JP2014152990A - Refrigerator-freezer - Google Patents

Refrigerator-freezer Download PDF

Info

Publication number
JP2014152990A
JP2014152990A JP2013022966A JP2013022966A JP2014152990A JP 2014152990 A JP2014152990 A JP 2014152990A JP 2013022966 A JP2013022966 A JP 2013022966A JP 2013022966 A JP2013022966 A JP 2013022966A JP 2014152990 A JP2014152990 A JP 2014152990A
Authority
JP
Japan
Prior art keywords
refrigerator
temperature
refrigerator compartment
compartment
freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013022966A
Other languages
Japanese (ja)
Other versions
JP2014152990A5 (en
JP6309710B2 (en
Inventor
Saori Iida
沙織 飯田
Tetsushi Nakatsu
哲史 中津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013022966A priority Critical patent/JP6309710B2/en
Priority to CN201420058442.7U priority patent/CN203928548U/en
Publication of JP2014152990A publication Critical patent/JP2014152990A/en
Publication of JP2014152990A5 publication Critical patent/JP2014152990A5/ja
Application granted granted Critical
Publication of JP6309710B2 publication Critical patent/JP6309710B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a refrigerator-freezer which reduces power consumption.SOLUTION: A refrigerator-freezer includes control means 50 which controls an airflow regulator 26 for a cold room so that a flow rate of cool air supplied to the cold room 1 is minimized when a temperature detected by a cold room thermistor 22 reaches a lower limit temperature and the flow rate of the cool air is increased so as to be higher than the minimum airflow rate when the temperature detected by the cold room thermistor 22 reaches an upper limit temperature. The control means 50 regulates the cool air flow rate which is set when the cool air flow rate is increased so as to be higher than the minimum air flow rate on the basis of a load in the cold room 1.

Description

本発明は、冷凍冷蔵庫に関する。   The present invention relates to a refrigerator-freezer.

従来の冷凍冷蔵庫として、冷蔵室内部の温度を所定範囲内に保つために、外気温度に応じて冷凍室及び冷蔵室の上限温度と下限温度を設定し、冷蔵室の温度が上限温度に達したときに冷蔵室の風量調節器を開き、冷蔵室の温度が下限温度に達したときに冷蔵室の風量調節器を閉じる制御を行うことで冷蔵室内を冷却し、また、外気温度に応じて冷蔵室の風量調節器の開度を変化させるものがあった(例えば特許文献1)。   As a conventional refrigerator-freezer, in order to keep the temperature in the refrigerator compartment within a predetermined range, the upper limit temperature and the lower limit temperature of the freezer compartment and the refrigerator compartment are set according to the outside air temperature, and the temperature of the refrigerator compartment has reached the upper limit temperature. Sometimes the refrigeration room air volume regulator is opened, and when the refrigeration room temperature reaches the lower limit temperature, the refrigeration room air volume regulator is closed to cool the refrigeration room and refrigerate according to the outside air temperature. Some have changed the opening degree of the air volume regulator in the room (for example, Patent Document 1).

特開2009−115337号公報([0040]、図17)JP 2009-115337 A ([0040], FIG. 17)

特許文献1に記載の冷凍冷蔵庫は、外気温度に応じて冷蔵室の風量調節器の開度を制御しているが、冷蔵室内の食品の負荷に応じて冷蔵室の風量調節器の開度を制御するものではなかった。   The refrigerator-freezer described in Patent Document 1 controls the opening degree of the air volume regulator in the refrigerator compartment according to the outside air temperature, but the opening degree of the air volume regulator in the refrigerator compartment is controlled according to the load of food in the refrigerator compartment. It was not something to control.

したがって、例えば、冷蔵室内が高負荷であって、冷蔵室の風量調節器の開度が小さい場合(冷蔵室に供給される風量が小さい場合)には、冷蔵室が冷却されにくくなるため、冷蔵室の温度は下がりにくく、冷蔵室の温度検知手段が外気温度に応じて設定した下限温度を検知するまでの時間が延びる。   Therefore, for example, when the refrigeration room is heavily loaded and the air volume regulator in the refrigeration room has a small opening (when the amount of air supplied to the refrigeration room is small), the refrigeration room is difficult to cool. The temperature of the room is unlikely to decrease, and the time until the temperature detection means of the refrigerator compartment detects the lower limit temperature set according to the outside air temperature is extended.

また、冷蔵室に供給される風量が減少すると、冷凍室に供給される風量は増加するが、外気温度に応じて設定した冷蔵室の下限温度が検知されるまでは冷蔵室の風量調節器が開いた状態のため、冷凍室の温度検知手段が下限温度を検知するまでの時間も延びる。   In addition, when the air volume supplied to the refrigerator compartment decreases, the air volume supplied to the freezer compartment increases, but the refrigerator air volume regulator adjusts until the lower limit temperature of the refrigerator compartment set according to the outside air temperature is detected. Due to the open state, the time until the temperature detecting means of the freezer detects the lower limit temperature is also extended.

ここで、圧縮機は、外気温度に応じて設定した冷凍室の下限温度に達したときに停止するため、冷凍室の温度検知手段が冷凍室の下限温度を検知するまでの時間が延びると、圧縮機の運転時間も延びてしまう。このため、圧縮機の運転時間を短くして消費電力量の悪化を抑制することが望まれていた。   Here, since the compressor stops when it reaches the lower limit temperature of the freezer compartment set according to the outside air temperature, when the time until the temperature detection means of the freezer compartment detects the lower limit temperature of the freezer compartment, The operating time of the compressor is also extended. For this reason, it has been desired to shorten the operation time of the compressor and suppress the deterioration of the power consumption.

本発明は、上述のような課題を背景としてなされたものであり、消費電力量を低減する冷凍冷蔵庫を得ることを目的とする。   The present invention has been made against the background described above, and an object thereof is to obtain a refrigerator-freezer that reduces power consumption.

本発明に係る冷凍冷蔵庫は、冷蔵室と、冷凍室と、前記冷凍室内の温度に基づいて運転制御される圧縮機と、前記圧縮機から供給される冷媒を用いて冷気を生成する冷却器と、前記冷却器で生成された冷気を、前記冷蔵室の内部及び前記冷凍室の内部に導くファンと、前記ファンの下流側に形成された分岐風路、前記分岐風路と前記冷蔵室内とを連通する冷蔵室用風路、及び前記分岐風路と前記冷凍室内とを連通する冷凍室用風路と、前記冷蔵室用風路に設けられ、当該冷蔵室用風路から前記冷蔵室に供給される冷気の量を、最小風量と最大風量との間で連続的又は段階的に調節する冷蔵室用風量調節器と、前記冷蔵室の内部の温度を検知する温度検知手段と、前記温度検知手段で検知された温度が下限温度に達すると、前記冷蔵室に供給される冷気の量が最小風量となるように前記冷蔵室用風量調節器を制御し、前記温度検知手段で検知された温度が上限温度に達すると、前記最小風量よりも冷気の量を増やすように前記冷蔵室用風量調節器を制御する制御手段とを備え、前記制御手段は、前記冷蔵室内の負荷に基づいて、前記最小風量よりも冷気の量を増やすときの冷気の量を制御するものである。   A refrigerator-freezer according to the present invention includes a refrigerator compartment, a freezer compartment, a compressor that is operation-controlled based on the temperature in the freezer compartment, and a cooler that generates cold air using a refrigerant supplied from the compressor. A fan that guides the cool air generated by the cooler to the inside of the refrigerator compartment and the inside of the freezer compartment, a branch air passage formed on the downstream side of the fan, the branch air passage, and the refrigerator compartment Refrigeration room air passages that communicate with each other, a freezer compartment air passage that communicates between the branch air passage and the freezer compartment, and a freezer compartment air passage that is supplied to the refrigerating compartment from the refrigerating compartment air passage A refrigeration room air volume adjuster that continuously or stepwise adjusts the amount of cold air between a minimum air volume and a maximum air volume, temperature detection means for detecting the temperature inside the refrigeration room, and the temperature detection When the temperature detected by the means reaches the lower limit temperature, it is supplied to the refrigerator compartment. Controlling the air volume regulator for the refrigerator compartment so that the amount of cool air to be reached becomes the minimum air volume, and when the temperature detected by the temperature detecting means reaches the upper limit temperature, the amount of cool air is increased more than the minimum air volume. Control means for controlling the refrigeration room air volume adjuster, and the control means controls the amount of cold air when the amount of cold air is increased from the minimum air volume based on the load in the refrigeration room. is there.

本発明によれば、冷蔵室内の負荷に基づいて、冷蔵室に冷気を供給するときの冷気の量を制御する。このため、例えば冷蔵室内の負荷が低負荷のときに冷蔵室に必要以上に冷気が供給されることを抑制することができ、冷凍室に供給される冷気の量を相対的に増やすことができるので、圧縮機の運転時間が短縮され、圧縮機の運転に伴う消費電力量を低減することができる。   According to the present invention, the amount of cold air when supplying cold air to the refrigerator compartment is controlled based on the load in the refrigerator compartment. For this reason, for example, when the load in the refrigerator compartment is low, it is possible to suppress unnecessarily cold air being supplied to the refrigerator compartment, and the amount of cold air supplied to the freezer compartment can be relatively increased. Therefore, the operation time of the compressor is shortened, and the amount of power consumption accompanying the operation of the compressor can be reduced.

本発明の実施の形態1に係る冷凍冷蔵庫の正面図である。It is a front view of the refrigerator-freezer which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍冷蔵庫を側面から見た縦断面図である。It is the longitudinal cross-sectional view which looked at the refrigerator-freezer which concerns on Embodiment 1 of this invention from the side surface. 本発明の実施の形態1に係る冷凍冷蔵庫の扉を外した状態の正面図である。It is a front view in the state where the door of the refrigerator-freezer according to Embodiment 1 of the present invention was removed. 本発明の実施の形態1に係る冷蔵室用風量調節器の構造を示す図である。It is a figure which shows the structure of the air volume regulator for refrigerator compartment which concerns on Embodiment 1 of this invention. 比較例に係る冷凍冷蔵庫の冷蔵室内が低負荷時における冷蔵室の温度変化、冷蔵室用風量調節器の動作、冷凍室の温度変化、及び圧縮機の動作を示すタイムチャートである。It is a time chart which shows the temperature change of the refrigerator compartment, the operation | movement of the air volume regulator for refrigerator compartments, the temperature change of a freezer compartment, and the operation | movement of a compressor when the refrigerator compartment of the refrigerator-freezer concerning a comparative example is low load. 本発明の実施の形態1に係る冷凍冷蔵庫の冷蔵室内が低負荷時における冷蔵室の温度変化、冷蔵室用風量調節器の動作、冷凍室の温度変化、及び圧縮機の動作を示すタイムチャートである。It is a time chart which shows the temperature change of the refrigerator compartment when the refrigerator compartment of the refrigerator-freezer which concerns on Embodiment 1 of this invention is low load, operation | movement of the air volume regulator for refrigerator compartments, temperature change of a freezer compartment, and operation | movement of a compressor. is there. 本発明の実施の形態1に係る冷凍冷蔵庫の冷蔵室内が高負荷時及び低負荷時における冷蔵室サーミスタの温度変化を示すグラフである。It is a graph which shows the temperature change of the refrigerator compartment thermistor when the refrigerator compartment of the refrigerator-freezer which concerns on Embodiment 1 of this invention is at the time of high load and low load. 本発明の実施の形態1に係る冷凍冷蔵庫の冷蔵室内の負荷に応じた冷蔵室サーミスタの温度低下量の一例を示す表である。It is a table | surface which shows an example of the temperature fall amount of the refrigerator compartment thermistor according to the load in the refrigerator compartment of the refrigerator-freezer which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍冷蔵庫の冷蔵室用風量調節器の開度と冷蔵室に供給される風量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the opening degree of the refrigerator air volume regulator of the refrigerator-freezer which concerns on Embodiment 1 of this invention, and the air volume supplied to a refrigerator compartment. 本発明の実施の形態2に係る冷凍冷蔵庫の冷蔵室の開時間ごとの冷蔵室温度を示すグラフである。It is a graph which shows the refrigerator compartment temperature for every open time of the refrigerator compartment of the refrigerator-freezer which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍冷蔵庫の冷蔵室扉のポケットにあるペットボトルの水温についての調査結果を示す表である。It is a table | surface which shows the investigation result about the water temperature of the plastic bottle in the pocket of the refrigerator compartment door of the refrigerator-freezer which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る冷凍冷蔵庫100の正面図である。
図2は、本発明の実施の形態1に係る冷凍冷蔵庫100を側面から見た縦断面図である。
図1、図2に示されるように、冷凍冷蔵庫100は、略直方体の形状の冷凍冷蔵庫本体100Aを備えている。冷凍冷蔵庫本体100A内部は仕切板7によって仕切られて、例えば、冷蔵室1、製氷室2、切替室3、冷凍室4、及び野菜室5が形成される。なお、以下ではこれらの部屋を総称して単に貯蔵室と称することがある。
Embodiment 1 FIG.
FIG. 1 is a front view of a refrigerator-freezer 100 according to Embodiment 1 of the present invention.
FIG. 2 is a longitudinal sectional view of the refrigerator-freezer 100 according to Embodiment 1 of the present invention as seen from the side.
As shown in FIGS. 1 and 2, the refrigerator-freezer 100 includes a refrigerator-freezer body 100A having a substantially rectangular parallelepiped shape. The inside of the refrigerator-freezer main body 100A is partitioned by the partition plate 7, and, for example, the refrigerator compartment 1, the ice making compartment 2, the switching compartment 3, the freezer compartment 4, and the vegetable compartment 5 are formed. Hereinafter, these rooms may be collectively referred to simply as storage rooms.

