JP2014156544A - Manufacturing apparatus and manufacturing method of carbonized material - Google Patents

Manufacturing apparatus and manufacturing method of carbonized material Download PDF

Info

Publication number
JP2014156544A
JP2014156544A JP2013028248A JP2013028248A JP2014156544A JP 2014156544 A JP2014156544 A JP 2014156544A JP 2013028248 A JP2013028248 A JP 2013028248A JP 2013028248 A JP2013028248 A JP 2013028248A JP 2014156544 A JP2014156544 A JP 2014156544A
Authority
JP
Japan
Prior art keywords
gas
pyrolysis furnace
pyrolysis
reactor
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013028248A
Other languages
Japanese (ja)
Other versions
JP6111088B2 (en
Inventor
Yuichi Kimura
裕一 木村
Togo Yamaguchi
東吾 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013028248A priority Critical patent/JP6111088B2/en
Publication of JP2014156544A publication Critical patent/JP2014156544A/en
Application granted granted Critical
Publication of JP6111088B2 publication Critical patent/JP6111088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Coke Industry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing apparatus of a carbonized material capable of enhancing the amount of heat transferred within a pyrolyzing furnace without entailing the proliferation of the cooling capacity of an oil recovery device or the heating capacity of a gas heating device.SOLUTION: A manufacturing apparatus 1 of a carbonized material is constituted by configuring a reactor 13 within a pyrolyzing furnace 10 possessing an internal space in which raw ingredients including a polymeric organic compound can be stored. This reactor 13 possesses an introduction port 13a for introducing a gas and a discharge port 13b for discharging the gas. A gas targeted for pyrolysis is circulated through the interior of the pyrolyzing furnace 10 from the introduction port 13a to discharge port 13b of the reactor 13 within the pyrolyzing furnace 10.

Description

本発明は、高分子系有機化合物を含む原料を熱分解して炭化材料を得るとともに、熱分解中に発生した熱分解ガス中から油分を分離回収する炭化材料の製造装置及び方法に関する。   The present invention relates to a carbonized material manufacturing apparatus and method for pyrolyzing a raw material containing a polymer organic compound to obtain a carbonized material, and separating and recovering oil from a pyrolysis gas generated during the thermal decomposition.

高分子系有機化合物を含むタイヤなどの製品の廃棄物の処理については、近年の地球環境保全、廃棄物の減少、リサイクルの観点から関心が高まっている。このような状況を踏まえ、高分子系有機化合物を含む廃棄物を原料として、該原料を非酸化性雰囲気中で加熱して熱分解させて、カーボンブラックとなる炭化材料を製造するとともに、熱分解中に発生した熱分解ガス中から油分を分離回収する研究、開発が行われている。   With regard to the disposal of waste products such as tires containing high molecular organic compounds, there has been increasing interest from the viewpoint of recent global environmental conservation, waste reduction, and recycling. Based on this situation, using carbonaceous organic compound waste as a raw material, the raw material is heated and thermally decomposed in a non-oxidizing atmosphere to produce a carbonized carbon material that becomes carbon black. Research and development are being conducted to separate and recover oil from the pyrolysis gas generated inside.

高分子系有機化合物を含む廃棄物を原料とする従来の炭化材料の製造装置は、高分子系有機化合物を含む廃棄物を熱分解させる熱分解炉と、熱分解時に熱分解炉から発生する熱分解ガスを冷却して油分を分離し、回収する油分回収装置と、熱分解炉の炉内雰囲気を非酸化性にするための不活性ガス供給装置とを備える基本構成を有している。   Conventional carbonized material production equipment that uses waste containing high-molecular-weight organic compounds as a raw material includes a pyrolysis furnace that thermally decomposes waste containing high-molecular-weight organic compounds and heat generated from the pyrolysis furnace during thermal decomposition. It has a basic configuration including an oil content recovery device that cools the cracked gas to separate and recover the oil content, and an inert gas supply device for making the furnace atmosphere of the pyrolysis furnace non-oxidizing.

油分回収装置と熱分解炉とに接続する管路の途中にガス加熱装置を設けた炭化材料の製造装置に関して、熱分解炉から生じた熱分解ガスを熱交換器に導いて、熱分解ガスの顕熱により残ガスを加熱するものがある(特許文献1)。   Regarding the carbonized material manufacturing equipment with a gas heating device in the middle of the pipe connecting the oil recovery device and the pyrolysis furnace, the pyrolysis gas generated from the pyrolysis furnace is guided to the heat exchanger, There exists what heats residual gas by sensible heat (patent document 1).

特開2012−001703号公報JP 2012-001703 A

油分回収装置と熱分解炉とに接続する管路の途中にガス加熱装置を設けた炭化材料の製造装置において、加熱開始直後からの更なる炉内材料の均熱化や熱分解処理一回当たりの処理量の増大等のために、熱分解炉内での熱の移動量を増大させるためには、熱分解炉内に導入する、加熱されたガスの流量を増大させる必要がある。しかしながら、加熱されたガスの流量を増大させるには、増大させるガスの流量に応じた油分回収装置の冷却能力の増大と、ガス加熱装置の加熱能力の増大が共に必要となり、設備の大型化や消費エネルギーの増大を招く。   In the carbonized material manufacturing equipment with a gas heating device in the middle of the pipe connected to the oil recovery device and the pyrolysis furnace, per soaking of the in-furnace material and one pyrolysis treatment immediately after the start of heating In order to increase the amount of heat transferred in the pyrolysis furnace due to an increase in the amount of treatment, it is necessary to increase the flow rate of the heated gas introduced into the pyrolysis furnace. However, in order to increase the flow rate of the heated gas, it is necessary to increase both the cooling capacity of the oil recovery device in accordance with the increased gas flow rate and the heating capability of the gas heating device. Increases energy consumption.

