JP2014153141A - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
JP2014153141A
JP2014153141A JP2013022042A JP2013022042A JP2014153141A JP 2014153141 A JP2014153141 A JP 2014153141A JP 2013022042 A JP2013022042 A JP 2013022042A JP 2013022042 A JP2013022042 A JP 2013022042A JP 2014153141 A JP2014153141 A JP 2014153141A
Authority
JP
Japan
Prior art keywords
stc
reflected wave
pattern
transmission
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013022042A
Other languages
Japanese (ja)
Other versions
JP6315432B2 (en
Inventor
Motoaki Hara
元昭 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2013022042A priority Critical patent/JP6315432B2/en
Publication of JP2014153141A publication Critical patent/JP2014153141A/en
Application granted granted Critical
Publication of JP6315432B2 publication Critical patent/JP6315432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radar device capable of generating proper sensitivity time control (STC) patterns.SOLUTION: A radar device comprises: a transmission/reception section 3 which transmits transmission waves in the whole circumferential directions and which receives reflected waves from a target; an STC arithmetic circuit 41 which integrates the reflected waves in each predetermined direction for a predetermined period of time so as to generate STC patterns; and an STC automatic controller 44 correcting the corresponding reflected wave in each direction on the basis of the STC pattern in each direction, which is generated by the STC arithmetic circuit 41.

Description

この発明は、STC(Sensitivity Time Control、感度時間制御)機能を備えたレーダ装置に関する。   The present invention relates to a radar apparatus having an STC (Sensitivity Time Control) function.

船舶用や海上監視用のレーダ装置では、目標からの反射波・受信波を増幅する際の近距離目標の飽和を防止して、目標の視認性を向上させるために、STCパターン(STC特性)に基づいて受信波映像を補正制御するSTC機能が備えられている。このSTCパターンは、送信波に対する受信波の減衰量が、目標までの距離の4乗に比例するという基本的原理に基づいて、送信から受信までの時間に従ってレーダ感度が増加するように設定されている。   In a radar device for marine or marine surveillance, an STC pattern (STC characteristic) is used to prevent the saturation of a short-range target when amplifying a reflected wave / received wave from the target and to improve target visibility. Is provided with an STC function for correcting and controlling the received wave image. This STC pattern is set so that the radar sensitivity increases according to the time from transmission to reception based on the basic principle that the attenuation of the reception wave with respect to the transmission wave is proportional to the fourth power of the distance to the target. Yes.

しかし実際には、目標までの距離のみではなく、アンテナ・空中線の設置高さや周囲環境(天候、温度、海面状況等)などの要因によっても減衰量が変化する。このため、現地においてオペレータが、適宜STCパターンを調整、変更しながら、運用するのが実情であった(例えば、特許文献1等参照。)。   However, in actuality, the amount of attenuation varies depending not only on the distance to the target but also on factors such as the installation height of the antenna / aerial and the surrounding environment (weather, temperature, sea level, etc.). For this reason, the actual situation is that an operator operates the site while adjusting and changing the STC pattern as appropriate (see, for example, Patent Document 1).

特開平09−072958号公報Japanese Patent Application Laid-Open No. 09-072958

しかしながら、STCパターンの調整には、技術的な知識と経験とを要し、適正な調整が困難であるばかりでなく、オペレータによってバラツキが生じる。しかも、装置の調整可能な範囲内では、適正な調整が行えない場合もあり、さらには、一時的に調整を行ったとしても、時々刻々と変化する周囲環境に追従して調整を行うことは困難である。   However, adjustment of the STC pattern requires technical knowledge and experience, and is not only difficult to adjust properly, but also varies depending on the operator. In addition, proper adjustment may not be possible within the adjustable range of the device.Furthermore, even if temporary adjustment is performed, it is not possible to adjust following the surrounding environment that changes every moment. Have difficulty.

そこでこの発明は、適正なSTCパターンを生成可能なレーダ装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a radar apparatus that can generate an appropriate STC pattern.