各貯蔵室の前方は開口し、当該開口には、この開口を開閉可能に閉塞する扉が設けられている。詳しくは、冷蔵室1の前方開口には冷蔵室左扉1a及び冷蔵室右扉1bが取り付けられ、製氷室2の前方開口には製氷室扉2aが取り付けられ、切替室3の前方開口には切替室扉3aが取り付けられ、冷凍室4の前方開口には冷凍室扉4aが取り付けられ、野菜室5の前方開口には野菜室扉5aが取り付けられている。扉の前面には、例えば取っ手(図示省略)が取り付けられている。   The front of each storage chamber is opened, and the opening is provided with a door that closes the opening so as to be opened and closed. Specifically, the refrigerator compartment left door 1 a and the refrigerator compartment right door 1 b are attached to the front opening of the refrigerator compartment 1, the ice making compartment door 2 a is attached to the front opening of the ice making compartment 2, and the switching compartment 3 has a front opening. A switching chamber door 3 a is attached, a freezer compartment door 4 a is attached to the front opening of the freezer compartment 4, and a vegetable compartment door 5 a is attached to the front opening of the vegetable compartment 5. For example, a handle (not shown) is attached to the front surface of the door.

冷蔵室1は、冷凍冷蔵庫100内の最上段に設けられた貯蔵室であり、内部が冷蔵温度帯に維持される貯蔵室であって冷凍室4の温度帯に比べて高い。製氷室2及び切替室3は、冷蔵室1の下方に横並びに設けられた貯蔵室であり、内部が冷凍温度帯に維持される貯蔵室である。切替室3は、冷凍温度及びソフト冷凍温度に切替可能となっている。冷凍室4は、製氷室2及び切替室3の下方に設けられた貯蔵室であり、内部が冷凍温度帯に維持され、冷蔵室1の温度帯に比べて低い。野菜室5は、冷凍室4の下方に設けられた貯蔵室である。野菜室5は、冷蔵室1と同様に内部が冷蔵温度帯に維持される貯蔵室であるが、冷蔵室1と比べると温度が高めである。なお、製氷室2と切替室3の位置は反対であってもよい。   The refrigerating room 1 is a storage room provided at the uppermost stage in the refrigerator 100 and is a storage room in which the inside is maintained in a refrigerating temperature zone and is higher than the temperature zone of the freezing room 4. The ice making room 2 and the switching room 3 are storage rooms provided side by side below the refrigerating room 1, and are storage rooms in which the inside is maintained in a freezing temperature zone. The switching chamber 3 can be switched between a freezing temperature and a soft freezing temperature. The freezing room 4 is a storage room provided below the ice making room 2 and the switching room 3, and the inside is maintained in a freezing temperature zone and is lower than the temperature zone of the refrigerating room 1. The vegetable room 5 is a storage room provided below the freezing room 4. The vegetable room 5 is a storage room in which the inside is maintained in a refrigerated temperature zone as in the refrigerated room 1, but the temperature is higher than that in the refrigerated room 1. The positions of the ice making chamber 2 and the switching chamber 3 may be reversed.

冷蔵室左扉1aには、冷蔵室1、切替室3、冷凍室4、野菜室5の設定温度を調節する操作パネル12が取り付けられている。なお、操作パネル12の配置場所は冷蔵室左扉1aに限定されるものではなく、例えば冷蔵室内に配置されていてもよい。   An operation panel 12 for adjusting the set temperatures of the refrigerator compartment 1, the switching compartment 3, the freezer compartment 4, and the vegetable compartment 5 is attached to the refrigerator door left door 1a. In addition, the arrangement | positioning location of the operation panel 12 is not limited to the refrigerator compartment left door 1a, For example, you may arrange | position in the refrigerator compartment.

図1、図2に示されるように、冷凍冷蔵庫本体100Aは、冷凍冷蔵庫本体100Aの内壁を形成する内箱9と、冷凍冷蔵庫本体100Aの外郭を形成する外箱10とを備える。内箱9と外箱10との間には真空断熱材が設けられている。詳しくは、冷凍冷蔵庫本体100Aの天井に天井部真空断熱材14aが設けられ、冷凍冷蔵庫本体100Aの左側面に左側面部真空断熱材14bが設けられ、冷凍冷蔵庫本体100Aの右側面に右側面部真空断熱材14cが設けられ、冷凍冷蔵庫本体100Aの背面に背面部真空断熱材14dが設けられている。なお、以後の説明において、これらの真空断熱材を総称して、真空断熱材14と総称することがある。   As shown in FIGS. 1 and 2, the refrigerator-freezer main body 100A includes an inner box 9 that forms the inner wall of the refrigerator-freezer main body 100A, and an outer box 10 that forms the outer wall of the refrigerator-freezer main body 100A. A vacuum heat insulating material is provided between the inner box 9 and the outer box 10. Specifically, a ceiling vacuum insulation 14a is provided on the ceiling of the refrigerator main body 100A, a left side vacuum insulation 14b is provided on the left side of the refrigerator refrigerator main body 100A, and a right side vacuum insulation is provided on the right side of the refrigerator refrigerator main body 100A. The material 14c is provided, and the back surface vacuum heat insulating material 14d is provided on the back surface of the refrigerator-freezer main body 100A. In the following description, these vacuum heat insulating materials may be collectively referred to as a vacuum heat insulating material 14.

真空断熱材14は、冷凍冷蔵庫100の外部から冷凍冷蔵庫100の内部(庫内)への熱侵入量を低減するものであり、熱伝導率λは0.0020W/m・Kである。真空断熱材14と内箱9との間には、熱伝導率λが0.0200W/m・Kのウレタンが充填されている。   The vacuum heat insulating material 14 reduces the amount of heat intrusion from the outside of the refrigerator / freezer 100 to the inside (inside the refrigerator) of the refrigerator / freezer 100, and the thermal conductivity λ is 0.0020 W / m · K. Between the vacuum heat insulating material 14 and the inner box 9, urethane having a thermal conductivity λ of 0.0200 W / m · K is filled.

図2に示されるように、冷凍室4の後方には、ファン15と、ファン15の下方に位置し、冷気を生成する冷却器16とが設けられている。野菜室5の後方で且つ冷却器16の下方には圧縮機17が設けられている。これら冷却器16及び圧縮機17と、凝縮器(図示省略)及び毛細管(図示省略)で冷媒回路が構成される。ファン15の前面側には、ファン15から送出される冷気を、各貯蔵室に至る風路に分岐させる分岐風路24が形成されている。分岐風路24から分岐して冷蔵室1に至る風路を、冷蔵室用風路30と称し、分岐風路24から分岐して冷凍室4に至る風路を、冷凍室用風路31と称する(図2参照)。   As shown in FIG. 2, a fan 15 and a cooler 16 that is located below the fan 15 and generates cool air are provided behind the freezer compartment 4. A compressor 17 is provided behind the vegetable compartment 5 and below the cooler 16. The cooler 16 and the compressor 17, the condenser (not shown) and the capillary tube (not shown) constitute a refrigerant circuit. A branch air passage 24 is formed on the front side of the fan 15 to divide the cold air sent from the fan 15 into air passages that reach the respective storage chambers. The air passage branched from the branch air passage 24 to the refrigerator compartment 1 is referred to as a refrigerator compartment air passage 30, and the air passage branched from the branch air passage 24 to the freezer compartment 4 is connected to the freezer compartment air passage 31. (Refer to FIG. 2).

冷凍冷蔵庫本体100Aの上面前方には外気温度センサ18が設けられ、冷凍冷蔵庫本体100Aの背面上方には制御手段50が設けられている。外気温度センサ18は、外気温度を検知するものである。制御手段50は、後述する冷蔵室サーミスタ22で検知された温度情報に基づいて後述する冷蔵室用風量調節器26の開度を制御し、後述する冷凍室サーミスタ23で検知された温度情報に基づいて圧縮機17を制御する。制御手段50は、例えば、この機能を実現する回路デバイスなどのハードウェアで構成される。なお、外気温度センサ18及び制御手段50が設けられる位置は、図2に示される位置に限定されない。   An outside air temperature sensor 18 is provided in front of the upper surface of the refrigerator-freezer main body 100A, and a control means 50 is provided above the back surface of the refrigerator-freezer main body 100A. The outside air temperature sensor 18 detects outside air temperature. The control means 50 controls the opening degree of the refrigeration room air volume adjuster 26 described later based on temperature information detected by the refrigerator compartment thermistor 22 described later, and based on temperature information detected by the refrigerator compartment thermistor 23 described later. To control the compressor 17. The control means 50 is comprised by hardware, such as a circuit device which implement | achieves this function, for example. The position where the outside air temperature sensor 18 and the control means 50 are provided is not limited to the position shown in FIG.

図3は、本発明の実施の形態1に係る冷凍冷蔵庫100の扉を外した状態の正面図である。
図2、図3に示されるように、冷凍冷蔵庫100の背面側には、冷蔵室サーミスタ22、冷凍室サーミスタ23、冷蔵室用風量調節器26が設けられている。冷蔵室サーミスタ22は、冷蔵室内の温度を検知するものであり、冷蔵室内に設置されている。冷凍室サーミスタ23は、冷凍室4内の温度を検知するものであり、冷凍室内に設置されている。なお、冷蔵室サーミスタ22が、本発明の温度検知手段に相当する。また、図2、図3に示される冷蔵室サーミスタ22及び冷凍室サーミスタ23の配置位置は一例であり、これに限定されるものではない。
FIG. 3 is a front view of the refrigerator-freezer 100 according to Embodiment 1 of the present invention with the door removed.
As shown in FIGS. 2 and 3, a refrigerator compartment thermistor 22, a refrigerator compartment thermistor 23, and a refrigerator air volume regulator 26 are provided on the back side of the refrigerator 100. The refrigerator compartment thermistor 22 detects the temperature in the refrigerator compartment, and is installed in the refrigerator compartment. The freezer compartment thermistor 23 detects the temperature in the freezer compartment 4 and is installed in the freezer compartment. The refrigerator compartment thermistor 22 corresponds to the temperature detecting means of the present invention. Moreover, the arrangement | positioning position of the refrigerator compartment thermistor 22 and the freezer compartment thermistor 23 which are shown by FIG. 2, FIG. 3 is an example, and is not limited to this.

