JP2014157007A - Self-excited vibration type heat pipe - Google Patents

Self-excited vibration type heat pipe Download PDF

Info

Publication number
JP2014157007A
JP2014157007A JP2013067236A JP2013067236A JP2014157007A JP 2014157007 A JP2014157007 A JP 2014157007A JP 2013067236 A JP2013067236 A JP 2013067236A JP 2013067236 A JP2013067236 A JP 2013067236A JP 2014157007 A JP2014157007 A JP 2014157007A
Authority
JP
Japan
Prior art keywords
heat pipe
heat
pipe
self
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013067236A
Other languages
Japanese (ja)
Inventor
Eisaku Kakiuchi
栄作 垣内
Yasushi Nishikuma
靖 西隈
Tetsuyoshi Fukaya
哲義 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013067236A priority Critical patent/JP2014157007A/en
Publication of JP2014157007A publication Critical patent/JP2014157007A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-excited vibration type heat pipe enhanced in starting characteristics at a low-temperature time.SOLUTION: A self-excited vibration type heat pipe comprises pressure transmission means which is disposed midway of a sealed pipe for transmitting a pressure fluctuation in one-side space to the other-side space. Moreover, the pressure transmission means is given different heat transport characteristics on one side and the other side thereof. The one-side heat pipe (or the first heat pipe) is constituted to have a lower heat transport amount but a more excellent low-temperature responsiveness than those of the other-side heat pipe (or the second heat pipe). The first heat pipe is started earlier in a low-temperature environment than the second heat pipe. Moreover, the vibration of the first heat pipe is transmitted to the second heat pipe by the pressure transmission means. The pressure vibration transmitted induces the self-excited vibration of the second heat pipe so that the self-excited vibration is started earlier than the case of the single second heat pipe.

Description

本発明は、自励振動式ヒートパイプに関する。   The present invention relates to a self-excited vibration heat pipe.

自励振動式ヒートパイプは、閉じた細管を多数回往復させ、内部に揮発性の高い液体(作動液)を封入したデバイスである。平行に並ぶ細管の一方の端部付近に発熱源を取り付ける。発熱源を取り付けた側を受熱部(あるいは蒸発部)と称し、平行に並ぶ細管の他方の端部を放熱部(凝縮部)と称する。作動液は、受熱部にて発熱源の熱によって蒸発する。蒸発は細管の複数の箇所で生じるので、細管全体では気相と液相が交互に存在する状態となる。作動液の蒸発により、受熱部の圧力が高まる。受熱部の圧力が高まることで液相と気相の作動液が放熱部へ移動する。気相の作動液は放熱部にて凝縮し液体に戻る。こうして、作動液の相変化に起因する圧力変化により作動液が受熱部と放熱部の間を移動する。すなわち作動液が自励的に振動する。自励振動式ヒートパイプは、この蒸発と凝縮に伴う潜熱と作動液が有する顕熱の双方によって熱が移送されるので、熱輸送の効率が高い。   A self-excited vibration heat pipe is a device in which a closed tubule is reciprocated many times and a highly volatile liquid (working fluid) is enclosed therein. A heat source is attached near one end of the narrow tubes arranged in parallel. The side to which the heat source is attached is referred to as a heat receiving part (or evaporation part), and the other end of the narrow tubes arranged in parallel is referred to as a heat dissipation part (condensing part). The hydraulic fluid is evaporated by the heat of the heat source at the heat receiving portion. Since evaporation occurs at a plurality of locations in the narrow tube, the entire thin tube is in a state where a gas phase and a liquid phase are alternately present. Due to the evaporation of the hydraulic fluid, the pressure of the heat receiving part increases. As the pressure in the heat receiving part increases, the liquid phase and the gas phase hydraulic fluid move to the heat radiating part. The gas phase hydraulic fluid is condensed in the heat radiating portion and returned to the liquid. Thus, the hydraulic fluid moves between the heat receiving portion and the heat radiating portion due to a pressure change caused by the phase change of the hydraulic fluid. That is, the hydraulic fluid vibrates self-excited. The self-excited vibration type heat pipe has high heat transport efficiency because heat is transferred by both latent heat accompanying evaporation and condensation and sensible heat of the working fluid.

自励振動式ヒートパイプの特性は、管の断面積や管の単位体積当たりの作動液の量、あるいは、作動液の種類に依存するが、一般的な傾向として、熱輸送能力と低温時の応答性(低温時の始動性)はトレードオフの関係にある。その理由は、極めて単純化して言えば、熱輸送量が大きいということは熱容量が大きいということであり、作動液を蒸発させる(作動液を移動させる)のに大きなエネルギを必要とするからである。   The characteristics of the self-excited vibration heat pipe depend on the cross-sectional area of the tube, the amount of hydraulic fluid per unit volume of the tube, or the type of hydraulic fluid. Responsiveness (startability at low temperatures) is in a trade-off relationship. The reason is that, in a very simplified manner, a large heat transport amount means a large heat capacity, and a large amount of energy is required to evaporate the working fluid (move the working fluid). .

そこで、低温時の特性を高めるために、様々な提案がなされている。特許文献1では、ヒートパイプの管にポンプを接続し、低温時にはポンプで積極的に作動液に振動を与えて自励振動を誘発する。特許文献2では、管に局所的にパルス電圧を印加し、作動液に気泡を生じさせ、自励振動を誘発する。さらに、特許文献3では、電気で駆動する加振機(アクチュエータ)で作動液に振動を与える。特許文献4のヒートパイプは、作動液の量を調整する手段を備える。   Thus, various proposals have been made in order to improve the characteristics at low temperatures. In Patent Document 1, a pump is connected to a pipe of a heat pipe, and when the temperature is low, the pump actively vibrates the hydraulic fluid to induce self-excited vibration. In Patent Document 2, a pulse voltage is locally applied to the tube, bubbles are generated in the hydraulic fluid, and self-excited vibration is induced. Furthermore, in patent document 3, a vibration is given to hydraulic fluid with the shaker (actuator) driven electrically. The heat pipe of Patent Document 4 includes means for adjusting the amount of hydraulic fluid.

また、特許文献5では、熱輸送特性の異なる2つのヒートパイプを一つの筐体に収める。2つのヒートパイプには、それぞれ融点の異なる作動液が封止されている。融点の低い作動液が封止されたヒートパイプは、外気温度が低くても作動する。外気温度が高くなると、あるいは、熱源の温度が高くなると、高融点作動液が封止されたヒートパイプが作動を開始し、熱輸送量が増加する。   Further, in Patent Document 5, two heat pipes having different heat transport characteristics are housed in one housing. The two heat pipes are sealed with hydraulic fluids having different melting points. A heat pipe sealed with a working fluid having a low melting point operates even when the outside air temperature is low. When the outside air temperature rises or the temperature of the heat source rises, the heat pipe sealed with the high melting point working fluid starts to operate, and the heat transport amount increases.