上記目的を達成するために請求項1に記載の発明は、全周方向に送信波を送信するとともに、目標からの反射波を受信する送受信手段と、所定の方位ごとに、前記反射波を所定の時間分積分してSTCパターンを生成するSTC生成手段と、前記STC生成手段で生成された各方位のSTCパターンに基づいて、対応する各方位の反射波を補正する制御手段と、を備えることを特徴とするレーダ装置である。   In order to achieve the above object, the invention described in claim 1 is characterized in that a transmission wave is transmitted in the entire circumferential direction, a transmission / reception means for receiving a reflected wave from a target, and the reflected wave for each predetermined direction. STC generation means for generating an STC pattern by integrating the time for the following, and control means for correcting the reflected wave of each corresponding direction based on the STC pattern of each direction generated by the STC generation means A radar apparatus characterized by

この発明によれば、送受信手段によって、全周方向・全方位の目標からの反射波が受信され、STC生成手段によって、所定の方位ごとに、反射波を所定の時間分積分してSTCパターンが生成される。そして、制御手段によって、各方位のSTCパターンに基づいて、対応する各方位の反射波が補正される。   According to this invention, the reflected wave from the target in all directions and directions is received by the transmission / reception means, and the STC pattern is obtained by integrating the reflected wave for a predetermined time for each predetermined direction by the STC generation means. Generated. The control unit corrects the reflected wave in each corresponding direction based on the STC pattern in each direction.

請求項2に記載の発明は、請求項1に記載のレーダ装置において、前記STC生成手段は、所定のタイミングで連続的に前記STCパターンを生成する、ことを特徴とする。   According to a second aspect of the present invention, in the radar apparatus according to the first aspect, the STC generation means continuously generates the STC pattern at a predetermined timing.

請求項1に記載の発明によれば、実際の目標からの反射波に基づいてSTCパターンを生成するため、アンテナの設置高さや周囲環境などに応じた適正なSTCパターンを生成することが可能となる。しかも、STCパターンは方位・方角によって異なるが、所定の方位ごとに反射波を積分してSTCパターンを生成するため、各方位に適合したより適正なSTCパターンを生成することが可能となる。そして、このようなSTCパターンが自動で生成され、各方位のSTCパターンで各方位の反射波が補正されるため、方位ごとに反射波が適正に補正されるとともに、オペレータの負担や補正のバラツキを削減することができる。   According to the first aspect of the present invention, since the STC pattern is generated based on the reflected wave from the actual target, it is possible to generate an appropriate STC pattern according to the installation height of the antenna and the surrounding environment. Become. Moreover, although the STC pattern varies depending on the azimuth / direction, the reflected wave is integrated for each predetermined azimuth to generate the STC pattern, so that a more appropriate STC pattern suitable for each azimuth can be generated. Since such an STC pattern is automatically generated and the reflected wave in each direction is corrected by the STC pattern in each direction, the reflected wave is corrected appropriately for each direction, and the burden on the operator and variations in correction are also corrected. Can be reduced.

請求項2に記載の発明によれば、所定のタイミングで連続的にSTCパターンを生成するため、周囲環境が変化しても、その変化に応じた適正なSTCパターンを逐次生成することが可能となる。この結果、常に周囲環境に応じて適正に反射波を補正することが可能となる。   According to the second aspect of the present invention, since the STC pattern is continuously generated at a predetermined timing, even if the surrounding environment changes, it is possible to sequentially generate an appropriate STC pattern according to the change. Become. As a result, the reflected wave can always be corrected appropriately according to the surrounding environment.

