路が#22株よりも活発であり、ACT酵素に供給されるagmatine量が多いことによるものと考えられる。
その際に、ACT酵素で処理しきれなかったagmatineがputrescine生合成に向かい、feruloylputrescineの生成に至っているものと推測される。
それぞれの細胞株について、各培養条件で主要代謝産物の蓄積量が最大に達した培養日数における、培養液1L中の細胞内の化合物蓄積量を求めた結果を表1に示す。
野生株では主要代謝産物であるferuloylputrescineの最大生産量は、リグニン化促進条件である1/2MS Freeで208mgであり、ACT組換え株ではferuloylputrescineに代わって主要代謝産物となったp-coumaroylagmatineの最大生産量は、#15株ではリグニン化促進条件1/2MS BAで359mg、#22株ではリグニン化促進条件1/2MS Freeで173mgに達した。
このように、植物培養細胞を宿主とした合理的代謝フロースイッチングは、外来二次代謝産物の効率的生産系を確立する際に極めて有用であることが分かった。
In the wild strain, as shown in FIG. 11, the accumulation of feruloylputrescine was only slightly observed under the growth promotion conditions, but under the conditions of lignin promotion, both ½ MS Free and ½ MS BA significantly increased with the culture. Increased feruloylputrescine was observed.
On the other hand, as shown in FIG. 12, in the ACT recombinant strain # 22, feruloylputrescine, which was the main metabolite of the wild strain, was significantly reduced under any culture condition, and p-coumaroylagmatine, which is an ACT reaction product, was replaced instead. High accumulation was observed, and the accumulation amount was particularly high under the 1/2 MS BA condition.
At that time, as in the case of the above-mentioned ACT recombinant callus cells, the production of feruloylagmatine was also observed, although the accumulated amount was lower than that of p-coumaroylagmatine.
This result shows that the biosynthesis of hydroxycinnamic acid putrescine amide was carried out by introducing ACT enzyme using agmatine as a substrate into cells that are active in the phenylpropanoid metabolic pathway and polyamine metabolic pathway that produces putrescine from arginine via agmatine. This is thought to be because the system was switched to the hydroxycinnamic acid agmatine amide biosynthetic system (FIG. 7).
As shown in FIG. 13, high accumulation of p-coumaroylagmatine, which is an ACT reaction product, was also observed in ACT recombinant strain # 15, but generation of p-coumaroylagmatine was accompanied by a decrease in feruloylputrescine in strain # 22. On the other hand, the # 15 strain did not decrease feruloylputrescine, but was still accumulated.
In the # 15 strain, the amount of p-coumaroylagmatine produced is about twice as high as that in the # 22 strain under any culture conditions, but this is because the polyamine metabolic pathway of the # 15 strain is more active than the # 22 strain and supplies the ACT enzyme. This is thought to be due to the large amount of agmatine produced.
At that time, it is presumed that agmatine that could not be treated with the ACT enzyme headed for putrescine biosynthesis, leading to the production of feruloylputrescine.
Table 1 shows the results of determining the amount of intracellular compounds accumulated in 1 L of the culture solution on the number of days of culture when the amount of accumulated major metabolites reached the maximum for each culture condition for each cell line.
The maximum production of feruloylputrescine, which is the main metabolite in the wild type, is 208 mg in 1 / 2MS Free, which is the lignin promoting condition, and the maximum production of p-coumaroylagmatine, which became the main metabolite in place of feruloylputrescine, in the ACT recombinant strain In the # 15 strain, the production amount reached 359 mg under the lignin promoting condition 1/2 MS BA, and the # 22 strain reached 173 mg under the lignin promoting condition 1/2 MS Free.
Thus, it was found that rational metabolic flow switching using plant cultured cells as a host is extremely useful in establishing an efficient production system for exogenous secondary metabolites.
本発明は、生合成の目的とする外来二次代謝物の生合成酵素遺伝子が同定されていれば、その生合成前駆体の代謝経路が活発な植物培養細胞にこの生合成遺伝子を導入すればよいので、汎用性が高く、生合成分野における適用範囲は広い。 In the present invention, if a biosynthetic enzyme gene of an exogenous secondary metabolite intended for biosynthesis has been identified, this biosynthetic gene can be introduced into cultured plant cells in which the metabolic pathway of the biosynthetic precursor is active. Since it is good, it is highly versatile and has a wide range of applications in the field of biosynthesis.
