JP2014153153A - Contaminated soil processing system and contaminated soil processing method - Google Patents

Contaminated soil processing system and contaminated soil processing method Download PDF

Info

Publication number
JP2014153153A
JP2014153153A JP2013022232A JP2013022232A JP2014153153A JP 2014153153 A JP2014153153 A JP 2014153153A JP 2013022232 A JP2013022232 A JP 2013022232A JP 2013022232 A JP2013022232 A JP 2013022232A JP 2014153153 A JP2014153153 A JP 2014153153A
Authority
JP
Japan
Prior art keywords
soil
volume
bag
radiation dose
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013022232A
Other languages
Japanese (ja)
Other versions
JP6299942B2 (en
Inventor
Atsushi Shibao
敦 柴尾
Hajime Asakawa
肇 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2013022232A priority Critical patent/JP6299942B2/en
Publication of JP2014153153A publication Critical patent/JP2014153153A/en
Application granted granted Critical
Publication of JP6299942B2 publication Critical patent/JP6299942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To decontaminate contaminated soil and reduce the volume of the contaminated soil more safely at low cost.SOLUTION: A contaminated soil processing system 1, which classifies contaminated soil into soil for incineration and soil for dehydration via a first classification mechanism 16, incinerates the soil for incineration in a burner reactor 18 to reduce the volume of the soil and dehydrates the soil for dehydration in a dehydration reactor 20 to reduce the volume of the soil. An exhaust heat supply mechanism 22 supplies exhaust heat generated in the burner reactor 18 to the dehydration reactor 20, so that the exhaust heat generated in the burner reactor 18 is used for dehydration processing in the dehydration reactor 20. A bagging device 8 having a vacuum deaeration function deaerates the soil classified as fine particles by a classification device 6 in vacuum and packs the soil into a bag-like container, which process prevents the generation of dust containing pollutants. Furthermore, the bagging device 8 has the bag-like container attached and detached automatically and a worker does not have to do the attachment/detachment job. This configuration can decontaminate contaminated soil and reduce the volume of the contaminated soil more safely at low cost.

Description

本発明は、汚染土壌処理システム及び汚染土壌処理方法に関するものである。   The present invention relates to a contaminated soil treatment system and a contaminated soil treatment method.

従来から、放射性物質等の汚染物質で汚染された土壌の除染処理に関する発明が提案されており、土壌の汚染濃度に応じて処理方法を選択する装置等も発案されている(例えば、特許文献1参照)。このように除染された汚染土壌は、残存する汚染濃度に応じた所定の場所に、フレコン等に詰め込んだ状態で保管する必要がある。しかしながら、周辺環境への配慮等から、このような汚染土壌の保管場所を確保することは困難である。このため、確保した保管場所を有効に活用するために、汚染土壌の減容化が求められており、この要求に対する様々な技術も提案されている。例えば、汚泥や枯葉等の有機物を含む汚染土壌を焼却によって減容化する方法や、本発明者らが先に出願した乾式の除染装置を用いて減容化させる方法(特願2013−17146)等がある。   Conventionally, inventions related to decontamination treatment of soil contaminated with pollutants such as radioactive substances have been proposed, and an apparatus for selecting a treatment method in accordance with the soil contamination concentration has been proposed (for example, patent document). 1). It is necessary to store the contaminated soil thus decontaminated in a state where it is packed in a flexible container or the like in a predetermined location according to the remaining contamination concentration. However, it is difficult to secure a storage place for such contaminated soil due to consideration of the surrounding environment. For this reason, in order to effectively use the secured storage location, volume reduction of the contaminated soil is required, and various techniques for this requirement have been proposed. For example, a method of reducing the volume of contaminated soil containing organic substances such as sludge and dead leaves by incineration, or a method of reducing the volume using a dry decontamination apparatus previously filed by the present inventors (Japanese Patent Application No. 2013-17146). ) Etc.

特開2010−269275号公報JP 2010-269275 A

しかしながら、焼却による減容化方法では、焼却によって汚染土壌が減容化されるものの、減容化によって汚染濃度が高くなり、却って保管が難しくなるケースがある。更に、汚染土壌の種類によっては、焼却によって減容化できない場合がある。又、乾式の除染装置を用いる方法では、熱風発生炉等を使用する必要があるため、多量の汚染土壌を処理する場合には、燃料コストが高くなってしまう。
又、上述した各方法で減容化した汚染土壌をフレコン等に詰め込む際には、汚染物質を含む粉塵が発生する虞があり、作業員は細心の注意を払って作業を行う必要があった。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、コストを抑制しながら、より安全に汚染土壌を除染及び減容化することにある。
However, in the volume reduction method by incineration, although the contaminated soil is reduced in volume by incineration, there is a case where the concentration of contamination becomes high due to volume reduction, which makes storage difficult. Furthermore, depending on the type of contaminated soil, it may not be possible to reduce the volume by incineration. Further, in the method using a dry decontamination apparatus, it is necessary to use a hot air generating furnace or the like, so that when a large amount of contaminated soil is treated, the fuel cost becomes high.
In addition, when contaminated soil that has been reduced in volume by the above-described methods is packed in a flexible container or the like, there is a possibility that dust containing pollutants may be generated, and workers have to work with great care. .
This invention is made | formed in view of the said subject, The place made into the objective is in decontamination and volume reduction of a contaminated soil more safely, suppressing cost.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)汚染土壌を除染・減容化する汚染土壌処理システムであって、土壌を減容化する減容化ユニットと、該減容化ユニットで減容化された土壌を解砕及び微粉砕する粉砕装置と、該粉砕装置で解砕及び微粉砕された土壌を粒度に応じて分級する分級装置と、該分級装置で分級された土壌のうち、粒度の細かい土壌を袋状容器に充填する袋詰め装置と、システムを構成する各構成要素間で土壌の移送を行う複数の移送機構と、システム全体を制御する制御装置とを含み、前記減容化ユニットは、土壌を焼却処理対象の土壌と乾燥処理対象の土壌とに分別する第1の分別機構と、焼却処理対象に分別された土壌を焼却処理により減容化する燃焼炉と、乾燥処理対象に分別された土壌を乾燥処理により減容化する乾燥炉と、前記燃焼炉で発生した排熱を前記乾燥炉へと供給する排熱供給機構とを含む汚染土壌処理システム(請求項1)。   (1) A contaminated soil treatment system for decontaminating and reducing the volume of contaminated soil, a volume reduction unit for reducing the volume of the soil, and crushing and pulverizing the soil reduced in volume by the volume reduction unit A crushing device for crushing, a classification device for classifying the soil pulverized and finely pulverized by the crushing device, and filling the bag-shaped container with finely sized soil out of the soil classified by the classification device And a plurality of transfer mechanisms for transferring the soil between the components constituting the system, and a control device for controlling the entire system, wherein the volume reduction unit is configured to incinerate the soil. A first separation mechanism that separates soil into soil to be dried, a combustion furnace that reduces the volume of the soil that has been separated into incinerators by incineration, and a soil that has been separated into objects to be dried by drying Reduced drying oven and generated in the combustion furnace Heat contaminated soil treatment system including a waste heat supply mechanism for supplying to said drying furnace (claim 1).

本項に記載の汚染土壌処理システムは、汚染土壌採取地等で採取した土壌を減容化する減容化ユニット、減容化された土壌を解砕及び微粉砕する粉砕装置、解砕及び微粉砕された土壌を粒度に応じて分級する分級装置、分級された土壌のうち、粒度の細かい土壌を袋状容器に充填する袋詰め装置を含んでいる。本システムが処理対象とする汚染土壌として、例えば、放射性物質で汚染された土壌等が挙げられる。   The contaminated soil treatment system described in this section consists of a volume reduction unit that reduces the volume of soil collected at a contaminated soil collection site, a pulverizer that crushes and pulverizes the reduced volume, A classification device that classifies the pulverized soil according to the particle size, and a bagging device that fills the bag-shaped container with the fine-grained soil among the classified soils are included. Examples of contaminated soil to be treated by this system include soil contaminated with radioactive substances.

減容化ユニットは、第1の分別機構、燃焼炉、乾燥炉、排熱供給機構を含んでおり、第1の分別機構は、土壌を焼却処理対象の土壌と乾燥処理対象の土壌とに分別する。そして、燃焼炉は、第1の分別機構で焼却処理対象として分別された土壌を焼却することで、土壌を減容化し、乾燥炉は、第1の分別機構で乾燥処理対象として分別された土壌を、熱風等で乾燥することで、土壌を減容化する。この際、排熱供給機構は、土壌の焼却処理により燃焼炉で発生する排熱を、乾燥炉へと供給する。これにより、乾燥炉は、排熱供給機構により供給される燃焼炉で発生した排熱を、土壌の乾燥処理に利用することとなる。更に、例えば、吸引ファン及び配管で排熱供給機構を構成する場合に、吸引ファン及び配管を、燃焼炉内の熱気を乾燥炉内へ吸引する位置に設置するだけでなく、乾燥炉内の空気を外部へと放出する位置にも設置することとすれば、空気の流れが潤滑になり、燃焼炉内の熱気を乾燥炉内へ効率的に取り入れるものとなる。   The volume reduction unit includes a first separation mechanism, a combustion furnace, a drying furnace, and an exhaust heat supply mechanism. The first separation mechanism separates the soil into the soil to be incinerated and the soil to be dried. To do. The combustion furnace incinerates the soil separated as an incineration target by the first separation mechanism, thereby reducing the volume of the soil, and the drying furnace is the soil separated as the drying target by the first separation mechanism. The soil is reduced in volume by drying with hot air. At this time, the exhaust heat supply mechanism supplies exhaust heat generated in the combustion furnace by incineration of the soil to the drying furnace. Thereby, a drying furnace will utilize the waste heat which generate | occur | produced in the combustion furnace supplied by the waste heat supply mechanism for the drying process of soil. Further, for example, when the exhaust heat supply mechanism is constituted by a suction fan and piping, the suction fan and piping are not only installed at a position for sucking hot air in the combustion furnace into the drying furnace, but also air in the drying furnace. If it is also installed at a position where it is discharged to the outside, the air flow becomes lubricated, and hot air in the combustion furnace is efficiently taken into the drying furnace.

又、粉砕装置は、土壌を解砕及び微粉砕することで、土壌の凝集を解消すると共に土壌を細粒化する。そして、分級装置は、減容化ユニットで焼却処理や乾燥処理により減容化され、更に、粉砕装置で解砕及び微粉砕された土壌を、例えば、汚染物質の大部分を含む粒度の細かい土壌と、粒度の粗い土壌とに分級する。このため、採取された土壌の水分の含有量や、土壌の凝集等、処理対象となる土壌の状態に起因する分級精度のバラツキの発生を回避し、分級精度を高めることとなる。
又、袋詰め装置は、分級装置で分級された土壌のうち粒度の細かい土壌を、例えばフレコン等の袋状容器に充填する。この際、より安全を期すために、土壌をフレコンよりも小さな袋に充填し、更にこの袋をフレコンに投入して二重の容器としてもよい。この場合は、袋とフレコンとの大きさの差に応じて、複数の袋をフレコンに投入してもよい。
In addition, the pulverizer disintegrates and finely pulverizes the soil, thereby eliminating soil aggregation and making the soil fine. The classifier is a volume-reduced unit that is reduced in volume by incineration or drying, and further crushed and pulverized in the pulverizer. And classified into coarse-grained soil. For this reason, generation | occurrence | production of the variation in the classification accuracy resulting from the state of the soil used as a process target, such as the moisture content of the extract | collected soil, and agglomeration of a soil, is avoided, and classification accuracy will be improved.
In addition, the bagging device fills finely sized soil among the soil classified by the classification device into a bag-like container such as a flexible container. At this time, in order to ensure safety, the soil may be filled in a bag smaller than the flexible container, and this bag may be put into the flexible container to form a double container. In this case, a plurality of bags may be put into the flexible container according to the difference in size between the bag and the flexible container.