この発明の実施の形態に係るレーダ装置を示す概略構成ブロック図である。1 is a schematic block diagram showing a radar apparatus according to an embodiment of the present invention. 図1のレーダ装置のSTC演算回路によるSTCパターンの生成手法を示す図である。It is a figure which shows the production | generation method of the STC pattern by the STC arithmetic circuit of the radar apparatus of FIG. 図1のレーダ装置のSTC演算回路で生成されたSTCパターンの記憶状態を示す図である。It is a figure which shows the memory | storage state of the STC pattern produced | generated by the STC arithmetic circuit of the radar apparatus of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1は、この発明の実施の形態に係るレーダ装置1を示す概略構成ブロック図である。このレーダ装置1は、船舶用や海上監視用でSTC機能を備えたレーダ装置であり、主として、空中線部(送受信手段)2と、送受信部(送受信手段)3と、指示機処理部4と、表示部5と、操作部6とを備えている。ここで、STC機能以外については、従来のレーダ装置と同等の構成であるため、STC機能について以下に主として説明し、また、船舶に搭載する場合について説明する。   FIG. 1 is a schematic block diagram showing a radar apparatus 1 according to an embodiment of the present invention. The radar apparatus 1 is a radar apparatus having an STC function for marine and marine monitoring, and mainly includes an antenna unit (transmission / reception unit) 2, a transmission / reception unit (transmission / reception unit) 3, an indicator processing unit 4, A display unit 5 and an operation unit 6 are provided. Here, since the configuration other than the STC function is the same as that of the conventional radar apparatus, the STC function will be mainly described below, and the case where it is mounted on a ship will be described.

空中線部2と送受信部3とは、全周方向に送信波・電波を送信するとともに、目標からの反射波を受信する装置であり、空中線部2は、船舶の見晴らしの良い場所に設置されるアンテナを備え、ビーム方向が水平面内において所定の一定速度で回転するようになっている。すなわち、アンテナを回転させる空中線部2のモータが送受信部3の空中線制御回路によって制御されるとともに、送受信部3から空中線部2に送信波が供給されることで、アンテナが一定速度で回転しながら全方位に送信波を送信する。また、送信波が船舶の周囲に存在する目標(例えば、他の船舶や海面反射、雨滴など)に当たって反射すると、その反射波・受信波が空中線部2を介して送受信部3で受信される。   The antenna unit 2 and the transmission / reception unit 3 are devices that transmit transmission waves and radio waves in the entire circumferential direction and receive reflected waves from the target. The antenna unit 2 is installed in a place with a good view of the ship. An antenna is provided, and the beam direction rotates at a predetermined constant speed in a horizontal plane. In other words, the antenna of the antenna unit 2 that rotates the antenna is controlled by the antenna control circuit of the transmission / reception unit 3, and the transmission wave is supplied from the transmission / reception unit 3 to the antenna unit 2, so that the antenna rotates at a constant speed. Transmits transmission waves in all directions. Further, when the transmitted wave is reflected by a target (for example, another ship, sea surface reflection, raindrop, etc.) existing around the ship, the reflected wave / received wave is received by the transmitting / receiving unit 3 via the antenna unit 2.

そして、指示機処理部4によって、受信した反射波を映像処理して表示部5に映像を表示するものである。また、操作部6は、オペレータによって操作され、表示に関する各種パラメータを設定するものである。   Then, the indicator processing unit 4 performs image processing on the received reflected wave and displays the image on the display unit 5. The operation unit 6 is operated by an operator and sets various parameters related to display.

さらに、指示機処理部4は、STC演算回路(STC生成手段)41とSTC自動制御部(制御手段)44とを備えている。STC演算回路41は、所定の方位・方角ごとに、反射波を所定の時間分積分してSTCパターンを生成する回路である。すなわち、送受信部3の空中線制御回路からアンテナの回転角度を示す回転信号が伝送され、送受信部3からの反射波データがアナログ/デジタル変換器(ADC)42を介して伝送されるとともに、指示機制御回路43から船舶の方位を示すジャイロ信号が伝送される。そして、回転信号の回転角度とジャイロ信号の方位と複数の反射波データに基づいて、所定の方位ごとに、反射波を所定の時間分積分し、その積分値を平均化(相関)してSTCパターンを生成する。ここで、ジャイロ信号を用いるのは、次のように各絶対方位のSTCパターンを生成するためである。   Further, the indicator processing unit 4 includes an STC arithmetic circuit (STC generation unit) 41 and an STC automatic control unit (control unit) 44. The STC arithmetic circuit 41 is a circuit that generates an STC pattern by integrating the reflected wave for a predetermined time for each predetermined direction and direction. That is, a rotation signal indicating the rotation angle of the antenna is transmitted from the antenna control circuit of the transmission / reception unit 3, and reflected wave data from the transmission / reception unit 3 is transmitted via the analog / digital converter (ADC) 42, and the indicator A gyro signal indicating the direction of the ship is transmitted from the control circuit 43. Then, based on the rotation angle of the rotation signal, the azimuth of the gyro signal, and a plurality of reflected wave data, the reflected wave is integrated for a predetermined time for each predetermined azimuth, and the integrated value is averaged (correlated) and STC. Generate a pattern. Here, the gyro signal is used in order to generate an STC pattern in each absolute direction as follows.

