JP2014154355A - Oxide film formation method and cvd apparatus - Google Patents

Oxide film formation method and cvd apparatus Download PDF

Info

Publication number
JP2014154355A
JP2014154355A JP2013023139A JP2013023139A JP2014154355A JP 2014154355 A JP2014154355 A JP 2014154355A JP 2013023139 A JP2013023139 A JP 2013023139A JP 2013023139 A JP2013023139 A JP 2013023139A JP 2014154355 A JP2014154355 A JP 2014154355A
Authority
JP
Japan
Prior art keywords
tape
substrate
metal substrate
oxide film
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013023139A
Other languages
Japanese (ja)
Inventor
Satoshi Yamano
聡士 山野
Ryusuke Nakasaki
竜介 中崎
Kiyoshi Yamamoto
潔 山本
Shinya Yasunaga
紳也 安永
Koji Kikuchi
浩司 菊地
Noriyoshi Sakurai
紀快 櫻井
Tsuyoshi Ryu
勁 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2013023139A priority Critical patent/JP2014154355A/en
Publication of JP2014154355A publication Critical patent/JP2014154355A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide an oxide film formation method and a CVD apparatus which can suppress warping of a metal substrate simply.SOLUTION: An oxide film formation method is for forming a superconducting thin film 53 to be formed on a tape-like substrate 50 and comprises forming the superconducting thin film 53 on the surface 50A of the tape-like substrate 50, in a condition that the tape-like substrate 50 is bent in such a way that the nearly central part 50B, in the width direction, of the surface 50A side of the tape-like substrate 50 is curved more concavely than both side edge parts 50C and 50C, while heating the tape-like substrate 50.

Description

本発明は、酸化物薄膜をテープ状の金属基板の表面に成膜する酸化物成膜方法、及び、CVD装置に関する。   The present invention relates to an oxide film forming method for forming an oxide thin film on the surface of a tape-shaped metal substrate, and a CVD apparatus.

一般に、テープ状に形成された長尺の金属基板の表面(少なくとも片面)に酸化物薄膜としての中間層や超電導層が成膜された酸化物超電導線材が知られている。この種の酸化物超電導線材は、ケーブル、コイル、マグネットなどの電力機器へ応用が期待されている。
酸化物超電導線材は、一般に、金属基板の表面に配向性のセラミックス層を中間層として形成して金属基材(以下、テープ状基材という)とし、このテープ状基材上に、酸化物超電導層、安定化層を順次積層することにより得られている。
この種の酸化物超電導線材では、中間層である配向性のセラミックス層を形成するために用いられる材料は、CeO2やイットリア安定化ジルコニア(YSZ)等のセラミックスであり、金属基板と比べて熱膨張係数が遙かに小さく、金属基板との密着性や結晶性を考慮して、高温(600℃〜800℃)で成膜処理することにより金属基板上へ酸化物中間層(配向中間層ともいう)として形成される。また、酸化物中間層上には、例えば、化学式YBa2Cu37-yで表されるイットリウム系酸化物超電導体(YBCO)の薄膜が高温(800℃〜900℃)で成膜される。
In general, an oxide superconducting wire in which an intermediate layer or a superconducting layer as an oxide thin film is formed on the surface (at least one side) of a long metal substrate formed in a tape shape is known. This type of oxide superconducting wire is expected to be applied to power devices such as cables, coils, and magnets.
In general, an oxide superconducting wire is formed by forming an oriented ceramic layer as an intermediate layer on the surface of a metal substrate to form a metal substrate (hereinafter referred to as a tape-shaped substrate). It is obtained by sequentially laminating a layer and a stabilization layer.
In this type of oxide superconducting wire, the material used to form the oriented ceramic layer, which is an intermediate layer, is a ceramic such as CeO 2 or yttria-stabilized zirconia (YSZ). An oxide intermediate layer (both oriented intermediate layer) is formed on the metal substrate by performing film formation at a high temperature (600 ° C. to 800 ° C.) in consideration of adhesion coefficient and crystallinity with the metal substrate, with a much smaller expansion coefficient. Say). On the oxide intermediate layer, for example, a thin film of yttrium-based oxide superconductor (YBCO) represented by the chemical formula YBa 2 Cu 3 O 7-y is formed at a high temperature (800 ° C. to 900 ° C.). .

ところで、金属基板上に上記したような酸化物中間層、および酸化物超電導層を成膜する場合、高温条件下で成膜するため、成膜中に大きな圧縮内部応力が入り、空冷後にテープ状基材が酸化物中間層の成膜面を凸にして反りかえり、成膜後に酸化物中間層が金属基板から剥離し易くなる問題があった。その結果、酸化物超電導導体の製造プロセスの歩留まりが悪化するとともに、得られた酸化物超電導導体の加工性に悪影響を与えている。
上記した問題を解決するために、従来、金属基板の両方の面に配向中間層を成膜することによって、テープ状基材の反りを防ぐ技術(例えば、特許文献1参照)や、金属基板と配向中間層の間に引っ張り応力を有する薄膜を成膜することで、配向中間層の圧縮応力を緩和し、テープ状基材の反りを防ぐ技術(例えば、特許文献2参照)が提案されている。
By the way, when the oxide intermediate layer and the oxide superconducting layer as described above are formed on a metal substrate, since the film is formed under a high temperature condition, a large compressive internal stress is applied during the film formation, and after air cooling, a tape shape is formed. There was a problem that the base material was warped with the oxide intermediate layer having a convex surface, and the oxide intermediate layer easily peeled off from the metal substrate after the film formation. As a result, the yield of the manufacturing process of the oxide superconducting conductor deteriorates and the workability of the obtained oxide superconducting conductor is adversely affected.
In order to solve the above-described problem, conventionally, a technique for preventing warpage of a tape-like base material by forming an alignment intermediate layer on both surfaces of a metal substrate (see, for example, Patent Document 1), A technique (for example, see Patent Document 2) that relaxes the compressive stress of the alignment intermediate layer and prevents the warp of the tape-like substrate by forming a thin film having a tensile stress between the alignment intermediate layers is proposed. .