又、本項に記載の汚染土壌処理システムは、システムを構成する各構成要素間で土壌の移送を行う複数の移送機構と、システム全体を制御する制御装置とを含んでいる。複数の移送機構の各々には、各構成要素間で移送される土壌の状態等に応じた適切な移送手段、例えば、コンベヤやクレーン等が用いられる。制御装置は、システムを構成する各構成要素を、土壌処理や土壌の移送が円滑に行われるように制御するものであり、システム全体を制御する1台で構成されていてもよく、又、システムの単数や複数の構成要素毎に設置されるものを含む複数台で構成されていてもよい。このように、本システムは、システム監視に要する人員を除き、土壌の移送を含んだシステム全体が、人の手を直接介することなく運用されるものであるため、安全性をより高めて、汚染土壌を除染及び減容化するものである。   In addition, the contaminated soil treatment system described in this section includes a plurality of transfer mechanisms that transfer soil between components constituting the system, and a control device that controls the entire system. For each of the plurality of transfer mechanisms, an appropriate transfer means, such as a conveyor or a crane, is used according to the state of the soil transferred between the components. The control device controls each component constituting the system so that soil treatment and soil transfer can be performed smoothly, and may be configured as a single unit that controls the entire system. It may be composed of a plurality of units including one or a plurality of components installed. In this way, the entire system, including the transfer of soil, except for personnel required for system monitoring, is operated without direct human intervention. Decontamination and volume reduction of soil.

(2)上記(1)項において、前記袋詰め装置は、土壌を前記袋状容器に充填する際に土壌を真空脱気する真空脱気機能と、前記袋状容器の自動脱着機能とを有する汚染土壌処理システム(請求項2)。
本項に記載の汚染土壌処理システムは、袋詰め装置が、真空脱気機能と袋状容器の自動脱着機能とを有しているものである。これにより、分級装置で分級された土壌のうち粒度の細かい土壌、すなわち、汚染物質の大部分を含む粒径の小さな土壌を、袋状容器に充填する際に、土壌を真空脱気しながら充填することで、汚染物質を含む粉塵の飛散を防止する。更に、袋詰め装置への袋状容器の脱着は自動で行われるため、作業員が袋詰め装置へ近づいて脱着作業を行う必要がない。従って、作業員の安全性をより高めることとなる。又、土壌を袋状容器に充填する際、又は充填後に、袋状容器を上下に振動させ、嵩密度を向上させることとしてもよい。
(2) In the above item (1), the bag filling device has a vacuum deaeration function for vacuum deaeration of the soil when filling the bag-like container with a soil, and an automatic desorption function for the bag-like container. Contaminated soil treatment system (Claim 2).
In the contaminated soil treatment system described in this section, the bagging device has a vacuum deaeration function and an automatic desorption function of the bag-like container. As a result, when the bag-shaped container is filled with finely sized soil among the soil classified by the classifying device, that is, with a small particle size containing most of the pollutant, the soil is filled while vacuum degassing. By doing so, scattering of dust containing pollutants is prevented. Further, since the bag-like container is attached to and detached from the bagging device automatically, it is not necessary for an operator to approach the bagging device and perform the removal operation. Therefore, the safety of workers is further increased. Moreover, when filling a bag-like container with soil or after filling, the bag-like container may be vibrated up and down to improve the bulk density.

(3)上記(1)(2)項において、前記第1の分別機構は、土壌の放射線量を測定する第1の放射線量測定器を含み、土壌の種別及び/又は前記第1の放射線量測定器で測定した放射線量に基づいて、土壌を焼却処理対象の土壌と乾燥処理対象の土壌とに分別する汚染土壌処理システム(請求項3)。
本項に記載の汚染土壌処理システムは、減容化ユニットの第1の分別機構が、土壌の放射線量を測定する第1の放射線量測定器を含むものであり、土壌を分別する際に、土壌の種別、及び第1の放射線量測定器で測定した放射線量の一方又は双方に基づいて、焼却処理対象の土壌と乾燥処理対象の土壌とに分別するものである。ここでの土壌の種別として、例えば、有機物を含み可燃性を有する土壌か否か等が挙げられ、この場合には、目視等で種別が判断される。
(3) In the above (1) and (2), the first separation mechanism includes a first radiation dose measuring device that measures the radiation dose of the soil, and the soil type and / or the first radiation dose. A contaminated soil treatment system that separates soil into incineration-target soil and dry-treatment target soil based on the radiation dose measured by the measuring device (claim 3).
In the contaminated soil treatment system described in this section, the first separation mechanism of the volume reduction unit includes the first radiation dose measuring device that measures the radiation dose of the soil. Based on one or both of the soil type and the radiation dose measured by the first radiation dose measuring device, the soil is classified into the soil subject to incineration and the soil subject to dry treatment. Examples of the soil type include whether or not the soil contains organic matter and has flammability. In this case, the type is determined visually.

又、土壌を分別する際の基準となる放射線量として、例えば、放射能濃度が240Bq/kg以下や、480Bq/kg以下であるか否か等が挙げられる。これらの数値は、土壌を焼却処理した場合でも、土壌の放射能濃度を安全に処理できるとされている8000Bq/kg以下(平成二十三年三月十一日に発生した東北地方太平洋沖地震に伴う原子力発電所の事故により放出された放射性物質による環境の汚染への対処に関する特別措置法施工規則第14条参照)にするための、燃焼炉の形式に応じて算出される目安である。すなわち、上述した土壌種別の例と、240Bq/kg以下という放射線量の例の双方を分別の判断基準に用いることとすれば、有機物を含み可燃性を有し、放射能濃度が240Bq/kg以下である土壌は、焼却処理対象の土壌に分別され、有機物を含まず可燃性を有さない土壌や、放射能濃度が240Bq/kgを超える土壌は、乾燥処理対象の土壌に分別される。これにより、焼却処理によって減容化され、焼却されても放射能濃度が安全に処理できる濃度を超えない土壌のみ、焼却処理の対象として分別されるため、土壌に応じた適切な方法で減容化するものとなる。   Moreover, as a radiation dose used as the reference | standard at the time of fractionating soil, for example, whether a radioactivity density | concentration is 240 Bq / kg or less or 480 Bq / kg or less is mentioned. These figures are 8000 Bq / kg or less (the Tohoku-Pacific Ocean Earthquake that occurred on March 11, 2003), which is said to be able to safely treat the radioactive concentration of the soil even when the soil is incinerated. This is a guideline that is calculated according to the type of combustion furnace in order to comply with Article 14 of the Special Measures Law concerning the handling of environmental pollution caused by radioactive substances released by nuclear power plant accidents. That is, if both the example of the above-mentioned soil type and the example of the radiation dose of 240 Bq / kg or less are used as the criteria for classification, it contains organic substances and has flammability, and the radioactivity concentration is 240 Bq / kg or less. The soil that is incinerated is classified into soil that is subject to incineration, and soil that does not contain organic matter and is not flammable, or soil that has a radioactivity concentration exceeding 240 Bq / kg, is classified into soil that is subject to drying. As a result, only the soil that has been reduced in volume by incineration and whose radioactive concentration does not exceed the concentration that can be safely processed even if incinerated is classified as the target for incineration, so the volume can be reduced by an appropriate method according to the soil. It will become.

(4)上記(1)から(3)項において、前記袋状容器内の土壌の重量を計測する重量計測器と、前記袋状容器内の土壌の体積を計測する体積計測器と、前記袋状容器内の土壌の放射線量を測定する第2の放射線量測定器と、前記重量計測器及び前記体積計測器の計測結果と前記第2の放射線量測定器の測定結果とに基づいて、前記袋状容器を仕分ける仕分け機構とを含む汚染土壌処理システム(請求項4)。   (4) In the above items (1) to (3), a weight measuring device for measuring the weight of the soil in the bag-shaped container, a volume measuring device for measuring the volume of the soil in the bag-shaped container, and the bag Based on the second radiation dose measuring device for measuring the radiation dose of the soil in the container, the measurement result of the weight measuring device and the volume measuring device, and the measurement result of the second radiation dose measuring device, A contaminated soil treatment system including a sorting mechanism for sorting bag-like containers (claim 4).

本項に記載の汚染土壌処理システムは、袋状容器内の土壌の重量、体積、放射線量の夫々を計測する、重量計測器、体積計測器、第2の放射線量測定器を含んでおり、更に、これらの計測結果に基づいて、土壌を袋状容器単位で仕分ける仕分け機構を含んでいる。この仕分け機構には、制御装置等で制御される無人フォークリフトを利用したものが例示できる。この場合には、例えば、袋状容器内の土壌の放射線量等を制御装置が把握し、予め設定した放射線量の値に応じた仕分け場所に、袋状容器ごと土壌を移送するように、制御装置が無人フォークリフトを制御する。これにより、人の手を直接介することなく効率的に土壌を仕分けるものとなる。更に、土壌を放射線量に応じて仕分けることで、放射能濃度に応じた適切な保管、管理をするものとなる。   The contaminated soil treatment system described in this section includes a weight measuring device, a volume measuring device, and a second radiation dose measuring device for measuring each of the weight, volume, and radiation dose of the soil in the bag-like container, Furthermore, based on these measurement results, a sorting mechanism for sorting the soil into bag-like containers is included. As this sorting mechanism, a mechanism using an unmanned forklift controlled by a control device or the like can be exemplified. In this case, for example, the control device grasps the radiation dose of the soil in the bag-like container, and controls so that the soil is transferred together with the bag-like container to a sorting place according to a preset value of the radiation dose. The device controls an unmanned forklift. As a result, the soil is efficiently sorted without direct human intervention. Furthermore, by sorting the soil according to the radiation dose, appropriate storage and management according to the radioactivity concentration can be performed.

(5)上記(4)項において、前記体積計測器が前記袋状容器内の土壌の体積を計測する前に、前記袋状容器内上部の空隙を解消する空隙解消機構を含む汚染土壌処理システム(請求項5)。
本項に記載の汚染土壌処理システムは、体積計測器が袋状容器内の土壌の体積を計測する前に、袋状容器内上部の空隙を解消する空隙解消機構を含むことで、袋状容器内の空隙を解消した状態で、土壌の体積を計測することとなるため、より正確に土壌の体積を計測するものとなる。
(5) In the above item (4), a contaminated soil treatment system including a void elimination mechanism that eliminates voids in the upper portion of the bag-shaped container before the volume measuring instrument measures the volume of the soil in the bag-shaped container. (Claim 5).
The contaminated soil treatment system described in this section includes a void elimination mechanism that eliminates voids in the upper portion of the bag-like container before the volume measuring instrument measures the volume of the soil in the bag-like container. Since the volume of the soil is measured in a state in which the voids are eliminated, the volume of the soil is measured more accurately.

(6)上記(1)から(5)項において、前記分級装置で分級された土壌のうち、粒度の粗い土壌の放射線量を測定する第3の放射線量測定器を含み、該第3の放射線量測定器で測定した放射線量が所定値を上回る土壌を、前記粉砕装置へと移送されるように分別する第2の分別機構を含む汚染土壌処理システム(請求項6)。
本項に記載の汚染土壌処理システムは、第3の放射線量測定器を有する第2の分別機構を含むものであり、第2の分別機構は、分級装置で分級された土壌のうち、粒度の粗い土壌の放射線量を第3の放射線量測定器で測定し、この測定結果が所定値を上回る土壌を、粉砕装置へと移送されるように分別する。これにより、汚染物質を含む土壌の隔離、保管を確実にするものである。なお、第3の放射線量測定器での測定結果が、所定値以下である土壌については、例えば、採取地に戻す、再利用する等の、今後国が定める規定に基づいて処理を施すこととなる。
(6) In the above items (1) to (5), including a third radiation dose measuring device for measuring the radiation dose of coarse soil among the soil classified by the classification device, the third radiation A contaminated soil treatment system including a second sorting mechanism that sorts soil whose radiation dose measured by a quantity measuring device exceeds a predetermined value so as to be transferred to the pulverizer (Claim 6).
The contaminated soil treatment system described in this section includes a second classification mechanism having a third radiation dose measuring device, and the second classification mechanism has a particle size of the soil classified by the classification device. The radiation dose of the rough soil is measured with a third radiation dose meter, and the soil whose measurement result exceeds a predetermined value is sorted so as to be transferred to the pulverizer. This ensures the isolation and storage of soil containing pollutants. In addition, about the soil whose measurement result with the 3rd radiation dose measuring instrument is below a predetermined value, for example, processing according to the regulation which the country sets in the future, such as returning to a collection place or reusing. Become.