本発明は、上記問題を有利に解決するためになされたものであり、油分回収装置の冷却能力の増大やガス加熱装置の加熱能力の増大を招くことなく、熱分解炉内での熱の移動量を増大させることのできる炭化材料の製造装置及び製造方法を提供することを目的とする。   The present invention has been made in order to advantageously solve the above-described problem, and the heat transfer in the pyrolysis furnace without causing an increase in the cooling capacity of the oil recovery device or an increase in the heating capacity of the gas heating device. It aims at providing the manufacturing apparatus and manufacturing method of the carbonized material which can increase the quantity.

本発明の炭化材料の製造装置は、高分子系有機化合物を含む原料を収容可能な内部空間を有する熱分解炉内に設けられた反応器の中で前記原料を熱分解処理して炭化材料を製造する装置であって、前記反応器が、ガスを導入する導入口とガスを排出する排出口とを有し、前記熱分解炉内において前記反応器の導入口と排出口とを通じて熱分解におけるガスが前記熱分解炉の内部で循環することを特徴とする。   An apparatus for producing a carbonized material according to the present invention is a method in which a carbonized material is obtained by pyrolyzing the raw material in a reactor provided in a pyrolysis furnace having an internal space capable of containing a raw material containing a high molecular weight organic compound. An apparatus for manufacturing, wherein the reactor has an inlet for introducing gas and an outlet for discharging gas, and in the pyrolysis furnace through the inlet and outlet of the reactor in the pyrolysis furnace. Gas is circulated inside the pyrolysis furnace.

本発明の炭化材料の製造方法は、高分子系有機化合物を含む原料を収容可能な内部空間を有する熱分解炉内に設けられた反応器の中で前記原料を熱分解処理して炭化材料を製造する方法であって、前記熱分解炉内において、ガスを導入する導入口とガスを排出する排出口とを有する前記反応器の該導入口と該排出口とを通じて熱分解におけるガスを前記熱分解炉の内部で循環させることを特徴とする。   The method for producing a carbonized material of the present invention is a method in which a carbonized material is obtained by pyrolyzing the raw material in a reactor provided in a pyrolysis furnace having an internal space capable of containing a raw material containing a high molecular organic compound. In the pyrolysis furnace, the gas in the pyrolysis is heated through the inlet and the outlet of the reactor having an inlet for introducing gas and an outlet for discharging gas. It is characterized by being circulated inside the cracking furnace.

本発明によれば、熱分解炉内に反応器が設けられ、この反応器の導入口と排出口とを通じて熱分解におけるガスが前記熱分解炉の内部で循環することから、加熱された炉内ガスの流量を増大させることができる。このため、油分回収装置の冷却能力の増大やガス加熱装置の加熱能力の増大を招くことなく、熱分解炉内での熱の移動量を増大させることができる。   According to the present invention, a reactor is provided in the pyrolysis furnace, and the gas in the pyrolysis circulates in the pyrolysis furnace through the inlet and outlet of the reactor. The gas flow rate can be increased. For this reason, the amount of heat transfer in the pyrolysis furnace can be increased without causing an increase in the cooling capacity of the oil recovery device or an increase in the heating capacity of the gas heating device.

本発明の一実施形態の模式図であるIt is a schematic diagram of one embodiment of the present invention. 本発明の別の実施形態の模式図である。It is a schematic diagram of another embodiment of this invention. 熱分解炉内の温度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature in a pyrolysis furnace.

以下、本発明の炭化材料の製造装置及び製造方法の実施形態を、図面を用いてより具体的に説明する。   Hereinafter, embodiments of the carbonized material manufacturing apparatus and method of the present invention will be described more specifically with reference to the drawings.

図1に模式図で示す本発明の一実施形態の炭化材料の製造装置1は、高分子系有機化合物を含む原料を熱分解して炭化材料を得る熱分解炉10と、熱分解炉10に不活性ガスを供給する供給源としての不活性ガス供給装置11と、熱分解炉10から発生する熱分解ガスを冷却して当該熱分解ガス中の油分を分離回収する油分回収装置としての凝縮器20とを備えている。   A carbonized material manufacturing apparatus 1 according to an embodiment of the present invention schematically shown in FIG. 1 includes a pyrolysis furnace 10 that pyrolyzes a raw material containing a polymer organic compound to obtain a carbonized material, and a pyrolysis furnace 10. An inert gas supply device 11 as a supply source for supplying an inert gas, and a condenser as an oil recovery device that cools the pyrolysis gas generated from the pyrolysis furnace 10 and separates and recovers the oil in the pyrolysis gas. 20.