特開平9−120719号公報Japanese Patent Laid-Open No. 9-120719

特開2007−179804号公報JP 2007-179804 A

しかしながら、従来の技術は、金属基板の両方の面に配向中間層を成膜したり、金属基板と配向中間層の間に引っ張り応力を有する薄膜を成膜することを要し、酸化物薄膜としての酸化物中間層もしくは酸化物超電導層の成膜に余分な時間と製造コストがかかり、実用化しにくい問題があった。
本発明は、上述した従来の技術が有する課題を解消し、金属基板の反りを簡単に抑制できる酸化物成膜方法及びCVD装置を提供することを目的とする。
However, the conventional technique requires forming an alignment intermediate layer on both surfaces of the metal substrate, or forming a thin film having tensile stress between the metal substrate and the alignment intermediate layer. The film formation of the oxide intermediate layer or oxide superconducting layer requires extra time and manufacturing cost, and there is a problem that it is difficult to put into practical use.
An object of the present invention is to provide an oxide film forming method and a CVD apparatus that can solve the above-described problems of the conventional techniques and can easily suppress the warpage of a metal substrate.

上記課題を解決するため、本発明は、テープ状の金属基板上に酸化物膜を成膜する酸化物成膜方法であって、前記金属基板を加熱すると共に、前記金属基板を該金属基板の幅方向に湾曲させた状態で前記酸化物膜を成膜することを特徴とする。   In order to solve the above problems, the present invention provides an oxide film forming method for forming an oxide film on a tape-shaped metal substrate, wherein the metal substrate is heated and the metal substrate is formed on the metal substrate. The oxide film is formed in a state curved in the width direction.

この構成において、前記金属基板の表面側における幅方向略中央部が両側縁部よりも凹むように湾曲させた状態で該表面に酸化物膜を成膜しても良い。また、前記酸化物膜は、前記金属基板上に設けられ、超電導体の結晶粒を成膜させるための酸化物中間層であっても良い。   In this configuration, an oxide film may be formed on the surface of the metal substrate in a curved state so that a substantially central portion in the width direction is recessed from both side edge portions. Further, the oxide film may be an oxide intermediate layer provided on the metal substrate and for forming superconductor crystal grains.

また、前記酸化物膜は、前記金属基板上に酸化物中間層を介して成膜される酸化物超電導層であっても良い。また、前記金属基板を支持するサセプタ上で、前記金属基板の幅方向両側縁部を前記サセプタから離間させるように該両側縁部を支持することにより、前記金属基板を該金属基板の幅方向に湾曲させても良い。   The oxide film may be an oxide superconducting layer formed on the metal substrate via an oxide intermediate layer. In addition, on the susceptor that supports the metal substrate, the both side edges of the metal substrate are supported so as to be separated from the susceptor, thereby moving the metal substrate in the width direction of the metal substrate. It may be curved.

また、本発明は、原料ガスを噴出する原料ガス噴出部と、テープ状基材を支持するサセプタとを有する反応室を備え、この反応室内で前記テープ状基材の表面に、前記原料ガスを供給し化学反応させることにより、前記テープ状基材の表面に酸化物超電導薄膜を成膜するCVD装置であって、前記反応室は、前記テープ状基材を加熱する加熱手段を備え、前記サセプタは、前記テープ状基材の表面側における幅方向略中央部が両側縁部よりも凹むように湾曲させた状態で、該テープ状基材を支持する支持部を備えることを特徴とする。   The present invention further includes a reaction chamber having a source gas ejection portion for ejecting a source gas and a susceptor that supports the tape-shaped substrate, and the source gas is placed on the surface of the tape-shaped substrate in the reaction chamber. A CVD apparatus for forming an oxide superconducting thin film on the surface of the tape-shaped substrate by supplying and chemically reacting, wherein the reaction chamber includes a heating means for heating the tape-shaped substrate, and the susceptor Is provided with a support portion that supports the tape-shaped substrate in a state where the substantially central portion in the width direction on the surface side of the tape-shaped substrate is curved so as to be recessed from both side edge portions.

本発明によれば、金属基板を加熱すると共に、金属基板を該金属基板の幅方向に湾曲させた状態で酸化物膜を成膜するため、冷却後に生じる金属基板の反りを簡単に抑制でき、金属基板から酸化物膜が剥離することを抑制できる。   According to the present invention, the metal substrate is heated and the oxide film is formed in a state in which the metal substrate is curved in the width direction of the metal substrate. Therefore, warpage of the metal substrate that occurs after cooling can be easily suppressed, It can suppress that an oxide film peels from a metal substrate.