(7)汚染土壌を除染・減容化する汚染土壌処理方法であって、汚染土壌採取工程と、該汚染土壌採取工程で採取した土壌を減容化する減容化工程と、該減容化工程にて減容化した土壌を細粒化する解砕及び微粉砕工程と、該解砕及び微粉砕工程にて細粒化した土壌を粒度に応じて分級する分級工程と、該分級工程にて分級した土壌のうち、粒度の細かい土壌を袋状容器に充填する袋詰め工程とを含み、前記減容化工程において、前記汚染土壌採取工程で採取した土壌を、焼却処理対象の土壌と乾燥処理対象の土壌とに分別し、焼却処理対象に分別した土壌を焼却処理により減容化すると共に、乾燥処理対象に分別した土壌を乾燥処理により減容化し、この際、焼却処理により発生する排熱を乾燥処理に利用する汚染土壌処理方法(請求項7)。   (7) A contaminated soil treatment method for decontaminating and reducing the volume of contaminated soil, the contaminated soil collection step, the volume reduction step of reducing the volume of soil collected in the contaminated soil collection step, and the volume reduction A pulverization and fine pulverization step for finely pulverizing the soil reduced in the pulverization step, a classification step for classifying the finely divided soil according to the pulverization and pulverization step, and the classification step And a bagging step of filling a bag-shaped container with a fine-grained soil, and the soil collected in the contaminated soil collection step in the volume reduction step is a soil to be incinerated. Separated into soil subject to drying treatment, the volume of soil separated into incineration target is reduced by incineration treatment, and the volume of soil separated into drying treatment subject is reduced by drying treatment, which is generated by incineration treatment. Contaminated soil treatment method using waste heat for drying treatment (claim 7) .

(8)上記(7)項において、前記袋詰め工程において、土壌を真空脱気しながら袋状容器に充填する汚染土壌処理方法(請求項8)。
(9)上記(7)(8)項において、前記減容化工程において、前記汚染土壌採取工程で採取した土壌を、土壌の種別及び/又は放射線量に基づいて焼却処理対象の土壌と乾燥処理対象の土壌とに分別する汚染土壌処理方法(請求項9)。
(10)上記(7)から(9)項において、前記袋状容器内の土壌の重量及び体積を計測すると共に放射線量を測定し、重量及び体積の計測結果と放射線量の測定結果とに基づいて、前記袋状容器を仕分ける仕分け工程を含む汚染土壌処理方法(請求項10)。
(8) The contaminated soil treatment method according to (7), wherein in the bagging step, the bag-like container is filled while the soil is vacuum degassed (Claim 8).
(9) In the above paragraphs (7) and (8), in the volume reduction step, the soil collected in the contaminated soil collection step is subjected to the incineration target soil and the drying treatment based on the soil type and / or radiation dose. A contaminated soil treatment method wherein the soil is separated from the target soil (claim 9).
(10) In the above items (7) to (9), the weight and volume of the soil in the bag-like container are measured and the radiation dose is measured. Based on the measurement result of the weight and volume and the measurement result of the radiation dose. A contaminated soil treatment method including a sorting step of sorting the bag-like containers (claim 10).

(11)上記(10)項において、前記仕分け工程において、前記袋状容器内の土壌の体積を計測する前に、前記袋状容器内上部の空隙を解消する汚染土壌処理方法(請求項11)。
(12)上記(7)から(11)項において、前記分級工程にて分級した土壌のうち、粒度の粗い土壌の放射線量を測定し、放射線量が所定値を上回る場合には、前記解砕及び微粉砕工程へと戻す汚染土壌処理方法(請求項12)。
そして、(7)から(12)項に記載の汚染土壌処理方法は、各々、上記(1)から(6)項に記載の汚染土壌処理システムを用いて実行されることで、上記(1)から(6)項に対応する同等の作用を奏するものである。
(11) In the above paragraph (10), in the sorting step, before measuring the volume of the soil in the bag-like container, the contaminated soil treatment method for eliminating the void in the upper part in the bag-like container (claim 11). .
(12) In the above items (7) to (11), the radiation dose of coarse soil is measured among the soils classified in the classification step, and when the radiation dose exceeds a predetermined value, the pulverization is performed. And a method for treating contaminated soil to be returned to the pulverization step (claim 12).
And the contaminated soil processing method as described in (7) to (12) term is performed using the contaminated soil processing system as described in said (1) to (6) term, respectively, (1) To (6), the equivalent effect is exhibited.

本発明はこのように構成したので、コストを抑制しながら、より安全に汚染土壌を除染及び減容化することが可能となる。   Since this invention was comprised in this way, it becomes possible to decontaminate and reduce the volume of contaminated soil more safely, suppressing cost.

本発明の実施の形態に係る汚染土壌処理システムの構成と共に土壌処理の流れを示す概略図である。It is the schematic which shows the flow of a soil process with the structure of the contaminated soil processing system which concerns on embodiment of this invention. 本発明の実施の形態に係る汚染土壌処理システムを構成する粉砕装置の一例を示す模式断面図である。It is a schematic cross section which shows an example of the grinding | pulverization apparatus which comprises the contaminated soil processing system which concerns on embodiment of this invention. 本発明の実施の形態に係る汚染土壌処理システムを構成する分級装置の一例を示す模式断面図である。It is a schematic cross section which shows an example of the classification apparatus which comprises the contaminated soil processing system which concerns on embodiment of this invention. 本発明の実施の形態に係る汚染土壌処理システムを構成する重量計測器、空隙解消機構、体積計測器、第2の放射線量測定器等の一例を示しており、(a)は側面方向からの概略図、(b)は体積計測器近傍の正面方向からの概略図である。1 shows an example of a weight measuring instrument, a void elimination mechanism, a volume measuring instrument, a second radiation dose measuring instrument, and the like that constitute a contaminated soil treatment system according to an embodiment of the present invention. Schematic, (b) is a schematic view from the front direction near the volume measuring device. 本発明の実施の形態に係る汚染土壌処理システムを構成する仕分け機構の一例を示す概略図である。It is the schematic which shows an example of the sorting mechanism which comprises the contaminated soil processing system which concerns on embodiment of this invention.

以下、本発明の実施の形態を図面に基づき説明する。ここで、従来技術と同一部分、若しくは相当する部分については同一符号で示し、詳しい説明を省略する。
図1は、本発明の実施の形態に係る汚染土壌処理システム1の構成を、土壌処理の流れと共に示す概略図である。まず、汚染土壌処理システム1の構成について説明すると、図示のように、汚染土壌処理システム1は、汚染土壌の採取地等から採取した土壌を減容化する減容化ユニット2と、減容化された土壌を解砕及び微粉砕する粉砕装置4と、解砕及び微粉砕された土壌を細粒子と粗粒子とに分級する分級装置6と、細粒子として分級された土壌を袋状容器に充填する袋詰め装置8とを含んでいる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, parts that are the same as or correspond to those in the prior art are denoted by the same reference numerals, and detailed description thereof is omitted.
FIG. 1 is a schematic diagram showing a configuration of a contaminated soil treatment system 1 according to an embodiment of the present invention, together with a soil treatment flow. First, the configuration of the contaminated soil treatment system 1 will be described. As shown in the figure, the contaminated soil treatment system 1 includes a volume reduction unit 2 for reducing the volume of soil collected from a collection site of the contaminated soil, and a volume reduction. Pulverizing device 4 for pulverizing and pulverizing the soil, classifying device 6 for classifying the pulverized and pulverized soil into fine particles and coarse particles, and the soil classified as fine particles in a bag-like container And a bagging device 8 for filling.

減容化ユニット2は、第1の放射線量測定器14を有する第1の分別機構16と、土壌を焼却処理する燃焼炉18と、土壌を乾燥処理する乾燥炉20と、燃焼炉18の排熱を乾燥炉20へ供給する排熱供給機構22とを含んでいる。排熱供給機構22は、図1の例では、内部に吸引ファン24が配置された配管28aと、内部に吸引ファン26が配置された配管28bとで構成されている。配管28aは、燃焼炉18内部と乾燥炉20内部とを接続する位置に設けられ、吸引ファン24は、送風方向が、燃焼炉18内部の熱気を乾燥炉20内部へと供給する方向となるように設置されている。又、配管28bは、乾燥炉20内部と乾燥炉20外部とを接続する位置に設けられ、吸引ファン26は、送風方向が、乾燥炉20内部の空気を乾燥炉20外部へと放出する方向となるように設置されている。   The volume reduction unit 2 includes a first sorting mechanism 16 having a first radiation dose measuring device 14, a combustion furnace 18 for incinerating soil, a drying furnace 20 for drying soil, and an exhaust of the combustion furnace 18. And an exhaust heat supply mechanism 22 for supplying heat to the drying furnace 20. In the example of FIG. 1, the exhaust heat supply mechanism 22 includes a pipe 28 a in which the suction fan 24 is disposed and a pipe 28 b in which the suction fan 26 is disposed. The piping 28a is provided at a position connecting the inside of the combustion furnace 18 and the inside of the drying furnace 20, and the suction fan 24 is arranged such that the blowing direction is the direction in which hot air inside the combustion furnace 18 is supplied to the inside of the drying furnace 20. Is installed. The pipe 28b is provided at a position connecting the inside of the drying furnace 20 and the outside of the drying furnace 20, and the suction fan 26 has a blowing direction in which the air inside the drying furnace 20 is discharged to the outside of the drying furnace 20. It is installed to become.

又、汚染土壌処理システム1は、袋状容器内の土壌の重量を計測する重量計測器30と、袋状容器内上部の空隙を解消する空隙解消機構38と、袋状容器内の土壌の体積を計測する体積計測器32と、袋状容器内の土壌の放射線量を測定する第2の放射線量測定器34と、袋状容器毎に土壌を仕分ける仕分け機構36とを含んでいる。更に、汚染土壌処理システム1は、分級装置6で粗粒子として分級された土壌を、第3の放射線量測定器40で測定した放射線量に基づいて分別する第2の分別機構42と、図1において実線の矢印で示され、各構成要素間において土壌を移送する複数の移送機構10(10a〜10d)と、システム全体を制御する制御装置12とを含んでいる。複数の移送機構10の各々には、移送する土壌の状態等に応じた様々な移送手段を用いることができ、例えば、コンベヤやクレーン等の機械式のものの他に、ダクトやシュータ等を用いてもよい。   The contaminated soil treatment system 1 includes a weight measuring device 30 that measures the weight of the soil in the bag-like container, a void elimination mechanism 38 that eliminates the void in the upper portion of the bag-like container, and the volume of the soil in the bag-like container. A volume measuring device 32 that measures the amount of radiation, a second radiation dose measuring device 34 that measures the radiation dose of the soil in the bag-like container, and a sorting mechanism 36 that sorts the soil for each bag-like vessel. Further, the contaminated soil treatment system 1 includes a second classification mechanism 42 that classifies the soil classified as coarse particles by the classification device 6 based on the radiation dose measured by the third radiation dose measuring device 40, and FIG. And a plurality of transfer mechanisms 10 (10a to 10d) for transferring soil between the components and a control device 12 for controlling the entire system. For each of the plurality of transfer mechanisms 10, various transfer means corresponding to the state of the soil to be transferred can be used. For example, in addition to a mechanical type such as a conveyor or a crane, a duct or a shooter is used. Also good.

次に、図1を参照しながら、本発明の実施の形態に係る汚染土壌処理システム1による汚染土壌処理方法について説明する。なお、説明の便宜上、汚染土壌処理方法で実施する工程毎に説明することとする。
(汚染土壌採取工程):汚染された土壌を採取するものであり、土壌に応じて、バックホウ等適切な土木機械を用いて、又は、必要に応じ人手により、地表面から適切な深さまでの土壌を採取する工程である。
Next, the contaminated soil processing method by the contaminated soil processing system 1 which concerns on embodiment of this invention is demonstrated, referring FIG. For convenience of explanation, explanation will be made for each step performed by the contaminated soil treatment method.
(Contaminated soil sampling process): Collects contaminated soil. Depending on the soil, soil from the ground surface to an appropriate depth using an appropriate civil engineering machine such as a backhoe or manually if necessary This is a process of collecting.