具体的には、全方位360°を所定数の方位(例えば、方位分解度である360°÷212)に分け、絶対方位(例えば、真北を0°する方位座標)である各方位θ〜θ360に対して、n回分(所定の時間分)の反射波を積分し、その積分値を平均化する。例えば、絶対方位0°に対して、図2に示すような受信レベルの第1の反射波R〜第nの反射波Rが得られた場合、これらの反射波R〜Rを積分し、その積分値を平均化することで平均的な反射波Rを生成する。同様にして、各絶対方位θ〜θ360に対して、平均的な反射波Rを生成する。ここで、反射波Rは、アンテナが1回転することで得られる反射波であり、回転数「n」は、各反射波R〜Rのバラツキを平準化して適正なSTCパターンSが得られるような数に設定されている。 Specifically, the orientation of the predetermined number of omnidirectional 360 ° (e.g., 360 ° ÷ 2 12 is the azimuthal resolution) divided into an absolute orientation (e.g., azimuth coordinates 0 ° to true north) each orientation is θ For 0 to θ 360 , the reflected waves for n times (for a predetermined time) are integrated, and the integrated values are averaged. For example, when the first reflected wave R 1 to the n-th reflected wave R n having the reception level as shown in FIG. 2 are obtained with respect to the absolute azimuth of 0 °, these reflected waves R 1 to R n are changed. By integrating and averaging the integrated values, an average reflected wave R c is generated. Similarly, an average reflected wave R c is generated for each of the absolute directions θ 0 to θ 360 . Here, the reflected wave RX is a reflected wave obtained by one rotation of the antenna, and the rotation speed “n” is obtained by leveling the variations of the reflected waves R 1 to R n to obtain an appropriate STC pattern S. It is set to a number that can be obtained.

次に、このようにして生成した平均的な反射波Rから低域通過フィルタなどを用いて反射波Rの包絡線Rを生成する。この包絡線Rに基づいて、各絶対方位θ〜θ360に対してSTCパターンSを生成する。すなわち、図2に示すように、平均的な反射波Rから求められた包絡線RをSTCパターンSで補正した場合に、全距離にわたって受信レベルRが均等になるように(包絡線Rと逆カーブになるような)STCパターンSを生成する。 Next, an envelope R p of the reflected wave R c is generated from the average reflected wave R c thus generated using a low-pass filter or the like. Based on this envelope R p, and generates a STC pattern S for each absolute direction theta 0 through? 360. That is, as shown in FIG. 2, when the corrected envelope R p obtained from the average reflected wave R c in STC pattern S, so that the reception level R is equalized over the entire length (envelope R An STC pattern S (which has an inverse curve to p ) is generated.

そして、このようにして生成したSTCパターンSを、図3に示すように、絶対方位θ〜θ360ごとにメモリに記憶する。さらに、このようなSTCパターンSの生成、記憶を所定のタイミングで連続的に行うようになっている。すなわち、定期的に、あるいは、天候や温度、海面状況などの周囲環境が変化する度に、STCパターンSを生成し、更新記憶するものである。 Then, the STC pattern S generated in this way is stored in the memory for each of the absolute directions θ 0 to θ 360 as shown in FIG. Further, such generation and storage of the STC pattern S are continuously performed at a predetermined timing. That is, the STC pattern S is generated and updated and stored periodically or whenever the surrounding environment such as weather, temperature, and sea level changes.