不活性ガス供給装置11は、熱分解炉10にガス管12を介して接続している。不活性ガス供給装置11から供給する不活性ガスは、例えば窒素ガスであり、市販の窒素ガスを用いることができる。この他、アルゴンガス等を用いることもできる。熱分解炉10で高分子系有機化合物を含む原料の熱分解を行う前に、不活性ガス供給装置11から不活性ガスを熱分解炉10内に供給することにより、熱分解炉10内から空気を取り除き、炉内を、熱分解に適した非酸化性雰囲気にすることができる。また、熱分解炉10内での原料の熱分解処理中に、不活性ガス供給装置11から不活性ガスを熱分解炉10内に供給することも可能である。熱分解処理中に不活性ガスを熱分解炉10内に供給することにより、熱分解炉10内でのガスの流量を増大させることができ、これにより熱分解を促進させることができる。もっとも、本実施形態では、後述するように熱分解炉10内にファン15を有し、このファン15により熱分解炉10内のガスを流動させていることにより、炉内のガスの流量を大きくしている、そのため、熱分解処理中に不活性ガスを熱分解炉10内に供給することは、必ずしも必要でなく、熱分解処理中は不活性ガスの供給を止めてもよい。   The inert gas supply device 11 is connected to the pyrolysis furnace 10 via a gas pipe 12. The inert gas supplied from the inert gas supply device 11 is, for example, nitrogen gas, and commercially available nitrogen gas can be used. In addition, argon gas or the like can be used. Before the pyrolysis of the raw material containing the polymer organic compound in the pyrolysis furnace 10, air is supplied from the pyrolysis furnace 10 by supplying an inert gas from the inert gas supply device 11 into the pyrolysis furnace 10. The inside of the furnace can be made into a non-oxidizing atmosphere suitable for thermal decomposition. It is also possible to supply an inert gas from the inert gas supply device 11 into the pyrolysis furnace 10 during the pyrolysis process of the raw material in the pyrolysis furnace 10. By supplying an inert gas into the pyrolysis furnace 10 during the pyrolysis treatment, the gas flow rate in the pyrolysis furnace 10 can be increased, thereby promoting the pyrolysis. However, in the present embodiment, as will be described later, a fan 15 is provided in the pyrolysis furnace 10, and the gas in the pyrolysis furnace 10 is caused to flow by the fan 15, thereby increasing the flow rate of the gas in the furnace. Therefore, it is not always necessary to supply the inert gas into the thermal decomposition furnace 10 during the thermal decomposition process, and the supply of the inert gas may be stopped during the thermal decomposition process.

熱分解炉10の炉内空間10aには、図示した本実施形態では、高分子系有機化合物を含む原料が収容される反応器13が設けられている。この反応器13は、ガスを導入する導入口13aとガスを排出する排出口13bとを有している。この反応器13中で原料を熱分解させる。また、反応器13が設けられていることにより、熱分解処理後に得られる炭化材料を熱分解炉10から取り出すのが容易となる。反応器13は、熱分解炉10の上部又は側部に設けられる扉(図示されない)の開放により熱分解炉10の炉内空間10aから出し入れ可能となっている。   In the furnace space 10 a of the pyrolysis furnace 10, in the illustrated embodiment, a reactor 13 in which a raw material containing a polymer organic compound is accommodated is provided. The reactor 13 has an inlet 13a for introducing gas and an outlet 13b for discharging gas. The raw material is pyrolyzed in the reactor 13. Further, the provision of the reactor 13 makes it easy to take out the carbonized material obtained after the pyrolysis treatment from the pyrolysis furnace 10. The reactor 13 can be taken in and out from the in-furnace space 10a of the pyrolysis furnace 10 by opening a door (not shown) provided on the top or side of the pyrolysis furnace 10.

熱分解炉10の炉内空間10aに、炉内ガスを加熱する加熱手段としての加熱装置14が設けられている。加熱装置14は例えば電気ヒータであり、熱分解炉10の外部に設けられた電源から所定の電力が供給されて熱を発する。加熱装置14は、反応器13の外方、図1に示した例では反応器13の底面よりも下方に設けられている。   A heating device 14 is provided in the furnace space 10 a of the pyrolysis furnace 10 as heating means for heating the furnace gas. The heating device 14 is an electric heater, for example, and emits heat when a predetermined power is supplied from a power source provided outside the pyrolysis furnace 10. The heating device 14 is provided outside the reactor 13, and below the bottom surface of the reactor 13 in the example shown in FIG. 1.

熱分解炉10の炉内空間10aに、炉内でガスを流動させるための送風手段としてのファン15が設けられている。図示したファン15は、翼部15aと、この翼部15aを取り付けた回転軸15bと、この回転軸15bを駆動するモータ15cとを備え、回転軸15bが熱分解炉10の側面を貫通して回動可能になり、翼部15aを回転させる。翼部15aは、熱分解炉10の炉内の側壁近傍に、モータ15cが熱分解炉10の炉外に設けられている。   A fan 15 is provided in the in-furnace space 10a of the pyrolysis furnace 10 as a blowing means for flowing gas in the furnace. The illustrated fan 15 includes a blade portion 15a, a rotating shaft 15b to which the blade portion 15a is attached, and a motor 15c that drives the rotating shaft 15b. The rotating shaft 15b passes through the side surface of the pyrolysis furnace 10. It becomes possible to rotate, and the wing part 15a is rotated. In the blade portion 15 a, a motor 15 c is provided outside the pyrolysis furnace 10 in the vicinity of the side wall inside the pyrolysis furnace 10.

