JP2014156979A - Vapor compression type refrigeration system - Google Patents

Vapor compression type refrigeration system Download PDF

Info

Publication number
JP2014156979A
JP2014156979A JP2013028699A JP2013028699A JP2014156979A JP 2014156979 A JP2014156979 A JP 2014156979A JP 2013028699 A JP2013028699 A JP 2013028699A JP 2013028699 A JP2013028699 A JP 2013028699A JP 2014156979 A JP2014156979 A JP 2014156979A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
primary
vapor compression
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013028699A
Other languages
Japanese (ja)
Other versions
JP5295441B1 (en
Inventor
Hiroaki Matsushita
紘晃 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAC KK
Mac KK
Original Assignee
MAC KK
Mac KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAC KK, Mac KK filed Critical MAC KK
Priority to JP2013028699A priority Critical patent/JP5295441B1/en
Application granted granted Critical
Publication of JP5295441B1 publication Critical patent/JP5295441B1/en
Priority to US14/180,841 priority patent/US20140231049A1/en
Priority to KR1020140017858A priority patent/KR101405759B1/en
Publication of JP2014156979A publication Critical patent/JP2014156979A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that, even in a refrigeration cycle into which a conventionally-known self-balance heat exchanger is assembled, defrosting actuation is limited and inadequate, therefore, furthermore complete and perfect defrosting effect cannot be obtained and satisfactory refrigerating effect and safety cannot be secured.SOLUTION: A vapor compression type refrigeration system as a vapor compression type refrigeration cycle which has steps of compression, condensation, expansion and vaporization of refrigerant has a primary side and a secondary side in one body, has a self-balance heat exchanger assembled therein in which the primary side and the secondary side have the same heat transfer area and capacity and has an expansion valve on a refrigerant inlet of the secondary side of the self-balance heat exchanger. Therein, a primary expansion valve is also provided on the refrigerant inlet of the primary side to which the refrigerant of the heat-self balance heat exchanger is introduced.

Description

本発明は蒸気圧縮式冷凍システムに関し、冷媒ガスの圧縮、凝縮、膨張、蒸発の工程を有する冷凍サイクル中に熱自己平衡熱交換器を組み込み、ヒートポンプ暖房やホットガスデフロスト運転時における冷凍能力を一層向上させるとともに、圧縮機の過冷却や液バックを防ぎ、一層の安全運転を可能とした蒸気圧縮式冷凍システムに関する。   The present invention relates to a vapor compression refrigeration system, and incorporates a heat self-equilibrium heat exchanger in a refrigeration cycle having refrigerant gas compression, condensation, expansion, and evaporation steps to further increase the refrigeration capacity during heat pump heating and hot gas defrost operation. The present invention relates to a vapor compression refrigeration system that improves and prevents over-cooling and liquid back of the compressor and enables further safe operation.

従来、冷媒ガスを使用した冷凍サイクルにあって、その冷却あるいは暖房の効果を向上させる要素として、熱自己平衡熱交換器を組み込むことが特許文献1〜7に示すように知られている。これらの特許文献1〜7には、一次側と二次側とを一体とし、一次側へ導入させ、その一次側を通過した冷媒ガスを膨張弁を介して二次側へ送り込み、その一次側と二次側で伝熱プレートを介して相互の熱エネルギーが各々凝縮、蒸発の熱源とされ、その熱エネルギーは相乗効果で各々の機能を高め、経時変化で一次側と二次側は作用的に安定される熱交換器が記載されている。   Conventionally, in a refrigeration cycle using a refrigerant gas, it is known that Patent Documents 1 to 7 incorporate a thermal self-equilibrium heat exchanger as an element for improving the cooling or heating effect. In these Patent Documents 1 to 7, the primary side and the secondary side are integrated, introduced to the primary side, and the refrigerant gas that has passed through the primary side is sent to the secondary side via the expansion valve, and the primary side The heat energy is condensed and evaporated as a heat source through the heat transfer plate on the secondary side and the heat energy is synergistically enhanced to enhance the functions of the primary and secondary sides. A heat exchanger that is stable is described.

また、特許文献7には冷凍サイクル中にタービン膨張機の回転力で回転する渦電流発熱機で圧縮機へ戻る冷媒の温度を高める技術が記載されている。   Patent Document 7 describes a technique for increasing the temperature of the refrigerant returning to the compressor by an eddy current heat generator that rotates with the rotational force of the turbine expander during the refrigeration cycle.