冷蔵室用風量調節器26は、冷蔵室用風路30に設けられており、冷蔵室用風路30の流路断面積を調整することで分岐風路24から冷蔵室1に供給される風量を調節する。冷蔵室用風量調節器26の冷蔵室1側には、冷蔵室内風路21が形成されている。冷蔵室内風路21は、分岐風路24、冷蔵室用風路30、及び冷蔵室用風量調節器26よりも下流側に位置する風路である。冷蔵室用風路30内であって冷蔵室内風路21の入口付近(冷蔵室1と製氷室2と切替室3との間)に、冷蔵室用風量調節器26が位置している。製氷室用風量調節器27は、製氷室2に供給される風量を調節するものであり、冷蔵室内の背面側に位置する冷蔵室内風路21の入口付近(冷蔵室1と製氷室2と切替室3との間)に位置している。切替室用風量調節器28は、切替室3に供給される風量を調節するものであり、切替室3の背面側に位置している。野菜室用風量調節器29は、野菜室5に供給される風量を調節するものであり、切替室3の背面側に位置している。なお、切替室用風量調節器28と野菜室用風量調節器29の位置は、反対であってもよい。冷凍室吹出口20は、冷凍室4の背面側に形成され、冷凍室4の内部と、分岐風路24とを連通させる開口である。   The refrigerating room air volume adjuster 26 is provided in the refrigerating room air passage 30, and the air volume supplied to the refrigerating room 1 from the branch air passage 24 by adjusting the cross-sectional area of the refrigerating room air passage 30. Adjust. A refrigerator compartment air passage 21 is formed on the refrigerator compartment air volume regulator 26 side of the refrigerator compartment 1. The refrigerator compartment air passage 21 is an air passage located downstream of the branch air passage 24, the refrigerator compartment air passage 30, and the refrigerator compartment air volume regulator 26. A refrigeration room air volume adjuster 26 is located near the entrance of the refrigeration room air path 21 (between the refrigeration room 1, the ice making room 2, and the switching room 3) in the refrigeration room air path 30. The ice making room air volume adjuster 27 adjusts the air volume supplied to the ice making room 2 and is located near the entrance of the refrigerating room air passage 21 located on the rear side of the refrigerating room (switching between the refrigerating room 1 and the ice making room 2). (Between chamber 3). The switching chamber air volume adjuster 28 adjusts the air volume supplied to the switching chamber 3 and is located on the back side of the switching chamber 3. The vegetable room air volume adjuster 29 adjusts the air volume supplied to the vegetable room 5, and is located on the back side of the switching room 3. The positions of the switching room air volume adjuster 28 and the vegetable room air volume adjuster 29 may be reversed. The freezer compartment outlet 20 is an opening that is formed on the back side of the freezer compartment 4 and communicates the inside of the freezer compartment 4 with the branch air passage 24.

冷却器16で冷却された冷気は、ファン15が回転すると、ファン15の吸引力で分岐風路24に流れ、分岐風路24から各調節器(冷蔵室用風量調節器26、製氷室用風量調節器27、切替室用風量調節器28、野菜室用風量調節器29)及び冷凍室吹出口20のうち少なくともいずれかを通って貯蔵室(冷蔵室1、製氷室2、切替室3、野菜室5、冷凍室4)の吹出口から吹き出される。   When the fan 15 rotates, the cool air cooled by the cooler 16 flows into the branch air passage 24 by the suction force of the fan 15, and from the branch air passage 24 to each regulator (refrigeration room air volume regulator 26, ice chamber air volume). The storage room (refrigeration room 1, ice making room 2, switching room 3, vegetable) through at least one of the regulator 27, the switching room air volume regulator 28, the vegetable room air volume regulator 29) and the freezer compartment outlet 20 It blows out from the blower outlet of the chamber 5 and the freezer compartment 4).

冷凍室吹出口20へ供給される風量は、冷蔵室用風量調節器26、製氷室用風量調節器27、切替室用風量調節器28、及び野菜室用風量調節器29が調節する各貯蔵室へ至る風路の開度によって決定される。例えば、冷蔵室用風量調節器26、製氷室用風量調節器27、切替室用風量調節器28、野菜室用風量調節器29がいずれも各風路を全閉状態としている場合には、ファン15により分岐風路24に導入された冷気の全てが、冷凍室吹出口20に流入して冷凍室4へ供給される。   The amount of air supplied to the freezer compartment outlet 20 is controlled by the refrigerator air volume regulator 26, the ice making air volume regulator 27, the switching room air volume regulator 28, and the vegetable room air volume regulator 29. It is determined by the opening of the air path leading to. For example, when the air volume adjuster 26 for the refrigeration room, the air volume adjuster 27 for the ice making room, the air volume adjuster 28 for the switching room, and the air volume adjuster 29 for the vegetable room all have their air paths fully closed, All of the cold air introduced into the branch air passage 24 by 15 flows into the freezer compartment outlet 20 and is supplied to the freezer compartment 4.

分岐風路24から冷蔵室用風量調節器26に向かって吹き出された冷気は、冷蔵室内の背面に位置する冷蔵室内風路21を通って、複数の冷蔵室吹出口1cから冷蔵室内へ冷気が吹き出される。次に、冷蔵室内を循環した冷気は、冷蔵室1の床面に位置する冷蔵室冷気戻り口1dから冷凍冷蔵庫本体100Aの下部に位置する野菜室5の野菜室天井風路25へ流入し、野菜室5の吹出口より吹き出された冷気は、野菜室5内を循環して野菜室天井風路25へ流入する。このように異なる経路から野菜室天井風路25へ流入した冷気は合流して冷却器16へと戻る。   The cold air blown out from the branch air passage 24 toward the refrigerating room air volume adjuster 26 passes through the refrigerating room air passage 21 located at the back of the refrigerating room, and the cold air enters the refrigerating room from the plurality of refrigerating room outlets 1c. Blown out. Next, the cold air circulated in the refrigerator compartment flows from the refrigerator compartment cold air return port 1d located on the floor of the refrigerator compartment 1 into the vegetable compartment ceiling air passage 25 of the vegetable compartment 5 located at the lower part of the refrigerator main body 100A, The cold air blown from the outlet of the vegetable compartment 5 circulates in the vegetable compartment 5 and flows into the vegetable compartment ceiling air passage 25. Thus, the cold air that has flowed into the vegetable compartment ceiling air passage 25 from different paths merges and returns to the cooler 16.

図4は、本発明の実施の形態1に係る冷蔵室用風量調節器26の構造を示す図である。
図4(a)は、冷蔵室用風量調節器26の正面図である。
図4(b)は、図4(a)のA−A断面図(バッフル33全開時)である。
FIG. 4 is a diagram showing a structure of the refrigerator air volume adjuster 26 according to the first embodiment of the present invention.
FIG. 4A is a front view of the refrigerator air volume regulator 26.
FIG. 4B is a cross-sectional view taken along the line AA in FIG. 4A (when the baffle 33 is fully opened).

図4(a)に示されるように、冷蔵室用風量調節器26は、ギア収納ケース32と、バッフル33と、バッフル33に貼り付けられた、発泡ポリウレタン製又は発泡ポリエチレン製の冷気漏れ防止シート34と、フレーム35とを備える。図4(b)に示されるように、フレーム35には、冷気が通過する開口である冷気通過部36が形成されている。   As shown in FIG. 4 (a), the refrigerator air volume adjuster 26 includes a gear storage case 32, a baffle 33, and a cold air leakage prevention sheet made of foamed polyurethane or foamed polyethylene that is attached to the baffle 33. 34 and a frame 35. As shown in FIG. 4B, the frame 35 is formed with a cold air passage portion 36 that is an opening through which the cold air passes.

ギア収納ケース32は、モータ(図示省略)と、ギア(図示省略)と、駆動軸(図示省略)とを備え、ネジ(図示省略)でフレーム35に固定される。ギア収納ケース32のモータを駆動させると、バッフル33は、ギア収納ケース32のギア及び駆動軸を介して、0度〜90度の範囲内で回転する。なお、図4(b)の点線で示される水平状態のバッフル33の角度を0度、図4(b)の実線で示される鉛直状態のバッフル33の角度を90度とする。   The gear storage case 32 includes a motor (not shown), a gear (not shown), and a drive shaft (not shown), and is fixed to the frame 35 with screws (not shown). When the motor of the gear storage case 32 is driven, the baffle 33 rotates within a range of 0 to 90 degrees via the gear and the drive shaft of the gear storage case 32. The angle of the horizontal baffle 33 indicated by the dotted line in FIG. 4B is 0 degree, and the angle of the vertical baffle 33 indicated by the solid line in FIG. 4B is 90 degrees.

バッフル33が回転すると、冷蔵室1に供給される冷気の量が調整される。具体的には、バッフル33の角度を90度に近づけるにつれて、冷気通過部36を介して冷蔵室1に供給される冷気の量が多くなり、バッフル33の角度を0度に近づけるにつれて、冷気通過部36を介して冷蔵室1に供給される冷気の量が少なくなる。なお、制御手段50がバッフル33の角度を制御する。また、バッフル33の開度が0度のとき、冷気漏れ防止シート34がフレーム35の外枠リブ37に密着し、冷気通過部36を介して冷気が冷蔵室1に供給されなくなる。本実施の形態では、冷蔵室用風量調節器26のバッフル33が全開状態(90度)のときに、冷蔵室1に供給される冷気の量が最大風量となる。また、冷蔵室用風量調節器26のバッフル33が全閉状態(0度)のときに、冷蔵室1に供給される冷気の量が最小風量(冷気供給を停止)となる。なお、冷蔵室1に供給する風量を最小風量とするときに、必ずしも完全に冷気の供給を停止しなくてもよく、ある程度の冷気を供給するようにしてもよいが、本実施の形態1において「閉状態」というときには全閉状態であることをいうものとする。   When the baffle 33 rotates, the amount of cold air supplied to the refrigerator compartment 1 is adjusted. Specifically, as the angle of the baffle 33 approaches 90 degrees, the amount of cool air supplied to the refrigerating chamber 1 through the cool air passage portion 36 increases, and as the angle of the baffle 33 approaches 0 degrees, the cold air passes. The amount of cold air supplied to the refrigerator compartment 1 via the part 36 is reduced. Note that the control means 50 controls the angle of the baffle 33. Further, when the opening degree of the baffle 33 is 0 degree, the cold air leakage prevention sheet 34 comes into close contact with the outer frame rib 37 of the frame 35, and the cold air is not supplied to the refrigerator compartment 1 through the cold air passage portion 36. In the present embodiment, when the baffle 33 of the refrigerator air volume regulator 26 is in a fully open state (90 degrees), the amount of cold air supplied to the refrigerator compartment 1 is the maximum air volume. In addition, when the baffle 33 of the refrigerator air volume regulator 26 is in the fully closed state (0 degrees), the amount of cool air supplied to the refrigerator room 1 becomes the minimum air volume (cold air supply is stopped). Note that when the air volume supplied to the refrigerator compartment 1 is set to the minimum air volume, the supply of cool air does not necessarily have to be stopped completely, and a certain amount of cool air may be supplied. “Closed state” refers to a fully closed state.

冷蔵室用風量調節器26の上限開度は、冷却能力を満足するように(例えばJIS規格から外れないように)、冷凍冷蔵庫100の据付起動時及び庫内の負荷が過負荷の場合を想定し、90度に設計されている。このため、冷蔵室用風量調節器26の開度が90度のとき、冷気通過部36を通過した冷気は、冷蔵室用風量調節器26に当たって屈折することはなく上方へ吹き出される。なお、据付起動及び過負荷の状態は常に生じるものではないため、庫内の負荷に応じて冷蔵室用風量調節器26の開度を調整し、冷蔵室1に供給される風量を調整することが望ましい。なお、90度以上の場合では冷気通過部36の面積が変化せず、吹き出される風量が変わらないため最大で90度までとしている。   The upper limit opening of the refrigerator air volume regulator 26 is assumed to satisfy the cooling capacity (for example, so as not to deviate from the JIS standard), when the refrigerator / freezer 100 is installed and started and the load in the cabinet is overloaded. And it is designed at 90 degrees. For this reason, when the opening degree of the refrigerator air volume regulator 26 is 90 degrees, the cold air that has passed through the cold air passage 36 does not refract and blows upward without hitting the refrigerator air volume regulator 26. In addition, since the installation start-up and the overload state do not always occur, the opening degree of the refrigerator air volume adjuster 26 is adjusted according to the load in the warehouse, and the air volume supplied to the refrigerator room 1 is adjusted. Is desirable. In addition, in the case of 90 degree | times or more, since the area of the cold passage part 36 does not change and the air volume blown off does not change, it is set to 90 degree | times at maximum.

なお、冷蔵室1に供給される風量を、最小風量の状態から最大風量の状態までの範囲内で多段階に調整することができるものであれば、冷蔵室用風量調節器26の具体的構成は図4に例示したものに限定されない。また、冷蔵室用風量調節器26の風量調節の幅も限定されず、連続的又は段階的に風量を調節できればよい。   In addition, if the air volume supplied to the refrigerator compartment 1 can be adjusted in multiple stages within the range from the state of the minimum air volume to the state of the maximum air volume, the specific configuration of the air volume regulator 26 for the refrigerator compartment Is not limited to that illustrated in FIG. Moreover, the width | variety of the air volume adjustment of the refrigerator air volume regulator 26 is not limited, but should just adjust an air volume continuously or in steps.