図示したファン15は、モータ15cにより翼部15aを回転させることにより、熱分解炉10の炉内で炉内ガスの流動を生じさせる。ガスは、例えば、図中に矢印で示すように熱分解炉10の炉内で側壁に沿い、炉底と反応器13の底部との間に設けられた加熱装置14の近傍を通過し、反応器13の側壁に設けられた導入口13aから反応器13内に入り、反応器13内を通過して反応器13の側壁に設けられた排出口13bより反応器13外に出てファン15の翼部15aに戻るように、炉内を循環する。炉内ガスは、これの流れにより加熱装置14により加熱され、加熱された炉内ガスにより反応器13内の原料が熱分解される。   The illustrated fan 15 causes the gas in the furnace to flow in the furnace of the pyrolysis furnace 10 by rotating the blade portion 15a by the motor 15c. For example, the gas passes along a side wall in the furnace of the pyrolysis furnace 10 as shown by an arrow in the figure, passes through the vicinity of the heating device 14 provided between the bottom of the furnace and the bottom of the reactor 13, and reacts. The reactor 13 enters the reactor 13 through the inlet 13 a provided on the side wall of the reactor 13, passes through the reactor 13, exits from the reactor 13 through the outlet 13 b provided on the side wall of the reactor 13, and It circulates in the furnace so as to return to the wing part 15a. The furnace gas is heated by the heating device 14 by this flow, and the raw material in the reactor 13 is thermally decomposed by the heated furnace gas.

熱分解炉10の上部には排気孔10bが形成され、熱分解炉10内で原料の熱分解により生じた熱分解ガス及び必要に応じて熱分解時に供給された不活性ガスが排気孔10bから排出される。
また、排出孔10bに、凝縮器20と接続している排気管16が接続され、熱分解炉10から排出されたガスが凝縮器20に導かれる。
An exhaust hole 10b is formed in the upper part of the pyrolysis furnace 10, and a pyrolysis gas generated by pyrolysis of the raw material in the pyrolysis furnace 10 and an inert gas supplied at the time of pyrolysis as necessary from the exhaust hole 10b. Discharged.
In addition, the exhaust pipe 16 connected to the condenser 20 is connected to the discharge hole 10 b, and the gas discharged from the pyrolysis furnace 10 is guided to the condenser 20.

凝縮器20は、熱分解炉10からのガスの入口20a及びガス出口20bを有すると共に、冷却水の入口20c及び出口20dを有し、排気管16を通して凝縮器20に導入されたガスを冷却水により冷却する。これによりガス中から蒸気圧の低い油分を液化し、凝縮器20の底部に溜めて回収する。凝縮器20のガス出口20bは、ガス管21により集塵機22と接続される。油分が回収された後のガスは、集塵機22によりガス中のダストが分離された後、ガス処理装置としての例えば燃焼塔23による燃焼処理がされる。したがって、本実施形態では、油分が回収された後のガスを熱分解炉10に還流させることはしない。   The condenser 20 has an inlet 20a and a gas outlet 20b for the gas from the pyrolysis furnace 10, and has an inlet 20c and an outlet 20d for cooling water, and the gas introduced into the condenser 20 through the exhaust pipe 16 is cooled with water. To cool. As a result, the oil component having a low vapor pressure is liquefied from the gas and collected at the bottom of the condenser 20 for recovery. The gas outlet 20 b of the condenser 20 is connected to the dust collector 22 by a gas pipe 21. The gas from which the oil has been collected is subjected to a combustion treatment by, for example, a combustion tower 23 as a gas treatment device after dust in the gas is separated by the dust collector 22. Therefore, in this embodiment, the gas after the oil component is recovered is not refluxed to the pyrolysis furnace 10.

本実施形態の炭化材料の製造装置は、反応器13が、ガスを導入する導入口13aとガを排出する排出口13bとを有し、前記熱分解炉10内において前記反応器13の導入口13aと排出口13bを通じて熱分解におけるガスが前記熱分解炉10の内部で循環する。そのため、加熱された炉内ガスの流量を増大させることができることから、熱の移動量を容易に増大させることができ、よって加熱開始直後からの更なる炉内材料の均熱化や熱分解処理一回当たりの処理量の増大等が可能となる。したがって、少ないエネルギーで炭化材料を迅速に製造することができる。また、本実施形態の炭化材料の製造装置は、凝縮器20を通過したガスを還流させて熱分解炉10に供給するものではないから、加熱された炉内ガスの流量を増大させるために、凝縮器20の冷却能力やガス加熱装置の加熱能力を増大させる必要がないことから、設備投資とランニングコストの低減が可能となる。更に、ファン15の翼部15aを熱分解炉の内部空間10aに設けたことから、このファン15を作動させることにより、熱分解炉10内で炉内ガスが循環するような流動をさせることができる。   In the carbonized material manufacturing apparatus of this embodiment, the reactor 13 has an inlet 13 a for introducing gas and an outlet 13 b for discharging gas, and the inlet of the reactor 13 in the pyrolysis furnace 10. Gas in pyrolysis circulates inside the pyrolysis furnace 10 through 13a and the outlet 13b. Therefore, since the flow rate of the heated furnace gas can be increased, the amount of heat transfer can be easily increased. Therefore, further soaking and pyrolysis treatment of the in-furnace material immediately after the start of heating. It is possible to increase the processing amount per time. Therefore, the carbonized material can be rapidly produced with less energy. In addition, the carbonized material manufacturing apparatus of the present embodiment does not recirculate the gas that has passed through the condenser 20 and supply it to the pyrolysis furnace 10, so that the flow rate of the heated furnace gas is increased. Since it is not necessary to increase the cooling capacity of the condenser 20 or the heating capacity of the gas heating device, it is possible to reduce capital investment and running cost. Further, since the blade 15a of the fan 15 is provided in the internal space 10a of the pyrolysis furnace, the fan 15 is operated so that the gas in the furnace circulates in the pyrolysis furnace 10. it can.