しかしながら、従来、上記した熱交換器を組み込んだ冷凍サイクルにあっても、完全といえる状態のデフロストには限界があり、デフロストに過大な作業や費用がかけられている。特に、寒冷地にあっては暖房装置としても効率的に安全に作用するには限度があり、どうしてもデフロストは電気を使用するヒーターに頼るのが現実的となっていた。   However, conventionally, even in a refrigeration cycle incorporating the above-described heat exchanger, there is a limit to the defrost that can be said to be complete, and excessive work and cost are applied to the defrost. In particular, in cold regions, there is a limit to the efficient and safe operation as a heating device, and it has become practical to rely on heaters that use electricity for defrost.

特開2003−214731号公報JP 2003-214731 A 特開2004−361033号公報Japanese Patent Laid-Open No. 2004-361033 特開2005−98817号公報JP 2005-98817 A 特開2005−114267号公報JP 2005-114267 A 特開2006−64331号公報JP 2006-64331 A 特開2009−156563号公報JP 2009-156563 A 特開2011−58652号公報JP 2011-58652 A

本発明が解決しようとする問題点は、従来知られている熱自己平衡熱交換器を組み込んだ冷凍サイクルにあってもデフロスト作用には限界があり、より一層の完全、完璧なデフロスト効果を得ること、そして、冷凍効果と安全性を確保するには不十分であったという点である。   The problem to be solved by the present invention is that there is a limit to the defrosting action even in a refrigeration cycle incorporating a conventionally known thermal self-equilibrium heat exchanger, and a more complete and perfect defrosting effect is obtained. That is, it was insufficient to ensure the freezing effect and safety.

この問題点を解決するために、本発明に係る蒸気圧縮式冷凍システムは冷媒の圧縮、凝縮、膨張、蒸発の工程を有する蒸気圧縮式冷凍サイクルであって、一次側と二次側を一体に有し、その一次側と二次側が同一の伝熱面積と容量を持つ熱自己平衡熱交換器を組み込み、この熱自己平衡熱交換器の二次側の冷媒入口に膨張弁を備えている蒸気圧縮式冷凍システムにおいて、前記熱自己平衡熱交換器の冷媒が導入される一次側の冷媒入口にも一次膨張弁を備えていることを特徴としている。   In order to solve this problem, a vapor compression refrigeration system according to the present invention is a vapor compression refrigeration cycle having refrigerant compression, condensation, expansion, and evaporation steps, in which a primary side and a secondary side are integrated. Steam that has a thermal self-equilibrium heat exchanger having the same heat transfer area and capacity on the primary side and the secondary side, and has an expansion valve at the refrigerant inlet on the secondary side of the heat self-equilibrium heat exchanger The compression refrigeration system is characterized in that a primary expansion valve is also provided at a primary refrigerant inlet into which a refrigerant of the thermal self-equilibrium heat exchanger is introduced.

また、本発明に係る蒸気圧縮式冷凍システムは前記した一次側の冷媒入口の一次膨張弁には、バイパスが設けられていることを特徴とし、前記した熱自己平衡熱交換器は冷凍サイクル中の冷媒の流れで、凝縮器と蒸発器の間に設けられていることを特徴としている。   The vapor compression refrigeration system according to the present invention is characterized in that a bypass is provided in the primary expansion valve of the refrigerant inlet on the primary side, and the heat self-equilibrium heat exchanger described above is provided in the refrigeration cycle. A refrigerant flow is provided between the condenser and the evaporator.

さらに、本発明に係る蒸気圧縮式冷凍システムは前記した熱自己平衡熱交換器の二次側の冷媒出口から冷媒が導入される蒸発器と、その冷媒が戻る圧縮機との間に永久磁石回転式誘導加熱器(マグネットヒーター)を介在させてあることを特徴としている。   Furthermore, the vapor compression refrigeration system according to the present invention has a permanent magnet rotation between the evaporator into which the refrigerant is introduced from the refrigerant outlet on the secondary side of the thermal self-equilibrium heat exchanger and the compressor to which the refrigerant returns. It is characterized by interposing a type induction heater (magnet heater).

本発明に係る蒸気圧縮式冷凍システムは上記のように構成されている。そのため、本発明における熱自己平衡熱交換器によると、新規な一次膨張弁を通過して高圧冷媒液が中間圧冷媒となり、この中間圧冷媒は二次膨張弁を通過して蒸発し、低圧低温の低圧冷媒となる。この二段式の蒸発によって圧力の降下された蒸発冷媒となって外気熱との温度差を生じ吸熱量を増加させる。つまり、凝縮潜熱の増大につながり、冷凍能力を向上させる。   The vapor compression refrigeration system according to the present invention is configured as described above. Therefore, according to the thermal self-equilibrium heat exchanger in the present invention, the high-pressure refrigerant liquid passes through the novel primary expansion valve and becomes an intermediate-pressure refrigerant, and the intermediate-pressure refrigerant evaporates through the secondary expansion valve, and the low-pressure low-temperature Low pressure refrigerant. Due to the two-stage evaporation, the refrigerant becomes a refrigerant whose pressure is reduced, and a temperature difference from the outside air heat is generated to increase the heat absorption amount. That is, it leads to an increase in condensation latent heat and improves the refrigeration capacity.