(減容化工程):汚染土壌採取工程で採取した土壌を、減容化ユニット2により減容化する工程である。詳しくは、まず、土壌の種別が目視等により判断され、例えば、有機物を含み可燃性を有する土壌か否かが判断される。この判断結果は、第1の分別機構16や制御装置12等に入力され、第1の分別機構16は、直接或いは制御装置12等を介して間接的に、土壌種別の情報を得る。そして、第1の分別機構16は、第1の放射線量測定器14により土壌の放射線量を測定し、この測定結果と土壌の種別とに基づいて、土壌を焼却処理対象の土壌と乾燥処理対象の土壌とに分別する。この際、例えば、有機物を含み可燃性を有し、かつ、放射能濃度が240Bq/kg以下の土壌を、焼却処理対象の土壌として分別し、この条件を満たさない土壌を乾燥処理対象の土壌として分別する。   (Volume reduction step): This is a step of reducing the volume of the soil collected in the contaminated soil collection step by the volume reduction unit 2. Specifically, first, the type of soil is determined by visual observation or the like, and for example, it is determined whether or not the soil contains organic matter and has flammability. This determination result is input to the first sorting mechanism 16, the control device 12, etc., and the first sorting mechanism 16 obtains soil type information directly or indirectly via the control device 12 or the like. And the 1st classification mechanism 16 measures the radiation dose of the soil with the 1st radiation dose measuring device 14, and soil is incinerated with the soil based on this measurement result and the kind of soil, and the drying process object Sort into soil. In this case, for example, soil containing organic matter and flammable and having a radioactivity concentration of 240 Bq / kg or less is classified as soil to be incinerated, and soil that does not satisfy this condition is treated as soil to be dried. Sort.

第1の分別機構16により焼却処理対象に分別された土壌は、移送手段10により燃焼炉18に移送された後、燃焼炉18において焼却され、減容化される。この際、燃焼炉18内部の熱気が、吸引ファン24により配管28aを介して、乾燥炉20内部へと供給される。一方、第1の分別機構16により乾燥処理対象に分別された土壌は、移送手段10により乾燥炉20に移送された後、乾燥炉20において熱風により乾燥され、減容化される。この際、土壌を乾燥させる熱風の少なくとも一部に、吸引ファン24により配管28aを介して供給される、燃焼炉18内部の熱気が利用される。又、乾燥炉20内部の空気が、吸引ファン26により配管28bを介して、乾燥炉20外部へと放出される。   The soil sorted into the incineration target by the first sorting mechanism 16 is transferred to the combustion furnace 18 by the transfer means 10 and then incinerated in the combustion furnace 18 to reduce the volume. At this time, hot air inside the combustion furnace 18 is supplied to the inside of the drying furnace 20 by the suction fan 24 via the pipe 28a. On the other hand, the soil separated into the objects to be dried by the first separation mechanism 16 is transferred to the drying furnace 20 by the transfer means 10 and then dried by hot air in the drying furnace 20 to reduce the volume. At this time, hot air inside the combustion furnace 18 supplied by the suction fan 24 via the pipe 28a is used for at least part of the hot air for drying the soil. Further, the air inside the drying furnace 20 is released to the outside of the drying furnace 20 by the suction fan 26 via the pipe 28b.

(解砕及び微粉砕工程)減容化工程にて減容化した土壌の凝集を、粉砕装置4を用いてほぐすと共に、細かく粉砕する工程である。本工程においては、土壌を強力な力で一挙に微粉砕するのではなく、研磨するような形で徐々に表面から微粉砕していくことが好ましい。というのは、粉砕装置4に投入される土壌の細粒子は、その表面部分に多くの汚染物質が付着しているから、表面部分が剥離するよう研磨するようにして微粉砕することにより、剥離した表面部分を次の分級工程により細粒子として分別して分離すれば、極めて効率的に汚染物質が付着した細粒子を分離して隔離できるからである。粉砕装置4には、例えば、図2に示す遠心流動粉砕装置4が用いられる。
なお、図1に示した実施形態においては、解砕と微粉砕を同時に行う好ましい形態の1例として遠心流動粉砕装置4を使用した例を説明するが、本発明の形態はこれに限るものではなく、例えば、解砕と微粉砕を別装置で行うものであっても良い。
(Crushing and fine pulverization step) In this step, the agglomeration of the soil reduced in the volume reduction step is loosened using the pulverizer 4 and finely pulverized. In this step, it is preferable to gradually pulverize the surface from the surface in such a manner that the soil is not pulverized all at once with a strong force. This is because the fine particles of the soil put into the pulverizer 4 have a lot of contaminants attached to the surface portion. This is because if the surface portion is separated and separated as fine particles by the subsequent classification step, the fine particles to which the contaminants are attached can be separated and isolated very efficiently. For the pulverization apparatus 4, for example, a centrifugal fluid pulverization apparatus 4 shown in FIG. 2 is used.
In the embodiment shown in FIG. 1, an example in which the centrifugal fluid pulverizer 4 is used as an example of a preferable form in which crushing and pulverization are performed simultaneously will be described. However, the embodiment of the present invention is not limited to this. For example, crushing and fine pulverization may be performed by separate apparatuses.

遠心流動粉砕装置4について詳しく説明すると、遠心流動粉砕装置4は、図2に例示されるように、本体部分を覆うケーシング408の内側に、連結部材409を介して外周環407が取付けられている。符号410は脚柱であり、ベアリング411を介して回転皿406を枢支している。回転軸402は、減速機構等を介して電動モータ等の動力源に駆動される。ケーシング408の天井中央部分には、土壌の投入管412が設置され、この投入管412の周囲を囲むように開口413が設けられ、この開口413にダクト414が接続されている。なお、本実施形態では、ダクト414は、次の分級工程で用いる図3に示す気流式分級装置6に接続されている。
又、外周環407には、本実施形態では、ライナが内張りされると共に、その壁面を貫通するように多数のスリット又は小孔415が穿孔されている。外周環407外面の底部とケーシング408内面との間には、側部カバー416が環状に設けられており、側部カバー416とケーシング408及び外周環407外面との間に空気導入室417が区画形成され、空気導入管418から空気が導入可能となっている。なお、側部カバー416の上端は、外周環407の側部外面に密着固定されている。
The centrifugal fluid crusher 4 will be described in detail. As illustrated in FIG. 2, the centrifugal fluid crusher 4 has an outer peripheral ring 407 attached to the inside of a casing 408 covering the main body portion via a connecting member 409. . Reference numeral 410 denotes a pedestal, which pivotally supports the rotating dish 406 via a bearing 411. The rotating shaft 402 is driven by a power source such as an electric motor via a speed reduction mechanism or the like. In the center of the ceiling of the casing 408, a soil introduction pipe 412 is installed. An opening 413 is provided so as to surround the introduction pipe 412, and a duct 414 is connected to the opening 413. In this embodiment, the duct 414 is connected to the airflow classifier 6 shown in FIG. 3 used in the next classification step.
In this embodiment, the outer ring 407 is lined with a liner, and a large number of slits or small holes 415 are formed so as to penetrate the wall surface. A side cover 416 is annularly provided between the bottom of the outer surface of the outer peripheral ring 407 and the inner surface of the casing 408, and an air introduction chamber 417 is defined between the side cover 416, the casing 408 and the outer surface of the outer peripheral ring 407. Thus, air can be introduced from the air introduction pipe 418. Note that the upper end of the side cover 416 is tightly fixed to the outer side surface of the outer peripheral ring 407.

回転皿406の外周縁と外周環407の底部内周面との間には、鋼球等のボール423の、最小ボール径の10〜30%のクリアランス419が確保され、底部カバー420がクリアランス419の下側を覆うように環状に配置されている。本実施形態では、側部カバー416に穿孔を施し、あるいは空気導入管を接続するなどして、底部カバー420内への空気導入を可能としている。
底部カバー420及び空気導入室417には、抜出し及び搬送用の管路421が接続され、管路421は投入管412へ細粒子を返送可能となっている。また、回転皿406の外周縁下側には、スクレーパ422が設置され、底部カバー420内に落下した細粒子を抜出し用の管路421の接続部へ向けて寄せ集めるように構成されている。
なお、回転皿と外周環に鋼球等のボールを入れて原料を微粉砕する遠心流動粉砕タイプの粉砕装置として、例えば、CFMILL(登録商標)等が知られおり、遠心流動粉砕装置のタイプとして、原料を連続処理する連続式タイプのものと、バッチ式に処理するバッチタイプのものがあるが、両タイプとも本発明の適応範囲内である。
A clearance 419 of 10 to 30% of the minimum ball diameter of the ball 423 such as a steel ball is secured between the outer peripheral edge of the rotating dish 406 and the bottom inner peripheral surface of the outer peripheral ring 407, and the bottom cover 420 has a clearance 419. It is arranged in an annular shape so as to cover the lower side of. In the present embodiment, air can be introduced into the bottom cover 420 by perforating the side cover 416 or connecting an air introduction tube.
The bottom cover 420 and the air introduction chamber 417 are connected to a pipe line 421 for extraction and transfer, and the pipe line 421 can return fine particles to the input pipe 412. Further, a scraper 422 is installed on the lower side of the outer peripheral edge of the rotating dish 406 so that fine particles dropped in the bottom cover 420 are gathered toward the connecting portion of the extraction conduit 421.
In addition, as a centrifugal fluid grinding type grinding device that pulverizes the raw material by putting a ball such as a steel ball in the rotating dish and the outer ring, for example, CFMILL (registered trademark) is known as a centrifugal fluid grinding device type. There are a continuous type for continuously treating raw materials and a batch type for treating batches, both of which are within the applicable range of the present invention.

上記構成を有する遠心流動粉砕装置4の投入管412から、減容化工程において減容化された土壌が投入されると、回転皿406の回転に伴い、ボール423は外周環407の内壁面と皿面とを循環する円運動と、回転皿406の中心軸周りの回転運動との合成による、縄を結うがごとき螺旋運動を生じることで、細粒子の粉砕を行うものである。
そして、空気導入管418から空気導入室417及び底部カバー420内に導入された空気は、クリアランス419、スリット又は小孔415を通って粉砕室内に流入し、粉砕によって生じた粉末を伴ってダクト414内に入り、気流式分級装置6へと送られることとなる。
When the reduced volume of the soil in the volume reduction process is input from the input pipe 412 of the centrifugal fluid crusher 4 having the above-described configuration, the ball 423 and the inner wall surface of the outer ring 407 are moved along with the rotation of the rotating dish 406. Fine particles are pulverized by generating a spiral motion such as a rope tying by synthesizing a circular motion that circulates through the plate surface and a rotational motion around the central axis of the rotating plate 406.
The air introduced into the air introduction chamber 417 and the bottom cover 420 from the air introduction pipe 418 flows into the pulverization chamber through the clearance 419, the slit or the small hole 415, and the duct 414 is accompanied by the powder generated by the pulverization. It enters the inside and is sent to the airflow classifier 6.

(分級工程)解砕及び微粉砕工程にてほぐされ、細粒化された土壌を、分級装置6を用いて、粒度に応じて分別する工程である。分級装置6には、例えば、気流式の分級装置(一例として、特許第2645615号公報等参照)等を用いることができ、本実施の形態では、図3に示す気流式分級装置6が用いられる。気流式分級装置6は、遠心流動粉砕装置4(図2参照)によって粉砕された採取土壌を、気流によって所要の粒度の粉体へと選別するものであり、その分級原理としては重力分級、慣性力分級及び遠心力分級に大別される。粉体の大量分級に好適な遠心力分級には、分級室の形状を渦巻状にすることで気流を旋回させる自由渦式のものと、分級室内に設けられた回転羽根によって気流を強制的に旋回させる強制渦のものと、これらふたつの合成である自由渦と強制渦の共用式のものとがある。
図3に例示されるものは、円筒状の分級室601と下方縮径の分散室602の内部に構成されたもので、分級室601の中心に、回転可能に支持された垂直な駆動軸607とその周囲に一体的に回転する多数の分級羽根608を取付けた回転羽根車608Aを有し、回転羽根車608Aの上方には回転羽根車608Aの内部と連通する微粉排出口609を配している。回転羽根車608Aの外周には、分級用空気に旋回を与えるための多数のスリット状開孔を具備する固定翼606を同心円状に適当間隔離間して固設し、固定翼606に連結して下方縮径のガイドコーン610を備えている。
(Classifying step) This is a step of classifying the soil that has been loosened and refined in the crushing and pulverizing step using the classifying device 6 according to the particle size. For example, an airflow classifier (see, for example, Japanese Patent No. 2645615) or the like can be used as the classifier 6, and in this embodiment, the airflow classifier 6 shown in FIG. 3 is used. . The airflow classifier 6 sorts the collected soil pulverized by the centrifugal fluid pulverizer 4 (see FIG. 2) into powder of a required particle size by the airflow, and the classification principle is gravity classification, inertia. Broadly divided into force classification and centrifugal classification. Centrifugal force classification suitable for mass classification of powders includes a free vortex type that swirls the air flow by making the shape of the classification chamber spiral, and the air flow is forced by rotating blades provided in the classification chamber There is a forced vortex to be swirled and a combination of these two, a free vortex and a forced vortex.
An example illustrated in FIG. 3 is configured inside a cylindrical classification chamber 601 and a dispersion chamber 602 having a reduced diameter, and a vertical drive shaft 607 rotatably supported at the center of the classification chamber 601. And a rotating impeller 608A having a large number of classification blades 608 rotating integrally therewith, and a fine powder discharge port 609 communicating with the inside of the rotating impeller 608A is disposed above the rotating impeller 608A. Yes. On the outer periphery of the rotary impeller 608A, fixed wings 606 having a large number of slit-shaped openings for swirling the classification air are fixed concentrically at appropriate intervals and connected to the fixed wings 606. A guide cone 610 having a reduced diameter is provided.