原料を、迅速かつ均一に加熱するためには、炉内ガスを、ファン15により反応器13内に収容された原料の中心部近傍を通過させるようにすることが、より好ましい。そのために、図示した本実施形態では、反応器13が、該反応器13の導入口13a及び排出口13bとして側面に複数の孔を有するもの、例えば側面をメッシュ状にしている。これにより該孔を通して高温の炉内ガスが反応器13内を通過でき、収容された原料の中心部近傍を通過できる。   In order to heat the raw material quickly and uniformly, it is more preferable to pass the furnace gas through the vicinity of the central portion of the raw material accommodated in the reactor 13 by the fan 15. Therefore, in the illustrated embodiment, the reactor 13 has a plurality of holes on the side as the inlet 13a and the outlet 13b of the reactor 13, for example, the side is meshed. Thus, the high-temperature furnace gas can pass through the reactor 13 through the holes, and can pass through the vicinity of the center of the stored raw material.

ファン15により流動させた炉内ガスは、図示した本実施形態では、熱分解炉10の炉内に設けた加熱装置14によって原料の熱分解に必要な高温に加熱される。このために、加熱装置14は、熱分解炉10内のガスの流動が加熱装置14の近傍を通過するような位置に配設されることが好ましい。言い換えれば、加熱装置14は、炉内に形成されたガス流動通路上に位置させることが好ましい。図示した本実施形態では、加熱装置14が、熱分解炉10内かつ前記反応器13の外側に設けられ、より具体的には、熱分解炉10内の底面近傍でかつ、反応器13の底面より下方に設けられている。図示した本実施形態では、反応器13の外壁が、熱分解炉10内において炉内ガスの流動通路を形成する仕切りになり、よって熱分解炉10内の底面と反応器13の底面との間の空間が、炉内ガスの流動通路となっているので、この位置に加熱装置14が配設されることにより、炉内ガスを確実かつ効率よく加熱することができる。また、温度制御の応答性も良い。また、図示した加熱装置14に限られず、加熱するための装置は、熱分解炉10に隣接していれば炉外であっても構わない。   In the illustrated embodiment, the in-furnace gas flowed by the fan 15 is heated to a high temperature necessary for pyrolysis of the raw material by a heating device 14 provided in the furnace of the pyrolysis furnace 10. For this reason, it is preferable that the heating device 14 is disposed at a position where the gas flow in the pyrolysis furnace 10 passes in the vicinity of the heating device 14. In other words, the heating device 14 is preferably positioned on the gas flow passage formed in the furnace. In the illustrated embodiment, the heating device 14 is provided in the pyrolysis furnace 10 and outside the reactor 13, and more specifically, near the bottom surface in the pyrolysis furnace 10 and the bottom surface of the reactor 13. It is provided below. In the illustrated embodiment, the outer wall of the reactor 13 serves as a partition that forms a flow path for the gas in the furnace in the pyrolysis furnace 10, and therefore, between the bottom surface in the pyrolysis furnace 10 and the bottom surface of the reactor 13. Since this space serves as a flow path for the in-furnace gas, the in-furnace gas can be reliably and efficiently heated by disposing the heating device 14 at this position. Moreover, the responsiveness of temperature control is also good. Further, the heating apparatus 14 is not limited to the illustrated heating apparatus 14, and the apparatus for heating may be outside the furnace as long as it is adjacent to the pyrolysis furnace 10.

図2に示す、本発明の炭化材料の製造装置の別の実施形態では、熱分解炉10と不活性ガス供給装置11と接続するガス管12流路の途中に、不活性ガス加熱装置17が設けられている。それ以外の構成は図1に示した実施形態と同じであるので、図2では、相違点が理解できるように熱分解炉10とその周辺装置のみを記載した。なお、図2では、図1と同一の部材、装置については同一の符号を付しているので、以下の説明では重複した記述を避けるために説明を省略する。不活性ガス加熱装置17により所定の温度、例えば400〜600℃に加熱された不活性ガスを熱分解炉10内に供給することにより、一回当たりの熱分解処理の初期から速やかに炉内温度を高めることができる。   In another embodiment of the carbonized material production apparatus of the present invention shown in FIG. 2, an inert gas heating device 17 is provided in the middle of a gas pipe 12 flow path connected to the pyrolysis furnace 10 and the inert gas supply device 11. Is provided. Since the other configuration is the same as that of the embodiment shown in FIG. 1, only the pyrolysis furnace 10 and its peripheral devices are shown in FIG. 2 so that the difference can be understood. In FIG. 2, the same members and devices as those in FIG. 1 are denoted by the same reference numerals, and therefore the description thereof will be omitted in the following description in order to avoid duplicate descriptions. By supplying an inert gas heated to a predetermined temperature, for example, 400 to 600 ° C., into the pyrolysis furnace 10 by the inert gas heating device 17, the furnace temperature can be rapidly increased from the initial stage of the thermal decomposition treatment per time. Can be increased.