製氷室用風量調節器27、切替室用風量調節器28、野菜室用風量調節器29は、冷蔵室用風量調節器26と同様の構造であり、それぞれ対応する貯蔵室の容量に応じて、冷気通過部36の面積を設定することが望ましい。すなわち、一般的に冷蔵室用風量調節器26は、他の風量調節器に比べ、風量調節器の大きさ、諸寸法において大きなものとすることが望ましい。   The ice making air volume regulator 27, the switching room air volume regulator 28, and the vegetable room air volume regulator 29 have the same structure as the refrigerator air volume regulator 26. It is desirable to set the area of the cold air passage 36. That is, it is generally desirable that the refrigerator air volume regulator 26 be larger in size and dimensions of the air volume regulator than other air volume regulators.

以下に、比較例及び本実施の形態1の冷蔵室用風量調節器26の制御方法について、図5及び図6を用いて説明する。なお、説明の都合上、比較例についても、本実施の形態1と同様の符号を付して説明する。   Below, the control method of the air volume regulator 26 for refrigerator compartments of a comparative example and this Embodiment 1 is demonstrated using FIG.5 and FIG.6. For convenience of explanation, the comparative example will be described with the same reference numerals as those in the first embodiment.

図5は、比較例に係る冷凍冷蔵庫100の冷蔵室内が低負荷時における冷蔵室1の温度変化、冷蔵室用風量調節器26の動作、冷凍室4の温度変化、及び圧縮機17の動作を示すタイムチャートである。なお、図5は、冷蔵室1の内容積を271L、真空断熱材14の熱伝導率λを0.0020W/m・K、外気温度を30度という条件下で得られたものである。この条件下では、圧縮機17が運転し始めてから停止するまでの運転時間は190分であった。比較例に係る冷凍冷蔵庫100の圧縮機17の運転は、冷凍室温度に基づいて制御される。具体的には、冷凍室温度が上限温度に達すると圧縮機17の運転が開始(ON)され、冷凍室温度が下限温度に達すると圧縮機17の運転が停止(OFF)される。   FIG. 5 shows the temperature change of the refrigerator compartment 1 when the refrigerator compartment of the refrigerator-freezer 100 according to the comparative example has a low load, the operation of the air volume regulator 26 for the refrigerator compartment, the temperature change of the refrigerator compartment 4, and the operation of the compressor 17. It is a time chart which shows. FIG. 5 is obtained under the conditions that the internal volume of the refrigerator compartment 1 is 271 L, the thermal conductivity λ of the vacuum heat insulating material 14 is 0.0020 W / m · K, and the outside air temperature is 30 degrees. Under this condition, the operation time from the start of operation of the compressor 17 to the stop thereof was 190 minutes. The operation of the compressor 17 of the refrigerator-freezer 100 according to the comparative example is controlled based on the freezer temperature. Specifically, when the freezer temperature reaches the upper limit temperature, the operation of the compressor 17 is started (ON), and when the freezer temperature reaches the lower limit temperature, the operation of the compressor 17 is stopped (OFF).

比較例では、制御手段50は、冷蔵室サーミスタ22の検知温度を用いて、冷蔵室用風量調節器26を全開状態又は全閉状態に切り替える。具体的には、比較例の冷蔵室用風量調節器26が図4と同様のものであるとすると、冷蔵室サーミスタ22の温度が所定の上限温度に達したときに冷蔵室用風量調節器26のバッフル33の開度が全開状態(90度)とされ、冷蔵室サーミスタ22の温度が所定の下限温度に達したときに冷蔵室用風量調節器26のバッフル33の開度が全閉状態(0度)とされる。   In the comparative example, the control means 50 switches the refrigerator air volume regulator 26 to a fully open state or a fully closed state using the temperature detected by the refrigerator compartment thermistor 22. Specifically, if the refrigerator air volume regulator 26 of the comparative example is the same as that shown in FIG. 4, the refrigerator air volume regulator 26 when the temperature of the refrigerator thermistor 22 reaches a predetermined upper limit temperature. The opening degree of the baffle 33 is fully opened (90 degrees), and when the temperature of the refrigerator compartment thermistor 22 reaches a predetermined lower limit temperature, the opening degree of the baffle 33 of the refrigerator air volume regulator 26 is fully closed ( 0 degrees).

時刻t0は、冷蔵室温度が上限温度で、冷蔵室用風量調節器26が全開状態で、冷凍室温度が上限温度で、圧縮機17がONの状態である。冷蔵室内が低負荷時に、冷蔵室用風量調節器26が全開状態のまま一定であると、冷蔵室1に供給される風量が必要以上に多くなるため、冷蔵室温度は急激に低下して下限温度に達する(時刻t1)。   At time t0, the refrigerator compartment temperature is the upper limit temperature, the refrigerator air volume regulator 26 is fully open, the freezer compartment temperature is the upper limit temperature, and the compressor 17 is ON. If the refrigeration room air flow regulator 26 is kept in a fully open state when the load in the refrigeration room is low, the amount of air supplied to the refrigeration room 1 increases more than necessary. The temperature is reached (time t1).

制御手段50は、冷蔵室サーミスタ22の温度が下限温度に達したと判断すると(時刻t1)、冷蔵室用風量調節器26を全閉状態に切り替える。このとき、全開状態に比べて冷蔵室1に供給される風量が減少するために冷蔵室温度が次第に上昇し、一方で冷蔵室1に供給される風量が減少した分だけ冷凍室4に供給される風量が全開状態のときよりも増加するため、冷凍室温度が次第に低下する。   When the control means 50 determines that the temperature of the refrigerator compartment thermistor 22 has reached the lower limit temperature (time t1), the controller 50 switches the refrigerator air volume regulator 26 to the fully closed state. At this time, since the amount of air supplied to the refrigerator compartment 1 is reduced as compared with the fully opened state, the temperature of the refrigerator compartment gradually increases, while the amount of air supplied to the refrigerator compartment 1 is reduced and supplied to the freezer compartment 4. Since the air volume increases when compared with the fully open state, the freezer temperature gradually decreases.

ここで、冷蔵室サーミスタ22の温度が上限温度に達してから再び下限温度に低下するまでは、冷蔵室用風量調節器26を全開状態として(時刻t0〜t1)、冷蔵室温度を急激に低下させて下限温度に達するようにしていた。冷蔵室1内に冷気を供給するときの冷蔵室用風量調節器26を全開状態としているのは、冷凍冷蔵庫100の据付起動時や庫内の負荷が過負荷の場合を想定して設計されたものであるが、冷凍冷蔵庫100は常に据付起動状態や過負荷の状態であるわけではない。したがって、冷蔵室1内が低負荷の場合には、冷蔵室用風量調節器26が全開状態であると冷蔵室1への風量が多すぎる。冷蔵室1への冷気の風量が多すぎると、冷蔵室サーミスタ22が下限温度を検知するまでのスピードも速くなる。このため、冷蔵室内に供給された冷気が冷蔵室内に十分に循環して均一な温度になる前に、冷蔵室サーミスタ22の温度が下限温度に達する場合があった。この場合、冷蔵室サーミスタ22の温度が下限温度に達したにもかかわらず、冷蔵室内部は全体として、冷蔵室サーミスタ22が検知する温度よりも高くなってしまう。したがって、冷蔵室サーミスタ22の検知温度が下限温度に達して冷蔵室用風量調節器26が全閉状態となると、冷蔵室1の内部は全体として下限温度まで冷却されていないため、冷蔵室サーミスタ22が検知する冷蔵室温度は急激に上昇して上限温度に達する(時刻t2)。   Here, from the time when the temperature of the refrigerator compartment thermistor 22 reaches the upper limit temperature until the temperature decreases again to the lower limit temperature, the refrigerator air volume regulator 26 is fully opened (time t0 to t1), and the refrigerator compartment temperature is rapidly reduced. To reach the lower temperature limit. The refrigeration room air flow controller 26 when the cold air is supplied into the refrigeration room 1 is designed to be fully open when the refrigerator / freezer 100 is installed and activated or the load in the refrigerator is overloaded. However, the refrigerator-freezer 100 is not always installed and activated or overloaded. Therefore, when the inside of the refrigerator compartment 1 is lightly loaded, the air volume to the refrigerator compartment 1 is too large when the refrigerator air volume regulator 26 is fully opened. If the amount of cool air flowing into the refrigerator compartment 1 is too large, the speed until the refrigerator compartment thermistor 22 detects the lower limit temperature is also increased. For this reason, the temperature of the refrigerator compartment thermistor 22 may reach the lower limit temperature before the cold air supplied into the refrigerator compartment is sufficiently circulated into the refrigerator compartment to reach a uniform temperature. In this case, although the temperature of the refrigerator compartment thermistor 22 has reached the lower limit temperature, the inside of the refrigerator compartment becomes higher than the temperature detected by the refrigerator compartment thermistor 22 as a whole. Therefore, when the temperature detected by the refrigerator compartment thermistor 22 reaches the lower limit temperature and the refrigerator air volume regulator 26 is fully closed, the interior of the refrigerator compartment 1 is not cooled to the lower limit temperature as a whole. The refrigeration room temperature detected by the temperature rises rapidly and reaches the upper limit temperature (time t2).

制御手段50は、冷蔵室サーミスタ22の検知温度が上限温度に達したと判断すると(時刻t2)、冷蔵室用風量調節器26を全開状態に切り替える。
上述したような冷蔵室用風量調節器26の開閉の切替は、冷凍室温度が下限に達するまで繰り返し行われ(時刻t3)、冷蔵室温度は上限温度と下限温度との間で変化する。
When the control means 50 determines that the temperature detected by the refrigerator compartment thermistor 22 has reached the upper limit temperature (time t2), the controller 50 switches the refrigerator air volume regulator 26 to the fully open state.
Switching between opening and closing of the refrigerator air volume regulator 26 as described above is repeated until the freezer temperature reaches the lower limit (time t3), and the refrigerator temperature changes between the upper limit temperature and the lower limit temperature.

制御手段50は、冷凍室温度が下限温度に達したと判断すると(時刻t3)、圧縮機17の運転を停止(OFF)させる。圧縮機17の運転が停止すると、冷凍室温度は上昇して上限温度に達する(時刻t4)。
制御手段50は、冷凍室温度が上限温度に達したと判断すると(時刻t4)、圧縮機17の運転を開始(ON)させる。これ以降の冷蔵室温度の変化及び冷蔵室用風量調節器26の開閉状態等については、冷凍冷蔵庫100の運転開始後の状態と同じである。
When it is determined that the freezer temperature has reached the lower limit temperature (time t3), the control unit 50 stops the operation of the compressor 17 (OFF). When the operation of the compressor 17 stops, the freezer temperature rises and reaches the upper limit temperature (time t4).
When it is determined that the freezer temperature has reached the upper limit temperature (time t4), the control unit 50 starts (ON) the operation of the compressor 17. The subsequent change in the temperature of the refrigerator compartment and the open / close state of the refrigerator air volume regulator 26 are the same as the state after the operation of the refrigerator-freezer 100 is started.

このように比較例では、制御手段50が、冷蔵室サーミスタ22の検知温度に基づいて、冷蔵室用風量調節器26を全開状態又は全閉状態に切り替えている。比較例は、冷蔵室内が低負荷であっても冷蔵室用風量調節器26を全開状態にしているため、冷蔵室1内に冷気が過度に供給されてしまう。   Thus, in the comparative example, the control means 50 switches the refrigerator air volume regulator 26 to the fully open state or the fully closed state based on the temperature detected by the refrigerator compartment thermistor 22. In the comparative example, even if the refrigeration room has a low load, the refrigeration room air volume regulator 26 is fully opened, so that cold air is excessively supplied into the refrigeration room 1.