分散室602の内部には、回転羽根車608Aの下方部分の駆動軸607に分散板604を設け、供給口603から供給される、遠心流動粉砕装置4によって破砕・微粉砕された土壌が、分級室601で分級される。そして、固定翼606及びガイドコーン610の内壁を沿って落下してくる粒子とともに、分級用空気取込口605からスリット605Aを経由して侵入してくる分級用空気の中に投入され分散する構造としたものである。   In the dispersion chamber 602, a dispersion plate 604 is provided on the drive shaft 607 in the lower part of the rotary impeller 608A, and the soil crushed and finely pulverized by the centrifugal fluid crusher 4 supplied from the supply port 603 is classified. Classification is performed in the chamber 601. A structure in which particles falling along the inner walls of the fixed wing 606 and the guide cone 610 are introduced and dispersed into the classification air entering from the classification air intake port 605 via the slit 605A. It is what.

一方、回転羽根車608Aは、中間径の位置で外側が高い段差を有する円錐形状の円板とされ、段差部には複数個の透孔608Bが円周上等ピッチで配列されており、透孔608Bのより内側の円錐円板へ落下した粗粉又は粗粒を下方へ落下できるようになっている。透孔608Bの直径は5〜10mm程度とするが、できるだけ閉塞しない程度に小さくする。回転羽根車608Aを段差のある円錐円板としたのは、円錐円板上に落下した粗粉が確実に透孔608Bから排出されるようにし、透孔608Bを通り越して回転羽根間を内側から外側へ通り抜けることを防止するためである。
分級は、最初1次旋回気流で行なわれ、更に、2次旋回気流において、遠心力と内向きに流れる空気の抗力とのバランスで行なわれ、所要粒度の微粒子は微粉排出口609を経由して微粉として系外へ取り出される。一方、所要粒度より大きい粗粒子は2次旋回気流による遠心力を受け回転羽根車608Aの外周方向へ跳ね飛ばされて固定翼606の内側に沿って下降する間に、固定翼606を経由して内側へ侵入してくる分級用空気に晒されて、分散作用を受けるが、粗粒子は更に粗粉排出口611に向かって落下を続ける。そして、分散した微粒子は再び分級用空気と共に2次旋回気流中に運ばれ分級されるものである。
On the other hand, the rotary impeller 608A is a conical disk having a step on the outside at a position of an intermediate diameter, and a plurality of through holes 608B are arranged at equal pitches on the circumference of the step. Coarse powder or coarse particles that have fallen to the conical disk inside the hole 608B can be dropped downward. The diameter of the through hole 608B is about 5 to 10 mm, but is made as small as possible so as not to be blocked. The reason why the rotary impeller 608A is a conical disk having a step is that the coarse powder falling on the conical disk is surely discharged from the through hole 608B and passes through the through hole 608B from the inside between the rotary blades. This is to prevent passing through to the outside.
The classification is first performed with the primary swirl airflow, and further with the balance between the centrifugal force and the drag force of the air flowing inward in the secondary swirl airflow, and the fine particles having a required particle size pass through the fine powder outlet 609. It is taken out of the system as fine powder. On the other hand, coarse particles larger than the required particle size are subjected to centrifugal force due to the secondary swirling airflow, are spun off in the outer peripheral direction of the rotary impeller 608A, and descend along the inside of the fixed blade 606, via the fixed blade 606. Although exposed to the classification air entering the inside and subjected to a dispersing action, the coarse particles further continue to fall toward the coarse powder outlet 611. The dispersed fine particles are again carried together with the classification air into the secondary swirling airflow and classified.

(袋詰め工程)分級工程にて分級した土壌のうち、粒度の細かい土壌を、袋詰め装置8により真空脱気しながら袋状容器に充填する工程である。袋詰め装置8は、土壌を真空脱気する真空脱気機能と、袋状容器の自動脱着機能とを有しており、真空脱気機能は、例えば、スクリュ式脱気装置を併設する等して実現される。
分級装置6により分級された粒度の細かい土壌は、移送手段10により袋詰め装置8まで移送され、袋詰め装置8において、袋詰め装置8の真空脱気機能により真空脱気されながら、袋状容器に充填される。土壌を充填する際、又は充填後に、袋状容器を上下に振動させることで、嵩密度の向上が図られる。又、袋状容器は、袋詰め装置8の自動脱着機能により、開口部が開かれた状態で袋詰め装置8に装着され、土壌が充填された後に、開口部が閉じられて袋詰め装置8から外される。なお、本実施形態では、袋状容器としてフレコン及びフレコンよりも小さな袋を用いることとし、袋詰め装置8により土壌が充填された複数の袋が、フレコンに投入されるものとする。
(Bag filling step) This is a step of filling the bag-shaped container with finely sized soil out of the soil classified in the classification step while vacuum degassing with the bag filling device 8. The bagging device 8 has a vacuum deaeration function for vacuum deaeration of the soil and an automatic desorption function for the bag-like container. For example, the vacuum deaeration function is provided with a screw type deaeration device. Realized.
The finely classified soil classified by the classification device 6 is transferred to the bagging device 8 by the transfer means 10, and in the bagging device 8, the bag-like container is vacuum degassed by the vacuum degassing function of the bagging device 8. Filled. When filling the soil, or after filling, the bulk density is improved by vibrating the bag-like container up and down. Further, the bag-like container is attached to the bagging device 8 with the opening being opened by the automatic detaching function of the bagging device 8, and after the soil is filled, the opening is closed and the bagging device 8 is closed. Removed from. In this embodiment, it is assumed that a flexible container and a bag smaller than the flexible container are used as the bag-like container, and a plurality of bags filled with soil by the bag filling device 8 are put into the flexible container.

(仕分け工程)袋状容器内の土壌の放射線量等に基づいて、袋状容器単位で土壌を仕分ける工程である。詳しくは、図4(a)に示すように、袋詰め装置8により土壌が充填された袋状容器(フレコン)Fが、移送手段10a(クレーン)により、移送手段10b(コンベヤ)上まで移送される。移送手段10bには、ロードセル等を用いて構成される重量計測器30が組み込まれており、重量計測器30は、移送手段10b上に袋状容器Fが載置されると、袋状容器F内の土壌の重量を計測する。土壌の重量計測値は、制御装置12等に送られる。そして、移送手段10bは、重量計測器30による重量計測が終わると、袋状容器Fを移送手段10c(コンベヤ)方向(図中左方向)へと移動させる。   (Sorting process) This is a process of sorting the soil in a bag-like container unit based on the radiation dose of the soil in the bag-like container. Specifically, as shown in FIG. 4A, a bag-like container (Flecon) F filled with soil by the bagging device 8 is transferred onto the transfer means 10b (conveyor) by the transfer means 10a (crane). The A weight measuring device 30 configured using a load cell or the like is incorporated in the transfer means 10b. When the bag-like container F is placed on the transfer means 10b, the weight measuring device 30 has a bag-like container F. Measure the weight of the soil inside. The soil weight measurement value is sent to the control device 12 or the like. And the transfer means 10b moves the bag-shaped container F to the transfer means 10c (conveyor) direction (left direction in a figure), when the weight measurement by the weight measuring device 30 is complete | finished.

移送手段10c上まで移送された袋状容器Fは、移送手段10c上を緩やかに図4(a)の左方向に移動されながら、空隙解消機構38により袋状容器F内上部の空隙が解消される。空隙解消機構38は、袋状容器Fの上部に押え板38aを、例えば3秒程押し付けることで、袋状容器F内上部の空隙を解消する。空隙解消機構38は、移送手段10c上を移動する袋状容器Fに対応するように、押え板38aが図4(a)の上下左右方向に、所定範囲だけ移動可能に構成されている。   The bag-like container F that has been transferred to the transfer means 10c is slowly moved to the left in FIG. 4A on the transfer means 10c, and the gap in the bag-like container F is eliminated by the gap elimination mechanism 38. The The gap elimination mechanism 38 eliminates the gap in the upper part of the bag-like container F by pressing the pressing plate 38a against the upper part of the bag-like container F, for example, for about 3 seconds. The gap elimination mechanism 38 is configured such that the presser plate 38a can move in a predetermined range in the vertical and horizontal directions in FIG. 4A so as to correspond to the bag-like container F that moves on the transfer means 10c.

内部の空隙が解消された袋状容器Fは、移送手段10cにより左方向に移動されながら、やがて体積計測器32及び第2の放射線量測定器34の設置位置へ到達し、袋状容器F内の土壌の体積及び放射線量が計測される。図4(a)(b)の例において、体積計測器32は、上方向から袋状容器Fの寸法を計測する上部センサ32aと、横方向から袋状容器Fの寸法を計測する側部センサ32bとを備えており、両センサ32a、32bで計測した寸法データから、袋状容器F内の土壌の体積を算出する。又、第2の放射線量測定器34は、移送手段10cに組み込まれており、移送手段10cの第2の放射線量測定器34上を通過する、袋状容器F内の土壌の放射線量を測定する。土壌の体積計測値及び放射線量測定値は、制御装置12等に送られる。
そして、土壌の体積及び放射線量が計測された袋状容器Fは、図4(a)に示すように、移送手段10cにより図中左方向に移動され、仕分け準備位置apである移送手段10d(コンベヤ)上に移動されて、一時待機状態となる。移送手段10dは、移送手段10cから移動されるペースや、後述する仕分け機構36により取り出されるペースに合わせて、移送手段10d上の袋状容器Fを、図中左側に順次移動させる。
The bag-like container F from which the internal gap has been eliminated reaches the installation positions of the volume measuring device 32 and the second radiation dose measuring device 34 while being moved leftward by the transfer means 10c, and the inside of the bag-like container F The soil volume and radiation dose are measured. 4 (a) and 4 (b), the volume measuring device 32 includes an upper sensor 32a for measuring the size of the bag-like container F from above and a side sensor for measuring the size of the bag-like container F from the lateral direction. 32b, and the volume of the soil in the bag-like container F is calculated from the dimension data measured by both sensors 32a and 32b. Further, the second radiation dose measuring device 34 is incorporated in the transfer means 10c, and measures the radiation dose of the soil in the bag-like container F passing over the second radiation dose measuring device 34 of the transfer means 10c. To do. The volume measurement value and the radiation dose measurement value of the soil are sent to the control device 12 or the like.
Then, as shown in FIG. 4A, the bag-like container F in which the volume of the soil and the radiation dose are measured is moved leftward in the figure by the transfer means 10c, and the transfer means 10d (the sorting preparation position ap). It is moved onto the conveyor) and enters a temporary standby state. The transfer means 10d sequentially moves the bag-like container F on the transfer means 10d to the left in the drawing in accordance with the pace moved from the transfer means 10c and the pace taken out by the sorting mechanism 36 described later.