次に、本発明の炭化材料の製造方法の実施形態を説明する。本実施形態では、熱分解炉10内に高分子系有機化合物を含む原料を収容し、加熱装置14により該原料を加熱しつつ熱分解炉内10に不活性ガス供給装置11から不活性ガスを供給して、高分子系有機化合物を含む原料を熱分解させるとともに、熱分解炉10内で発生する熱分解ガスを凝縮器20に導いて、凝縮器2により熱分解ガス中の油分を分離回収する工程を含む。また、熱分解炉10内にファン15が設けられて、このファン15により熱分解炉10内でガスを流動させる。   Next, an embodiment of a method for producing a carbonized material of the present invention will be described. In the present embodiment, a raw material containing a polymer organic compound is accommodated in the pyrolysis furnace 10, and the inert gas is supplied from the inert gas supply device 11 to the pyrolysis furnace 10 while the raw material is heated by the heating device 14. The pyrolysis gas generated in the pyrolysis furnace 10 is led to the condenser 20 and the oil in the pyrolysis gas is separated and recovered by the condenser 2 while pyrolyzing the raw material containing the polymer organic compound. The process of carrying out is included. A fan 15 is provided in the pyrolysis furnace 10, and gas flows in the pyrolysis furnace 10 by the fan 15.

熱分解炉10内で熱分解させる高分子系有機化合物を含む原料は、例えばタイヤを含む高分子系有機化合物の廃棄物、具体的には使用済みタイヤを適当な大きさに裁断したものがある。タイヤは、カーボンブラックを添加した天然又は合成のゴムに、必要に応じてスチール又は有機繊維のコードで補強した部材よりなり、加硫させたものである。使用済みタイヤを原料として本発明に従い、炭化材料を製造することは、使用済タイヤを有効利用できることになるので好ましい。使用済みタイヤ以外にも、タイヤの製造工場で発生したスピュー、バフ粉のゴム廃棄物を原料に用いることができる。   Examples of the raw material containing the polymer organic compound to be pyrolyzed in the pyrolysis furnace 10 include, for example, a waste of a polymer organic compound including a tire, specifically, a used tire cut into an appropriate size. . The tire is made of a member reinforced with a cord of steel or organic fiber, if necessary, with natural or synthetic rubber added with carbon black and vulcanized. It is preferable to produce a carbonized material according to the present invention using a used tire as a raw material because the used tire can be effectively used. In addition to used tires, spew and buffed rubber wastes generated at tire manufacturing plants can be used as raw materials.

熱分解炉内10内で高分子系有機化合物を含む原料を熱分解させるときの炉内ガスは、酸素濃度が1vol%以下であることが好ましい。炉内ガスの酸素濃度が1vol%以下であることにより良好な品質の炭化材料を得ることができる。   The furnace gas when the raw material containing the polymer organic compound is pyrolyzed in the pyrolysis furnace 10 preferably has an oxygen concentration of 1 vol% or less. When the oxygen concentration of the in-furnace gas is 1 vol% or less, a good quality carbonized material can be obtained.

ファン15により炉内ガスを流動させるときの流動の程度は、熱分解炉10の規模、熱分解炉10に収容される原料の分量などにもよるが、一例として、図1の反応器13近傍の流速が0.5〜5m/s、より具体的には1m/s程度となるような流動とすることができる。   As an example, the degree of flow when the gas in the furnace is caused to flow by the fan 15 depends on the scale of the pyrolysis furnace 10, the amount of raw material accommodated in the pyrolysis furnace 10, etc. The flow rate can be 0.5 to 5 m / s, more specifically about 1 m / s.

本実施形態の製造装置及び製造方法により得られる炭化材料は、熱分解炉10内で高分子系有機化合物を含む原料を熱分解した後の残渣物である。高分子系有機化合物を含む原料がタイヤ廃棄物である場合は、炭化材料中にスチールコードやスチールワイヤが混在している場合がある。この場合は、炭化材料に磁力選別を行って、炭化材料からスチールコードやスチールワイヤを分離することが好ましい。磁力選別後の炭化材料は、所望の粒径まで粉砕され、分級され、所定の粒径を有す炭素原料として、例えばタイヤ用のカーボンブラックと混合して、使用することができる。   The carbonized material obtained by the manufacturing apparatus and the manufacturing method of the present embodiment is a residue after pyrolyzing a raw material containing a high molecular organic compound in the pyrolysis furnace 10. When the raw material containing the high molecular organic compound is tire waste, a steel cord or a steel wire may be mixed in the carbonized material. In this case, it is preferable to separate the steel cord and the steel wire from the carbonized material by magnetically sorting the carbonized material. The carbonized material after the magnetic separation is pulverized to a desired particle size, classified, and used as a carbon raw material having a predetermined particle size, for example, mixed with carbon black for tires.