STC自動制御部44は、STC演算回路41で生成、記憶された各絶対方位θ〜θ360のSTCパターンSに基づいて、対応する各方位θ〜θ360の反射波を補正するものである。具体的には、メモリに記憶された絶対方位0°のSTCパターンSによって、不要波抑圧部45で不要波が抑圧された絶対方位0°の反射波を補正する。同様に、次の絶対方位X°のSTCパターンSによって、不要波抑圧部45で不要波が抑圧された絶対方位X°の反射波を補正し、このような補正を全方位に対して行うものである。その後は、通常の映像処理・指示機処理を行う。 The STC automatic control unit 44 corrects the reflected wave of each corresponding direction θ 0 to θ 360 based on the STC pattern S of each absolute direction θ 0 to θ 360 generated and stored by the STC arithmetic circuit 41. is there. Specifically, the reflected wave with the absolute azimuth of 0 ° in which the unnecessary wave is suppressed by the unnecessary wave suppression unit 45 is corrected by the STC pattern S with the absolute azimuth of 0 ° stored in the memory. Similarly, the reflected wave of the absolute azimuth X ° in which the unnecessary wave is suppressed by the unnecessary wave suppression unit 45 is corrected by the STC pattern S of the next absolute azimuth X °, and such correction is performed for all directions. It is. Thereafter, normal video processing / instruction machine processing is performed.

このような構成のレーダ装置1によれば、まず、STC演算回路41によって各絶対方位θ〜θ360に対するSTCパターンSが生成され、メモリに記憶される。その後、このSTCパターンSを用いてSTC自動制御部44によって、受信された各方位θ〜θ360の反射波が補正され、映像処理されて表示部5に映像が順次表示される。続いて、STC演算回路41によって各絶対方位θ〜θ360に対するSTCパターンSが生成、更新されると、更新されたSTCパターンSを用いて、STC自動制御部44によって反射波が順次補正されて表示部5に映像表示される。そして、このような処理が繰り返されるものである。 According to the radar apparatus 1 having such a configuration, first, the STC calculation circuit 41 generates the STC patterns S for the absolute directions θ 0 to θ 360 and stores them in the memory. Thereafter, the STC automatic control unit 44 uses the STC pattern S to correct the received reflected waves in the respective directions θ 0 to θ 360 , perform image processing, and sequentially display images on the display unit 5. Subsequently, when the STC pattern S for each of the absolute directions θ 0 to θ 360 is generated and updated by the STC calculation circuit 41, the reflected wave is sequentially corrected by the STC automatic control unit 44 using the updated STC pattern S. The video is displayed on the display unit 5. Such a process is repeated.

このように、このレーダ装置1によれば、実際の現場における目標からの反射波R〜Rに基づいてSTCパターンSを生成するため、アンテナの設置高さや周囲環境などに応じた適正なSTCパターンSを生成することが可能となる。しかも、STCパターンSは方位θ〜θ360によって異なるが、方位θ〜θ360ごとにn回分の反射波R〜Rを積分してSTCパターンSを生成するため、各方位θ〜θ360に適合したより適正なSTCパターンSを生成することが可能となる。 As described above, according to the radar apparatus 1, since the STC pattern S is generated based on the reflected waves R 1 to R n from the target in the actual site, an appropriate value according to the installation height of the antenna, the surrounding environment, and the like. The STC pattern S can be generated. Moreover, STC pattern S is different depending orientation theta 0 through? 360, for generating a STC pattern S by integrating the reflected wave R 1 to R n of n times for each direction theta 0 through? 360, each orientation theta 0 it becomes possible to generate a proper STC pattern S than conforming to through? 360.