本実施形態のCVD装置の概略構成を示す図である。It is a figure which shows schematic structure of the CVD apparatus of this embodiment. サセプタの形状を示す側断面図である。It is a sectional side view which shows the shape of a susceptor. 成膜の手順を示す図であり、(A)は、テープ状基材を湾曲させた状態を示すテープ状基材の断面模式図であり、(B)は、テープ状基材の表面に超電導薄膜を成膜させた状態を示す断面模式図であり、(C)は、冷却後の超電導線材を示す断面模式図である。It is a figure which shows the procedure of film-forming, (A) is a cross-sectional schematic diagram of the tape-shaped base material which shows the state which curved the tape-shaped base material, (B) is superconductivity on the surface of a tape-shaped base material. It is a cross-sectional schematic diagram which shows the state which formed the thin film, (C) is a cross-sectional schematic diagram which shows the superconducting wire after cooling. 別の実施形態にかかるCVD装置の反応室内の概略構成図である。It is a schematic block diagram in the reaction chamber of the CVD apparatus concerning another embodiment.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本実施形態のCVD装置の概略構成を示す図である。CVD装置1は、化学気相成長法(CVD法:Chemical Vapor Deposition method)を利用して、基材の表面に、例えば、化学式YBa2Cu37-yで表されるイットリウム系酸化物超電導体(以下YBCO)の薄膜を形成する装置である。
本実施形態のCVD装置1は、長尺のテープ状に形成された超電導用基材(以下、テープ状基材50という)を巻き取り走行させる基材搬送部40と、超電導薄膜の原料を供給する原料溶液供給部30と、原料溶液を気化させる気化器20と、気化された原料ガス、及び、テープ状基材50がそれぞれ供給され、テープ状基材50の表面に超電導薄膜を形成する反応室10等を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a CVD apparatus according to the present embodiment. The CVD apparatus 1 uses a chemical vapor deposition method (CVD method) to form, for example, a yttrium-based oxide superconductor represented by the chemical formula YBa 2 Cu 3 O 7-y on the surface of a substrate. This is a device for forming a thin film of a body (hereinafter referred to as YBCO).
The CVD apparatus 1 of the present embodiment supplies a base material transport unit 40 that winds and runs a superconducting base material (hereinafter referred to as a tape-like base material 50) formed in a long tape shape, and a material for the superconducting thin film. Reaction for forming a superconducting thin film on the surface of the tape-like base material 50, the raw material solution supply unit 30, the vaporizer 20 for vaporizing the raw material solution, the vaporized raw material gas, and the tape-like base material 50, respectively. The room 10 is provided.

原料溶液供給部30は、テープ状基材50の表面に形成される薄膜の原料溶液(例えば、YBCOの原料であるY、Ba、Cuのジケトンによるそれぞれの金属錯体を適宜な分量のテトラヒドロフラン(THF)に溶解させた溶液)を各々所定の分量ずつ混合して気化器20へと供給する。
気化器20は、原料溶液供給部30から供給された原料溶液をキャリアガスとしてのArとともに噴霧させたのちに加熱して気化させる。その後、気化した原料ガスをO2と混合して、反応室10へと供給する。
The raw material solution supply unit 30 is a thin film raw material solution formed on the surface of the tape-shaped substrate 50 (for example, YBCO raw material Y, Ba, Cu diketone metal complexes each in an appropriate amount of tetrahydrofuran (THF). ) Are mixed in a predetermined amount and supplied to the vaporizer 20.
The vaporizer 20 sprays the raw material solution supplied from the raw material solution supply unit 30 together with Ar as a carrier gas, and then heats and vaporizes the raw material solution. Thereafter, the vaporized source gas is mixed with O 2 and supplied to the reaction chamber 10.

基材搬送部40は、テープ状基材50を往復搬送可能に構成されており、反応室10内においてテープ状基材50を所定速度(1〜100m/h)で搬送する。本実施形態では、原料ガスが供給された反応室10内にテープ状基材50を往復搬送させることにより、当該テープ状基材50の表面に所定の膜厚(例えば0.5μm〜3μm)の酸化物膜としての超電導薄膜(超電導層)を効率よく成膜することができる。なお、超電導薄膜が成膜されたテープ状基材50は、その後、スパッタ装置(不図示)により超電導薄膜の上に安定化層が形成されて超電導線材が製造される。
テープ状基材50は、幅10mm程度のテープ形状を有し、例えば、0.1mmの厚さの金属基板の一面上に中間層を形成したものが用いられる。具体的には、テープ状基材50は、低磁性の無配向金属基板を用いて、IBAD(Ion Beam Assisted Deposition)法と呼ばれるイオンビームアシストを用いたスパッタ装置により、無配向金属基板上に単層あるいは多層の2軸配向した中間層が形成される。
中間層は、超電導体の結晶粒を二軸配向して成膜させるための配向性中間層であり、この配向性中間層を形成する材料としては、例えば、CeO2やイットリア安定化ジルコニア(YSZ)等のセラミックスを用いることができる。
The substrate transport unit 40 is configured to be able to reciprocate the tape-shaped substrate 50, and transports the tape-shaped substrate 50 in the reaction chamber 10 at a predetermined speed (1 to 100 m / h). In the present embodiment, the tape-shaped substrate 50 is reciprocally conveyed into the reaction chamber 10 to which the raw material gas is supplied, whereby a predetermined film thickness (for example, 0.5 μm to 3 μm) is formed on the surface of the tape-shaped substrate 50. A superconducting thin film (superconducting layer) as an oxide film can be efficiently formed. In addition, the tape-like base material 50 on which the superconducting thin film is formed is then formed with a stabilization layer on the superconducting thin film by a sputtering apparatus (not shown) to produce a superconducting wire.
The tape-like base material 50 has a tape shape with a width of about 10 mm, and for example, a tape-like base material having an intermediate layer formed on one surface of a metal substrate having a thickness of 0.1 mm is used. Specifically, the tape-like substrate 50 is formed on a non-oriented metal substrate by a sputtering apparatus using an ion beam assist called an IBAD (Ion Beam Assisted Deposition) method using a low-magnetic non-oriented metal substrate. A layer or multilayer biaxially oriented intermediate layer is formed.
The intermediate layer is an oriented intermediate layer for forming a film of biaxially oriented crystal grains of a superconductor. Examples of a material for forming the oriented intermediate layer include CeO 2 and yttria stabilized zirconia (YSZ). Ceramics such as) can be used.