特開2006−319046号公報JP 2006-319046 A 特開2004−179534号公報JP 2004-179534 A 特開2002−195789号公報JP 2002-195789 A 特開2007−333246号公報JP 2007-333246 A 特開2009−260058号公報JP 2009-260058 A

特許文献1〜4のヒートパイプはいずれも何らかのアクチュエータを備え、低温時には、能動的に自励振動を誘発する。特許文献5のヒートパイプは、実質的には特性の異なる2つのヒートパイプを備えることに相当する。本明細書は、電源等の能動的な駆動力を必要とすることなく、低温時の特性を高めたヒートパイプを提供する。   Each of the heat pipes of Patent Documents 1 to 4 includes some kind of actuator, and actively induces self-excited vibration at low temperatures. The heat pipe of Patent Document 5 corresponds to providing two heat pipes having substantially different characteristics. The present specification provides a heat pipe with improved characteristics at low temperatures without requiring an active driving force such as a power source.

本明細書が開示する自励振動式ヒートパイプは、密閉された管の途中に気体と液体は通さないが圧力変動は伝達する圧力伝達手段を備える。そして、管の圧力伝達手段の一方側と他方側で異なる熱輸送特性を持たせる。本明細書が開示する自励振動式ヒートパイプは、別言すれば、熱輸送特性の異なる第1ヒートパイプと第2ヒートパイプを、気体と液体は通さないが圧力変動は伝達する圧力伝達手段で連結したデバイスである。熱輸送特性とは、低温での始動性の良さを含む。別言すれば、本明細書が開示する自励振動式ヒートパイプは、ヒートパイプ管内の空間が長さ方向で2つに分割されているとともに、分割された空間の一方で生じた圧力変動を他方の空間に伝達する圧力伝達手段を備えている。前述したように、熱輸送能力と低温時の応答性(低温時の始動性)はトレードオフの関係にあり、第1ヒートパイプは第2ヒートパイプよりも熱輸送量は小さいが低温時の応答性は優るように構成する(第1ヒートパイプの特性と第2ヒートパイプの特性は逆でもよい)。第1ヒートパイプは低温環境において第2ヒートパイプよりも早く始動する。そして、第1ヒートパイプの振動が圧力伝達手段で第2ヒートパイプに伝達される。伝達された圧力変動が第2ヒートパイプの自励振動を誘発し、第2ヒートパイプは、それと同等の単体ヒートパイプよりも早く自励振動が始動する。この自励振動式ヒートパイプは、能動的なアクチュエータを備えることなく、熱容量の大きい第2ヒートパイプが従来のヒートパイプよりも早く始動する。即ち、圧力伝達手段の一方側と他方側で熱輸送特性を異ならせることで、一方側が他方側と比較して、低温で自励振動を開始する。   The self-excited oscillating heat pipe disclosed in the present specification includes pressure transmission means for transmitting pressure fluctuations while gas and liquid do not pass through a sealed tube. And the heat transport characteristic which is different in the one side and the other side of the pressure transmission means of a pipe | tube is given. In other words, the self-excited oscillating heat pipe disclosed in this specification is a pressure transmission means that transmits pressure fluctuations while gas and liquid do not pass through the first heat pipe and the second heat pipe having different heat transport characteristics. It is a device connected with. The heat transport property includes good startability at low temperatures. In other words, the self-excited vibration heat pipe disclosed in the present specification has a space in the heat pipe divided into two in the length direction, and a pressure fluctuation generated in one of the divided spaces. Pressure transmitting means for transmitting to the other space is provided. As described above, the heat transport capacity and the response at low temperatures (startability at low temperatures) are in a trade-off relationship, and the first heat pipe has a smaller amount of heat transport than the second heat pipe, but the response at low temperatures. It is configured so that the characteristics are excellent (the characteristics of the first heat pipe and the characteristics of the second heat pipe may be reversed). The first heat pipe starts faster than the second heat pipe in a low temperature environment. Then, the vibration of the first heat pipe is transmitted to the second heat pipe by the pressure transmission means. The transmitted pressure fluctuation induces self-excited vibration of the second heat pipe, and the second heat pipe starts self-excited vibration earlier than an equivalent single heat pipe. In this self-excited vibration heat pipe, the second heat pipe having a large heat capacity is started earlier than the conventional heat pipe without including an active actuator. That is, by making the heat transport characteristics different on one side and the other side of the pressure transmission means, one side starts self-excited vibration at a lower temperature than the other side.

なお、圧力伝達手段は、典型的には、ピストンあるいはダイアフラム(振動板)でよい。また、第1ヒートパイプと第2ヒートパイプ(即ち、圧力伝達手段の一方側と他方側)の熱輸送特性を異ならしめるのは、管断面積、管の単位体積当たりの作動液の量、作動液の種類、熱流束の少なくとも一つを相違させることで達成できる。   The pressure transmission means may typically be a piston or a diaphragm (diaphragm). Also, the heat transport characteristics of the first heat pipe and the second heat pipe (that is, one side and the other side of the pressure transmission means) are different from each other in that the pipe cross-sectional area, the amount of hydraulic fluid per unit volume of the pipe, the action This can be achieved by differentiating at least one of the type of liquid and the heat flux.

さらに、本明細書が開示するヒートパイプでは、管の内径の熱膨張率が、その内径に対応する圧力伝達手段の外径の熱膨張率よりも大きいことが好ましい。圧力伝達手段がピストンの場合、ピストンの外径の熱膨張率が、ピストンが摺動する管の内径の熱膨張率よりも小さいことが好ましい。そうすると、始動し易い方のヒートパイプ(第1ヒートパイプ)が始動する際のピストンと管との間の摺動抵抗(第1摺動抵抗)が大きく、熱容量の大きい方のヒートパイプ(第2ヒートパイプ)が始動する際のピストンと管との間の摺動抵抗(第2摺動抵抗)を小さくすることができる(第1摺動抵抗>第2摺動抵抗)。この構成は、第1ヒートパイプが始動する際にはピストンを動き難くして(即ちピストンの動きで圧力変動を緩和することなく)第1ヒートパイプを始動し易くすることができるとともに、温度が上昇するにつれてピストンを動きやすくして第2ヒートパイプへの圧力変動伝達を促進することができる。   Furthermore, in the heat pipe disclosed in the present specification, it is preferable that the coefficient of thermal expansion of the inner diameter of the pipe is larger than the coefficient of thermal expansion of the outer diameter of the pressure transmission means corresponding to the inner diameter. When the pressure transmission means is a piston, the coefficient of thermal expansion of the outer diameter of the piston is preferably smaller than the coefficient of thermal expansion of the inner diameter of the pipe on which the piston slides. Then, when the heat pipe that is easier to start (first heat pipe) starts, the sliding resistance (first sliding resistance) between the piston and the pipe is large, and the heat pipe having the larger heat capacity (second heat pipe). The sliding resistance (second sliding resistance) between the piston and the pipe when the heat pipe is started can be reduced (first sliding resistance> second sliding resistance). This configuration makes it difficult for the piston to move when the first heat pipe is started (that is, without relaxing the pressure fluctuation due to the movement of the piston), and makes it easy to start the first heat pipe. It is possible to facilitate the movement of the piston as it rises, and promote the transmission of pressure fluctuations to the second heat pipe.