このため、冷蔵室用風量調節器26の開閉が複数回生じ、冷凍室4に供給される風量が不足し、冷凍室4の温度が加減温度に到達するまでの冷却時間が長くなる。ここで、圧縮機17は、冷凍室サーミスタ23の温度が冷凍室4の下限温度に達したときに停止する。したがって、冷凍室4の冷却時間が長くなると、圧縮機17が停止するまでの時間も延びて消費電力量が悪化する。   For this reason, opening and closing of the refrigerator air volume regulator 26 occurs a plurality of times, the air volume supplied to the freezer compartment 4 is insufficient, and the cooling time until the temperature of the freezer compartment 4 reaches the control temperature becomes longer. Here, the compressor 17 stops when the temperature of the freezer compartment thermistor 23 reaches the lower limit temperature of the freezer compartment 4. Therefore, if the cooling time of the freezer compartment 4 becomes long, the time until the compressor 17 stops is extended and the power consumption is deteriorated.

そこで、上述のような課題を背景として、本実施の形態1の冷凍冷蔵庫100は次のように構成されている。
図6は、本発明の実施の形態1に係る冷凍冷蔵庫100の冷蔵室内が低負荷時における冷蔵室1の温度変化、冷蔵室用風量調節器26の動作、冷凍室4の温度変化、及び圧縮機17の動作を示すタイムチャートである。なお、図6は、冷蔵室1の内容積を271L、真空断熱材14の熱伝導率λを0.0020W/m・K、外気温度を30度という条件下で得られたものである。なお、本実施の形態1に係る冷凍冷蔵庫100の圧縮機17の運転は、比較例と同様に、冷凍室温度に基づいて制御される。具体的には、冷凍室温度が上限温度に達すると圧縮機17の運転が開始(ON)され、冷凍室温度が下限温度に達すると圧縮機17の運転が停止(OFF)される。
Then, against the background as described above, the refrigerator-freezer 100 according to the first embodiment is configured as follows.
FIG. 6 shows the temperature change of the refrigerator compartment 1 when the refrigerator compartment of the refrigerator-freezer 100 according to Embodiment 1 of the present invention has a low load, the operation of the air volume regulator 26 for the refrigerator compartment, the temperature change of the refrigerator compartment 4, and the compression. 18 is a time chart showing the operation of the machine 17. FIG. 6 is obtained under the conditions that the internal volume of the refrigerator compartment 1 is 271 L, the thermal conductivity λ of the vacuum heat insulating material 14 is 0.0020 W / m · K, and the outside air temperature is 30 degrees. Note that the operation of the compressor 17 of the refrigerator-freezer 100 according to Embodiment 1 is controlled based on the freezer temperature, as in the comparative example. Specifically, when the freezer temperature reaches the upper limit temperature, the operation of the compressor 17 is started (ON), and when the freezer temperature reaches the lower limit temperature, the operation of the compressor 17 is stopped (OFF).

本実施の形態1では、比較例と同様に、制御手段50が、冷蔵室サーミスタ22の検知温度に基づいて、冷蔵室用風量調節器26を開状態又は閉状態に切り替える。本実施の形態1が比較例と相違する点は、制御手段50が、冷蔵室内の負荷に基づいて、冷蔵室用風量調節器26が開状態のときの開度を複数段階に制御する点である。   In the first embodiment, similarly to the comparative example, the control unit 50 switches the refrigerator air volume regulator 26 to an open state or a closed state based on the temperature detected by the refrigerator compartment thermistor 22. The difference between the first embodiment and the comparative example is that the control means 50 controls the opening when the refrigerator air volume regulator 26 is in an open state based on the load in the refrigerator in a plurality of stages. is there.

時刻t0は、冷蔵室温度が上限温度で、冷蔵室用風量調節器26が開状態(例えば90度)で、冷凍室温度が上限温度で、圧縮機17がONの状態である。制御手段50は、冷蔵室用風量調節器26を開状態とし、さらに、冷蔵室内の負荷に基づいて冷蔵室用風量調節器26の開度を調整する。このとき、冷蔵室内の負荷が大きいほど、冷蔵室用風量調節器26の開度を大きくして、冷蔵室1に供給される冷気量を増やす。本実施の形態では、冷蔵室用風量調節器26の開度は、0度から90度までの範囲で可変であるので、制御手段50は冷蔵室用風量調節器26の開度を、0度を上回る開度であって90度以下の状態にする。そうすると、冷蔵室用風量調節器26の開度に応じた量の冷気が冷蔵室1に供給され、冷蔵室サーミスタ22が検知する冷蔵室温度は次第に低下して下限温度に達する(時刻t1)。なお、図6では、図示の関係上、冷蔵室用風量調節器26が「開」のときのグラフが直線になっているが、このときの冷蔵室用風量調節器26の開度は上述のとおり冷蔵室内の負荷に応じて異なるのであって必ずしも一定ではない。   At time t0, the refrigerator compartment temperature is the upper limit temperature, the refrigerator air volume regulator 26 is in the open state (for example, 90 degrees), the freezer compartment temperature is the upper limit temperature, and the compressor 17 is in the ON state. The control means 50 opens the refrigerator air volume adjuster 26, and further adjusts the opening of the refrigerator air volume adjuster 26 based on the load in the refrigerator compartment. At this time, the larger the load in the refrigerator compartment, the larger the opening degree of the refrigerator air volume regulator 26 increases the amount of cold air supplied to the refrigerator compartment 1. In the present embodiment, since the opening degree of the refrigerator air volume regulator 26 is variable in the range from 0 degrees to 90 degrees, the control means 50 sets the opening degree of the refrigerator air volume regulator 26 to 0 degrees. Over 90 degrees and below 90 degrees. Then, an amount of cold air corresponding to the opening degree of the refrigerator air volume regulator 26 is supplied to the refrigerator compartment 1, and the refrigerator compartment temperature detected by the refrigerator compartment thermistor 22 gradually decreases to reach the lower limit temperature (time t1). In FIG. 6, the graph when the refrigerator air volume regulator 26 is “open” is a straight line for the purpose of illustration, but the opening degree of the refrigerator air volume regulator 26 at this time is the above-described opening degree. As it differs according to the load in the refrigerator compartment, it is not necessarily constant.

なお、図6には、冷蔵室温度が上限温度から下限温度に達するまでの間、冷凍室温度が一定であるように示されているが、冷蔵室用風量調節器26の開度が小さい場合には冷凍室4内に供給される風量が増えるため、実際には冷凍室温度は次第に減少する。
また、冷蔵室内の負荷を算出する具体的な方法については後述する。
In FIG. 6, the freezer compartment temperature is shown to be constant until the refrigerator compartment temperature reaches the lower limit temperature. However, when the opening degree of the refrigerator air volume regulator 26 is small. Since the amount of air supplied into the freezer compartment 4 increases, the freezer compartment temperature actually decreases gradually.
A specific method for calculating the load in the refrigerator compartment will be described later.

制御手段50は、冷蔵室サーミスタ22の温度が下限温度に達したと判断すると(時刻t1)、冷蔵室用風量調節器26を閉状態とする(0℃)。冷蔵室用風量調節器26が閉状態となると、冷蔵室1に供給される風量が無くなって冷蔵室温度が次第に上昇し、冷凍室4に供給される風量が多くなって冷凍室温度が次第に低下し、冷凍室温度は下限温度に達する(時刻t3)。   When the controller 50 determines that the temperature of the refrigerator compartment thermistor 22 has reached the lower limit temperature (time t1), the controller 50 closes the refrigerator air volume regulator 26 (0 ° C.). When the refrigerator air volume regulator 26 is in the closed state, the amount of air supplied to the refrigerator room 1 is lost, the temperature of the refrigerator compartment gradually increases, the amount of air supplied to the freezer compartment 4 increases, and the temperature of the refrigerator compartment gradually decreases. The freezer temperature reaches the lower limit temperature (time t3).

制御手段50は、冷凍室サーミスタ23の温度が下限温度に達すると(時刻t3)、圧縮機17の運転を停止させる。圧縮機17の運転が停止(OFF)すると、冷凍室温度は上昇して上限温度に達し、冷蔵室サーミスタ22の温度も上限温度に達する(時刻t2)。   When the temperature of the freezer compartment thermistor 23 reaches the lower limit temperature (time t3), the control means 50 stops the operation of the compressor 17. When the operation of the compressor 17 is stopped (OFF), the freezer temperature rises to reach the upper limit temperature, and the temperature of the refrigerator compartment thermistor 22 also reaches the upper limit temperature (time t2).

制御手段50は、冷蔵室サーミスタ22の温度が上限温度に達したと判断すると、冷蔵室用風量調節器26を開状態に切り替え、圧縮機17の運転を開始(ON)させる(時刻t2)。そして制御手段50は、冷蔵室内の負荷に基づいて、開状態である冷蔵室用風量調節器26の角度を下限温度から上限温度の範囲内で制御する。これ以降の冷蔵室温度の変化及び冷蔵室用風量調節器26の開閉状態等については、冷凍冷蔵庫100の運転開始後の状態と同じである。   When the control means 50 determines that the temperature of the refrigerator compartment thermistor 22 has reached the upper limit temperature, it switches the refrigerator compartment air volume regulator 26 to the open state and starts (ON) the operation of the compressor 17 (time t2). Then, the control means 50 controls the angle of the refrigerator air volume adjuster 26 in the open state within the range from the lower limit temperature to the upper limit temperature based on the load in the refrigerator compartment. The subsequent change in the temperature of the refrigerator compartment and the open / close state of the refrigerator air volume regulator 26 are the same as the state after the operation of the refrigerator-freezer 100 is started.

このように、冷蔵室内の負荷を基に、冷蔵室用風量調節器26の開度を下限温度から上限温度の範囲内で制御することで、冷蔵室1に供給される風量を必要最小限に抑えることができる。このため、圧縮機17が1回運転し始めてから停止するまでの間の冷蔵室用風量調節器26の開閉回数を1回とすることができる。したがって、比較例よりも圧縮機17を早く停止することができ、消費電力量を低減させることができる。   In this way, by controlling the opening degree of the refrigerator air volume regulator 26 within the range from the lower limit temperature to the upper limit temperature based on the load in the refrigerator compartment, the amount of air supplied to the refrigerator compartment 1 is minimized. Can be suppressed. For this reason, the number of times of opening and closing the refrigerator air volume adjuster 26 from when the compressor 17 starts operating once until it stops can be set to one. Therefore, the compressor 17 can be stopped earlier than the comparative example, and the power consumption can be reduced.

なお、圧縮機17の運転時間は冷蔵室1の内容積、断熱構造、外気温度にも依存するため、圧縮機17の運転時間は図5、図6に例示したものに限定されるものではない。また、同様の理由により、図5の比較例における冷蔵室用風量調節器26の開回数も図5の例に限定されない。   In addition, since the operation time of the compressor 17 is also dependent on the internal volume of the refrigerator compartment 1, a heat insulation structure, and external temperature, the operation time of the compressor 17 is not limited to what was illustrated in FIG. 5, FIG. . For the same reason, the number of opening times of the refrigerator air volume regulator 26 in the comparative example of FIG. 5 is not limited to the example of FIG.

次に、本実施の形態1に係る冷蔵室1内の負荷の判定について、具体的に説明する。本実施の形態1では、冷蔵室1内の温度の低下量に基づいて、冷蔵室1内の負荷を判定する。
図7は、本発明の実施の形態1に係る冷蔵室内が高負荷時及び低負荷時における冷蔵室サーミスタ22の温度変化を示すグラフである。
Next, determination of the load in the refrigerator compartment 1 according to the first embodiment will be specifically described. In the first embodiment, the load in the refrigerator compartment 1 is determined based on the amount of decrease in the temperature in the refrigerator compartment 1.
FIG. 7 is a graph showing a temperature change of the refrigerator compartment thermistor 22 when the refrigerator compartment according to Embodiment 1 of the present invention is under a high load and a low load.