反応室10は、内部を走行するテープ状基材50の表面に気化器20から供給された原料ガスを吹き付けて、テープ状基材50の表面に成膜を行う。反応室10は、図1に示すように、テープ状基材50を支持するとともに伝熱により加熱する金属(例えばステンレススチール)製のサセプタ13と、このサセプタ13を加熱するヒータ(加熱手段)15とを備えている。すなわち、CVD装置1は、コールドウォール(内熱)型のCVD装置である。   The reaction chamber 10 forms a film on the surface of the tape-shaped substrate 50 by spraying the raw material gas supplied from the vaporizer 20 onto the surface of the tape-shaped substrate 50 running inside. As shown in FIG. 1, the reaction chamber 10 includes a susceptor 13 made of metal (for example, stainless steel) that supports the tape-like substrate 50 and is heated by heat transfer, and a heater (heating means) 15 that heats the susceptor 13. And. That is, the CVD apparatus 1 is a cold wall (internal heat) type CVD apparatus.

反応室10は、横長の直方体形状を有し、この反応室10の底壁17には、テープ状基材50の走行方向に延びるサセプタ13が設けられている。サセプタ13は、走行するテープ状基材50を加熱する熱伝導プレートであり、テープ状基材50の表面を反応室10内で適切な温度に保つように、サセプタ13の下面に配置されるヒータ15により所定の温度(例えば700〜800℃)に加熱される。テープ状基材50は、サセプタ13の幅方向(テープ状基材50の走行方向に直交する方向)の略中央部にテープ状基材50の走行領域が形成される。   The reaction chamber 10 has a horizontally long rectangular parallelepiped shape, and the bottom wall 17 of the reaction chamber 10 is provided with a susceptor 13 that extends in the traveling direction of the tape-shaped substrate 50. The susceptor 13 is a heat conduction plate that heats the traveling tape-like substrate 50, and is a heater disposed on the lower surface of the susceptor 13 so as to keep the surface of the tape-like substrate 50 at an appropriate temperature in the reaction chamber 10. 15 is heated to a predetermined temperature (for example, 700 to 800 ° C.). In the tape-like substrate 50, a running region of the tape-like substrate 50 is formed at a substantially central portion in the width direction of the susceptor 13 (a direction orthogonal to the running direction of the tape-like substrate 50).

反応室10の上壁16には、気化器20に接続される原料ガス噴出部21が配設されている。原料ガス噴出部21は、反応室10の上壁16の長手方向(テープ状基材50の走行方向)略中央に形成された矩形状の原料ガス噴出口21aを有している。この原料ガス噴出口21aには、多数の細孔(例えばφ1.5mm)が形成されたメッシュ板が配設され、このメッシュ板の細孔から原料ガス及びキャリアガスが所定の噴出速度で噴出される。テープ状基材50に超電導薄膜を成膜する場合、原料ガスの噴出速度は10m/s以上に設定される。   On the upper wall 16 of the reaction chamber 10, a raw material gas ejection portion 21 connected to the vaporizer 20 is disposed. The source gas ejection part 21 has a rectangular source gas ejection port 21 a formed substantially at the center in the longitudinal direction of the upper wall 16 of the reaction chamber 10 (the traveling direction of the tape-shaped substrate 50). A mesh plate having a large number of pores (for example, φ1.5 mm) is disposed at the raw material gas outlet 21a, and the raw material gas and the carrier gas are ejected from the fine pores of the mesh plate at a predetermined ejection speed. The When a superconducting thin film is formed on the tape-shaped substrate 50, the jetting speed of the source gas is set to 10 m / s or more.

また、反応室10の上壁16には、サセプタ13とほぼ同一幅で矩形状の遮蔽板12、12が、原料ガス噴出口21aの長手方向両端に垂設されている。この遮蔽板12は、超電導体層を成膜するための成膜温度に対して耐熱性を有するとともに、原料ガスと反応しない材料(例えばSUS)で構成される。また、遮蔽板12は、テープ状基材50を走行可能とするため、サセプタ13の上面(テープ状基材50の走行面)から所定間隔だけ離間して配設されている。
2枚の遮蔽板12、12で挟まれた領域(成膜領域)において、テープ状基材50に超電導体層が成膜される。つまり、遮蔽板12、12で原料ガスの長手方向の拡散を抑制することにより、成膜領域において良質な超電導体層が成膜されるようにしている。
Further, on the upper wall 16 of the reaction chamber 10, rectangular shielding plates 12, 12 having substantially the same width as the susceptor 13 are suspended from both ends in the longitudinal direction of the source gas outlet 21 a. The shielding plate 12 is made of a material (for example, SUS) that has heat resistance with respect to the film forming temperature for forming the superconductor layer and does not react with the source gas. Further, the shielding plate 12 is disposed at a predetermined distance from the upper surface of the susceptor 13 (the traveling surface of the tape-shaped substrate 50) so that the tape-shaped substrate 50 can travel.
A superconductor layer is formed on the tape-shaped substrate 50 in a region (film formation region) sandwiched between the two shielding plates 12 and 12. That is, the shielding plates 12 and 12 suppress the diffusion of the raw material gas in the longitudinal direction so that a high-quality superconductor layer is formed in the film formation region.

なお、遮蔽板12の下端部に、トンネル状に切欠部を形成して、この切欠部をテープ状基材50が通過するようにしてもよい。また、遮蔽板12の下端面から、又は遮蔽板12に沿って下方に、遮蔽ガス(例えばAr)を噴出して、成膜領域と非成膜領域との境界にガスカーテンを形成するようにしてもよい。   Note that a notch portion may be formed in a tunnel shape at the lower end portion of the shielding plate 12 so that the tape-shaped substrate 50 passes through the notch portion. Further, a shielding gas (for example, Ar) is jetted from the lower end surface of the shielding plate 12 or downward along the shielding plate 12 to form a gas curtain at the boundary between the film formation region and the non-film formation region. May be.

反応室10の底壁17において、サセプタ13の幅方向両側には、成膜領域に対応する長さの排気口(不図示)が形成され、この排気口を通じて、未反応の原料ガスやキャリアガス等を反応室10の外部に排気可能となっている。   On the bottom wall 17 of the reaction chamber 10, exhaust ports (not shown) having a length corresponding to the film formation region are formed on both sides in the width direction of the susceptor 13, and unreacted source gas and carrier gas are passed through the exhaust ports. Etc. can be exhausted to the outside of the reaction chamber 10.