そして、このようなSTCパターンSが自動で生成されるため、オペレータがSTCパターンを調整する必要がなく、オペレータの負担や調整のバラツキを削減することができる。しかも、各絶対方位θ〜θ360のSTCパターンで対応・該当する各方位θ〜θ360の反射波が補正されるため、全方位にわたって適正に反射波を補正して、常に目標信号とノイズレベルの比(S/N比)を最適に保ちながら表示部5に、適正・良好な映像を表示することができるとともに、オペレータの負担や補正のバラツキを削減することができる。 Since such an STC pattern S is automatically generated, it is not necessary for the operator to adjust the STC pattern, and the burden on the operator and variations in adjustment can be reduced. Moreover, since the reflected wave of each orientation theta 0 through? 360 corresponding, relevant in STC patterns of absolute direction theta 0 through? 360 is corrected, by correcting the properly reflected wave all directions, and constantly target signal While maintaining an optimum noise level ratio (S / N ratio), it is possible to display an appropriate and good image on the display unit 5 and to reduce the burden on the operator and variations in correction.

さらには、定期的に、あるいは、天候や温度、海面状況などの周囲環境が変化する度に、STCパターンSを生成、更新記憶するため、周囲環境が変化しても、その変化に応じた適正なSTCパターンSが逐次生成、記憶される。この結果、常に周囲環境に応じて適正に反射波を補正して、適正・良好な映像を表示することができる。   Furthermore, since the STC pattern S is generated and updated and stored periodically or whenever the surrounding environment such as weather, temperature, and sea level changes, even if the surrounding environment changes, the appropriateness according to the change STC patterns S are sequentially generated and stored. As a result, it is possible to always correct the reflected wave appropriately according to the surrounding environment and display an appropriate and good image.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、レーダ装置1を船舶に搭載する場合について説明したが、海上監視設備などに搭載してもよいことは勿論である。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the case where the radar apparatus 1 is mounted on a ship has been described, but it is needless to say that the radar apparatus 1 may be mounted on a marine monitoring facility or the like.

1 レーダ装置
2 空中線部(送受信手段)
3 送受信部(送受信手段)
4 指示機処理部
41 STC演算回路(STC生成手段)
42 アナログ/デジタル変換器(ADC)
43 指示機制御回路
44 STC自動制御部(制御手段)
45 不要波抑圧部
5 表示部
6 操作部
R 受信レベル
S STCパターン(映像感度)
θ 方位
1 Radar device 2 Aerial part (transmission / reception means)
3 Transmission / reception unit (transmission / reception means)
4 Indicator processing unit 41 STC arithmetic circuit (STC generation means)
42 Analog / Digital Converter (ADC)
43 Indicator control circuit 44 STC automatic control unit (control means)
45 Unwanted Wave Suppression Unit 5 Display Unit 6 Operation Unit R Reception Level S STC Pattern (Video Sensitivity)
θ direction

Claims (2)

全周方向に送信波を送信するとともに、目標からの反射波を受信する送受信手段と、
所定の方位ごとに、前記反射波を所定の時間分積分してSTCパターンを生成するSTC生成手段と、
前記STC生成手段で生成された各方位のSTCパターンに基づいて、対応する各方位の反射波を補正する制御手段と、
を備えることを特徴とするレーダ装置。
A transmission / reception means for transmitting a transmission wave in the entire circumferential direction and receiving a reflected wave from the target;
STC generation means for generating an STC pattern by integrating the reflected wave for a predetermined time for each predetermined direction;
Control means for correcting the reflected wave in each corresponding direction based on the STC pattern in each direction generated by the STC generating means;
A radar apparatus comprising:
前記STC生成手段は、所定のタイミングで連続的に前記STCパターンを生成する、
ことを特徴とする請求項1に記載のレーダ装置。
The STC generation means generates the STC pattern continuously at a predetermined timing.
The radar apparatus according to claim 1.
JP2013022042A 2013-02-07 2013-02-07 Radar equipment Active JP6315432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013022042A JP6315432B2 (en) 2013-02-07 2013-02-07 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022042A JP6315432B2 (en) 2013-02-07 2013-02-07 Radar equipment

Publications (2)

Publication Number Publication Date
JP2014153141A true JP2014153141A (en) 2014-08-25
JP6315432B2 JP6315432B2 (en) 2018-04-25

Family

ID=51575152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022042A Active JP6315432B2 (en) 2013-02-07 2013-02-07 Radar equipment