図7に示すグラフの、横軸は時間であり、縦軸は冷蔵室サーミスタ22の検知温度である。また、冷蔵室内が高負荷時における時刻T1から時刻T2までの間の冷蔵室サーミスタ22の温度低下量は(x−y)℃で示されている。また、冷蔵室内が低負荷時における時刻T1から時刻T2までの間の冷蔵室サーミスタ22の温度低下量は(a−b)℃で示されている。図7に示されるように、冷蔵室内が高負荷のときの温度低下量(x−y)℃は、冷蔵室内が低負荷のときの温度低下量(a−b)℃よりも小さくなる。これは、冷蔵室内が高負荷のときには、冷蔵室内が低負荷時のときに比べ、冷蔵室内が冷却されにくくなっているからである。このように、冷蔵室内の負荷状態によって、冷蔵室内の温度低下量が異なる。そこで、本実施の形態1では、冷蔵室内の温度低下量を用いて、冷蔵室内が高負荷であるか低負荷であるかという負荷状態を判定する。   In the graph shown in FIG. 7, the horizontal axis represents time, and the vertical axis represents the temperature detected by the refrigerator compartment thermistor 22. Moreover, the amount of temperature decrease of the refrigerator compartment thermistor 22 between time T1 and time T2 when the refrigerator compartment is under high load is indicated by (xy) ° C. In addition, the amount of temperature decrease of the refrigerator compartment thermistor 22 from time T1 to time T2 when the refrigerator compartment is under low load is indicated by (a−b) ° C. As shown in FIG. 7, the temperature decrease amount (xy) ° C. when the refrigeration chamber is under a high load is smaller than the temperature decrease amount (ab) ° C. when the refrigeration chamber is under a low load. This is because the refrigerator compartment is less likely to be cooled when the refrigerator compartment is heavily loaded than when the refrigerator compartment is lightly loaded. Thus, the amount of temperature drop in the refrigerator compartment varies depending on the load state in the refrigerator compartment. Therefore, in the first embodiment, the load state of whether the refrigeration room is a high load or a low load is determined using the temperature decrease amount in the refrigeration room.

次に、冷蔵室内の温度低下量に基づく冷蔵室内の負荷の判定の具体例を説明する。
図8は、本発明の実施の形態1に係る冷凍冷蔵庫100の冷蔵室内の負荷に応じた冷蔵室サーミスタ22の温度低下量の一例を示す表である。
図8に示す例は、冷蔵室1の内容積が271L、真空断熱材14の熱伝導率λが0.0020W/m・K、外気温度が30度の条件下において、冷蔵室サーミスタ22が60分温度検知を行った場合の温度低下量を、冷蔵室内の負荷別に示している。
図8の例では、所定の負荷(基準となる負荷)が冷蔵室1内にあるときに、冷蔵室サーミスタ22の温度低下量が3.1℃であった。例えば、この温度低下量を、冷蔵室内の負荷を高負荷あるいは低負荷と判定するための基準値Aとする。
Next, a specific example of determination of the load in the refrigeration room based on the temperature drop amount in the refrigeration room will be described.
FIG. 8 is a table showing an example of the temperature decrease amount of the refrigerator compartment thermistor 22 according to the load in the refrigerator compartment of the refrigerator-freezer 100 according to Embodiment 1 of the present invention.
In the example shown in FIG. 8, the refrigerator compartment thermistor 22 is 60 under the conditions where the internal volume of the refrigerator compartment 1 is 271 L, the thermal conductivity λ of the vacuum heat insulating material 14 is 0.0020 W / m · K, and the outside air temperature is 30 degrees. The amount of temperature decrease when the partial temperature is detected is shown for each load in the refrigerator compartment.
In the example of FIG. 8, when the predetermined load (the reference load) is in the refrigerator compartment 1, the temperature decrease amount of the refrigerator compartment thermistor 22 was 3.1 ° C. For example, the amount of temperature decrease is set as a reference value A for determining the load in the refrigerator compartment as a high load or a low load.

制御手段50は、冷蔵室サーミスタ22の単位時間当たりの温度低下量が0.9℃のとき(図8)、基準値A(3.1℃)よりも小さいために高負荷であると判定し、冷蔵室用風量調節器26の開度を、例えば基準値Aと冷蔵室サーミスタ22の温度低下量との差に応じて大きくする。
一方、制御手段50は、冷蔵室サーミスタ22の単位時間当たりの温度低下量が4.2℃のとき(図8)、基準値A(3.1℃)よりも大きいために低負荷であると判定し、冷蔵室用風量調節器26の開度を、例えば基準値Aと冷蔵室サーミスタ22の温度低下量との差に応じて小さくする。
When the temperature drop per unit time of the refrigerator compartment thermistor 22 is 0.9 ° C. (FIG. 8), the control means 50 determines that the load is high because it is smaller than the reference value A (3.1 ° C.). The opening degree of the refrigerator air volume regulator 26 is increased in accordance with, for example, the difference between the reference value A and the temperature drop amount of the refrigerator compartment thermistor 22.
On the other hand, when the temperature decrease per unit time of the refrigerator compartment thermistor 22 is 4.2 ° C. (FIG. 8), the control means 50 is larger than the reference value A (3.1 ° C.) and thus has a low load. Determination is made, and the opening degree of the air volume adjuster 26 for the refrigerating room is made smaller, for example, according to the difference between the reference value A and the temperature decrease amount of the refrigerating room thermistor 22.

なお、基準値Aは、冷蔵室1の内容積、断熱構造、及び外気温度に依存するため、上述した数値(3.1℃)に限定されるものではない。
また、外気温度センサ18で検知された外気温度に応じた基準値Aを設けてもよい。
また、図8では、冷凍冷蔵庫100の断熱構造の性能を表す指標の一つとして、真空断熱材14の熱伝導率を示しているのであり、真空断熱材14の熱伝導率のほか冷凍冷蔵庫100の断熱性能に影響する他の構造についても考慮するのが好ましい。
The reference value A is not limited to the above-described numerical value (3.1 ° C.) because it depends on the internal volume of the refrigerator compartment 1, the heat insulating structure, and the outside air temperature.
Further, a reference value A corresponding to the outside temperature detected by the outside temperature sensor 18 may be provided.
Further, in FIG. 8, the thermal conductivity of the vacuum heat insulating material 14 is shown as one index indicating the performance of the heat insulating structure of the refrigerator / freezer 100. It is also preferable to consider other structures that affect the heat insulation performance of the.

以下、前述の図6を参照して、冷蔵室サーミスタ22の温度低下量に基づいて冷蔵室1内の負荷を判定し、冷蔵室1内の負荷に基づいて冷蔵室用風量調節器26の開度を制御する本実施の形態1の冷凍冷蔵庫100の動作及び作用を具体的に説明する。
図6に示す時刻t0では、制御手段50は、冷蔵室用風量調節器26を開状態とする。このとき制御手段50は、冷蔵室サーミスタ22の温度低下量を用いて冷蔵室内の負荷を判定し、判定した負荷に基づいて、冷蔵室用風量調節器26の開度を制御する。このため、冷蔵室1には、冷蔵室1内の負荷に応じた量の冷気が供給される。したがって、例えば冷蔵室1内の負荷が低負荷である場合に過度な量の冷気が冷蔵室1内に供給されることがなく、冷凍室4に供給される冷気の量を相対的に増やすことができる。したがって、冷凍室4の冷却速度を上昇させることができる。
Hereinafter, with reference to FIG. 6 described above, the load in the refrigerator compartment 1 is determined based on the temperature drop amount of the refrigerator compartment thermistor 22, and the refrigerator air volume regulator 26 is opened based on the load in the refrigerator compartment 1. The operation and action of the refrigerator-freezer 100 of the first embodiment for controlling the degree will be specifically described.
At time t <b> 0 shown in FIG. 6, the control means 50 opens the refrigerator air volume regulator 26. At this time, the control means 50 determines the load in the refrigerator compartment using the temperature decrease amount of the refrigerator compartment thermistor 22, and controls the opening degree of the refrigerator air volume regulator 26 based on the determined load. For this reason, the refrigerator compartment 1 is supplied with an amount of cold air corresponding to the load in the refrigerator compartment 1. Therefore, for example, when the load in the refrigerator compartment 1 is low, an excessive amount of cold air is not supplied into the refrigerator compartment 1, and the amount of cold air supplied to the freezer compartment 4 is relatively increased. Can do. Therefore, the cooling rate of the freezer compartment 4 can be increased.

そして、制御手段50は、冷蔵室サーミスタ22の温度が下限温度に達したと判断すると(時刻t1)、冷蔵室用風量調節器26を閉状態(0度)とする。
このように、本実施の形態1によれば、冷蔵室1が低負荷の場合には、冷蔵室1内に過度な冷気を供給することを抑制できるので、冷蔵室1に供給する冷気量を減らした分だけ冷凍室4への風量を増加させることができ、冷凍室4を冷却しやすくなる。そのため、圧縮機17を早く停止することができ、圧縮機17の運転時間を短くすることができるため、消費電力量の低減効果がある。
And if the control means 50 judges that the temperature of the refrigerator compartment thermistor 22 reached the minimum temperature (time t1), it will make the refrigerator air volume regulator 26 a closed state (0 degree | times).
As described above, according to the first embodiment, when the refrigerator compartment 1 has a low load, it is possible to suppress supply of excessive cold air into the refrigerator compartment 1, so that the amount of cold air supplied to the refrigerator compartment 1 is reduced. The air volume to the freezer compartment 4 can be increased by the reduced amount, and the freezer compartment 4 can be easily cooled. Therefore, the compressor 17 can be stopped quickly, and the operation time of the compressor 17 can be shortened, so that there is an effect of reducing power consumption.

次に、本実施の形態1に係る冷蔵室用風量調節器26の開度と冷蔵室1に供給される風量との関係を説明する。
図9は、本発明の実施の形態1に係る冷凍冷蔵庫100の冷蔵室用風量調節器26の開度と冷蔵室1に供給される風量との関係の一例を示すグラフである。
Next, the relationship between the opening degree of the refrigerator air volume regulator 26 according to Embodiment 1 and the air volume supplied to the refrigerator room 1 will be described.
FIG. 9 is a graph showing an example of the relationship between the opening degree of the refrigerator air volume regulator 26 of the refrigerator-freezer 100 according to Embodiment 1 of the present invention and the air volume supplied to the refrigerator room 1.

図9に示されるように、冷蔵室用風量調節器26の開度が40度〜90度の範囲における単位角度あたりの風量の増加分は、冷蔵室用風量調節器26の開度が0度〜40度の範囲における単位角度あたりの風量の増加分よりも小さい。すなわち、冷蔵室用風量調節器26の開度が40度であるときの冷気通過部36の面積による風量と、冷蔵室用風量調節器26を90度(全開)であるときの冷気通過部36の面積による風量との変化は小さい。   As shown in FIG. 9, the increase in the air volume per unit angle when the opening degree of the refrigerator air volume regulator 26 is in the range of 40 degrees to 90 degrees indicates that the opening degree of the refrigerator air volume regulator 26 is 0 degrees. It is smaller than the increase in air volume per unit angle in the range of ˜40 degrees. That is, the air volume depending on the area of the cool air passage portion 36 when the opening degree of the air volume adjuster 26 for the refrigerator compartment is 40 degrees, and the cold air passage section 36 when the air volume adjuster 26 for the refrigerator compartment is 90 degrees (fully open). The change with the air volume due to the area is small.

このため、冷蔵室内の負荷が高負荷であるとき、冷蔵室用風量調節器26の開度を、約40度を上回るように設定することで、冷蔵室1に供給される風量を十分確保することができ、冷蔵室温度が下限温度に達するまでの時間が早くなる。冷蔵室温度が下限温度に達するまでの時間が早くなると、冷蔵室用風量調節器26が閉状態になるまでの時間が早くなり、冷凍室4に供給される風量が増加して冷凍室温度が下限温度に達するまでの時間も早くなる。したがって、圧縮機17を早く停止させて運転時間を短くすることができるため、消費電力量を低減することができる。なお、本実施の形態1では、図9に示される特性を有するグラフを用いたが、これは一例であり特に限定されるものではない。   For this reason, when the load in the refrigerator compartment is a high load, the opening amount of the refrigerator air volume adjuster 26 is set so as to exceed approximately 40 degrees, thereby ensuring a sufficient amount of air supplied to the refrigerator compartment 1. The time until the refrigerator compartment temperature reaches the lower limit temperature is shortened. If the time until the refrigerator compartment temperature reaches the lower limit temperature becomes earlier, the time until the refrigerator air volume regulator 26 is closed becomes earlier, the amount of air supplied to the freezer compartment 4 increases, and the temperature of the freezer compartment increases. The time until the lower limit temperature is reached also becomes faster. Therefore, the compressor 17 can be stopped quickly to shorten the operation time, so that the power consumption can be reduced. In the first embodiment, the graph having the characteristics shown in FIG. 9 is used. However, this is an example and is not particularly limited.