外気と接して熱交換器には着霜が多くなるが、一次膨張弁をバイパスして二次膨張弁のみを作動させると、作動の圧力が高く蒸発温度も高く、高温の冷媒ガスを送り出すこととなり、冷凍サイクルを作動させながら、着霜を融解することができ、そのデフロストの際に加熱工程を停止することなく暖房を継続できる。   The heat exchanger is in contact with the outside air and frost formation increases, but if the primary expansion valve is bypassed and only the secondary expansion valve is operated, the operating pressure is high, the evaporation temperature is high, and high-temperature refrigerant gas is sent out. Thus, frost formation can be melted while operating the refrigeration cycle, and heating can be continued without stopping the heating process during the defrosting.

本発明を実施した蒸気圧縮式冷凍システムを示す回路図である。1 is a circuit diagram showing a vapor compression refrigeration system embodying the present invention. 永久磁石回転式誘導加熱器を組み込んだ例を示す回路図である。It is a circuit diagram which shows the example incorporating a permanent magnet rotary induction heater. 冷媒のP‐h図である。It is a Ph diagram of a refrigerant.

図面として示し、実施例で説明したように構成したことで実現した。   This was realized by configuring as illustrated in the drawings and described in the examples.

次に、本発明の好ましい実施例を図面を参照して説明する。図に示す回路は暖房運転時の場合を想定しており、図1にあって1は圧縮機を示し、この圧縮機1から、高温高圧の冷媒が吐出される(T2)。この圧縮機1から吐出された冷媒は凝縮器2へ送り込まれる。この凝縮器2は室内熱交換器となり、その凝縮熱を室内へ放熱することで暖房作用を行なう。   Next, preferred embodiments of the present invention will be described with reference to the drawings. The circuit shown in the figure assumes a heating operation. In FIG. 1, reference numeral 1 denotes a compressor, and high-temperature and high-pressure refrigerant is discharged from the compressor 1 (T2). The refrigerant discharged from the compressor 1 is sent to the condenser 2. This condenser 2 becomes an indoor heat exchanger, and performs the heating action by radiating the condensed heat into the room.

凝縮器2から吐出された高圧冷媒液は熱自己平衡熱交換器3へ送り込まれる(T3)。この熱自己平衡熱交換器3は一次側と二次側を一体とし、その一次側4と二次側5が同一の伝熱面積と容量を持つ構成となっており、その一次側の入口に一次膨張弁6が設けられ、この一次膨張弁6を通過して減圧低温の状態(T4)で一次側4に導入される。尚、この一次膨張弁6には切替弁9を設けたバイパス10が跨設されている。   The high-pressure refrigerant liquid discharged from the condenser 2 is sent to the thermal self-equilibrium heat exchanger 3 (T3). The thermal self-equilibrium heat exchanger 3 is configured such that the primary side and the secondary side are integrated, and the primary side 4 and the secondary side 5 have the same heat transfer area and capacity. A primary expansion valve 6 is provided, passes through the primary expansion valve 6, and is introduced into the primary side 4 in a reduced pressure and low temperature state (T 4). The primary expansion valve 6 is provided with a bypass 10 provided with a switching valve 9.

この一次膨張弁6で減圧低温化され一次側4に導入された冷媒は中間圧冷媒となって、この一次側4から吐出される(T5)。この一次側4から吐出された中間圧冷媒は、二次側5の入口に設けられた二次膨張弁7を通過して、蒸発し、前記した中間圧冷媒(T5)よりも低圧低温の低圧冷媒(T6)となって二次側5に導入される。そして、二次側を通過した冷媒はさらに降圧された蒸発冷媒(T7)となって、外気熱との大きな温度差を生じ、吸熱量を増加させる。   The refrigerant whose pressure is reduced and reduced by the primary expansion valve 6 and introduced to the primary side 4 becomes an intermediate pressure refrigerant and is discharged from the primary side 4 (T5). The intermediate-pressure refrigerant discharged from the primary side 4 passes through the secondary expansion valve 7 provided at the inlet of the secondary side 5 and evaporates, so that the low-pressure and low-pressure is lower than the intermediate-pressure refrigerant (T5). It becomes a refrigerant (T6) and is introduced into the secondary side 5. And the refrigerant | coolant which passed the secondary side turns into the evaporative refrigerant | coolant (T7) further pressure-lowered, produces a big temperature difference with external heat, and increases heat absorption.