ところで、超電導薄膜は、中間層である配向性のセラミックス層の上に高温条件下で成膜される。中間層は、金属基板と比べて熱膨張係数が遙かに小さいため、超電導薄膜を成膜した後、空冷(冷却)中に、中間層と金属基板との熱膨張係数の差から、テープ状基材50が超電導薄膜の成膜面を凸にして反りかえり、中間層及び超電導薄膜が金属基板から剥離し易くなる問題があった。
このため、本願発明では、CVD装置1は、空冷(冷却)後のテープ状基材50の反りを防止し、金属基板から中間層及び超電導薄膜の剥離を抑制する構成を有している。
By the way, the superconducting thin film is formed on an oriented ceramic layer as an intermediate layer under high temperature conditions. Since the thermal expansion coefficient of the intermediate layer is much smaller than that of the metal substrate, after forming the superconducting thin film, during the air cooling (cooling), due to the difference in thermal expansion coefficient between the intermediate layer and the metal substrate, the tape-like There was a problem that the base material 50 was warped with the superconducting thin film formed in a convex surface, and the intermediate layer and the superconducting thin film were easily separated from the metal substrate.
For this reason, in this invention, the CVD apparatus 1 has the structure which prevents the curvature of the tape-shaped base material 50 after air cooling (cooling), and suppresses peeling of an intermediate | middle layer and a superconducting thin film from a metal substrate.

具体的には、サセプタ13には、図2に示すように、幅方向略中央部にテープ状基材50の走行方向に延びる溝部(支持部)31が形成されている。この溝部31は、幅方向の略中央部31Aが両側縁部31B,31Bよりも低く凹むように湾曲して形成される。溝部31の曲率半径Rは、例えば、テープ状基材50の幅Wを10mmとした場合には、幅Wの10倍、すなわち最大で100mm程度に設定されている。
サセプタ13は、溝部31の両側縁部31B,31Bから内側に延び、テープ状基材50の両側縁部の浮き上がりを規制する基材規制部32,32を備える。この基材規制部32は、溝部31の一端から他端に亘って一様に形成しても良いし、所定の間隔をあけて複数形成しても良いことは勿論である。
更に、本実施形態では、図1に示すように、反応室10は、遮蔽板12,12の外側に溝部31に配置されるローラ33,33を備える。このローラ33,33は、反応室10の上壁16から垂下される支持軸34,34に回転自在に支持され、溝部31と協働してテープ状基材50を該溝部31の形状に合わせて湾曲させる。
Specifically, as shown in FIG. 2, the susceptor 13 is formed with a groove portion (support portion) 31 extending in the running direction of the tape-like base material 50 at a substantially central portion in the width direction. The groove 31 is formed to be curved so that the substantially central portion 31A in the width direction is recessed lower than the side edge portions 31B and 31B. For example, when the width W of the tape-like substrate 50 is 10 mm, the radius of curvature R of the groove 31 is set to 10 times the width W, that is, about 100 mm at the maximum.
The susceptor 13 includes base material restricting portions 32 and 32 that extend inward from the side edge portions 31 </ b> B and 31 </ b> B of the groove portion 31 and restrict the lifting of both side edge portions of the tape-like base material 50. Of course, the base material restricting portion 32 may be formed uniformly from one end to the other end of the groove portion 31 or may be formed at a predetermined interval.
Furthermore, in this embodiment, as shown in FIG. 1, the reaction chamber 10 includes rollers 33 and 33 disposed in the groove portion 31 outside the shielding plates 12 and 12. The rollers 33 and 33 are rotatably supported by support shafts 34 and 34 suspended from the upper wall 16 of the reaction chamber 10, and cooperate with the groove portion 31 to adjust the tape-like substrate 50 to the shape of the groove portion 31. To bend.

次に、成膜の手順について説明する。
まず、サセプタ13の溝部31にテープ状基材50を配置し、この溝部31上をテープ状基材50が走行するように基材搬送部40を動作させる。この場合、溝部31には上記したローラ33,33が配置されるため、上記成膜領域を含むローラ33,33間の領域で、テープ状基材50は、図3(A)に示すように、テープ状基材50の成膜面(表面:金属基板51上に形成された中間層52の表面)50A側における幅方向略中央部50Bが両側縁部50C,50Cよりも凹むように湾曲される。
このテープ状基材50を湾曲させた状態で、サセプタ13の下面に配置されるヒータ15を動作させて、サセプタ13の溝部31を走行するテープ状基材50を加熱すると共に、原料ガス噴出口21aを通じて、テープ状基材50の表面50Aに向けて原料ガスを噴出する。これにより、テープ状基材50が成膜領域を通過する際に、テープ状基材50の表面50Aに原料ガスが供給され、図3(B)に示すように、湾曲された表面50A上に超電導薄膜53が成膜される。
Next, a film forming procedure will be described.
First, the tape-like base material 50 is disposed in the groove portion 31 of the susceptor 13, and the base material transport unit 40 is operated so that the tape-like base material 50 travels on the groove portion 31. In this case, since the rollers 33 are disposed in the groove portion 31, the tape-like substrate 50 is formed in the region between the rollers 33 and 33 including the film formation region as shown in FIG. The film-formation surface (surface: surface of the intermediate layer 52 formed on the metal substrate 51) of the tape-like substrate 50 is curved so that the substantially central portion 50B in the width direction on the 50A side is recessed from both side edges 50C and 50C. The
While the tape-like base material 50 is curved, the heater 15 disposed on the lower surface of the susceptor 13 is operated to heat the tape-like base material 50 that travels in the groove portion 31 of the susceptor 13 and the raw material gas outlet The source gas is jetted toward the surface 50A of the tape-like substrate 50 through 21a. Thereby, when the tape-like base material 50 passes through the film formation region, the raw material gas is supplied to the surface 50A of the tape-like base material 50, and as shown in FIG. 3B, on the curved surface 50A. A superconducting thin film 53 is formed.