Claims (2)
元の植物培養細胞が産生する二次代謝産物に替えて新たな二次代謝産物を産生させることを特徴とする合理的代謝フロースイッチングによる植物培養細胞を用いた生合成法。 Introducing an exogenous secondary metabolic biosynthetic gene that uses the metabolic intermediate of a secondary metabolite produced by plant culture cells as a substrate,
A biosynthetic method using plant culture cells by rational metabolic flow switching, wherein a new secondary metabolite is produced instead of the secondary metabolite produced by the original plant culture cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013031650A JP2014158456A (en) | 2013-02-21 | 2013-02-21 | Transgenic plant cultured cell subjected to rational metabolism flow switching, and biosynthesis method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013031650A JP2014158456A (en) | 2013-02-21 | 2013-02-21 | Transgenic plant cultured cell subjected to rational metabolism flow switching, and biosynthesis method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014158456A true JP2014158456A (en) | 2014-09-04 |
Family
ID=51610752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013031650A Revoked JP2014158456A (en) | 2013-02-21 | 2013-02-21 | Transgenic plant cultured cell subjected to rational metabolism flow switching, and biosynthesis method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014158456A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020141576A (en) * | 2019-03-04 | 2020-09-10 | 公立大学法人 富山県立大学 | Biosynthesis method of hydroxybenzoic acid derivative |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10179147A (en) * | 1996-12-27 | 1998-07-07 | Ishikawajima Harima Heavy Ind Co Ltd | Culture of plant cell and plant cell highly producing secondary metabolite |
JP4798574B2 (en) * | 2002-08-30 | 2011-10-19 | サントリーホールディングス株式会社 | Flavonoid 3 ', 5' hydroxylase gene sequence and method of use thereof |
-
2013
- 2013-02-21 JP JP2013031650A patent/JP2014158456A/en not_active Revoked
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10179147A (en) * | 1996-12-27 | 1998-07-07 | Ishikawajima Harima Heavy Ind Co Ltd | Culture of plant cell and plant cell highly producing secondary metabolite |
JP4798574B2 (en) * | 2002-08-30 | 2011-10-19 | サントリーホールディングス株式会社 | Flavonoid 3 ', 5' hydroxylase gene sequence and method of use thereof |
Non-Patent Citations (1)
Title |
---|
PLANT BIOTECHNOLOGY, vol. 28, JPN6017011944, 2011, pages 43 - 50, ISSN: 0003532531 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020141576A (en) * | 2019-03-04 | 2020-09-10 | 公立大学法人 富山県立大学 | Biosynthesis method of hydroxybenzoic acid derivative |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106922153B (en) | Device and method for being produced while cannabinoid compounds | |
Wang et al. | Substrate specificity of LACCASE8 facilitates polymerization of caffeyl alcohol for C-lignin biosynthesis in the seed coat of Cleome hassleriana | |
JP7042323B2 (en) | Method for Producing Rosuvastatin Calcium and its Intermediates | |
Li et al. | Production of caffeoylmalic acid from glucose in engineered Escherichia coli | |
US11254709B2 (en) | Method for promoting Bacillus subtilis to synthesize surfactin based on multi-gene synergy | |
CN114107354B (en) | Method for constructing genetically engineered strain for efficient biosynthesis of stably inherited beta-arbutin and application of genetically engineered strain | |
CN113462669B (en) | Ketone pantoic acid hydroxymethyl transferase mutant, coding gene and application thereof | |
US20220186231A1 (en) | Recombinant acyl activating enzyme (aae) genes for enhanced biosynthesis of cannabinoids and cannabinoid precursors | |
EP3954768A2 (en) | Engineering bacteria for ferulic acid production, preparation method and use thereof | |
CN110713962A (en) | Genetic engineering bacterium for high-yield production of malonyl coenzyme A and construction method and application thereof | |
US10280441B2 (en) | Host cells and methods for producing cinnamoyl anthranilate and analogs thereof | |
JP2014158456A (en) | Transgenic plant cultured cell subjected to rational metabolism flow switching, and biosynthesis method using the same | |
CN102212550A (en) | Method for increasing content of camptothecin through co-transformation of double genes of transcription factor ORCA3 (Octadecanoie-responsive Cantharanthus AP2-doman protein 3) and key enzyme G10H (Geraniol 10-hydroxylase) | |
CN110791466B (en) | Recombinant bacterium for synthesizing butanetriol oleate as well as construction method and application thereof | |
Kang et al. | Production of phenylacetyl-homoserine lactone analogs by artificial biosynthetic pathway in Escherichia coli | |
CN111411099B (en) | Hemsleya amabilis acetyl transferase, coding gene thereof and application of hemsleya amabilis acetyl transferase in preparation of cucurbitacin | |
CN110951760B (en) | Protein time-delay expression switch and application thereof in production of glucaric acid | |
JP2023532382A (en) | Enzyme for conversion of chlorogenic acid to isochlorogenic acid | |
JP2020141576A (en) | Biosynthesis method of hydroxybenzoic acid derivative | |
KR102169650B1 (en) | Method for producing transgenic plant with increased syringin content using multiple gene expression system and plant thereof | |
CN110527638B (en) | Gene engineering strain for accumulating emodin and construction method and application thereof | |
CN115806925A (en) | Genetic engineering bacterium for high yield of L-cysteine, construction method and application | |
CN107365368B (en) | Asperphenamate synthesis related protein, coding gene and application thereof | |
KR101652368B1 (en) | Method for producing phenoxyethanol galactoside using recombinant escherichia coli and phenoxyethanol galactoside thereof | |
JP2017012011A (en) | Method for methylation of isopentenyl diphosphate and method for producing methylated isopentenyl diphosphate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151009 |
|
AA91 | Notification that invitation to amend document was cancelled |
Free format text: JAPANESE INTERMEDIATE CODE: A971091 Effective date: 20160202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170707 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170714 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20170915 |