即ち、この発明の実施例における熱自己平衡熱交換器3は一次膨張弁6を設けたことで二段階で蒸発、減圧する構成となり、従来の熱自己平衡熱交換器と比べ、はるかに大きな効果を得ることができる。また、この二次側5を通過した蒸発冷媒は蒸発器(屋外吸熱機)8を通過して吸熱して(T1)圧縮機1へ循環して戻ることになる。   That is, the thermal self-equilibrium heat exchanger 3 according to the embodiment of the present invention is configured to evaporate and depressurize in two stages by providing the primary expansion valve 6, and has a far greater effect than the conventional thermal self-equilibrium heat exchanger. Can be obtained. Further, the evaporative refrigerant that has passed through the secondary side 5 passes through the evaporator (outdoor heat absorber) 8 to absorb heat (T1) and circulates back to the compressor 1.

冷媒ガスが熱自己平衡熱交換器3の一次膨張弁6を通過して、一次側4にある時、不完全蒸発の中間圧冷媒となっている。この一次側4の中間圧冷媒は二次膨張弁7を通過して蒸発し、二次側5の中でより低温の蒸発冷媒となる。そして、この二次側5にある低温の蒸発冷媒は、一次側4と二次側5を仕切る伝熱面を介して、一次側4の中間圧冷媒を冷却して過冷却冷媒液にする。一次側4の中でより過冷却冷媒液となると、二次膨張弁7の通過時により低温冷媒ガスとなり冷凍効果を向上させる。   When the refrigerant gas passes through the primary expansion valve 6 of the thermal self-equilibrium heat exchanger 3 and is on the primary side 4, it is an incompletely evaporated intermediate pressure refrigerant. The intermediate pressure refrigerant on the primary side 4 evaporates through the secondary expansion valve 7, and becomes a lower temperature evaporative refrigerant in the secondary side 5. The low-temperature evaporative refrigerant on the secondary side 5 cools the intermediate-pressure refrigerant on the primary side 4 through the heat transfer surface partitioning the primary side 4 and the secondary side 5 to form a supercooled refrigerant liquid. If the refrigerant becomes supercooled in the primary side 4, it becomes a low-temperature refrigerant gas when passing through the secondary expansion valve 7, thereby improving the refrigeration effect.

この熱自己平衡熱交換器3内の冷媒は、一次側4と二次側5に順次相互に作用して熱交換し、経時変化ののち、一次側4の中間圧冷媒を過冷却冷媒液とし、より完全な冷媒液とし、冷媒の気液相変化による熱交換能力を発揮する。   The refrigerant in the thermal self-equilibrium heat exchanger 3 sequentially interacts with the primary side 4 and the secondary side 5 to exchange heat, and after change with time, the intermediate pressure refrigerant on the primary side 4 is used as a supercooled refrigerant liquid. , It will be a more complete refrigerant liquid and will exhibit heat exchange capability by changing the gas-liquid phase of the refrigerant.

ここで、前記した回路にあって、蒸発器8のデフロストについて説明する。二次膨張弁7を通過して二次側5に導入された冷媒は、より低温の蒸発冷媒ガスとなり、吸熱する外気温度により、より低温となって温度差を拡大して、外気よりの吸熱量が大きくなって凝縮潜熱の増大に繋がる。   Here, the defrost of the evaporator 8 in the circuit described above will be described. The refrigerant that has passed through the secondary expansion valve 7 and introduced into the secondary side 5 becomes a lower-temperature evaporative refrigerant gas, becomes cooler due to the outside air temperature that absorbs heat, expands the temperature difference, and absorbs air from outside air. The amount of heat increases and the latent heat of condensation increases.