続いて、超電導薄膜53が成膜されたテープ状基材50を空気中に放置して冷却させる。この場合、超電導薄膜53は、テープ状基材50を湾曲させた状態で成膜しているため、冷却時に、中間層52と金属基板51との熱膨張係数の差から、テープ状基材50が超電導薄膜53の成膜面側を凸にするように応力が生じたとしても、図3(C)に示すように、冷却後に生じるテープ状基材50の反りを簡単に抑制することができ、金属基板51から中間層52及び超電導薄膜53が剥離することを抑制できる。   Subsequently, the tape-like base material 50 on which the superconducting thin film 53 is formed is allowed to cool in the air. In this case, since the superconducting thin film 53 is formed in a state where the tape-like base material 50 is curved, the tape-like base material 50 is determined from the difference in thermal expansion coefficient between the intermediate layer 52 and the metal substrate 51 during cooling. Even if stress is generated so that the film-forming surface side of the superconducting thin film 53 is convex, warping of the tape-like substrate 50 that occurs after cooling can be easily suppressed as shown in FIG. The intermediate layer 52 and the superconducting thin film 53 can be prevented from peeling from the metal substrate 51.

次に、別の実施形態について説明する。
図4は、別の実施形態にかかるCVD装置の反応室内を示す概略構成図である。
この実施形態のCVD装置は、いわゆるホットウォール(外熱)型のCVD装置であり、反応室としての石英管70と、この石英管70の外側に配置され、該石英管70内の空間を加熱するヒータ(加熱手段)71と備える。このヒータ71に通電し石英管70を昇温させると、後述するサセプタ74に支持されるテープ状基材50は所望温度に加熱されるように構成されている。
また、CVD装置は、図示は省略したが、テープ状基材50を巻き取り走行させる基材搬送部と、超電導薄膜の原料を供給する原料溶液供給部と、原料溶液を気化させる気化器とを備えている。
石英管70の上壁には、気化器に接続される原料ガス噴出部72が配設され、この原料ガス噴出部72の噴出口を通じて、原料ガス及びキャリアガスが噴出される。
Next, another embodiment will be described.
FIG. 4 is a schematic configuration diagram illustrating a reaction chamber of a CVD apparatus according to another embodiment.
The CVD apparatus of this embodiment is a so-called hot wall (external heat) type CVD apparatus, and is disposed outside the quartz tube 70 as a reaction chamber and the quartz tube 70, and heats the space in the quartz tube 70. And a heater (heating means) 71. When the heater 71 is energized to raise the temperature of the quartz tube 70, the tape-like substrate 50 supported by a susceptor 74 described later is heated to a desired temperature.
Although not shown, the CVD apparatus includes a base material transport unit that winds and runs the tape-shaped base material 50, a raw material solution supply unit that supplies the raw material of the superconducting thin film, and a vaporizer that vaporizes the raw material solution. I have.
On the upper wall of the quartz tube 70, a raw material gas ejection part 72 connected to the vaporizer is disposed, and the raw material gas and the carrier gas are ejected through the ejection port of the raw material gas ejection part 72.

石英管70の内部には、テープ状基材50を支持するためのサセプタ74が設けられている。このサセプタ74は、テープ状基材50の走行方向に延びる板状のサセプタ本体75と、このサセプタ本体75の幅方向(テープ状基材50の走行方向に直交する方向)の両側部に配置され、テープ状基材50を走行可能に支持する支持片(支持部)76,76とを備える。
この支持片76,76の対向面76A,76Aには、それぞれテープ状基材50の側部を保持する保持溝部76B,76Bが形成される。この保持溝部76Bは、サセプタ本体75に向けて斜め下方に形成され、テープ状基材50の幅方向両側縁部50Cをサセプタ本体75から離間させるように該両側縁部50Cを支持する。これにより、テープ状基材50は、表面50A側における幅方向略中央部50Bが両側縁部50C,50Cよりも凹むように湾曲させた状態でサセプタ74に支持される。このため、テープ状基材50を湾曲させた状態で、該テープ状基材50の表面50Aに超電導薄膜を成膜することにより、冷却後に生じるテープ状基材50の反りを簡単に抑制することができ、金属基板から中間層及び超電導薄膜が剥離することを抑制できる。
A susceptor 74 for supporting the tape-like substrate 50 is provided inside the quartz tube 70. The susceptor 74 is disposed on both sides of the plate-shaped susceptor main body 75 extending in the traveling direction of the tape-shaped substrate 50 and the width direction of the susceptor main body 75 (direction orthogonal to the traveling direction of the tape-shaped substrate 50). And support pieces (support portions) 76 and 76 for supporting the tape-like substrate 50 so as to be able to travel.
Holding grooves 76B and 76B for holding the side portions of the tape-shaped substrate 50 are formed on the opposing surfaces 76A and 76A of the support pieces 76 and 76, respectively. The holding groove 76B is formed obliquely downward toward the susceptor body 75, and supports the side edges 50C so as to separate the widthwise side edges 50C of the tape-like substrate 50 from the susceptor body 75. Thereby, the tape-shaped base material 50 is supported by the susceptor 74 in a state where the substantially central portion 50B in the width direction on the surface 50A side is curved so as to be recessed from both side edge portions 50C and 50C. For this reason, in a state where the tape-like substrate 50 is curved, a warp of the tape-like substrate 50 generated after cooling can be easily suppressed by forming a superconducting thin film on the surface 50A of the tape-like substrate 50. It is possible to suppress the peeling of the intermediate layer and the superconducting thin film from the metal substrate.