図9に示されるように、冷蔵室用風量調節器26の開度が0度〜40度の範囲における単位角度あたりの風量の増加分は、冷蔵室用風量調節器26の開度が40度〜90度の範囲における単位角度あたりの風量よりも小さい。すなわち、冷蔵室用風量調節器26の開度が40度であるときの冷気通過部36の面積による風量と、冷蔵室用風量調節器26を0度(全閉)であるときの冷気通過部36の面積による風量との変化は大きい。   As shown in FIG. 9, the increase in the air volume per unit angle in the range of 0 to 40 degrees of opening of the refrigerator air volume adjuster 26 is 40 degrees of the opening of the refrigerator air volume adjuster 26. It is smaller than the air volume per unit angle in the range of ˜90 degrees. That is, the air volume according to the area of the cold air passage portion 36 when the opening degree of the refrigerator air volume regulator 26 is 40 degrees, and the cold air passage section when the refrigerator air volume regulator 26 is 0 degrees (fully closed). The change with the air volume by the area of 36 is large.

このため、冷蔵室内の負荷が低負荷であるとき、冷蔵室用風量調節器26の開度を約40度以下に設定することで、冷蔵室1に供給される風量を必要最小限に抑えることができ、冷凍室4に供給される風量が増加して冷凍室4を冷却しやすくなる。したがって、圧縮機17を早く停止させて運転時間を短くすることができるため、消費電力量を低減することができる。   For this reason, when the load in the refrigerating room is low, the air volume supplied to the refrigerating room 1 is suppressed to the minimum necessary by setting the opening degree of the air quantity regulator 26 for the refrigerating room to about 40 degrees or less. The amount of air supplied to the freezer compartment 4 is increased and the freezer compartment 4 is easily cooled. Therefore, the compressor 17 can be stopped quickly to shorten the operation time, so that the power consumption can be reduced.

なお、冷蔵室内に供給される風量は、冷蔵室用風量調節器26の冷気通過部36の面積及び冷蔵室1の内容積に依存するため、本実施の形態1で説明した冷蔵室内が低負荷及び高負荷と判定した場合の開度の基準に限定されるものではない。   In addition, since the air volume supplied into the refrigerator compartment depends on the area of the cold passage portion 36 of the refrigerator air volume regulator 26 and the internal volume of the refrigerator compartment 1, the refrigerator compartment described in the first embodiment has a low load. And it is not limited to the reference | standard of the opening degree at the time of determining with high load.

以上のように、本実施の形態1に係る冷凍冷蔵庫100は、冷蔵室1内の負荷に基づいて、冷蔵室1に冷気を供給するときの冷気の量を制御する。このため、例えば冷蔵室内の負荷が低負荷のときに冷蔵室1に必要以上に冷気が供給されることを抑制することができ、それによって冷凍室4に供給される冷気の量を相対的に増やすことができるので、圧縮機17の運転時間が短縮され、圧縮機17の運転に伴う消費電力量を低減することができる。   As described above, the refrigerator-freezer 100 according to Embodiment 1 controls the amount of cold air when supplying cold air to the refrigerator compartment 1 based on the load in the refrigerator compartment 1. For this reason, for example, when the load in the refrigerating chamber is low, it is possible to prevent the refrigerating chamber 1 from being supplied with unnecessarily cold air, thereby relatively reducing the amount of cold air supplied to the freezing chamber 4. Since it can be increased, the operation time of the compressor 17 is shortened, and the power consumption accompanying the operation of the compressor 17 can be reduced.

実施の形態2.
本実施の形態2における部屋配置及び冷蔵庫風路は、実施の形態1と同一であるため、説明を割愛する。
実施の形態1では、基準値Aと冷蔵室サーミスタ22の温度低下量とを比較して、冷蔵室内の負荷を判定した。これに対して本実施の形態2では、冷蔵室左扉1a又は冷蔵室右扉1bの開時間に基づいて、冷蔵室内の負荷を判定する。なお、本実施の形態2でも、実施の形態1と同様に、制御手段50が、所定の時間間隔ごとに検出される冷蔵室サーミスタ22の温度を用いて、冷蔵室用風量調節器26を開状態と閉状態とに切り替える。
Embodiment 2. FIG.
Since the room arrangement and the refrigerator air passage in the second embodiment are the same as those in the first embodiment, description thereof is omitted.
In the first embodiment, the reference value A and the temperature drop amount of the refrigerator compartment thermistor 22 are compared to determine the load in the refrigerator compartment. On the other hand, in this Embodiment 2, the load in a refrigerator compartment is determined based on the open time of the refrigerator compartment left door 1a or the refrigerator compartment right door 1b. In the second embodiment, as in the first embodiment, the controller 50 opens the refrigerator air volume regulator 26 using the temperature of the refrigerator compartment thermistor 22 detected at predetermined time intervals. Switch between state and closed state.

図10は、本発明の実施の形態2に係る冷凍冷蔵庫100の冷蔵室1の開時間ごとの冷蔵室温度を示すグラフである。詳しくは、1時間あたりの冷蔵室左扉1a又は冷蔵室右扉1bの開回数が50回のときの冷蔵室左扉1a及び冷蔵室右扉1bの開時間ごとの冷蔵室1の温度を表している。なお、上述の開回数は例えば、開閉センサ(図示省略)で検知される。また、上述の開時間は例えば、タイマ(図示省略)で計測される。   FIG. 10 is a graph showing the refrigerator temperature for each open time of the refrigerator compartment 1 of the refrigerator-freezer 100 according to Embodiment 2 of the present invention. Specifically, it represents the temperature of the refrigerator compartment 1 for each opening time of the refrigerator compartment left door 1a and the refrigerator compartment right door 1b when the number of times the refrigerator compartment left door 1a or refrigerator compartment right door 1b is opened 50 times per hour. ing. In addition, the above-mentioned opening frequency is detected by an open / close sensor (not shown), for example. Moreover, the above open time is measured by a timer (not shown), for example.

図10に示されるように、1回あたりの開時間が5秒のときに冷蔵室内温度は約1℃であり、1回あたりの開時間が10秒のときに冷蔵室内温度は約2℃であり、1回あたりの開時間が15秒のときに冷蔵室内温度は約10℃であり、1回あたりの開時間が20秒のときに冷蔵室内温度は約15℃であった。
このように、扉の開時間が長くなると、冷蔵室内温度が高くなることが分かる。すなわち、開時間を検知することで、冷蔵室内が低負荷であるか高負荷であるかを判定することができる。なお、図10に示されるグラフは、冷蔵室1の内容積が271L、真空断熱材14の熱伝導率λが0.0020W/m・K、外気温度が32度の条件下で得られたものである。
As shown in FIG. 10, the temperature in the refrigerator compartment is about 1 ° C. when the opening time per time is 5 seconds, and the temperature in the refrigerator room is about 2 ° C. when the opening time per time is 10 seconds. Yes, the temperature in the refrigerator compartment was about 10 ° C. when the opening time per time was 15 seconds, and the temperature in the refrigerator room was about 15 ° C. when the opening time per time was 20 seconds.
Thus, it turns out that the temperature in a refrigerator compartment becomes high when the opening time of a door becomes long. That is, by detecting the opening time, it can be determined whether the refrigerator compartment has a low load or a high load. The graph shown in FIG. 10 is obtained under the conditions where the internal volume of the refrigerator compartment 1 is 271 L, the thermal conductivity λ of the vacuum heat insulating material 14 is 0.0020 W / m · K, and the outside air temperature is 32 degrees. It is.

そこで、本実施の形態2では、冷蔵室内の負荷を高負荷又は低負荷と判定するために、冷蔵室左扉1a及び冷蔵室右扉1bの1回あたりの開時間を負荷判定の基準値とする。以下に、負荷判定の基準値である基準値Bを決定する方法の一例を示す。   Therefore, in the second embodiment, in order to determine the load in the refrigerator compartment as a high load or a low load, the opening time per operation of the refrigerator door left door 1a and the refrigerator door right door 1b is used as a reference value for load determination. To do. Hereinafter, an example of a method for determining the reference value B, which is a reference value for load determination, will be described.

図11は、本発明の実施の形態2に係る冷凍冷蔵庫100の冷蔵室扉のポケットにあるペットボトルの水温についての調査結果を示す表である。
図11に示されるように、ペットボトルの水温が0〜3℃では冷たすぎる又は歯にしみると感じる人が多く、ペットボトルの水温が4〜7℃では少し冷たい又は飲みごろであると感じる人が多く、ペットボトルの水温が8〜10℃ではぬるい又は冷えていないと感じる人が多かった。この調査結果に基づいて、例えば冷蔵室温度が10℃であるときの、1回あたりの開時間を基準値Bとする。具体的には、図10に示されるように、冷蔵室内温度が10℃のとき、1回あたりの開時間は15秒であるため、この開時間を基準値Bとする。
FIG. 11 is a table showing the survey results on the water temperature of the plastic bottles in the pockets of the refrigerator compartment door of the refrigerator-freezer 100 according to Embodiment 2 of the present invention.
As shown in FIG. 11, many people feel that when the water temperature of the PET bottle is 0 to 3 ° C., it is too cold or feels like a tooth, and when the water temperature of the PET bottle is 4 to 7 ° C. Many people felt that when the water temperature of the PET bottle was 8 to 10 ° C., it was not warm or cold. Based on the result of this investigation, for example, the opening time per time when the temperature of the refrigerator compartment is 10 ° C. is set as the reference value B. Specifically, as shown in FIG. 10, when the temperature in the refrigerator compartment is 10 ° C., the opening time per time is 15 seconds.

制御手段50は、基準値Bである15秒よりも冷蔵室左扉1a及び冷蔵室右扉1bの開時間が長いと判断すると、冷蔵室1の温度は高くなりやすいため、冷蔵室内の負荷を高負荷と予測して、冷蔵室用風量調節器26の開度が大きくなるように制御する。
一方、制御手段50は、基準値Bである15秒よりも冷蔵室左扉1a及び冷蔵室右扉1bの開時間が短いと判断すると、冷蔵室1の温度は高くなりにくいため、冷蔵室内の負荷を低負荷と予測して、冷蔵室用風量調節器26の開度が小さくなるように制御する。
If the control means 50 determines that the open time of the refrigerator compartment left door 1a and the refrigerator compartment right door 1b is longer than the reference value B of 15 seconds, the temperature of the refrigerator compartment 1 tends to increase, so the load in the refrigerator compartment is reduced. It is predicted that the load is high, and the opening of the refrigerator air volume regulator 26 is controlled to be large.
On the other hand, if the control means 50 determines that the opening time of the refrigerator compartment left door 1a and the refrigerator compartment right door 1b is shorter than the reference value B of 15 seconds, the temperature of the refrigerator compartment 1 is not easily increased. The load is predicted to be low, and control is performed so that the opening degree of the refrigerator air volume regulator 26 is reduced.

以下、前述の図6を参照して、冷蔵室1の扉の開時間に基づいて冷蔵室1内の負荷を判定し、冷蔵室1内の負荷に基づいて冷蔵室用風量調節器26の開度を制御する本実施の形態2の冷凍冷蔵庫100の動作及び作用を具体的に説明する。
図6に示す時刻t0では、制御手段50は、冷蔵室用風量調節器26を開状態とする。このとき制御手段50は、冷蔵室サーミスタ22の温度低下量を用いて冷蔵室内の負荷を判定し、判定した負荷に基づいて、冷蔵室用風量調節器26の開度を制御する。このため、冷蔵室1には、冷蔵室1内の負荷に応じた量の冷気が供給される。したがって、例えば冷蔵室1内の負荷が低負荷である場合に過度な量の冷気が冷蔵室1内に供給されることがなく、冷凍室4に供給される冷気の量を相対的に増やすことができる。したがって、冷凍室4の冷却速度を上昇させることができる。
Hereinafter, referring to FIG. 6 described above, the load in the refrigerator compartment 1 is determined based on the opening time of the door of the refrigerator compartment 1, and the air volume regulator 26 for the refrigerator compartment is opened based on the load in the refrigerator compartment 1. The operation and action of the refrigerator-freezer 100 of the second embodiment for controlling the degree will be specifically described.
At time t <b> 0 shown in FIG. 6, the control means 50 opens the refrigerator air volume regulator 26. At this time, the control means 50 determines the load in the refrigerator compartment using the temperature decrease amount of the refrigerator compartment thermistor 22, and controls the opening degree of the refrigerator air volume regulator 26 based on the determined load. For this reason, the refrigerator compartment 1 is supplied with an amount of cold air corresponding to the load in the refrigerator compartment 1. Therefore, for example, when the load in the refrigerator compartment 1 is low, an excessive amount of cold air is not supplied into the refrigerator compartment 1, and the amount of cold air supplied to the freezer compartment 4 is relatively increased. Can do. Therefore, the cooling rate of the freezer compartment 4 can be increased.