二次膨張弁7よりの減圧冷媒温度が低温であるため、外気と接して、蒸発器8に着霜の量が多くなり、この除霜方法として、一次膨張弁6を閉塞して切替弁9を開けバイパス10に冷媒を通して、減圧工程を省略して、二次膨張弁7のみを作動させると、一次膨張弁6、二次膨張弁7を同時に作用させるよりも、二次膨張弁7のみの作動圧力が高く蒸発温度も高く、高温の冷媒ガスを送り出すことになり、冷凍サイクルを作動しながら、着霜を融解することができる。デフロストのため加熱工程を停止することなく暖房を継続することができる。つまり、バイパス10を用いることで出願人が既得の特許第4398687号のシステムと同等の効果が得られる。   Since the decompressed refrigerant temperature from the secondary expansion valve 7 is low, the amount of frost on the evaporator 8 increases in contact with the outside air. As this defrosting method, the primary expansion valve 6 is closed and the switching valve 9 is closed. Opening the refrigerant through the bypass 10 and omitting the depressurization step, and operating only the secondary expansion valve 7, rather than operating the primary expansion valve 6 and the secondary expansion valve 7 simultaneously, The operating pressure is high, the evaporation temperature is high, and a high-temperature refrigerant gas is sent out, so that frost formation can be thawed while operating the refrigeration cycle. Heating can be continued without stopping the heating process due to defrosting. In other words, the use of the bypass 10 can provide the same effect as the system of Japanese Patent No. 4398687 already obtained by the applicant.

次いで、圧縮機1に過冷却液冷媒を戻さない(液バックさせない)システムについて、熱自己平衡熱交換器3と凝縮、蒸発、潜熱の移行メカニズムを説明する。図3として示すP‐h線図にあって、R2、R3は高圧冷媒液を示し、R4、R5は中間圧冷媒を、R6、R7は低圧冷媒ガスを示している。h1は圧縮機1の仕事入力で凝縮潜熱として放熱される。   Next, the thermal self-equilibrium heat exchanger 3 and the condensation, evaporation, and latent heat transfer mechanism will be described for a system in which the supercooled liquid refrigerant is not returned to the compressor 1 (no liquid back). In the Ph diagram shown in FIG. 3, R2 and R3 indicate high-pressure refrigerant liquid, R4 and R5 indicate intermediate-pressure refrigerant, and R6 and R7 indicate low-pressure refrigerant gas. h1 is a work input of the compressor 1 and is dissipated as latent heat of condensation.

h2、h3は熱自己平衡熱交換器3の一次側4、二次側5の同一伝熱面と接しているので、一次側4の凝縮潜熱が二次側5の蒸発熱源となり、この二次側5の蒸発潜熱が一次側4の凝縮熱源となり、相互の潜熱を熱交換してR1の圧縮機1への吸引冷媒は蒸発潜熱「0」となり、圧縮機1への液冷媒(蒸発潜熱)は消耗されている。   Since h2 and h3 are in contact with the same heat transfer surface on the primary side 4 and the secondary side 5 of the thermal self-equilibrium heat exchanger 3, the condensation latent heat on the primary side 4 becomes an evaporation heat source on the secondary side 5, and this secondary The latent heat of vaporization on the side 5 becomes a condensation heat source on the primary side 4, the mutual latent heat is heat-exchanged, the refrigerant sucked into the compressor 1 of R 1 becomes the latent heat of vaporization “0”, and the liquid refrigerant to the compressor 1 (latent heat of vaporization) Is exhausted.

さらに、熱自己平衡熱交換器3の作用について説明すると、ヒートポンプシステムは外部の空気熱より低温の冷媒に熱を吸引して、外部空気熱に高温冷媒として放熱する冷凍サイクルであるから、蒸発潜熱h2において、低温の外部熱源から吸熱すれば相対する凝縮潜熱となり、放熱能力となる。冷凍サイクル系外部からの蒸発熱源取得及び外部への凝縮熱源放熱が優先して、放熱、冷却が行なわれる。   Further, the operation of the thermal self-equilibrium heat exchanger 3 will be described. Since the heat pump system is a refrigeration cycle that draws heat into a refrigerant having a temperature lower than that of the external air heat and dissipates heat as a high-temperature refrigerant to the external air heat. When the heat is absorbed from a low-temperature external heat source at h2, the opposite condensation latent heat is obtained, and the heat dissipation capability is obtained. Heat radiation and cooling are performed with priority given to evaporating heat source acquisition from the outside of the refrigeration cycle system and condensation heat source heat radiation to the outside.

本来、蒸発潜熱、凝縮潜熱は相互に熱交換して潜熱「0」の状態にあるため、外部からの潜熱は十分に受け入れられる状態となっている。外部熱源増減量により合わせ一次側4、二次側5の熱交換容量を平衡に保ち、冷凍サイクルを安定持続させることができる。   Originally, the latent heat of evaporation and the latent heat of condensation are in a state of latent heat “0” through mutual heat exchange, so that the latent heat from the outside is sufficiently received. The refrigeration cycle can be stably maintained by keeping the heat exchange capacities of the primary side 4 and the secondary side 5 in equilibrium by adjusting the amount of increase / decrease in the external heat source.