本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。   Details and further improvements of the technology disclosed in this specification will be described in the following “DETAILED DESCRIPTION”.

第1実施例のヒートパイプの構造を示す模式的平面図である。It is a typical top view which shows the structure of the heat pipe of 1st Example. ヒートパイプの熱抵抗と熱流束の関係を説明するグラフである。It is a graph explaining the relationship between the thermal resistance of a heat pipe and a heat flux. ヒートパイプの製造方法を説明する図である。It is a figure explaining the manufacturing method of a heat pipe. 図3のIV−IV線における断面図である。It is sectional drawing in the IV-IV line of FIG. 第2実施例のヒートパイプの構造を示す模式的平面図である。It is a typical top view which shows the structure of the heat pipe of 2nd Example. 管とピストンの熱膨張率の相違を説明する断面図である(1)。図6(A)は温度が低い場合を示し、図6(B)は温度が高い場合を示す。It is sectional drawing explaining the difference in the thermal expansion coefficient of a pipe | tube and a piston (1). 6A shows the case where the temperature is low, and FIG. 6B shows the case where the temperature is high. 管とピストンの熱膨張率の相違を説明する断面図である(2)。図7(A)は温度が低い場合を示し、図7(B)は温度が高い場合を示す。It is sectional drawing explaining the difference in the thermal expansion coefficient of a pipe | tube and a piston (2). 7A shows a case where the temperature is low, and FIG. 7B shows a case where the temperature is high.

(第1実施例)図1に、第1実施例のヒートパイプ2の模式的平面図を示す。ヒートパイプ2は、平板型の筐体3の内部に密封された管4が形成されているデバイスである。管4の内部には、少量の作動液が充填されている。作動液は、揮発性の高い液体であり、例えば、代替フロンである。   (First Embodiment) FIG. 1 shows a schematic plan view of a heat pipe 2 of the first embodiment. The heat pipe 2 is a device in which a sealed tube 4 is formed inside a flat housing 3. The pipe 4 is filled with a small amount of hydraulic fluid. The hydraulic fluid is a highly volatile liquid, for example, an alternative chlorofluorocarbon.

筐体全体はアルミニウムや銅など、熱伝導率の高い金属で作られている。管4は、筐体3の一端と他端(図の上端と下端)の間を複数回往復している。筐体3の一端側で管4の複数の折り返し部が並んだ領域を受熱部Hvと称し、他端側で管4の複数の折り返し部が並んだ領域を放熱部Hrと称する。受熱部Hvに発熱源が取り付けられる。発熱源の熱により、受熱部Hvで作動液が蒸発する。受熱部Hvには管4の折り返し部が複数含まれており、その複数の折り返し部の夫々で作動液が蒸発する。放熱部Hrの作動液は液体のままである。そうすると、管4の内部で作動液は液相と気相が混在した状態となる。受熱部Hvで作動液が気体となると、受熱部Hvの圧力が高まり、作動液全体が放熱部Hrへ移動する。放熱部Hrへ移動した気相の作動液は凝縮し液相に戻る。その際、凝縮熱を放出する。また、気相の作動液の移動に伴い、受熱部Hv付近の液相の作動液も放熱部Hrへ移動し、そこで熱を放出する。こうして、気化と凝縮の潜熱と、液相の作動液が有する顕熱の双方で熱が輸送される。放熱部Hrで熱を放出した作動液は、受熱部Hvから新たに送られる温度の高い作動液に押しやられ、受熱部Hvへと移動する。こうして、作動液は、管4の内部で自励的に振動する。なお、発熱源に制限はないが、典型的には半導体チップなどの電子デバイスである。   The entire housing is made of a metal with high thermal conductivity, such as aluminum or copper. The tube 4 reciprocates a plurality of times between one end and the other end of the housing 3 (upper and lower ends in the figure). A region where a plurality of folded portions of the tube 4 are arranged on one end side of the housing 3 is referred to as a heat receiving portion Hv, and a region where the plurality of folded portions of the tube 4 are arranged on the other end side is referred to as a heat radiating portion Hr. A heat generation source is attached to the heat receiving portion Hv. The hydraulic fluid evaporates at the heat receiving portion Hv due to the heat of the heat source. The heat receiving portion Hv includes a plurality of folded portions of the tube 4, and the working fluid evaporates in each of the plurality of folded portions. The working fluid in the heat radiating portion Hr remains liquid. If it does so, a hydraulic fluid will be in the state in which the liquid phase and the gaseous phase were mixed inside the pipe | tube 4. FIG. When the hydraulic fluid becomes a gas at the heat receiving portion Hv, the pressure of the heat receiving portion Hv increases, and the entire hydraulic fluid moves to the heat radiating portion Hr. The gas phase hydraulic fluid that has moved to the heat radiating portion Hr is condensed and returned to the liquid phase. At that time, heat of condensation is released. As the gas-phase working fluid moves, the liquid-phase working fluid in the vicinity of the heat receiving portion Hv also moves to the heat radiating portion Hr and releases heat there. Thus, heat is transported by both the latent heat of vaporization and condensation and the sensible heat of the liquid-phase hydraulic fluid. The hydraulic fluid that has released heat in the heat radiating portion Hr is pushed by the high-temperature hydraulic fluid that is newly sent from the heat receiving portion Hv, and moves to the heat receiving portion Hv. Thus, the hydraulic fluid vibrates self-excited inside the tube 4. The heat source is not limited, but is typically an electronic device such as a semiconductor chip.

管4の途中に圧力伝達部8が設けられている。圧力伝達部8は、2箇所のくびれ部7の間にピストン6を配した構造である。ピストン6は、2箇所のくびれ部7の間で自由に動くことができる。ただし、ピストン6と管4の内壁の間には封止オイルが充填されており、ピストン6の一方側と他方側で液体と気体は通過することができない。ピストン6を境にして管4の一方側で圧力変動が生じると、ピストン6がその圧力変動に応じて往復する。ピストン6の往復運動が、管4の他方側に圧力変動をもたらす。即ち、圧力伝達部8は、ピストン6の一方側と他方側で気体と液体は通さないが圧力変動は伝達する。以下では、管4においてピストン6の一方側を第1ヒートパイプ4aと称し、他方側を第2ヒートパイプ4bと称する。別言すれば、ヒートパイプ2は、管4の内部空間が長さ方向で2分割されており、その分割位置に、ピストン6が設けられている。ピストン6は、分割された空間の一方で生じた圧力変動を他方の空間へ伝達する。   A pressure transmission portion 8 is provided in the middle of the tube 4. The pressure transmitting portion 8 has a structure in which a piston 6 is disposed between two constricted portions 7. The piston 6 can move freely between the two constricted portions 7. However, sealing oil is filled between the piston 6 and the inner wall of the pipe 4, and liquid and gas cannot pass through one side and the other side of the piston 6. When pressure fluctuation occurs on one side of the pipe 4 with the piston 6 as a boundary, the piston 6 reciprocates according to the pressure fluctuation. The reciprocating motion of the piston 6 causes a pressure fluctuation on the other side of the tube 4. That is, the pressure transmission unit 8 does not allow gas and liquid to pass through on one side and the other side of the piston 6 but transmits pressure fluctuations. Hereinafter, one side of the piston 6 in the pipe 4 is referred to as a first heat pipe 4a, and the other side is referred to as a second heat pipe 4b. In other words, in the heat pipe 2, the internal space of the pipe 4 is divided into two in the length direction, and a piston 6 is provided at the divided position. The piston 6 transmits the pressure fluctuation generated in one of the divided spaces to the other space.