図1に示した実施形態の炭化材料の製造装置を用いて、炭化材料の製造を行った。図3に、熱分解炉10内にタイヤ廃棄物を収容した反応器13内における熱分解時の温度の経時変化をグラフで示す。図3の温度は、加熱時の最高温度を100、常温を0とする指数で示した。図3から分かるように、本実施形態の炭化材料の製造装置は、設定温度に到達するまでの時間が一時間強であって、これは、従来の装置、具体的には、凝縮器を経たガスを還流させて加熱し、熱分解炉に所定流量で供給する装置に比べて早かった。
また、本実施形態の炭化材料の製造装置は、従来の装置である、凝縮器を経たガスを還流させて加熱し、熱分解炉に所定流量で供給する装置に比べて、加える熱量は27%程度も小さい。その理由は、従来の装置では、設備の増大に伴って凝縮器及びガス再加熱装置が大きくなっているため、その凝縮器及びガス再加熱装置を使用することにより必要な熱量が大きくなっているものと考えられる。
The carbonized material was manufactured using the carbonized material manufacturing apparatus of the embodiment shown in FIG. FIG. 3 is a graph showing changes over time in the temperature at the time of thermal decomposition in the reactor 13 in which tire waste is accommodated in the thermal decomposition furnace 10. The temperature in FIG. 3 is indicated by an index where the maximum temperature during heating is 100 and the normal temperature is 0. As can be seen from FIG. 3, in the carbonized material manufacturing apparatus of this embodiment, the time to reach the set temperature was just over an hour, which was passed through a conventional apparatus, specifically, a condenser. It was faster than an apparatus that refluxed the gas and heated it to supply it to the pyrolysis furnace at a predetermined flow rate.
Further, the carbonized material manufacturing apparatus of the present embodiment is 27% of the amount of heat applied compared to a conventional apparatus that recirculates and heats the gas that has passed through the condenser and supplies the gas to the pyrolysis furnace at a predetermined flow rate. The degree is also small. The reason is that, in the conventional apparatus, the condenser and the gas reheating device have become larger with the increase in equipment, so that the amount of heat required is increased by using the condenser and the gas reheating device. It is considered a thing.

1:炭化材料の製造装置
10:熱分解炉
11:不活性ガス供給装置(不活性ガス供給源)
13:反応器
14:加熱装置(加熱手段)
15:ファン(送風手段)
20:凝縮器
1: Carbonized material manufacturing apparatus 10: Pyrolysis furnace 11: Inert gas supply device (inert gas supply source)
13: Reactor 14: Heating device (heating means)
15: Fan (air blowing means)
20: Condenser

Claims (9)

高分子系有機化合物を含む原料を収容可能な内部空間を有する熱分解炉内に設けられた反応器の中で前記原料を熱分解処理して炭化材料を製造する装置であって、
前記反応器が、ガスを導入する導入口とガスを排出する排出口とを有し、前記熱分解炉内において前記反応器の導入口と排出口とを通じて熱分解におけるガスが前記熱分解炉の内部で循環することを特徴とする炭化材料の製造装置。
An apparatus for producing a carbonized material by pyrolyzing the raw material in a reactor provided in a pyrolysis furnace having an internal space capable of containing a raw material containing a macromolecular organic compound,
The reactor has an inlet for introducing gas and an outlet for discharging gas, and the gas in the pyrolysis is passed through the inlet and outlet of the reactor in the pyrolysis furnace. An apparatus for producing a carbonized material characterized by circulating inside.
前記熱分解炉に接続する不活性ガス供給源と、
該熱分解炉と接続し、熱分解炉から排出された熱分解ガス中の油分を分離し回収する油分回収装置と、
該熱分解炉内に設けられ同熱分解炉内のガスを流動させる送風手段とを備えた請求項1記載の炭化材料の製造装置。
An inert gas supply connected to the pyrolysis furnace;
An oil content recovery device that is connected to the pyrolysis furnace and separates and recovers the oil content in the pyrolysis gas discharged from the pyrolysis furnace;
The carbonized material manufacturing apparatus according to claim 1, further comprising a blowing unit provided in the pyrolysis furnace and configured to flow a gas in the pyrolysis furnace.
前記送風手段が、ファンである請求項2記載の炭化材料の製造装置。   The carbonized material manufacturing apparatus according to claim 2, wherein the air blowing means is a fan. 前記反応器の側面にガスが通過可能な複数の孔が配設されている請求項1〜3のいずれか1項に記載の炭化材料の製造装置。   The apparatus for producing a carbonized material according to any one of claims 1 to 3, wherein a plurality of holes through which a gas can pass are disposed on a side surface of the reactor. 前記熱分解処理のための加熱手段が前記熱分解炉内又は炉外に設けられた請求項1〜4のいずれか1項に記載の炭化材料の製造装置。   The apparatus for producing a carbonized material according to any one of claims 1 to 4, wherein heating means for the pyrolysis treatment is provided inside or outside the pyrolysis furnace. 前記加熱手段が前記熱分解炉内かつ前記反応器の外側に設けられ、熱分解炉内のガスの流動が該加熱手段の近傍を通過する請求項5記載の炭化材料の製造装置。   The apparatus for producing a carbonized material according to claim 5, wherein the heating means is provided in the pyrolysis furnace and outside the reactor, and a gas flow in the pyrolysis furnace passes in the vicinity of the heating means. 前記熱分解炉と、該熱分解炉に接続する不活性ガス供給源とに接続するガス流路の途中に、不活性ガス加熱装置を備える請求項1〜6のいずれか1項に記載の炭化材料の製造装置。   Carbonization of any one of Claims 1-6 provided with the inert gas heating apparatus in the middle of the gas flow path connected to the said pyrolysis furnace and the inert gas supply source connected to this pyrolysis furnace. Material production equipment. 高分子系有機化合物を含む原料を収容可能な内部空間を有する熱分解炉内に設けられた反応器の中で前記原料を熱分解処理して炭化材料を製造する方法であって、
前記熱分解炉内において、ガスを導入する導入口とガスを排出する排出口とを有する前記反応器の該導入口と該排出口とを通じて熱分解におけるガスを前記熱分解炉の内部で循環させることを特徴とする炭化材料の製造方法。
A method for producing a carbonized material by pyrolyzing the raw material in a reactor provided in a pyrolysis furnace having an internal space capable of containing a raw material containing a polymer organic compound,
In the pyrolysis furnace, gas in pyrolysis is circulated in the pyrolysis furnace through the inlet and the outlet of the reactor having an inlet for introducing gas and an outlet for discharging gas. A method for producing a carbonized material.
前記高分子系有機化合物を含む原料が、タイヤを含む高分子系有機化合物の廃棄物である請求項8記載の炭化材料の製造方法。   The method for producing a carbonized material according to claim 8, wherein the raw material containing the polymer organic compound is a waste of a polymer organic compound containing a tire.
JP2013028248A 2013-02-15 2013-02-15 Carbonized material manufacturing apparatus and manufacturing method Active JP6111088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013028248A JP6111088B2 (en) 2013-02-15 2013-02-15 Carbonized material manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028248A JP6111088B2 (en) 2013-02-15 2013-02-15 Carbonized material manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2014156544A true JP2014156544A (en) 2014-08-28
JP6111088B2 JP6111088B2 (en) 2017-04-05