また、図3を参照すると、凝縮器2から導入される高圧冷媒液は一次膨張弁6を通過して、一次側4で蒸発し、中間圧冷媒R4、R5となり、一次側4から吐出された冷媒は二次膨張弁7を通過して二次側5に導入され、低圧冷媒R6、R7、R1となる。一次側4の中間圧冷媒はより低温の二次側5の冷媒で冷却され過冷却冷媒となる。一次側4のR4、R5の状態で奪われた同量の蒸発潜熱を連成するR7、R1で吸熱し、同期して凝縮潜熱となる凝縮、蒸発の潜熱の不足熱量は一次側4、二次側5でバーター熱交換して熱平衡を維持するということになる。   Referring to FIG. 3, the high-pressure refrigerant liquid introduced from the condenser 2 passes through the primary expansion valve 6, evaporates on the primary side 4, becomes intermediate-pressure refrigerant R <b> 4, R <b> 5, and is discharged from the primary side 4. The refrigerant passes through the secondary expansion valve 7 and is introduced to the secondary side 5 to become low-pressure refrigerants R6, R7, and R1. The intermediate pressure refrigerant on the primary side 4 is cooled by the cooler refrigerant on the secondary side 5 and becomes a supercooled refrigerant. The R4 and R1 of the primary side 4 absorbs the same amount of latent heat of vaporization absorbed by R7 and R1, and the heat of condensation and the latent heat of condensation becomes the latent heat of condensation. This means that barter heat exchange is performed on the secondary side 5 to maintain thermal equilibrium.

また、図2を参照して、本発明の第二実施例を説明する。この第二実施例にあって、第一実施例と共通する部分は同一の符号を付して詳細な説明は省略する。この第二実施例にあっては、蒸発器8と冷媒が戻る圧縮機1の間に永久磁石回転式誘導加熱器11が組み込まれており、この第二実施例における永久磁石回転式誘導加熱器11はモータ12を駆動源としている。   A second embodiment of the present invention will be described with reference to FIG. In the second embodiment, parts common to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In this second embodiment, a permanent magnet rotary induction heater 11 is incorporated between the evaporator 8 and the compressor 1 where the refrigerant returns, and the permanent magnet rotary induction heater in this second embodiment. 11 uses a motor 12 as a drive source.

この永久磁石回転式誘導加熱器11は、特に寒冷地における外気熱利用の非効率を補完してより完全な加熱を発生させる目的で使用される。従って蒸発器8を通過して圧縮機1に吸入される前に、冷媒の配管内に、この汎用モータ12による永久磁石回転式誘導加熱器11を内蔵して直接、低圧冷媒ガスを加熱する。   This permanent magnet rotary induction heater 11 is used for the purpose of generating more complete heating, complementing the inefficiency of using outside air heat particularly in cold regions. Therefore, before passing through the evaporator 8 and being sucked into the compressor 1, the low-pressure refrigerant gas is directly heated by incorporating the permanent magnet rotary induction heater 11 by the general-purpose motor 12 in the refrigerant pipe.

この永久回転式誘導加熱器11は、電流の流れや導電体の近傍で磁界を変化する時、導電体にジュール熱が発生し、昇温する。モータ12によって回転する回転盤に永久磁石をS極、N極交互に取り付け、導電体と平行配置して回転させると導電体が発熱体となり、通過する冷媒を加熱することができ、過冷却の状態で圧縮機1へ冷媒を戻すことはなくなる。   When the magnetic field is changed in the vicinity of the current flow or the conductor, the permanent rotating induction heater 11 generates Joule heat in the conductor and raises the temperature. Permanent magnets are mounted alternately on the rotating disk rotated by the motor 12, and when the poles are arranged in parallel with the conductors and rotated in parallel with the conductors, the conductors become heating elements and the passing refrigerant can be heated. In this state, the refrigerant is not returned to the compressor 1.

本実施例に係る蒸気圧縮式冷凍システムは上記のように構成されている。熱自己平衡熱交換器3の一次側4に冷媒が導入されるに先立って、一次膨張弁6を通過させることで、その冷媒は蒸発して中間圧冷媒となり、この中間圧冷媒を二次膨張弁7を通して二次側5へ導入するので、より低温の蒸発冷媒となって、過冷却冷媒液となり冷凍効果を向上させ、冷媒の気液相変化による熱交換能力を発揮させる。   The vapor compression refrigeration system according to the present embodiment is configured as described above. Prior to the introduction of the refrigerant to the primary side 4 of the thermal self-equilibrium heat exchanger 3, the refrigerant evaporates into an intermediate pressure refrigerant by passing through the primary expansion valve 6, and this intermediate pressure refrigerant is subjected to secondary expansion. Since it introduce | transduces to the secondary side 5 through the valve 7, it becomes a low-temperature evaporative refrigerant, becomes a supercooled refrigerant liquid, improves a freezing effect, and exhibits the heat exchange capability by the gas-liquid phase change of a refrigerant | coolant.