第1ヒートパイプ4aと第2ヒートパイプ4bでは、熱輸送特性が異なる。具体的には、作動液の量が異なる。本実施例では、第1ヒートパイプ4aの作動液の量が第2ヒートパイプ4bの作動液の量よりも少ない。それゆえ、第1ヒートパイプ4aは第2ヒートパイプ4bに比べて、少量の熱でも作動を開始する。別言すれば、第1ヒートパイプ4aは第2ヒートパイプ4bと比較して低温での始動開始が早い。   The first heat pipe 4a and the second heat pipe 4b have different heat transport characteristics. Specifically, the amount of hydraulic fluid is different. In the present embodiment, the amount of hydraulic fluid in the first heat pipe 4a is smaller than the amount of hydraulic fluid in the second heat pipe 4b. Therefore, the first heat pipe 4a starts to operate even with a small amount of heat compared to the second heat pipe 4b. In other words, the first heat pipe 4a starts at a low temperature earlier than the second heat pipe 4b.

作動液の量の相違による熱輸送特性を、図2を参照して具体的に説明する。図2は、ヒートパイプの特性を模式的に表したグラフである。図2のグラフは、縦軸にヒートパイプの熱抵抗をとり、横軸にヒートパイプの熱流束をとっている。熱抵抗とは、熱の伝え難さを表す単位であり、単位時間当たり単位発熱量当たりの温度上昇量に相当する。また、熱流束とは、単位時間当たりに単位面積を通過する熱量に相当する。図2のグラフの右下の領域ほど、ヒートパイプの性能、即ち熱輸送能力が高いことを示している。グラフG1は第1ヒートパイプ4aの特性を示しており、グラフG2は第2ヒートパイプ4bの特性を示している。第2ヒートパイプ4bは、第1ヒートパイプ4aと比較して、熱流束が大きい領域において熱抵抗が低い。即ち、熱輸送能力は第1ヒートパイプ4aよりも第2ヒートパイプ4bの方が高い。ただし、外気温度が低い場合、あるいは、発熱源の発熱量が小さい場合には、もともと熱流束が大きくならない。即ち、外気温度が低い場合、あるいは、発熱源の発熱量が小さい場合とは、グラフの左側の領域に相当する。グラフの左側の領域では、第2ヒートパイプ4bよりも第1ヒートパイプ4aの方が、熱抵抗が小さい。このことは、外気温度が低い場合、あるいは、発熱源の発熱量が小さい場合には、第1ヒートパイプ4aが第2ヒートパイプ4bよりも動作し易いこと、すなわち始動性がよいことを示している。即ち、第1ヒートパイプ4aは第2ヒートパイプ4bよりも低温時の始動性は優れているが、発熱源の発熱量が大きくなった場合の熱輸送量は第1ヒートパイプ4aよりも第2ヒートパイプ4bの方が大きい。   The heat transport characteristics due to the difference in the amount of hydraulic fluid will be specifically described with reference to FIG. FIG. 2 is a graph schematically showing the characteristics of the heat pipe. In the graph of FIG. 2, the vertical axis represents the heat resistance of the heat pipe, and the horizontal axis represents the heat flux of the heat pipe. The thermal resistance is a unit representing the difficulty of transferring heat, and corresponds to the amount of temperature increase per unit calorific value per unit time. The heat flux corresponds to the amount of heat that passes through a unit area per unit time. The lower right region of the graph of FIG. 2 indicates that the performance of the heat pipe, that is, the heat transport capability is higher. Graph G1 shows the characteristics of the first heat pipe 4a, and graph G2 shows the characteristics of the second heat pipe 4b. The second heat pipe 4b has a lower thermal resistance in the region where the heat flux is larger than the first heat pipe 4a. That is, the heat transport capacity of the second heat pipe 4b is higher than that of the first heat pipe 4a. However, when the outside air temperature is low or when the heat generation amount of the heat source is small, the heat flux does not increase originally. That is, the case where the outside air temperature is low or the case where the heat generation amount of the heat source is small corresponds to the region on the left side of the graph. In the region on the left side of the graph, the first heat pipe 4a has a lower thermal resistance than the second heat pipe 4b. This indicates that the first heat pipe 4a is easier to operate than the second heat pipe 4b when the outside air temperature is low or the heat generation amount of the heat source is small, that is, the startability is good. Yes. That is, the first heat pipe 4a has better startability at a lower temperature than the second heat pipe 4b, but the heat transport amount when the heat generation amount of the heat source becomes larger is the second heat pipe 4a than the first heat pipe 4a. The heat pipe 4b is larger.

圧力伝達部8の機能を説明する。前述したように、ヒートパイプ2では、第1ヒートパイプ4aが第2ヒートパイプ4bよりも先に始動する。すなわち、第1ヒートパイプ4a内で先に作動液の気化が始まり、自励振動が始まる。自励振動による圧力変化は、圧力伝達部8を通じて第2ヒートパイプ4bの内部に伝達される。第2ヒートパイプ4b内では、第1ヒートパイプ4aからの圧力変動が作動液に刺激を与えることになり、自励振動が誘発される。こうして、第2ヒートパイプ4bと同等の単体ヒートパイプでは通常では自励振動が開始しない領域であっても、第1ヒートパイプ4aからの刺激により第2ヒートパイプ4bは動作を開始する。ヒートパイプ2は、第1ヒートパイプ4a及び第2ヒートパイプ4bと同等の2つのヒートパイプを個別に備えるよりも、低温時の始動性が良い。   The function of the pressure transmission part 8 is demonstrated. As described above, in the heat pipe 2, the first heat pipe 4a starts before the second heat pipe 4b. That is, vaporization of the hydraulic fluid starts first in the first heat pipe 4a, and self-excited vibration starts. The pressure change due to the self-excited vibration is transmitted to the inside of the second heat pipe 4b through the pressure transmission unit 8. In the second heat pipe 4b, the pressure fluctuation from the first heat pipe 4a stimulates the hydraulic fluid, and self-excited vibration is induced. In this way, even if the single heat pipe equivalent to the second heat pipe 4b is a region where the self-excited vibration does not normally start, the second heat pipe 4b starts to operate due to stimulation from the first heat pipe 4a. The heat pipe 2 has better startability at low temperatures than the two separate heat pipes equivalent to the first heat pipe 4a and the second heat pipe 4b.