Country Status (1)

Country Link
JP (1) JP6315432B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218083A (en) * 1984-04-13 1985-10-31 Nec Corp Control circuit for reception sensitivity of radar
JPH04157385A (en) * 1990-10-19 1992-05-29 Nec Corp Stc system of radar
JPH04318482A (en) * 1991-04-17 1992-11-10 Furuno Electric Co Ltd Radar receiver
JPH06500862A (en) * 1991-06-13 1994-01-27 ウエスチングハウス・エレクトリック・コーポレイション Flight meteorological and topographic mapping radar
JP2008309606A (en) * 2007-06-14 2008-12-25 Japan Radio Co Ltd Radar system
JP2010230461A (en) * 2009-03-26 2010-10-14 Nec Corp Radar receiving device
JP2011257350A (en) * 2010-06-11 2011-12-22 Toshiba Corp Radar device
US20120154204A1 (en) * 2010-12-17 2012-06-21 Raytheon Company Methods and apparatus for sea state measurement via radar sea clutter eccentricity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218083A (en) * 1984-04-13 1985-10-31 Nec Corp Control circuit for reception sensitivity of radar
JPH04157385A (en) * 1990-10-19 1992-05-29 Nec Corp Stc system of radar
JPH04318482A (en) * 1991-04-17 1992-11-10 Furuno Electric Co Ltd Radar receiver
JPH06500862A (en) * 1991-06-13 1994-01-27 ウエスチングハウス・エレクトリック・コーポレイション Flight meteorological and topographic mapping radar
JP2008309606A (en) * 2007-06-14 2008-12-25 Japan Radio Co Ltd Radar system
JP2010230461A (en) * 2009-03-26 2010-10-14 Nec Corp Radar receiving device
JP2011257350A (en) * 2010-06-11 2011-12-22 Toshiba Corp Radar device
US20120154204A1 (en) * 2010-12-17 2012-06-21 Raytheon Company Methods and apparatus for sea state measurement via radar sea clutter eccentricity

Also Published As

Publication number Publication date
JP6315432B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
WO2017030616A2 (en) Fast scanning radar systems and methods
JP5840333B1 (en) Antenna control device and antenna device
JP5781018B2 (en) Wind measuring device
WO2015126678A1 (en) Acceleration corrected attitude estimation systems and methods
JP6108886B2 (en) Mobile object display device and mobile object display method
JP6319030B2 (en) Target detection device
JP2011151722A (en) Radio apparatus, radio system, and antenna tracking method
JP5873676B2 (en) Radar reference azimuth correction apparatus, radar apparatus, radar reference azimuth correction program, and radar reference azimuth correction method
JP5441834B2 (en) Navigation data sharing system and navigation equipment
JP2011053028A (en) Doppler radar apparatus and method of calculating doppler velocity
WO2016084498A1 (en) Tracking processing device and tracking processing method
WO2013168504A1 (en) Wireless communications device, wireless communications system, antenna control method, and program
JP2009025042A (en) Marine apparatus for tracking target
WO2016036767A2 (en) Rotating attitude heading reference systems and methods
JP6315432B2 (en) Radar equipment
JP2013246022A (en) Target detection device, radar apparatus, target detection method, and target detection program
JP6737601B2 (en) Radar scanning device, radar scanning program, and radar scanning method
JP2014165511A (en) Satellite tracking antenna system, and satellite tracking antenna control method
JP2011227259A (en) Image display device, image display system and illuminance calculating method
JP6240671B2 (en) Sensor information output device, sensor video display device, detection device, and sensor information output method
JP6334210B2 (en) Ultrasonic diagnostic equipment
RU2559203C1 (en) Method of mapping earth's surface using on-board radar
JP2008281380A (en) Data correction device and method of three-dimensional sensor
KR101193414B1 (en) System of partial modifying for numerical map with gps and ins information
JP2011095038A (en) Radar device, method of beam scanning used for the radar device, and beam scanning control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180320

R150 Certificate of patent or registration of utility model

Ref document number: 6315432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150