また、一次膨張弁6にはバイパス10が設けられ、この一次膨張弁6の不使用状態では、出願人が権利取得済のデフロストシステムと同等の構成となり、冷凍サイクルを停止することなく、運転しながらデフロストを行なえ、デフロストのための加熱による運転停止をすることなく暖房を継続することができる。   The primary expansion valve 6 is provided with a bypass 10. When the primary expansion valve 6 is not used, the primary expansion valve 6 is configured in the same manner as the defrost system for which the applicant has acquired the right and operates without stopping the refrigeration cycle. However, defrosting can be performed, and heating can be continued without stopping operation due to heating for defrosting.

1 圧縮機
2 凝縮器
3 熱自己平衡熱交換器
4 一次側
5 二次側
6 一次膨張弁
7 二次膨張弁
8 蒸発器
9 切替弁
10 バイパス
11 永久磁石回転式誘導加熱器
12 モータ
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Thermal self-equilibrium heat exchanger 4 Primary side 5 Secondary side 6 Primary expansion valve 7 Secondary expansion valve 8 Evaporator 9 Switching valve 10 Bypass 11 Permanent magnet rotary induction heater 12 Motor

この問題点を解決するために、本発明に係る蒸気圧縮式冷凍システムは冷媒の圧縮、凝縮、膨張、蒸発の工程を有する蒸気圧縮式冷凍サイクルであって、一次側とその一次側を通過した冷媒が流入する二次側を一体に有し、その一次側と二次側が同一の伝熱面積と容量を持つ熱自己平衡熱交換器を凝縮器と蒸発器の間に組み込み、この熱自己平衡熱交換器の二次側の冷媒入口に膨張弁を備え、前記熱自己平衡熱交換器の冷媒が導入される一次側の冷媒入口にも一次膨張弁を備えている蒸気圧縮式冷凍システムにおいて、前記した一次側の冷媒入口の一次膨張弁には、バイパスが設けられていることを特徴としている。 In order to solve this problem, the vapor compression refrigeration system according to the present invention is a vapor compression refrigeration cycle having refrigerant compression, condensation, expansion, and evaporation steps, and has passed through the primary side and the primary side. A thermal self-equilibrium heat exchanger, which has a secondary side into which refrigerant flows in and has the same heat transfer area and capacity on the primary side and secondary side, is installed between the condenser and the evaporator. e Bei an expansion valve to the refrigerant inlet of the secondary side of the heat exchanger, in the thermal self-balancing heat exchanger vapor compression refrigeration system refrigerant and a primary expansion valve to the refrigerant inlet of the primary side to be introduced in The primary expansion valve of the primary side refrigerant inlet is provided with a bypass .

Claims (4)