第1実施例のヒートパイプ2の製造方法の一例を説明する。図3に製造方法を説明する図を示す。平板型のヒートパイプ2は、アルミニウムの押出成形で作られる多穴管を利用して作ることができる。図3の符号33が示す部材が多穴管である。多穴管は、平行に伸びる複数の貫通孔34を有している。なお、図3では一つの貫通孔のみをかくれ線で示しており、他の貫通孔は図示を省略している。一つの貫通孔34の内部にピストン6を配置した後、そのピストンの両側で多穴孔33の外側から貫通孔34に向けてパンチ36を打ち込む。符号35が、パンチ36の打点を示している。   An example of the manufacturing method of the heat pipe 2 of 1st Example is demonstrated. FIG. 3 is a diagram for explaining the manufacturing method. The flat plate-type heat pipe 2 can be made using a multi-hole tube made by extrusion molding of aluminum. The member indicated by reference numeral 33 in FIG. 3 is a multi-hole tube. The multi-hole tube has a plurality of through holes 34 extending in parallel. In FIG. 3, only one through hole is shown by a hidden line, and the other through holes are not shown. After arranging the piston 6 inside one through hole 34, a punch 36 is driven from the outside of the multi-hole 33 toward the through hole 34 on both sides of the piston. A reference numeral 35 indicates a hit point of the punch 36.

図4に、図3のIV−IV線に沿った断面図を示す。図4は、ピストン6の周辺の部分的な断面図である。パンチ36の打点35の内側で貫通孔34の内壁に窪み7が形成される。2つの窪み7は、ピストン6が動ける範囲を規定する。こうして、窪み7とピストン6で構成される圧力伝達部8が形成される。圧力伝達部8を形成し、少量の作動液を充填した後、平行に並ぶ複数の貫通孔34の両端を塞ぐ。このとき、筐体内部で、隣接する貫通孔同士の連通を確保する。また、筐体の一端側と他端側では、連通させる貫通孔の組を互い違いとする。具体的には、貫通孔A、B、Cが並んでいると仮定すると、筐体の一端側では貫通孔AとBと連通し、他端側では貫通孔BとCを連通する。こうして、筐体の両端の間を複数回往復するとともに、途中に圧力伝達部を有する1本の密封管が得られる。図4において、圧力伝達部8の上側が第1ヒートパイプ4aに相当し、圧力伝達部8の下側が第2ヒートパイプ4bに相当する。   FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. FIG. 4 is a partial cross-sectional view of the periphery of the piston 6. A recess 7 is formed in the inner wall of the through hole 34 inside the hit point 35 of the punch 36. The two recesses 7 define a range in which the piston 6 can move. In this way, the pressure transmission part 8 composed of the recess 7 and the piston 6 is formed. After the pressure transmission part 8 is formed and filled with a small amount of hydraulic fluid, both ends of the plurality of through holes 34 arranged in parallel are closed. At this time, communication between adjacent through holes is ensured inside the housing. Further, the sets of through holes to be communicated with each other are staggered on one end side and the other end side of the housing. Specifically, assuming that the through holes A, B, and C are aligned, the through holes A and B communicate with one end side of the housing, and the through holes B and C communicate with the other end side. Thus, one sealed tube having a pressure transmission part in the middle is obtained while reciprocating between the both ends of the casing a plurality of times. In FIG. 4, the upper side of the pressure transmission unit 8 corresponds to the first heat pipe 4a, and the lower side of the pressure transmission unit 8 corresponds to the second heat pipe 4b.

(第2実施例)図5を参照して第2実施例のヒートパイプ22を説明する。ヒートパイプ22では、密封された1本の管14が、圧力伝達部18により、第1ヒートパイプ14aと第2ヒートパイプ14bに分けられている。圧力伝達部18は、ダイヤフラム17(振動板)である。ダイヤフラム17は、圧力変動で振動するが、気体と液体は通さない。即ち、ダイヤフラム17は、第1ヒートパイプ14aと第2ヒートパイプ14bの一方で生じた圧力変動(自励振動)を他方へ伝達する。ダイヤフラム17は、第1実施例の圧力伝達部8と同じ効果を奏する。   (Second Embodiment) A heat pipe 22 of the second embodiment will be described with reference to FIG. In the heat pipe 22, one sealed pipe 14 is divided into a first heat pipe 14 a and a second heat pipe 14 b by the pressure transmission unit 18. The pressure transmission unit 18 is a diaphragm 17 (diaphragm). The diaphragm 17 vibrates due to pressure fluctuation, but does not allow gas and liquid to pass through. That is, the diaphragm 17 transmits the pressure fluctuation (self-excited vibration) generated in one of the first heat pipe 14a and the second heat pipe 14b to the other. The diaphragm 17 has the same effect as the pressure transmission unit 8 of the first embodiment.

ヒートパイプ22では、また、第1ヒートパイプ14aと第2ヒートパイプ14bの管断面積が異なる。第1ヒートパイプ14aの管断面積W1は、第2ヒートパイプ14bの管断面積W2よりも小さい。それゆえ、第1ヒートパイプ14aの方が第2ヒートパイプ14bよりも熱抵抗が小さく、低温時の始動が早い。従って、低温環境下、あるいは、発熱源の発熱量が小さい場合は、第1ヒートパイプ14aが第2ヒートパイプ14bよりも先に始動する。そして、第1ヒートパイプ14aの自励振動による圧力変動がダイヤフラム17を介して第2ヒートパイプ14bに伝搬する。ダイヤフラム17を介して第1ヒートパイプ14aから受けた圧力変動に触発され、第2ヒートパイプ14bでは自励振動が生じ易くなる。すなわち、第2ヒートパイプ14bは、これと同等のヒートパイプ単体よりも早く始動する。   In the heat pipe 22, the first heat pipe 14a and the second heat pipe 14b have different tube cross-sectional areas. The tube cross-sectional area W1 of the first heat pipe 14a is smaller than the tube cross-sectional area W2 of the second heat pipe 14b. Therefore, the first heat pipe 14a has a smaller thermal resistance than the second heat pipe 14b, and the starting at a low temperature is quicker. Accordingly, the first heat pipe 14a starts before the second heat pipe 14b in a low temperature environment or when the heat generation amount of the heat source is small. Then, the pressure fluctuation due to the self-excited vibration of the first heat pipe 14 a is propagated to the second heat pipe 14 b through the diaphragm 17. Inspired by pressure fluctuations received from the first heat pipe 14a via the diaphragm 17, self-excited vibration is likely to occur in the second heat pipe 14b. That is, the second heat pipe 14b is started earlier than a single heat pipe equivalent thereto.