続いて、図5に示すように、仕分け機構36により、袋状容器F単位で土壌の仕分けを行う。図5の例では、仕分け機構36は、制御装置12(図1参照)で制御される無人フォークリフト50a、50bにより構成されている。制御装置12は、図4に示した重量計測器30、体積計測器32、第2の放射線量測定器34の各々から得た、袋状容器F内の土壌の重量計測値、体積計測値、放射線量測定値が、どの袋状容器Fに対応するものなのかを把握すると共に、袋状容器Fの位置管理を行う。そして、例えば、各袋状容器Fに充填されている土壌の、単位重量あたりの放射線量等を算出し、この算出値に基づいて袋状容器Fの仕分けを行う。   Subsequently, as shown in FIG. 5, the sorting mechanism 36 sorts the soil in units of bag-like containers F. In the example of FIG. 5, the sorting mechanism 36 includes unmanned forklifts 50a and 50b controlled by the control device 12 (see FIG. 1). The control device 12 includes the weight measurement value, the volume measurement value of the soil in the bag-like container F obtained from each of the weight measurement device 30, the volume measurement device 32, and the second radiation dose measurement device 34 shown in FIG. While grasping which bag-like container F the radiation dose measurement value corresponds to, the position management of the bag-like container F is performed. Then, for example, the radiation dose per unit weight of the soil filled in each bag-like container F is calculated, and the bag-like containers F are sorted based on this calculated value.

より具体的には、仕分け機構36は、仕分け準備位置apから、クランプ式の無人フォークリフト50aにより袋状容器Fを運び出し、パレット52上に載置する。そして、パレット52上に載置された袋状容器Fを、積載式の無人フォークリフト50bにより、単位重量あたりの放射線量値で区分された、予め定められている複数の仕分け位置spA〜spDのいずれかの位置まで運搬する。この際、制御装置12は、無人フォークリフト50bが運搬している袋状容器F内の土壌の、単位重量あたりの放射線量に応じて、複数の仕分け位置spA〜spDの中から、袋状容器Fを運搬する仕分け位置を選定し、選定した仕分け位置まで無人フォークリフト50bを誘導する。このようにして、土壌の単位重量あたりの放射線量に応じて、土壌を袋状容器F単位で仕分ける。なお、パレット52は、袋状容器Fの運搬を終えた無人フォークリフト50bにより回収することとする。   More specifically, the sorting mechanism 36 carries out the bag-like container F from the sorting preparation position ap by a clamp-type unmanned forklift 50 a and places it on the pallet 52. Then, the bag-like container F placed on the pallet 52 is divided by the load-type unmanned forklift 50b according to the radiation dose value per unit weight, and any of a plurality of predetermined sorting positions spA to spD. Carry to that position. At this time, the control device 12 selects the bag-like container F from among the plurality of sorting positions spA to spD according to the radiation dose per unit weight of the soil in the bag-like container F carried by the unmanned forklift 50b. The sorting position for transporting the vehicle is selected, and the unmanned forklift 50b is guided to the selected sorting position. Thus, according to the radiation dose per unit weight of the soil, the soil is sorted by the bag-like container F unit. The pallet 52 is collected by the unmanned forklift 50b that has finished carrying the bag-like container F.

(粗粒子管理工程)分級工程において分級した土壌のうち、粒度の粗い土壌の管理を行う工程である。図1の例では、第3の放射線量測定器40により、分級装置6で粗粒子に分級された土壌の放射線量を測定し、この測定した放射線量に基づいて、第2の分別機構42により土壌を分別する。例えば、放射線量が所定値以下であり、土壌を採取地に戻したり、再利用する等ができる程度に放射線量が低い土壌については、このように利用するために分別し、放射線量が所定値を上回る残りの土壌については、移送手段10により粉砕装置4に戻し、更に除染をすることとする。   (Coarse particle management step) Of the soil classified in the classification step, this is a step of managing the coarse soil. In the example of FIG. 1, the radiation dose of the soil classified into the coarse particles by the classification device 6 is measured by the third radiation dose measuring device 40, and the second classification mechanism 42 is used based on the measured radiation dose. Sort the soil. For example, if the radiation dose is below a predetermined value and the soil is so low that the soil can be returned to the collection site or reused, it is separated for use and the radiation dose is the predetermined value. About the remaining soil exceeding this, it shall return to the grinding | pulverization apparatus 4 by the transfer means 10, and shall further decontaminate.

さて、上記構成をなす本発明の実施の形態によれば、次のような作用効果を得ることが可能である。すなわち、図1に示すように、本発明の実施の形態に係る汚染土壌処理システム1は、汚染土壌採取地等で採取した土壌を減容化する減容化ユニット2、減容化された土壌を解砕及び微粉砕する粉砕装置4、解砕及び微粉砕された土壌を粒度に応じて分級する分級装置6、分級された土壌のうち、粒度の細かい土壌を袋状容器に充填する袋詰め装置8を含んでいる。図1の例では、放射性物質で汚染された土壌を、本システム1の処理対象としている。   Now, according to the embodiment of the present invention configured as described above, the following operational effects can be obtained. That is, as shown in FIG. 1, a contaminated soil treatment system 1 according to an embodiment of the present invention includes a volume reduction unit 2 that reduces the volume of soil collected at a contaminated soil collection site, and a volume of reduced soil. Pulverizing device 4 for pulverizing and pulverizing the soil, classifying device 6 for classifying the pulverized and pulverized soil according to the particle size, and bagging that fills the bag-shaped container with the finely divided soil among the classified soils A device 8 is included. In the example of FIG. 1, soil contaminated with a radioactive substance is a processing target of the system 1.

減容化ユニット2は、第1の分別機構16、燃焼炉18、乾燥炉20、排熱供給機構22を含んでおり、第1の分別機構16は、土壌を焼却処理対象の土壌と乾燥処理対象の土壌とに分別する。そして、燃焼炉18は、第1の分別機構16で焼却処理対象として分別された土壌を焼却することで、土壌を減容化し、乾燥炉20は、第1の分別機構16で乾燥処理対象として分別された土壌を、熱風等で乾燥することで、土壌を減容化する。この際、排熱供給機構22は、土壌の焼却処理により燃焼炉18で発生する排熱を、乾燥炉20へと供給する。これにより、乾燥炉20は、排熱供給機構22により供給される燃焼炉18で発生した排熱を、土壌の乾燥処理に利用することができるため、熱風等を発生させるための燃料コストを、大幅に削減することが可能となる。更に、吸引ファン及び配管で排熱供給機構22を構成する場合に、図1の例のように、燃焼炉18内の熱気を乾燥炉20内へ吸引する位置に、吸引ファン24及び配管28aを設置するだけでなく、乾燥炉20内の空気を外部へと放出する位置にも、吸引ファン26及び配管28bを設置することとすれば、空気の流れが潤滑になり、燃焼炉18内の熱気を乾燥炉20内へ効率的に取り入れることができる。   The volume reduction unit 2 includes a first separation mechanism 16, a combustion furnace 18, a drying furnace 20, and an exhaust heat supply mechanism 22, and the first separation mechanism 16 performs a drying process on the soil to be incinerated. Sort into target soil. And the combustion furnace 18 reduces the volume of the soil by incinerating the soil separated as the incineration target by the first separation mechanism 16, and the drying furnace 20 is the target of the drying process by the first separation mechanism 16. The sorted soil is dried with hot air to reduce the volume of the soil. At this time, the exhaust heat supply mechanism 22 supplies exhaust heat generated in the combustion furnace 18 to the drying furnace 20 by soil incineration processing. Thereby, since the drying furnace 20 can use the exhaust heat generated in the combustion furnace 18 supplied by the exhaust heat supply mechanism 22 for the drying treatment of the soil, the fuel cost for generating hot air or the like can be reduced. It becomes possible to reduce significantly. Further, when the exhaust heat supply mechanism 22 is configured by a suction fan and piping, the suction fan 24 and the piping 28a are placed at a position where hot air in the combustion furnace 18 is sucked into the drying furnace 20 as in the example of FIG. If the suction fan 26 and the pipe 28b are installed not only at the position but also at the position where the air in the drying furnace 20 is discharged to the outside, the air flow becomes lubricated and the hot air in the combustion furnace 18 is heated. Can be efficiently taken into the drying furnace 20.

又、図2に示す遠心流動粉砕装置等が用いられる粉砕装置4は、土壌を解砕及び微粉砕することで、土壌の凝集を解消すると共に土壌を細粒化する。そして、図3に示す気流式分級装置等が用いられる分級装置6は、減容化ユニット2で焼却処理や乾燥処理により減容化され、更に、粉砕装置4で解砕及び微粉砕された土壌を、汚染物質の大部分を含む粒度の細かい土壌と、粒度の粗い土壌とに分級する。このため、採取された土壌の水分の含有量や、土壌の凝集等、処理対象となる土壌の状態に起因する分級精度のバラツキの発生を回避し、分級精度を高めることが可能となる。   Moreover, the crushing device 4 in which the centrifugal fluid crushing device etc. shown in FIG. 2 is used crushes and pulverizes the soil, thereby eliminating soil agglomeration and making the soil fine. And the classifier 6 in which the airflow classifier shown in FIG. 3 is used is the soil reduced in volume by the incineration process and the drying process in the volume reduction unit 2, and further crushed and finely pulverized in the pulverizer 4 Are classified into fine-grained soil containing most of the pollutants and coarse-grained soil. For this reason, generation | occurrence | production of the variation in classification accuracy resulting from the state of the soil used as a process target, such as moisture content of the extract | collected soil, and soil aggregation, can be avoided, and it becomes possible to raise classification accuracy.

又、袋詰め装置8は、真空脱気機能と袋状容器の自動脱着機能とを有している。これにより、分級装置6で分級された土壌のうち粒度の細かい土壌、すなわち、汚染物質の大部分を含む粒径の小さな土壌を、袋状容器に充填する際に、土壌を真空脱気しながら充填することで、汚染物質を含む粉塵の飛散を防止することができる。更に、袋詰め装置8への袋状容器の脱着は自動で行われるため、作業員が袋詰め装置8へ近づいて脱着作業を行う必要がない。従って、作業員の安全性をより高めることが可能となる。又、土壌を袋状容器に充填する際、又は充填後に、袋状容器を上下に振動させることとすれば、嵩密度を向上させることができる。
なお、土壌を充填する袋状容器として、例えば図4、図5に符号Fで示すようなフレコン等が挙げられる。又、土壌をフレコンよりも小さな袋に充填し、更にこの袋をフレコンに投入して二重の容器とすれば、より安全に汚染土壌を密封することができる。この場合は、袋とフレコンとの大きさの差に応じて、複数の袋をフレコンに投入してもよい。
Further, the bagging device 8 has a vacuum deaeration function and an automatic desorption function of the bag-like container. Thereby, when filling the bag-shaped container with finely sized soil, that is, soil having a small particle size including most of the pollutant among the soil classified by the classifying device 6, the soil is vacuum deaerated. By filling, scattering of dust containing pollutants can be prevented. Furthermore, since the detachment of the bag-like container to the bagging device 8 is automatically performed, it is not necessary for the worker to approach the bagging device 8 and perform the detaching operation. Therefore, it is possible to further improve the safety of the worker. In addition, when the soil is filled in the bag-like container or after the filling, if the bag-like container is vibrated up and down, the bulk density can be improved.
In addition, as a bag-like container filled with soil, for example, a flexible container as indicated by a symbol F in FIGS. Moreover, if soil is filled in a bag smaller than the FIBC, and this bag is put into the FIBC to form a double container, the contaminated soil can be sealed more safely. In this case, a plurality of bags may be put into the flexible container according to the difference in size between the bag and the flexible container.

又、本発明の実施の形態に係る汚染土壌処理システム1は、図1に示すように、システムを構成する各構成要素間で土壌の移送を行う複数の移送機構10と、システム全体を制御する制御装置12とを含んでいる。複数の移送機構10の各々には、各構成要素間で移送される土壌の状態等に応じた適切な移送手段、例えば、コンベヤ(図4の符号10b、10c、10d)やクレーン(図4の符号10a)等が用いられる。制御装置12は、システムを構成する各構成要素を、土壌処理や土壌の移送が円滑に行われるように制御するものであり、システム全体を制御する1台で構成されていてもよく、又、システムの単数や複数の構成要素毎に設置されるものを含む複数台で構成されていてもよい。このように、本発明の実施の形態に係る汚染土壌処理システム1は、システム監視に要する人員を除き、土壌の移送を含んだシステム全体が、人の手を直接介することなく運用されるものであるため、安全性をより高めて、汚染土壌を除染及び減容化することができる。   In addition, as shown in FIG. 1, the contaminated soil treatment system 1 according to the embodiment of the present invention controls a plurality of transfer mechanisms 10 that transfer soil between components constituting the system, and the entire system. And a control device 12. In each of the plurality of transfer mechanisms 10, appropriate transfer means corresponding to the state of the soil transferred between the components, for example, conveyors (reference numerals 10b, 10c, 10d in FIG. 4) and cranes (in FIG. 4). Reference numerals 10a) and the like are used. The control device 12 controls each component constituting the system so that soil treatment and soil transfer can be performed smoothly, and may be configured as a single unit that controls the entire system, A single system or a plurality of systems including those installed for each of a plurality of components may be used. Thus, in the contaminated soil treatment system 1 according to the embodiment of the present invention, the entire system including the transfer of soil is operated without direct human intervention, except for personnel required for system monitoring. Therefore, it is possible to further improve safety and decontaminate and reduce the volume of contaminated soil.