以上のように、本実施形態によれば、テープ状基材50上に成膜される超電導薄膜53を成膜する酸化物成膜方法であって、テープ状基材50を加熱すると共に、テープ状基材50を該テープ状基材50の表面50A側における幅方向略中央部50Bが両側縁部50C,50Cよりも凹むように湾曲させた状態で該表面50Aに超電導薄膜53を成膜したため、冷却後に生じるテープ状基材50の反りを簡単に抑制でき、テープ状基材50を構成する金属基板51から中間層52及び超電導薄膜53が剥離することを抑制できる。   As described above, according to the present embodiment, the oxide film forming method for forming the superconducting thin film 53 to be formed on the tape-like base material 50, the tape-like base material 50 being heated and the tape The superconducting thin film 53 is formed on the surface 50A in a state where the substantially base portion 50B in the width direction on the surface 50A side of the tape-like substrate 50 is curved so as to be recessed from both side edge portions 50C and 50C. Further, the warpage of the tape-like substrate 50 that occurs after cooling can be easily suppressed, and the intermediate layer 52 and the superconducting thin film 53 can be prevented from peeling from the metal substrate 51 constituting the tape-like substrate 50.

また、本実施形態によれば、テープ状基材50を支持するサセプタ74上で、テープ状基材50の幅方向両側縁部50C,50Cをサセプタ本体75から離間させるように該両側縁部50C,50Cを支持することにより、テープ状基材50を該テープ状基材50の幅方向に湾曲させたため、簡単にテープ状基材50を湾曲させることができる。   Further, according to the present embodiment, both side edge portions 50C of the tape-like base material 50 are separated from the susceptor body 75 on the susceptor 74 supporting the tape-like base material 50 in the width direction. , 50C is supported, the tape-like substrate 50 is bent in the width direction of the tape-like substrate 50, so that the tape-like substrate 50 can be easily bent.

また、本実施形態によれば、原料ガスを噴出する原料ガス噴出部21と、テープ状基材を支持するサセプタ13とを有する反応室10を備え、この反応室10内でテープ状基材50の表面50Aに、原料ガスを供給し化学反応させることにより、テープ状基材50の表面50Aに超電導薄膜53を成膜するCVD装置であって、反応室10は、テープ状基材50を加熱するヒータ15を備え、サセプタ13は、テープ状基材50の表面50A側における幅方向略中央部50Bが両側縁部50C,50Cよりも凹むように湾曲させた状態で、該テープ状基材50を支持する溝部31を備えるため、簡単な構成で、湾曲させたテープ状基材50の表面50Aに超電導薄膜53を成膜することができ、冷却後に生じるテープ状基材50の反りを簡単に抑制でき、テープ状基材50を構成する金属基板51から中間層52及び超電導薄膜53が剥離することを抑制できる。   In addition, according to the present embodiment, the reaction chamber 10 including the source gas ejection portion 21 that ejects the source gas and the susceptor 13 that supports the tape-shaped substrate is provided, and the tape-shaped substrate 50 is provided in the reaction chamber 10. A CVD apparatus for forming a superconducting thin film 53 on the surface 50A of the tape-like substrate 50 by supplying a raw material gas to the surface 50A of the substrate to cause a chemical reaction. The reaction chamber 10 heats the tape-like substrate 50. The susceptor 13 is curved in such a manner that the substantially central portion 50B in the width direction on the surface 50A side of the tape-like substrate 50 is recessed from both side edge portions 50C and 50C. Since the superconducting thin film 53 can be formed on the curved surface 50A of the tape-like base material 50 with a simple configuration, the warpage of the tape-like base material 50 generated after cooling can be simplified. Inhibition can be prevented that the intermediate layer 52 and the superconducting thin film 53 from the metal substrate 51 constituting the tape-shaped substrate 50 is peeled off.

以上、本発明を一実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、本実施形態では、テープ状基材50の表面50Aに超電導薄膜53を成膜する方法について説明したが、これに限るものではなく、金属基板51上に設けられ、超電導薄膜53を成膜させるための酸化物中間層(酸化物膜)を成膜する際に用いることもできる。
As mentioned above, although this invention was concretely demonstrated based on one Embodiment, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the summary.
For example, in the present embodiment, the method of forming the superconducting thin film 53 on the surface 50A of the tape-like substrate 50 has been described. However, the present invention is not limited to this, and the superconducting thin film 53 is formed on the metal substrate 51. It can also be used when forming an oxide intermediate layer (oxide film).

1 CVD装置
10 反応室
13,74 サセプタ
15,71 ヒータ(加熱手段)
21,72 原料ガス噴出部
31 溝部(支持部)
50 テープ状基材
50A 表面
50B 幅方向略中央部
50C 側縁部
51 金属基板
52 中間層
53 超電導薄膜(酸化物薄膜)
70 石英管(反応室)
75 サセプタ本体
76 支持片
76B 保持溝部
DESCRIPTION OF SYMBOLS 1 CVD apparatus 10 Reaction chamber 13,74 Susceptor 15,71 Heater (heating means)
21, 72 Source gas ejection part 31 Groove part (support part)
DESCRIPTION OF SYMBOLS 50 Tape-like base material 50A Surface 50B Width direction substantially center part 50C Side edge part 51 Metal substrate 52 Intermediate layer 53 Superconducting thin film (oxide thin film)
70 Quartz tube (reaction chamber)
75 Susceptor body 76 Support piece 76B Holding groove

Claims (6)