次に、圧力伝達部8が、ピストン6で構成される場合に、管3の内径とピストン6の外形の熱膨張率の相違について説明する。図6は、第1実施例のヒートパイプ2について、管3の内径Waとピストン6の外径Wb2の相違を模式的に示した部分拡大断面図である。図6(A)は、第1ヒートパイプ4aが始動する予定の温度における内径Wa1と外径Wb1の関係を示す。図6(B)は、第2ヒートパイプ4bが始動する予定の温度における内径Wa2と外径Wb2の関係を示す。別言すれば、図6(B)は、図6(A)の場合と比較して温度が高い場合である。   Next, when the pressure transmission part 8 is comprised with the piston 6, the difference in the thermal expansion coefficient of the internal diameter of the pipe | tube 3 and the external shape of the piston 6 is demonstrated. FIG. 6 is a partial enlarged cross-sectional view schematically showing the difference between the inner diameter Wa of the pipe 3 and the outer diameter Wb2 of the piston 6 in the heat pipe 2 of the first embodiment. FIG. 6A shows the relationship between the inner diameter Wa1 and the outer diameter Wb1 at the temperature at which the first heat pipe 4a is scheduled to start. FIG. 6B shows the relationship between the inner diameter Wa2 and the outer diameter Wb2 at the temperature at which the second heat pipe 4b is scheduled to start. In other words, FIG. 6B shows a case where the temperature is higher than in the case of FIG.

ここでの説明においては、管3の内径Waの熱膨張率は、ピストン6の外径Wbの熱膨張率よりも大きい、別言すれば、ピストン6の外径Wbの熱膨張率は、管3の内径の熱膨張率Waの熱膨張率よりも小さい。管3は例えばアルミニウムで作られており、ピストン6は例えば銅で作られる。アルミニウムの線膨張係数は23.0[x10−6/K]であり、銅の線膨張係数は16.7[x10−6/K]であり、アルミニウムの線膨張係数は銅の線膨張係数よりも高い。そのような線熱膨張率の相違があれば、管3の内径Waの熱膨張率は、ピストン6の外径Wbの熱膨張率よりも大きくなる。 In the description here, the coefficient of thermal expansion of the inner diameter Wa of the pipe 3 is larger than the coefficient of thermal expansion of the outer diameter Wb of the piston 6, in other words, the coefficient of thermal expansion of the outer diameter Wb of the piston 6 is 3 is smaller than the thermal expansion coefficient Wa. The tube 3 is made of aluminum, for example, and the piston 6 is made of copper, for example. The linear expansion coefficient of aluminum is 23.0 [x10 −6 / K], the linear expansion coefficient of copper is 16.7 [x10 −6 / K], and the linear expansion coefficient of aluminum is greater than the linear expansion coefficient of copper. Is also expensive. If there is such a difference in linear thermal expansion coefficient, the thermal expansion coefficient of the inner diameter Wa of the tube 3 is larger than the thermal expansion coefficient of the outer diameter Wb of the piston 6.

図6(A)の場合、管3の内径Wa1とピストン6の外径Wb1はほぼ等しい。それゆえ、ピストン6は管3の内壁との間に高い摺動抵抗を受ける。第1ヒートパイプ4aが作動し始める際(第1非ヒートパイプ4a内で自励振動が始まる際)、ピストン6は動かない。ピストン6が動くと、第1ヒートパイプ4a内の圧力変動が緩和され、自励振動の開始を阻害するが、図6(A)の場合はピストン6が動かないためそのような阻害が生じない。   In the case of FIG. 6A, the inner diameter Wa1 of the tube 3 and the outer diameter Wb1 of the piston 6 are substantially equal. Therefore, the piston 6 receives a high sliding resistance between the inner wall of the pipe 3. When the first heat pipe 4a starts to operate (when self-excited vibration starts in the first non-heat pipe 4a), the piston 6 does not move. When the piston 6 moves, the pressure fluctuation in the first heat pipe 4a is alleviated and inhibits the start of self-excited vibration. However, in the case of FIG. 6A, since the piston 6 does not move, such inhibition does not occur. .

温度が上昇し、第2ヒートパイプ4bが始動する予定の温度となると(図6(B)の場合)、管3の内径Wa1はWa2に拡がり、ピストン6の外径Wb1はWb2に拡がる。管3の内径Waの熱膨張率はピストン6の外径Wbの熱膨張率よりも大きいので、管3の内径Wa2>ピストン6の外径Wb2となる。従ってピストン6が管3の内壁から受ける摺動抵抗が下がり、ピストン6は動き易くなる。第2ヒートパイプ4bの始動予定の温度域まで温度が上がると、ピストン6が動き出し、第1ヒートパイプ4aの振動が第2ヒートパイプ4bに伝達される。第2ヒートパイプ4bはピストン6を介して第1ヒートパイプ4aから圧力変動を受け、作動開始が誘発される。なお、図6(B)は、理解を助けるために、ピストン6と管3の内面との間に隙間を描いたが、実際にはピストン6は、第1ヒートパイプ4aと第2ヒートパイプ4bの間で気体も液体も通さない。次の図7(B)でも同様である。   When the temperature rises and reaches the temperature at which the second heat pipe 4b is scheduled to start (in the case of FIG. 6B), the inner diameter Wa1 of the tube 3 expands to Wa2, and the outer diameter Wb1 of the piston 6 expands to Wb2. Since the thermal expansion coefficient of the inner diameter Wa of the pipe 3 is larger than the thermal expansion coefficient of the outer diameter Wb of the piston 6, the inner diameter Wa2 of the pipe 3> the outer diameter Wb2 of the piston 6. Therefore, the sliding resistance that the piston 6 receives from the inner wall of the pipe 3 is lowered, and the piston 6 becomes easy to move. When the temperature rises to the temperature range where the second heat pipe 4b is scheduled to start, the piston 6 starts to move, and the vibration of the first heat pipe 4a is transmitted to the second heat pipe 4b. The second heat pipe 4b receives a pressure fluctuation from the first heat pipe 4a via the piston 6, and the start of operation is induced. In FIG. 6B, a gap is drawn between the piston 6 and the inner surface of the pipe 3 to help understanding. Actually, however, the piston 6 has the first heat pipe 4a and the second heat pipe 4b. Neither gas nor liquid can pass between them. The same applies to FIG. 7B.

図7は、ピストン6の周囲にゴム製のシールリング41が取り付けられている場合を示す。図7の場合も、管3の内径の熱膨張率とピストン6の外径の熱膨張率の相違が図6の場合と同じであるならば、図6の場合と同じ利点が得られる。   FIG. 7 shows a case where a rubber seal ring 41 is attached around the piston 6. Also in the case of FIG. 7, if the difference between the thermal expansion coefficient of the inner diameter of the tube 3 and the thermal expansion coefficient of the outer diameter of the piston 6 is the same as in FIG. 6, the same advantages as in FIG.

図6と同様に、図7(A)は、第1ヒートパイプ4aが始動する予定の温度における内径Wa1と外径Wc1の関係を示す。図7(B)は、第2ヒートパイプ4bが始動する予定の温度における内径Wa2と外径Wc2の関係を示す。   Similar to FIG. 6, FIG. 7A shows the relationship between the inner diameter Wa1 and the outer diameter Wc1 at the temperature at which the first heat pipe 4a is scheduled to start. FIG. 7B shows the relationship between the inner diameter Wa2 and the outer diameter Wc2 at the temperature at which the second heat pipe 4b is scheduled to start.