更に、本発明の実施の形態に係る汚染土壌処理システム1は、減容化ユニットの第1の分別機構16が、土壌の放射線量を測定する第1の放射線量測定器14を含むものであり、土壌を分別する際に、土壌の種別、及び第1の放射線量測定器14で測定した放射線量の一方又は双方に基づいて、焼却処理対象の土壌と乾燥処理対象の土壌とに分別するものである。ここでの土壌の種別として、本発明の実施の形態に係る汚染土壌処理方法では、有機物を含み可燃性を有する土壌か否かを、目視等で判断している。   Furthermore, in the contaminated soil treatment system 1 according to the embodiment of the present invention, the first separation mechanism 16 of the volume reduction unit includes the first radiation dose measuring device 14 that measures the radiation dose of the soil. When separating the soil, the soil is classified into the soil to be incinerated and the soil to be dried based on one or both of the soil type and the radiation dose measured by the first radiation dose measuring device 14. It is. As the type of soil here, in the contaminated soil treatment method according to the embodiment of the present invention, whether or not the soil contains organic matter and has flammability is determined by visual observation or the like.

又、土壌を分別する際の基準となる放射線量として、本発明の実施の形態に係る汚染土壌処理方法では、放射能濃度が240Bq/kg以下であるか否かを判定している。この数値は、土壌を焼却処理した場合でも、土壌の放射能濃度を安全に処理できるとされている8000Bq/kg以下にするための、燃焼炉18の形式に応じて算出される目安の一例である。すなわち、本発明の実施の形態に係る汚染土壌処理方法では、有機物を含み可燃性を有し、放射能濃度が240Bq/kg以下である土壌を、焼却処理対象の土壌に分別し、有機物を含まず可燃性を有さない土壌や、放射能濃度が240Bq/kgを超える土壌を、乾燥処理対象の土壌に分別する。これにより、焼却処理によって減容化され、焼却されても放射能濃度が安全に処理できる濃度を超えない土壌のみ、焼却処理の対象として分別されるため、土壌に応じた適切な方法で減容化することが可能となる。   Moreover, in the contaminated soil processing method which concerns on embodiment of this invention as a radiation dose used as the reference | standard at the time of classifying soil, it is determined whether a radioactivity density | concentration is 240 Bq / kg or less. This numerical value is an example of a standard that is calculated according to the type of the combustion furnace 18 in order to reduce the radioactive concentration of the soil to 8000 Bq / kg or less, which can be safely treated even when the soil is incinerated. is there. That is, in the contaminated soil treatment method according to the embodiment of the present invention, soil containing organic matter and flammable and having a radioactivity concentration of 240 Bq / kg or less is separated into soil to be incinerated and contains organic matter. First, soil that does not have flammability and soil whose radioactivity concentration exceeds 240 Bq / kg are classified into soil to be dried. As a result, only the soil that has been reduced in volume by incineration and whose radioactive concentration does not exceed the concentration that can be safely processed even if incinerated is classified as the target for incineration, so the volume can be reduced by an appropriate method according to the soil. Can be realized.

又、本発明の実施の形態に係る汚染土壌処理システム1は、図1及び図4に示すように、袋状容器F内の土壌の重量、体積、放射線量の夫々を計測する、重量計測器30、体積計測器32、第2の放射線量測定器を34含んでいる。更に、図1及び図5に示すように、これらの計測結果に基づいて、土壌を袋状容器F単位で仕分ける仕分け機構36を含んでいる。この仕分け機構36には、図5の例では、制御装置12等で制御される無人フォークリフト50a、50bを利用している。そして、制御装置12は、袋状容器F内の土壌の放射線量等を把握し、予め設定した放射線量の値に応じた仕分け場所spA、spB、spC、spDのいずれかに、袋状容器Fごと土壌を移送するように、無人フォークリフト50bを制御する。これにより、人の手を直接介することなく効率的に土壌を仕分けることができる。更に、土壌を放射線量に応じて仕分けることで、放射能濃度に応じた適切な保管、管理が可能となる。   Moreover, the contaminated soil processing system 1 which concerns on embodiment of this invention is a weight measuring device which measures each of the weight of the soil in a bag-like container F, a volume, and a radiation dose, as shown in FIG.1 and FIG.4. 30, a volume measuring device 32, and a second radiation dose measuring device 34 are included. Furthermore, as shown in FIG.1 and FIG.5, based on these measurement results, the sorting mechanism 36 which sorts soil by the bag-like container F unit is included. In the example of FIG. 5, unmanned forklifts 50a and 50b controlled by the control device 12 and the like are used for the sorting mechanism 36. And the control apparatus 12 grasps | ascertains the radiation dose etc. of the soil in the bag-like container F, and the bag-like container F is placed in any of the sorting places spA, spB, spC, spD according to the preset radiation dose value. The unmanned forklift 50b is controlled so as to transfer the whole soil. Thereby, the soil can be sorted efficiently without direct human intervention. Further, by sorting the soil according to the radiation dose, it is possible to appropriately store and manage the soil according to the radioactivity concentration.

又、本発明の実施の形態に係る汚染土壌処理システム1は、体積計測器32が袋状容器F内の土壌の体積を計測する前に、袋状容器F内上部の空隙を解消する空隙解消機構38を含むことで、袋状容器F内の空隙を解消した状態で、土壌の体積を計測することとなるため、より正確に土壌の体積を計測することができる。
更に、本発明の実施の形態に係る汚染土壌処理システム1は、図1に示すように、第3の放射線量測定器40を有する第2の分別機構42を含むものであり、第2の分別機構42は、分級装置6で分級された土壌のうち、粒度の粗い土壌の放射線量を第3の放射線量測定器40で測定し、この測定結果が所定値を上回る土壌を、粉砕装置4へと移送されるように分別する。これにより、汚染物質を含む土壌の隔離、保管を確実にすることができる。なお、第3の放射線量測定器40での測定結果が、所定値以下である土壌については、本発明の実施の形態に係る汚染土壌処理方法では、採取地に戻す、再利用する等の、今後国が定める規定に基づいて処理を施すものとする。
In addition, the contaminated soil treatment system 1 according to the embodiment of the present invention eliminates the void in the upper portion of the bag-like container F before the volume measuring device 32 measures the volume of the soil in the bag-like container F. By including the mechanism 38, the volume of the soil is measured in a state where the voids in the bag-like container F are eliminated, so that the volume of the soil can be measured more accurately.
Furthermore, as shown in FIG. 1, the contaminated soil treatment system 1 according to the embodiment of the present invention includes a second sorting mechanism 42 having a third radiation dose measuring device 40, and the second sorting mechanism 42. The mechanism 42 measures the radiation dose of the coarse-grained soil out of the soil classified by the classification device 6 with the third radiation dose measuring device 40, and the soil whose measurement result exceeds a predetermined value to the grinding device 4. To be transported. Thereby, isolation and storage of soil containing pollutants can be ensured. In addition, about the soil whose measurement result in the 3rd radiation dose measuring device 40 is below a predetermined value, in the contaminated soil processing method which concerns on embodiment of this invention, returning to a collection place, reusing, etc., In the future, processing will be performed based on the provisions established by the country.

1:汚染土壌処理システム、2:減容化ユニット、4:粉砕装置(遠心流動粉砕装置)、6:分級装置(気流式分級装置)、8:袋詰め装置、10:移送機構、12:制御装置、14:第1の放射線量測定器、16:第1の分別機構、18:燃焼炉、20:乾燥炉、22:排熱供給機構、30:重量計測器、32:体積計測器、34:第2の放射線量測定器、36:仕分け機構、38:空隙解消機構、40:第3の放射線量測定器、42:第2の分別機構、F:袋状容器   1: Contaminated soil treatment system, 2: Volume reduction unit, 4: Crusher (centrifugal fluid crusher), 6: Classifier (airflow type classifier), 8: Bagging device, 10: Transfer mechanism, 12: Control Apparatus: 14: first radiation dose measuring device, 16: first separation mechanism, 18: combustion furnace, 20: drying furnace, 22: exhaust heat supply mechanism, 30: weight measuring device, 32: volume measuring device, 34 : Second radiation dose measuring device, 36: sorting mechanism, 38: void elimination mechanism, 40: third radiation dose measuring device, 42: second sorting mechanism, F: bag-like container

Claims (12)