Family

ID=51577629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028248A Active JP6111088B2 (en) 2013-02-15 2013-02-15 Carbonized material manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP6111088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038567A (en) * 2020-08-12 2020-12-04 北京化工大学 Continuous production device and production process of electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000766A (en) * 2003-06-10 2005-01-06 Fuji Electric Systems Co Ltd Induction heating type carbonization furnace
JP2012001699A (en) * 2010-06-21 2012-01-05 Bridgestone Corp Manufacturing apparatus of carbide and manufacturing method of carbide using the apparatus
JP2012001703A (en) * 2010-06-21 2012-01-05 Bridgestone Corp Apparatus for producing carbonized material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000766A (en) * 2003-06-10 2005-01-06 Fuji Electric Systems Co Ltd Induction heating type carbonization furnace
JP2012001699A (en) * 2010-06-21 2012-01-05 Bridgestone Corp Manufacturing apparatus of carbide and manufacturing method of carbide using the apparatus
JP2012001703A (en) * 2010-06-21 2012-01-05 Bridgestone Corp Apparatus for producing carbonized material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038567A (en) * 2020-08-12 2020-12-04 北京化工大学 Continuous production device and production process of electrode

Also Published As

Publication number Publication date
JP6111088B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5347056B2 (en) Regenerated carbon fiber production apparatus and regenerated carbon fiber production method
US8226798B2 (en) Method of converting pyrolyzable organic materials to biocarbon
JP4949123B2 (en) Carbon fiber regeneration treatment equipment
JP2008285601A (en) Method for regenerative treatment of carbon fiber
KR102141985B1 (en) Apparatus for Manufacturing Negative-Electrode Carbon Material, and Method for Manufacturing Negative-Electrode Carbon Material Using Same
JP2012011299A (en) Pyrolyzer, dechlorination treatment apparatus, pyrolysis method and dechlorination method
CN104975378A (en) Processing device and processing method of fiber containing resin
CN106732491A (en) A kind of horizontal continuous regeneration equipment of powdery waste active carbon
JP2007112879A (en) System and method for thermal decomposition treatment of waste product
JP2016094590A (en) Biomass fuel generating apparatus
KR100897521B1 (en) Recycling equipment and methode of waste electric wire
CN111019711B (en) Thermal cracking gasification process for household garbage
JP6111088B2 (en) Carbonized material manufacturing apparatus and manufacturing method
EP3775102B1 (en) Method and apparatus for processing biomass
JP5779653B2 (en) Heated gas circulation type carbon material decomposition method and equipment
CN105883797A (en) Oxidation and carbonization system and method for flue gas internal circulation
JP2010013577A (en) System for separating oil from polymer waste
JP5629500B2 (en) Carbide manufacturing apparatus and carbide manufacturing method using the manufacturing apparatus
JP5646890B2 (en) Carbide production equipment
KR101432377B1 (en) Module type low temperature carbonization apparatus
KR100645803B1 (en) High efficiency pyrolysis reactor and recycling system of used tire using cascaded conveyor system of residue, and recyling method thereof
JP2011246742A (en) Method and apparatus for producing raw material to be charged into blast furnace
CN110591738A (en) Organic matter micro-carbonization treatment equipment and process
CN206279141U (en) A kind of heat accumulating type biomass pyrolytic carbonizes reaction system
JP2001089767A (en) Production of molded coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6111088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250