第1ヒートパイプ4aが作動し始める予定の温度のとき(図7(A)のとき)、管3の内径Wa1とピストン6の外径Wc1との差(Wa1−Wc1)は、シールリング41を強く圧迫する程に小さい。それゆえ、ピストン6は管3の内壁との間に高い摺動抵抗を受ける。第1ヒートパイプ4aが作動し始める際(第1非ヒートパイプ4a内で自励振動が始まる際)、ピストン6は動かず、第1ヒートパイプ4aはスムーズに始動する。   When the temperature at which the first heat pipe 4a is scheduled to start (in FIG. 7A), the difference between the inner diameter Wa1 of the pipe 3 and the outer diameter Wc1 of the piston 6 (Wa1-Wc1) Small enough to squeeze strongly. Therefore, the piston 6 receives a high sliding resistance between the inner wall of the pipe 3. When the first heat pipe 4a starts to operate (when self-excited vibration starts in the first non-heat pipe 4a), the piston 6 does not move and the first heat pipe 4a starts smoothly.

温度が上昇し、第2ヒートパイプ4bが始動する予定の温度となると(図7(B)の場合)、管3の内径Wa1はWa2に拡がり、ピストン6の外径Wc1はWc2に拡がる。管3の内径Waの熱膨張率はピストン6の外径Wcの熱膨張率よりも大きいので、管3の内径Waとピストン6の外径Wc2との差(Wa2−Wc2)は、低温時よりも拡がる。即ち、(Wa2−Wc2)>(Wa1−Wc1)となる。それゆえ、シールリング41に加わっていた圧迫力が弱まり、ピストン6が管3の内壁から受ける摺動抵抗が下がる。その結果、ピストン6が動き易くなる。図6の場合と同じ効果が得られる。   When the temperature rises and reaches the temperature at which the second heat pipe 4b is scheduled to start (in the case of FIG. 7B), the inner diameter Wa1 of the tube 3 expands to Wa2, and the outer diameter Wc1 of the piston 6 expands to Wc2. Since the coefficient of thermal expansion of the inner diameter Wa of the pipe 3 is larger than the coefficient of thermal expansion of the outer diameter Wc of the piston 6, the difference (Wa2-Wc2) between the inner diameter Wa of the pipe 3 and the outer diameter Wc2 of the piston 6 is lower than that at low temperature. Also spread. That is, (Wa2-Wc2)> (Wa1-Wc1). Therefore, the compressive force applied to the seal ring 41 is weakened, and the sliding resistance that the piston 6 receives from the inner wall of the pipe 3 is lowered. As a result, the piston 6 becomes easy to move. The same effect as in the case of FIG. 6 is obtained.

上記のように、管3の内径の熱膨張率が、その内径に対応するピストン6の外径の熱膨張率よりも大きくなるように、管3とピストン6の材料を選定すれば、低温で第1ヒートパイプ4aがさらに始動し易くなる。   As described above, if the material of the pipe 3 and the piston 6 is selected so that the thermal expansion coefficient of the inner diameter of the pipe 3 is larger than the thermal expansion coefficient of the outer diameter of the piston 6 corresponding to the inner diameter, the temperature can be reduced. It becomes easier to start the first heat pipe 4a.

実施例で説明した技術に関する留意点を述べる。本明細書が開示するヒートパイプは、低温環境化で始動性のよい第1ヒートパイプと、始動性は第1ヒートパイプには劣るが熱輸送量が大きい第2ヒートパイプを圧力伝達手段で連結したデバイスである。このヒートパイプでは、第1ヒートパイプの自励振動が第2ヒートパイプの始動の刺激となり、第2ヒートパイプが始動し易くなる。本明細書が開示する技術は、自励式ヒートパイプの特徴である「自励振動」を積極的に活用し、アクチュエータを要することなく、低温時の始動特性を従来のヒートパイプよりも高めることができる。   Points to be noted regarding the technology described in the embodiments will be described. The heat pipe disclosed in this specification is connected to a first heat pipe having a good startability in a low temperature environment and a second heat pipe having a large heat transport amount, although the startability is inferior to that of the first heat pipe, by pressure transmission means. Device. In this heat pipe, the self-excited vibration of the first heat pipe serves as a stimulus for starting the second heat pipe, and the second heat pipe is easily started. The technology disclosed in this specification actively utilizes the “self-excited vibration” that is a feature of self-excited heat pipes, and can improve starting characteristics at low temperatures compared to conventional heat pipes without requiring an actuator. it can.

実施例のヒートパイプ、特に、第1実施例のヒートパイプ2は、多穴孔を利用して容易に製造することができる。本明細書が開示するヒートパイプは、アクチュエータが不要なだけでなく、その製造が容易であるという利点を有する。なお、実施例で説明した製造方法では、多穴管の片面だけからパンチを当て、管内の一面にくびれ部を設けた。多穴管の両側からパンチを当てて、管内の断面における両側にくびれ部を設けることも好適である。   The heat pipe of the embodiment, in particular, the heat pipe 2 of the first embodiment can be easily manufactured using the multi-hole. The heat pipe disclosed in this specification has an advantage that not only an actuator is unnecessary, but also its manufacture is easy. In addition, in the manufacturing method demonstrated in the Example, the punch was applied only from the single side | surface of the multi-hole pipe | tube, and the constriction part was provided in the one surface in a pipe | tube. It is also preferable to provide a constricted portion on both sides of the cross section in the tube by applying a punch from both sides of the multi-hole tube.

第1実施例では第1ヒートパイプと第2ヒートパイプで作動液の量を異なるものとした。第2実施例では第1ヒートパイプと第2ヒートパイプで管断面積を異なるものとした。第1ヒートパイプと第2ヒートパイプは、熱輸送特性が異なればよく、作動液の量あるいは断面積に限られない。作動液の量や断面積のほかに、第1ヒートパイプと第2ヒートパイプでは、作動液の種類や熱流束などを変えることによって熱輸送特性を異ならしめてもよい。また、実施例のヒートパイプ2、22の筐体3はいずれも平板型であった。ヒートパイプ全体の形状は平板に限られず、円柱形や角柱形であってもよい。あるいは、L字状の板であってもよい。   In the first embodiment, the amount of hydraulic fluid is different between the first heat pipe and the second heat pipe. In the second embodiment, the first heat pipe and the second heat pipe have different tube cross-sectional areas. The first heat pipe and the second heat pipe need only have different heat transport characteristics, and are not limited to the amount of hydraulic fluid or the cross-sectional area. In addition to the amount and cross-sectional area of the hydraulic fluid, the first heat pipe and the second heat pipe may have different heat transport characteristics by changing the type of hydraulic fluid, the heat flux, and the like. In addition, the housings 3 of the heat pipes 2 and 22 of the examples were both flat plate types. The shape of the entire heat pipe is not limited to a flat plate, and may be a cylinder or a prism. Alternatively, an L-shaped plate may be used.