テープ状の金属基板上に酸化物膜を成膜する酸化物成膜方法であって、
前記金属基板を加熱すると共に、前記金属基板を該金属基板の幅方向に湾曲させた状態で前記酸化物膜を成膜することを特徴とする酸化物成膜方法。
An oxide film forming method for forming an oxide film on a tape-shaped metal substrate,
A method for forming an oxide, comprising: heating the metal substrate, and forming the oxide film in a state where the metal substrate is bent in a width direction of the metal substrate.
前記金属基板の表面側における幅方向略中央部が両側縁部よりも凹むように湾曲させた状態で該表面に酸化物膜を成膜することを特徴とする請求項1に記載の酸化物成膜方法。   2. The oxide film according to claim 1, wherein the oxide film is formed on the surface of the metal substrate in a state where the substantially central portion in the width direction is curved so as to be recessed from both side edges. Membrane method. 前記酸化物膜は、前記金属基板上に設けられ、超電導体の結晶粒を成膜させるための酸化物中間層であることを特徴とする請求項1または2に記載の酸化物成膜方法。   3. The oxide film forming method according to claim 1, wherein the oxide film is an oxide intermediate layer provided on the metal substrate for forming superconductor crystal grains. 4. 前記酸化物膜は、前記金属基板上に酸化物中間層を介して成膜される酸化物超電導層であることを特徴とする請求項1乃至3のいずれかに記載の酸化物成膜方法。   4. The oxide film forming method according to claim 1, wherein the oxide film is an oxide superconducting layer formed on the metal substrate via an oxide intermediate layer. 前記金属基板を支持するサセプタ上で、前記金属基板の幅方向両側縁部を前記サセプタから離間させるように該両側縁部を支持することにより、前記金属基板を該金属基板の幅方向に湾曲させたことを特徴とする請求項1乃至4のいずれかに記載の酸化物成膜方法。   On the susceptor supporting the metal substrate, the metal substrate is bent in the width direction of the metal substrate by supporting the both side edges so as to be separated from the susceptor. 5. The oxide film forming method according to claim 1, wherein the oxide film forming method is performed. 原料ガスを噴出する原料ガス噴出部と、テープ状基材を支持するサセプタとを有する反応室を備え、この反応室内で前記テープ状基材の表面に、前記原料ガスを供給し化学反応させることにより、前記テープ状基材の表面に酸化物超電導薄膜を成膜するCVD装置であって、
前記反応室は、前記テープ状基材を加熱する加熱手段を備え、前記サセプタは、前記テープ状基材の表面側における幅方向略中央部が両側縁部よりも凹むように湾曲させた状態で、該テープ状基材を支持する支持部を備えることを特徴とするCVD装置。
A reaction chamber having a source gas ejection portion for ejecting source gas and a susceptor that supports the tape-shaped substrate is provided, and the source gas is supplied to the surface of the tape-shaped substrate in this reaction chamber to cause a chemical reaction. The CVD apparatus for forming an oxide superconducting thin film on the surface of the tape-shaped substrate,
The reaction chamber includes a heating unit that heats the tape-shaped substrate, and the susceptor is curved so that a substantially central portion in the width direction on the surface side of the tape-shaped substrate is recessed from both side edges. A CVD apparatus comprising a support portion for supporting the tape-like substrate.
JP2013023139A 2013-02-08 2013-02-08 Oxide film formation method and cvd apparatus Pending JP2014154355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013023139A JP2014154355A (en) 2013-02-08 2013-02-08 Oxide film formation method and cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013023139A JP2014154355A (en) 2013-02-08 2013-02-08 Oxide film formation method and cvd apparatus

Publications (1)

Publication Number Publication Date
JP2014154355A true JP2014154355A (en) 2014-08-25

Family

ID=51576029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013023139A Pending JP2014154355A (en) 2013-02-08 2013-02-08 Oxide film formation method and cvd apparatus

Country Status (1)

Country Link
JP (1) JP2014154355A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280026A (en) * 1993-03-24 1994-10-04 Semiconductor Energy Lab Co Ltd Device and method for film forming
JPH08176798A (en) * 1994-12-27 1996-07-09 Idoutai Tsushin Sentan Gijutsu Kenkyusho:Kk Production of functional thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280026A (en) * 1993-03-24 1994-10-04 Semiconductor Energy Lab Co Ltd Device and method for film forming
JPH08176798A (en) * 1994-12-27 1996-07-09 Idoutai Tsushin Sentan Gijutsu Kenkyusho:Kk Production of functional thin film

Similar Documents

Publication Publication Date Title
US7624772B2 (en) Load lock apparatus, processing system and substrate processing method
US20140272341A1 (en) Thermal treated sandwich structure layer to improve adhesive strength
TW201241231A (en) Apparatus and process for atomic layer deposition
JP5838596B2 (en) Superconducting thin film material and manufacturing method thereof
JP2006002226A (en) Vapor deposition apparatus
JP2018503750A (en) Vacuum chamber with special design to increase heat dissipation
JP2010150635A (en) Continuous film deposition system and film deposition method using the same
US20120180725A1 (en) Cvd apparatus
JP2014154355A (en) Oxide film formation method and cvd apparatus
US20080220976A1 (en) Method And Apparatus For Manufacturing Superconducting Tape Through Integrated Process
JP2006190968A (en) Semiconductor device manufacturing apparatus
JPH0544043A (en) Cvd reactor
JP2006028609A (en) Thin film deposition apparatus and thin film deposition method
JP5854853B2 (en) CVD equipment
JP5468857B2 (en) Superconducting wire manufacturing method and CVD apparatus
JP2009246071A (en) Substrate treatment device and substrate treatment method
US20070116859A1 (en) Method of manufacturing oxide superconductive wire
JP2013194294A (en) Deposition apparatus and deposition method for functional thin film
JPH01152770A (en) Substrate with superconducting thin-film
JP2012149281A (en) Cvd apparatus
JP5684072B2 (en) CVD apparatus and superconducting wire manufacturing method
JP2012109409A (en) Substrate transfer tray
KR101238710B1 (en) A method for preparing superconducting thin film
JP2012015323A (en) Method of manufacturing cis-based film
WO2024022579A1 (en) Evaporation source, material deposition apparatus, and method of depositing material on a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170214