冷媒の圧縮、凝縮、膨張、蒸発の工程を有する蒸気圧縮式冷凍サイクルであって、一次側と二次側を一体に有し、その一次側と二次側が同一の伝熱面積と容量を持つ熱自己平衡熱交換器を組み込み、この熱自己平衡熱交換器の二次側の冷媒入口に膨張弁を備えている蒸気圧縮式冷凍システムにおいて、前記熱自己平衡熱交換器の冷媒が導入される一次側の冷媒入口にも一次膨張弁を備えていることを特徴とする蒸気圧縮式冷凍システム。   A vapor compression refrigeration cycle having steps of refrigerant compression, condensation, expansion, and evaporation, having a primary side and a secondary side integrally, and the primary side and the secondary side have the same heat transfer area and capacity In a vapor compression refrigeration system incorporating a thermal self-equilibrium heat exchanger and having an expansion valve at the refrigerant inlet on the secondary side of the thermal self-equilibrium heat exchanger, the refrigerant of the thermal self-equilibrium heat exchanger is introduced A vapor compression refrigeration system comprising a primary expansion valve at a refrigerant inlet on a primary side. 前記した一次側の冷媒入口の一次膨張弁には、バイパスが設けられていることを特徴とする請求項1に記載の蒸気圧縮式冷凍システム。   The vapor compression refrigeration system according to claim 1, wherein a bypass is provided in the primary expansion valve of the primary refrigerant inlet. 前記した熱自己平衡熱交換器は冷凍サイクル中の冷媒の流れで、凝縮器と蒸発器の間に設けられていることを特徴とする請求項1または請求項2に記載の蒸気圧縮式冷凍システム。   The vapor compression refrigeration system according to claim 1 or 2, wherein the thermal self-equilibrium heat exchanger is provided between a condenser and an evaporator in a refrigerant flow in a refrigeration cycle. . 前記した熱自己平衡熱交換器の二次側の冷媒出口から冷媒が導入される蒸発器と、その冷媒が戻る圧縮機との間に永久磁石回転式誘導加熱器(マグネットヒーター)を介在させてあることを特徴とする請求項1から3のうち1項に記載の蒸気圧縮式冷凍システム。   A permanent magnet rotary induction heater (magnet heater) is interposed between the evaporator into which the refrigerant is introduced from the refrigerant outlet on the secondary side of the thermal self-equilibrium heat exchanger and the compressor to which the refrigerant returns. The vapor compression refrigeration system according to claim 1, wherein the vapor compression refrigeration system is provided.
JP2013028699A 2013-02-18 2013-02-18 Vapor compression refrigeration system Active JP5295441B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013028699A JP5295441B1 (en) 2013-02-18 2013-02-18 Vapor compression refrigeration system
US14/180,841 US20140231049A1 (en) 2013-02-18 2014-02-14 Vapor compression refrigeration system
KR1020140017858A KR101405759B1 (en) 2013-02-18 2014-02-17 Vapor compression refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028699A JP5295441B1 (en) 2013-02-18 2013-02-18 Vapor compression refrigeration system

Publications (2)

Publication Number Publication Date
JP5295441B1 JP5295441B1 (en) 2013-09-18
JP2014156979A true JP2014156979A (en) 2014-08-28

Family

ID=49396765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028699A Active JP5295441B1 (en) 2013-02-18 2013-02-18 Vapor compression refrigeration system

Country Status (1)

Country Link
JP (1) JP5295441B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110307680A (en) * 2019-05-31 2019-10-08 广东美的制冷设备有限公司 Progress control method, control device, air conditioner and computer readable storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339393B2 (en) * 2014-03-26 2018-06-06 株式会社マック Air dryer device
CN113108497B (en) * 2020-03-09 2022-05-10 珠海格力节能环保制冷技术研究中心有限公司 Heat pump air conditioning system and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155277U (en) * 1980-04-18 1981-11-19
JP5146884B2 (en) * 2009-09-07 2013-02-20 株式会社マック Refrigerant heating auxiliary device for refrigeration cycle and refrigerant heating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110307680A (en) * 2019-05-31 2019-10-08 广东美的制冷设备有限公司 Progress control method, control device, air conditioner and computer readable storage medium

Also Published As

Publication number Publication date
JP5295441B1 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
US7155927B2 (en) Exhaust heat utilizing refrigeration system
JPWO2013080244A1 (en) Refrigeration air conditioner
JP2004322914A (en) Heat exchanger for combined cycle
US20140338389A1 (en) Vapor compression system with thermal energy storage
JP2013096586A (en) Adsorption type refrigeration device
JP5295441B1 (en) Vapor compression refrigeration system
US10578344B2 (en) Reversible liquid suction gas heat exchanger
JP2013076491A (en) Air conditioner
JP2010196963A (en) Dual type heat pump and refrigerating device
JP2010048446A (en) Hybrid air cycle refrigerating and cooling unit
JP5146884B2 (en) Refrigerant heating auxiliary device for refrigeration cycle and refrigerant heating method thereof
JP6420677B2 (en) Air conditioner
JPWO2015008463A1 (en) Air conditioner for vehicle and component unit thereof
WO2012128610A1 (en) Liquid line subcooler and method of subcooling working fluid entering metering device
JP2006170536A (en) Vapor compression type heat pump
KR101405759B1 (en) Vapor compression refrigeration system
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP2013124820A (en) Two-step heater and two-step cooler
JP2019032131A (en) Freezing system, magnetic body structure, magnetic freezing unit, and heat radiation assisting method
KR101461057B1 (en) Apparatus for cooling and heating with one circulating loop using thermoelectric element
JP2019504276A (en) Apparatus having a hybrid vapor compression-adsorption cycle and method for implementing the same
KR20100037446A (en) Air conditioner
JP2018028407A (en) Refrigeration cycle device
JP2017133727A (en) Heat pump type water heater
KR20090095744A (en) Cooling cycle device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5295441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250