実施例のヒートパイプでは、第1ヒートパイプの熱輸送能力が第2ヒートパイプの熱輸送能力よりも高い。熱輸送能力の高い第1ヒートパイプの占める空間(典型的には長さ)が、第2ヒートパイプの占める空間よりも大きいことが望ましい。   In the heat pipe of the example, the heat transport capability of the first heat pipe is higher than the heat transport capability of the second heat pipe. It is desirable that the space (typically length) occupied by the first heat pipe having a high heat transport capacity is larger than the space occupied by the second heat pipe.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

2、22:ヒートパイプ
3:筐体
4:管
4a、14a:第1ヒートパイプ
4b、14b:第2ヒートパイプ
6:ピストン
7:くびれ部
8、18:圧力伝達部
17:ダイヤフラム
33:多穴孔
34:貫通孔
36:パンチ
39:打点
41:シールリング
Hr:放熱部
Hv:受熱部
W1、W2:管断面積
2, 22: heat pipe 3: housing 4: pipe 4a, 14a: first heat pipe 4b, 14b: second heat pipe 6: piston 7: constricted part 8, 18: pressure transmission part 17: diaphragm 33: multi-hole Hole 34: Through hole 36: Punch 39: Spot 41: Seal ring Hr: Heat radiation part Hv: Heat receiving part W1, W2: Pipe cross-sectional area

Claims (4)

密閉された管の途中に、管内の空間を分割するとともに、一方側の空間の圧力変動を他方側の空間に伝達する圧力伝達手段を備えており、圧力伝達手段の一方側と他方側で熱輸送特性を異ならせることで、一方側が他方側と比較して、低温で自励振動を開始することを特徴とする自励振動式ヒートパイプ。   In the middle of the sealed pipe, there is provided pressure transmission means for dividing the space in the pipe and transmitting pressure fluctuations in the space on one side to the space on the other side, and heat is applied to one side and the other side of the pressure transmission means. A self-excited vibration heat pipe characterized in that self-excited vibration is started at a low temperature on one side compared to the other side by different transport characteristics. 圧力伝達手段は、ピストンあるいはダイアフラムであることを特徴とする請求項1に記載の自励振動式ヒートパイプ。   2. The self-excited vibration heat pipe according to claim 1, wherein the pressure transmission means is a piston or a diaphragm. 圧力伝達手段の一方側と他方側で、管断面積、管の単位体積当たりの作動液の量、作動液の種類、熱流束の少なくとも一つが異なることを特徴とする請求項1又は2に記載の自励振動式ヒートパイプ。   The at least one of the pipe cross-sectional area, the amount of hydraulic fluid per unit volume of the pipe, the type of hydraulic fluid, and the heat flux differs between one side and the other side of the pressure transmission means. Self-excited vibration heat pipe. 前記管の内径の熱膨張率が、前記内径に対応する圧力伝達手段の外径の熱膨張率よりも大きいことを特徴とする請求項1から3のいずれか1項に記載の自励振動式ヒートパイプ。   The self-excited vibration type according to any one of claims 1 to 3, wherein the coefficient of thermal expansion of the inner diameter of the tube is larger than the coefficient of thermal expansion of the outer diameter of the pressure transmission means corresponding to the inner diameter. heat pipe.
JP2013067236A 2013-01-15 2013-03-27 Self-excited vibration type heat pipe Pending JP2014157007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067236A JP2014157007A (en) 2013-01-15 2013-03-27 Self-excited vibration type heat pipe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013004397 2013-01-15
JP2013004397 2013-01-15
JP2013067236A JP2014157007A (en) 2013-01-15 2013-03-27 Self-excited vibration type heat pipe

Publications (1)

Publication Number Publication Date
JP2014157007A true JP2014157007A (en) 2014-08-28

Family

ID=51577972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067236A Pending JP2014157007A (en) 2013-01-15 2013-03-27 Self-excited vibration type heat pipe

Country Status (1)

Country Link
JP (1) JP2014157007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726317A (en) * 2019-09-05 2020-01-24 浙江大学 Ultrasonic pulsating heat pipe radiator with thermoelectric power generation driving and temperature early warning functions
WO2020225981A1 (en) * 2019-05-08 2020-11-12 株式会社日立製作所 Self-excited vibration heat pipe cooling device, and railway vehicle on which cooling device is mounted
WO2024195962A1 (en) * 2023-03-17 2024-09-26 주식회사 제이앤씨머트리얼즈 Pulsating heat pipe module comprising separable flow channel plates and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225981A1 (en) * 2019-05-08 2020-11-12 株式会社日立製作所 Self-excited vibration heat pipe cooling device, and railway vehicle on which cooling device is mounted
JPWO2020225981A1 (en) * 2019-05-08 2020-11-12
CN113710982A (en) * 2019-05-08 2021-11-26 株式会社日立制作所 Self-oscillating heat pipe cooling device and railway vehicle equipped with same
JP7179170B2 (en) 2019-05-08 2022-11-28 株式会社日立製作所 Self-excited oscillating heat pipe cooling device and railway vehicle equipped with the cooling device
CN113710982B (en) * 2019-05-08 2023-05-30 株式会社日立制作所 Self-oscillation heat pipe cooling device and railway vehicle equipped with same
CN110726317A (en) * 2019-09-05 2020-01-24 浙江大学 Ultrasonic pulsating heat pipe radiator with thermoelectric power generation driving and temperature early warning functions
WO2024195962A1 (en) * 2023-03-17 2024-09-26 주식회사 제이앤씨머트리얼즈 Pulsating heat pipe module comprising separable flow channel plates and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US10184729B2 (en) Heat pipe
KR102505767B1 (en) High-Performance Two-Phase Cooling Unit
JP5131323B2 (en) Heat pipe type cooling device and vehicle control device using the same
US8459340B2 (en) Flat heat pipe with vapor channel
US10976112B2 (en) Heat pipe
CN103712498B (en) Double-capillary-core evaporator applied to flat-type LHP system
JP5872985B2 (en) Self-excited vibration heat pipe
US20070240854A1 (en) Heat pipe and method for producing the same
CN218744851U (en) Vapor chamber, heat sink device, and electronic device
US20060213061A1 (en) Method for making a heat pipe
US20110174466A1 (en) Flat heat pipe
WO2014115839A1 (en) Heat pipe
JP2014157007A (en) Self-excited vibration type heat pipe
US20110138838A1 (en) Device for varying the pressure of a pneumatic fluid through displacement of liquid droplets and heat pump using such a device
JP6260368B2 (en) Self-excited vibration heat pipe
KR101097390B1 (en) Heat pipe with double pipe structure
JP2014185801A (en) Self-excited oscillation heat pipe
US6684941B1 (en) Reciprocating-mechanism driven heat loop
JP2010144518A (en) Rotary stirling engine
WO2020225981A1 (en) Self-excited vibration heat pipe cooling device, and railway vehicle on which cooling device is mounted
JP2013204569A (en) Heat engine
US20150090428A1 (en) Heat transfer device having 3-dimensional projections and an associated method of fabrication
JP2009068836A (en) Counter-stream-mode oscillating-flow heat transport apparatus and cooling device
JP2007003130A (en) Stirling cycle engine
US20150122460A1 (en) Heat pipe structure