汚染土壌を除染・減容化する汚染土壌処理システムであって、
土壌を減容化する減容化ユニットと、該減容化ユニットで減容化された土壌を解砕及び微粉砕する粉砕装置と、該粉砕装置で解砕及び微粉砕された土壌を粒度に応じて分級する分級装置と、該分級装置で分級された土壌のうち、粒度の細かい土壌を袋状容器に充填する袋詰め装置と、システムを構成する各構成要素間で土壌の移送を行う複数の移送機構と、システム全体を制御する制御装置とを含み、
前記減容化ユニットは、土壌を焼却処理対象の土壌と乾燥処理対象の土壌とに分別する第1の分別機構と、焼却処理対象に分別された土壌を焼却処理により減容化する燃焼炉と、乾燥処理対象に分別された土壌を乾燥処理により減容化する乾燥炉と、前記燃焼炉で発生した排熱を前記乾燥炉へと供給する排熱供給機構とを含むことを特徴とする汚染土壌処理システム。
A contaminated soil treatment system for decontaminating and reducing the volume of contaminated soil,
A volume reduction unit for reducing the volume of the soil, a pulverizer for pulverizing and pulverizing the soil reduced in volume by the volume reduction unit, and a size of the pulverized and pulverized soil by the pulverizer A classifying device that classifies according to the classification, a bagging device that fills a bag-shaped container with fine-grained soil among the soil classified by the classifying device, and a plurality of units that transfer soil between each component constituting the system And a control device for controlling the entire system,
The volume reduction unit includes a first separation mechanism that separates soil into soil to be incinerated and soil to be dried, and a combustion furnace that reduces the volume of soil separated into objects to be incinerated by incineration. A pollution characterized by including a drying furnace for reducing the volume of the soil separated into objects to be dried by a drying process, and an exhaust heat supply mechanism for supplying exhaust heat generated in the combustion furnace to the drying furnace. Soil treatment system.
前記袋詰め装置は、土壌を前記袋状容器に充填する際に土壌を真空脱気する真空脱気機能と、前記袋状容器の自動脱着機能とを有することを特徴とする請求項1記載の汚染土壌処理システム。   The said bagging apparatus has a vacuum deaeration function which vacuum-deaerates the soil when filling the bag-like container with soil, and an automatic desorption function of the bag-like container. Contaminated soil treatment system. 前記第1の分別機構は、土壌の放射線量を測定する第1の放射線量測定器を含み、土壌の種別及び/又は前記第1の放射線量測定器で測定した放射線量に基づいて、土壌を焼却処理対象の土壌と乾燥処理対象の土壌とに分別することを特徴とする請求項1又は2記載の汚染土壌処理システム。   The first fractionation mechanism includes a first radiation dose measuring device that measures the radiation dose of the soil, and based on the type of soil and / or the radiation dose measured by the first radiation dose measuring device, The contaminated soil treatment system according to claim 1 or 2, wherein the soil is classified into a soil to be incinerated and a soil to be dried. 前記袋状容器内の土壌の重量を計測する重量計測器と、前記袋状容器内の土壌の体積を計測する体積計測器と、前記袋状容器内の土壌の放射線量を測定する第2の放射線量測定器と、前記重量計測器及び前記体積計測器の計測結果と前記第2の放射線量測定器の測定結果とに基づいて、前記袋状容器を仕分ける仕分け機構とを含むことを特徴とする請求項1から3のいずれか1項記載の汚染土壌処理システム。   A weight measuring device for measuring the weight of the soil in the bag-shaped container, a volume measuring device for measuring the volume of the soil in the bag-shaped container, and a second measuring the radiation dose of the soil in the bag-shaped container. A radiation dose measuring device; and a sorting mechanism for sorting the bag-like containers based on the measurement results of the weight measuring device and the volume measuring device and the measurement results of the second radiation dose measuring device. The contaminated soil treatment system according to any one of claims 1 to 3. 前記体積計測器が前記袋状容器内の土壌の体積を計測する前に、前記袋状容器内上部の空隙を解消する空隙解消機構を含むことを特徴とする請求項4記載の汚染土壌処理システム。   5. The contaminated soil treatment system according to claim 4, further comprising a void elimination mechanism that eliminates voids in the upper portion of the bag-like container before the volume measuring instrument measures the volume of the soil in the bag-like container. . 前記分級装置で分級された土壌のうち、粒度の粗い土壌の放射線量を測定する第3の放射線量測定器を含み、該第3の放射線量測定器で測定した放射線量が所定値を上回る土壌を、前記粉砕装置へと移送されるように分別する第2の分別機構を含むことを特徴とする請求項1から5のいずれか1項記載の汚染土壌処理システム。   Among the soil classified by the classifier, a soil that includes a third radiation dose measuring device that measures the radiation dose of coarse-grained soil, and the radiation dose measured by the third radiation dose measuring device exceeds a predetermined value The contaminated soil treatment system according to any one of claims 1 to 5, further comprising a second sorting mechanism that sorts the soil so as to be transferred to the pulverizer. 汚染土壌を除染・減容化する汚染土壌処理方法であって、
汚染土壌採取工程と、該汚染土壌採取工程で採取した土壌を減容化する減容化工程と、該減容化工程にて減容化した土壌を細粒化する解砕及び微粉砕工程と、該解砕及び微粉砕工程にて細粒化した土壌を粒度に応じて分級する分級工程と、該分級工程にて分級した土壌のうち、粒度の細かい土壌を袋状容器に充填する袋詰め工程とを含み、
前記減容化工程において、前記汚染土壌採取工程で採取した土壌を、焼却処理対象の土壌と乾燥処理対象の土壌とに分別し、焼却処理対象に分別した土壌を焼却処理により減容化すると共に、乾燥処理対象に分別した土壌を乾燥処理により減容化し、この際、焼却処理により発生する排熱を乾燥処理に利用することを特徴とする汚染土壌処理方法。
A contaminated soil treatment method for decontaminating and reducing the volume of contaminated soil,
A contaminated soil collecting step, a volume reducing step for reducing the volume of the soil collected in the contaminated soil collecting step, and a crushing and pulverizing step for refining the soil reduced in the volume reducing step. , A classification step of classifying the soil finely divided in the pulverization and fine pulverization step according to the particle size, and the bagging that fills the bag-shaped container with the fine particle size of the soil classified in the classification step Including a process,
In the volume reduction step, the soil collected in the contaminated soil collection step is separated into a soil subject to incineration and a soil subject to dry treatment, and the soil separated into the subject to incineration is reduced in volume by incineration. A method for treating contaminated soil, comprising reducing the volume of the soil separated into objects to be dried by a drying process, and using the exhaust heat generated by the incineration process for the drying process.
前記袋詰め工程において、土壌を真空脱気しながら袋状容器に充填することを特徴とする請求項7記載の汚染土壌処理方法。   8. The contaminated soil treatment method according to claim 7, wherein in the bagging step, the bag-like container is filled while the soil is vacuum degassed. 前記減容化工程において、前記汚染土壌採取工程で採取した土壌を、土壌の種別及び/又は放射線量に基づいて焼却処理対象の土壌と乾燥処理対象の土壌とに分別することを特徴とする請求項7又は8記載の汚染土壌処理方法。   In the volume reduction step, the soil collected in the contaminated soil collection step is classified into a soil to be incinerated and a soil to be dried based on the type and / or radiation dose of the soil. Item 9. The contaminated soil treatment method according to Item 7 or 8. 前記袋状容器内の土壌の重量及び体積を計測すると共に放射線量を測定し、重量及び体積の計測結果と放射線量の測定結果とに基づいて、前記袋状容器を仕分ける仕分け工程を含むことを特徴とする請求項7から9のいずれか1項記載の汚染土壌処理方法。   Including a sorting step of measuring the weight and volume of the soil in the bag-shaped container and measuring the radiation dose, and sorting the bag-shaped container based on the measurement result of the weight and volume and the measurement result of the radiation dose. The method for treating contaminated soil according to any one of claims 7 to 9, characterized in that: 前記仕分け工程において、前記袋状容器内の土壌の体積を計測する前に、前記袋状容器内上部の空隙を解消することを特徴とする請求項10記載の汚染土壌処理方法。   The contaminated soil treatment method according to claim 10, wherein, in the sorting step, the void in the upper part of the bag-like container is eliminated before measuring the volume of the soil in the bag-like container. 前記分級工程にて分級した土壌のうち、粒度の粗い土壌の放射線量を測定し、放射線量が所定値を上回る場合には、前記解砕及び微粉砕工程へと戻すことを特徴とする請求項7から11のいずれか1項記載の汚染土壌処理方法。   The soil dose classified in the classification step, the radiation dose of the coarse soil is measured, and when the radiation dose exceeds a predetermined value, returning to the pulverization and pulverization step. The contaminated soil treatment method according to any one of 7 to 11.
JP2013022232A 2013-02-07 2013-02-07 Contaminated soil treatment system and contaminated soil treatment method Active JP6299942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013022232A JP6299942B2 (en) 2013-02-07 2013-02-07 Contaminated soil treatment system and contaminated soil treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022232A JP6299942B2 (en) 2013-02-07 2013-02-07 Contaminated soil treatment system and contaminated soil treatment method

Publications (2)

Publication Number Publication Date
JP2014153153A true JP2014153153A (en) 2014-08-25
JP6299942B2 JP6299942B2 (en) 2018-03-28

Family

ID=51575163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022232A Active JP6299942B2 (en) 2013-02-07 2013-02-07 Contaminated soil treatment system and contaminated soil treatment method

Country Status (1)

Country Link
JP (1) JP6299942B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937258B1 (en) * 2015-06-23 2016-06-22 株式会社神鋼環境ソリューション Radioactive material removal method
JP2016156767A (en) * 2015-02-26 2016-09-01 株式会社神鋼環境ソリューション Method and system for removing radioactive cesium
WO2017122244A1 (en) 2016-01-15 2017-07-20 コアレックス三栄株式会社 Method for decontaminating granular material contaminated by radioactive material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551819A (en) * 1978-06-19 1980-01-09 Mizusawa Industrial Chem Preparation of dense pulverulent body
JPS5895300A (en) * 1981-10-30 1983-06-06 ゼネラル・エレクトリツク・カンパニイ Treatment of powdery dangerous matter
JPS5943398A (en) * 1982-09-03 1984-03-10 株式会社日立製作所 Method and facility for storing tempolarily radioactive waste
JPH02302700A (en) * 1989-05-01 1990-12-14 Westinghouse Electric Corp <We> Treatment of waste polluted by meltable harmful or radioactive nuclide
JPH03211499A (en) * 1990-01-17 1991-09-17 Hitachi Ltd Refuse container, refuse container identification mark reader, and refuse control method using same
JP2004000882A (en) * 2002-04-17 2004-01-08 Kobe Steel Ltd Method for treating heavy metal and/or organic compound
JP2004275973A (en) * 2003-03-18 2004-10-07 Mitsui Eng & Shipbuild Co Ltd Method for treating contaminated soil
JP2005112372A (en) * 2003-10-06 2005-04-28 Meidensha Corp Method for treating matter treated by indirect heating
JP2009192099A (en) * 2008-02-12 2009-08-27 Japan Atomic Energy Agency Radioactive waste treatment equipment
JP2012180971A (en) * 2011-03-01 2012-09-20 Kawasaki Heavy Ind Ltd Incinerated ash discharge device and method of high frequency induction type incineration furnace
JP2013019877A (en) * 2011-07-09 2013-01-31 Chikyu Kankyo Solution Kenkyusho:Kk Radioactive-polluted soil purification device and radioactive substance recovery method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551819A (en) * 1978-06-19 1980-01-09 Mizusawa Industrial Chem Preparation of dense pulverulent body
JPS5895300A (en) * 1981-10-30 1983-06-06 ゼネラル・エレクトリツク・カンパニイ Treatment of powdery dangerous matter
JPS5943398A (en) * 1982-09-03 1984-03-10 株式会社日立製作所 Method and facility for storing tempolarily radioactive waste
JPH02302700A (en) * 1989-05-01 1990-12-14 Westinghouse Electric Corp <We> Treatment of waste polluted by meltable harmful or radioactive nuclide
JPH03211499A (en) * 1990-01-17 1991-09-17 Hitachi Ltd Refuse container, refuse container identification mark reader, and refuse control method using same
JP2004000882A (en) * 2002-04-17 2004-01-08 Kobe Steel Ltd Method for treating heavy metal and/or organic compound
JP2004275973A (en) * 2003-03-18 2004-10-07 Mitsui Eng & Shipbuild Co Ltd Method for treating contaminated soil
JP2005112372A (en) * 2003-10-06 2005-04-28 Meidensha Corp Method for treating matter treated by indirect heating
JP2009192099A (en) * 2008-02-12 2009-08-27 Japan Atomic Energy Agency Radioactive waste treatment equipment
JP2012180971A (en) * 2011-03-01 2012-09-20 Kawasaki Heavy Ind Ltd Incinerated ash discharge device and method of high frequency induction type incineration furnace
JP2013019877A (en) * 2011-07-09 2013-01-31 Chikyu Kankyo Solution Kenkyusho:Kk Radioactive-polluted soil purification device and radioactive substance recovery method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156767A (en) * 2015-02-26 2016-09-01 株式会社神鋼環境ソリューション Method and system for removing radioactive cesium
JP5937258B1 (en) * 2015-06-23 2016-06-22 株式会社神鋼環境ソリューション Radioactive material removal method
WO2017122244A1 (en) 2016-01-15 2017-07-20 コアレックス三栄株式会社 Method for decontaminating granular material contaminated by radioactive material
US10706981B2 (en) 2016-01-15 2020-07-07 Corelex San-Ei Co., Ltd. Method for decontaminating radiocontaminated grains

Also Published As

Publication number Publication date
JP6299942B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
US9302294B2 (en) Separating radioactive contaminated materials from cleared materials resulting from decommissioning a power plant
US4695299A (en) Method and apparatus for in-cell vacuuming of radiologically contaminated materials
JP6299942B2 (en) Contaminated soil treatment system and contaminated soil treatment method
WO2020237949A1 (en) Solid waste treatment and crushing equipment
JP6490588B2 (en) Processing material mixing device and mixed dust collection system
KR102326528B1 (en) Device and method for opening containers containing heterogeneous materials
CN105772488B (en) The apparatus and method for of powder solid hazardous waste fluidization chemical stabilization pretreatment
CN106742992A (en) A kind of intelligent garbage collection system and method
US5495986A (en) Method for providing a fuel mixture
CN107032131A (en) Monazite processing/transfer system
CN205762912U (en) Solid-state industries hazardous waste and the pretreatment system of comprehensive utilization of mud
JP6374742B2 (en) Vertical roller mill
JP6296218B2 (en) Contaminated soil treatment method and contaminated soil treatment system
KR102232862B1 (en) A Multifunctional Combined System for Addition into Water, Grinding in water and Cesium Elution of Solidified Fly Ash Contaminated with Radioactive Cesium
CN214704407U (en) Automatic feeding device for safety type industrial production
CN108452917A (en) Closed cycle airflow comminution system
EP0195613A2 (en) System for discharging rotary mills
CN206145686U (en) Danger waste incineration looses and describes material charge -in system
CN206901342U (en) Monazite processing/transfer system
CN206444989U (en) Refuse disposal system
JPH0278989A (en) Radioactivity level selecting device for radioactive waste
JP2000037663A (en) Dust separator
CN208630886U (en) A kind of automation can quantitative package fertilizer device
JP2019150803A (en) Grain regulation device
Shope et al. SUBMICRON SEPARATION AND CONTAINMENT–WITHOUT THE FILTER!

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180213

R150 Certificate of patent or registration of utility model

Ref document number: 6299942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250