そして、制御手段50は、冷蔵室サーミスタ22の温度が下限温度に達したと判断すると(時刻t1)、冷蔵室用風量調節器26を閉状態(0度)とする。
このように、本実施の形態1によれば、冷蔵室1が低負荷の場合には、冷蔵室1内に過度な冷気を供給することを抑制できるので、冷蔵室1に供給する冷気量を減らした分だけ冷凍室4への風量を増加させることができ、冷凍室4を冷却しやすくなる。そのため、圧縮機17を早く停止することができ、圧縮機17の運転時間を短くすることができるため、消費電力量の低減効果がある。
And if the control means 50 judges that the temperature of the refrigerator compartment thermistor 22 reached the minimum temperature (time t1), it will make the refrigerator air volume regulator 26 a closed state (0 degree | times).
As described above, according to the first embodiment, when the refrigerator compartment 1 has a low load, it is possible to suppress supply of excessive cold air into the refrigerator compartment 1, so that the amount of cold air supplied to the refrigerator compartment 1 is reduced. The air volume to the freezer compartment 4 can be increased by the reduced amount, and the freezer compartment 4 can be easily cooled. Therefore, the compressor 17 can be stopped quickly, and the operation time of the compressor 17 can be shortened, so that there is an effect of reducing power consumption.

なお、基準値Bは冷蔵室1の内容積、断熱構造、外気温度、冷蔵室左扉1a及び冷蔵室右扉1bの開回数に依存するため、上述したような冷蔵室左扉1a及び冷蔵室右扉1bの開時間に限定されるものではない。   The reference value B depends on the internal volume of the refrigerator compartment 1, the heat insulating structure, the outside air temperature, the number of times the refrigerator compartment left door 1a and the refrigerator compartment right door 1b are opened, and thus the refrigerator compartment left door 1a and refrigerator compartment as described above. It is not limited to the opening time of the right door 1b.

また、上述した実施の形態1,2を組み合わせてもよい。すなわち、ある所定時間範囲内では基準値Aを用いて冷蔵室内の負荷を算出し、別の所定時間範囲内では基準値Bを用いて冷蔵室内の負荷を算出し、冷蔵室用風量調節器26の開度を制御してもよい。   Moreover, you may combine Embodiment 1, 2 mentioned above. That is, the load in the refrigerator compartment is calculated using the reference value A within a certain predetermined time range, the load in the refrigerator compartment is calculated using the reference value B within another predetermined time range, and the air volume regulator 26 for the refrigerator compartment is calculated. The degree of opening may be controlled.

また、実施の形態1、2では、制御手段50が、基準値Aあるいは基準値Bを基準として、冷蔵室内が高負荷であるか低負荷であるかを判定する例を示したが、負荷の判定のレベルは2段階に限定されず、3段階以上であってもよい。具体的には、例えば、負荷が小さい順にレベル1、レベル2、レベル3のように3段階に負荷を判定し、レベル1のときには冷蔵室用風量調節器26の開度を20度とし、レベル2のときには開度を40度とし、レベル3のときには開度を60度としてもよい。   In the first and second embodiments, the control unit 50 determines whether the refrigeration room has a high load or a low load based on the reference value A or the reference value B. The determination level is not limited to two stages, and may be three or more stages. Specifically, for example, the load is determined in three stages, such as level 1, level 2, and level 3, in order of increasing load. When the load is level 1, the opening degree of the refrigerator air volume regulator 26 is set to 20 degrees. When it is 2, the opening degree may be 40 degrees, and when it is level 3, the opening degree may be 60 degrees.

1 冷蔵室、1a 冷蔵室左扉、1b 冷蔵室右扉、1c 冷蔵室吹出口、1d 冷蔵室冷気戻り口、2 製氷室、2a 製氷室扉、3 切替室、3a 切替室扉、4 冷凍室、4a 冷凍室扉、5 野菜室、5a 野菜室扉、7 仕切板、9 内箱、10 外箱、12 操作パネル、14 真空断熱材、14a 天井部真空断熱材、14b 左側面部真空断熱材、14c 右側面部真空断熱材、14d 背面部真空断熱材、15 ファン、16 冷却器、17 圧縮機、18 外気温度センサ、20 冷凍室吹出口、21 冷蔵室内風路、22 冷蔵室サーミスタ、23 冷凍室サーミスタ、24 分岐風路、25 野菜室天井風路、26 冷蔵室用風量調節器、27 製氷室用風量調節器、28 切替室用風量調節器、29 野菜室用風量調節器、30 冷蔵室用風路、31 冷凍室用風路、32 ギア収納ケース、33 バッフル、34 冷気洩れ防止シート、35 フレーム、36 冷気通過部、37 外枠リブ、50 制御手段、100 冷凍冷蔵庫、100A 冷凍冷蔵庫本体、A 基準値、B 基準値、λ 熱伝導率。   DESCRIPTION OF SYMBOLS 1 Refrigerating room, 1a Refrigerating room left door, 1b Refrigerating room right door, 1c Refrigerating room outlet, 1d Refrigerating room cold air return port, 2 Ice making room, 2a Ice making room door, 3 Switching room, 3a Switching room door, 4 Freezing room 4a Freezer compartment door, 5 Vegetable compartment, 5a Vegetable compartment door, 7 Partition plate, 9 Inner box, 10 Outer box, 12 Operation panel, 14 Vacuum insulation, 14a Ceiling vacuum insulation, 14b Left side vacuum insulation, 14c Right side vacuum insulating material, 14d Back vacuum insulating material, 15 Fan, 16 Cooler, 17 Compressor, 18 Outside temperature sensor, 20 Freezer outlet, 21 Refrigerated room air passage, 22 Refrigerated room thermistor, 23 Freezer Thermistor, 24 branch air channel, 25 vegetable room ceiling air channel, 26 air conditioner for refrigerator room, 27 air volume controller for ice making room, 28 air volume controller for switching room, 29 air volume controller for vegetable room, 30 air conditioner for cold room Path, 31 air path for freezer, 32 gear storage case, 33 baffle, 34 cold air leakage prevention sheet, 35 frame, 36 cold air passage, 37 outer frame rib, 50 control means, 100 freezer refrigerator, 100A freezer refrigerator body, A Reference value, B reference value, λ thermal conductivity.

Claims (7)

冷蔵室と、
冷凍室と、
前記冷凍室内の温度に基づいて運転制御される圧縮機と、
前記圧縮機から供給される冷媒を用いて冷気を生成する冷却器と、
前記冷却器で生成された冷気を、前記冷蔵室の内部及び前記冷凍室の内部に導くファンと、
前記ファンの下流側に形成された分岐風路、前記分岐風路と前記冷蔵室内とを連通する冷蔵室用風路、及び前記分岐風路と前記冷凍室内とを連通する冷凍室用風路と、
前記冷蔵室用風路に設けられ、当該冷蔵室用風路から前記冷蔵室に供給される冷気の量を、最小風量と最大風量との間で連続的又は段階的に調節する冷蔵室用風量調節器と、
前記冷蔵室の内部の温度を検知する温度検知手段と、
前記温度検知手段で検知された温度が下限温度に達すると、前記冷蔵室に供給される冷気の量が最小風量となるように前記冷蔵室用風量調節器を制御し、前記温度検知手段で検知された温度が上限温度に達すると、前記最小風量よりも冷気の量を増やすように前記冷蔵室用風量調節器を制御する制御手段とを備え、
前記制御手段は、
前記冷蔵室内の負荷に基づいて、前記最小風量よりも冷気の量を増やすときの冷気の量を制御する
ことを特徴とする冷凍冷蔵庫。
A refrigerator room,
A freezer room,
A compressor whose operation is controlled based on the temperature in the freezer compartment;
A cooler that generates cold air using a refrigerant supplied from the compressor;
A fan for guiding cold air generated by the cooler to the inside of the refrigerator compartment and the inside of the freezer compartment;
A branch air passage formed on the downstream side of the fan, a refrigerating chamber air passage communicating the branch air passage and the refrigerating chamber, and a freezer compartment air passage communicating the branch air passage and the freezer compartment ,
The air volume for the refrigerator compartment that is provided in the air passage for the refrigerator compartment and adjusts the amount of cold air supplied from the air passage for the refrigerator compartment to the refrigerator compartment continuously or stepwise between the minimum air amount and the maximum air amount. A regulator,
Temperature detecting means for detecting the temperature inside the refrigerator compartment;
When the temperature detected by the temperature detecting means reaches the lower limit temperature, the air temperature controller for the refrigerator compartment is controlled so that the amount of the cold air supplied to the refrigerator compartment becomes the minimum air volume, and the temperature detecting means detects the temperature. Control means for controlling the refrigeration room air volume adjuster so as to increase the amount of cold air than the minimum air volume when the reached temperature reaches the upper limit temperature,
The control means includes
The refrigerator-freezer characterized by controlling the quantity of cold air when increasing the quantity of cold air rather than the minimum air volume based on the load in the refrigerator compartment.
前記制御手段は、
前記温度検知手段で検知された温度の低下量に基づいて前記負荷を判定する
ことを特徴とする請求項1記載の冷凍冷蔵庫。
The control means includes
The refrigerator / freezer according to claim 1, wherein the load is determined based on a decrease in temperature detected by the temperature detection unit.
前記冷蔵室の扉の開時間を検知するタイマを備え、
前記制御手段は、
前記タイマで検知された前記冷蔵室の扉の1回あたりの開時間に基づいて前記負荷を判定する
ことを特徴とする請求項1記載の冷凍冷蔵庫。
A timer for detecting the opening time of the refrigerator compartment door;
The control means includes
2. The refrigerator-freezer according to claim 1, wherein the load is determined based on an opening time per one time of the door of the refrigerator compartment detected by the timer.
前記冷蔵室用風量調節器は、
前記冷蔵室用風路を連続的又は段階的に開閉するダンパ装置であり、
前記制御手段は、前記冷蔵室内の負荷に基づいて、前記ダンパ装置の開度を制御する
ことを特徴とする請求項1〜請求項3の何れか一項に記載の冷凍冷蔵庫。
The refrigerator air volume regulator is
A damper device that opens or closes the air passage for the refrigerator compartment continuously or stepwise;
The said control means controls the opening degree of the said damper apparatus based on the load in the said refrigerator compartment. The refrigerator-freezer as described in any one of Claims 1-3 characterized by the above-mentioned.
外気温度を検知する外気温度センサを備え、
前記制御手段は、
前記冷蔵室内の負荷及び前記外気温度センサで検知された外気温度に基づいて、前記冷蔵室用風量調節器を制御する
ことを特徴とする請求項1〜請求項4の何れか一項に記載の冷凍冷蔵庫。
It has an outside temperature sensor that detects the outside temperature,
The control means includes
The air conditioner for the refrigerator compartment is controlled based on the load in the refrigerator compartment and the outside air temperature detected by the outside air temperature sensor. Freezer refrigerator.
前記温度検知手段は、
前記冷蔵室内の背面側に設置された冷蔵室サーミスタである
ことを特徴とする請求項1〜請求項5の何れか一項に記載の冷凍冷蔵庫。
The temperature detecting means includes
It is a refrigerator compartment thermistor installed in the back side in the refrigerator compartment. The refrigerator-freezer as described in any one of Claims 1-5 characterized by the above-mentioned.
前記冷蔵室用風量調節器は、
前記冷蔵室の背面側に設置されている
ことを特徴とする請求項1〜請求項6の何れか一項に記載の冷凍冷蔵庫。
The refrigerator air volume regulator is
It is installed in the back side of the said refrigerator compartment. The refrigerator-freezer as described in any one of Claims 1-6 characterized by the above-mentioned.
JP2013022966A 2013-02-08 2013-02-08 Freezer refrigerator Expired - Fee Related JP6309710B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013022966A JP6309710B2 (en) 2013-02-08 2013-02-08 Freezer refrigerator
CN201420058442.7U CN203928548U (en) 2013-02-08 2014-02-07 Fridge-freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022966A JP6309710B2 (en) 2013-02-08 2013-02-08 Freezer refrigerator

Publications (3)

Publication Number Publication Date
JP2014152990A true JP2014152990A (en) 2014-08-25
JP2014152990A5 JP2014152990A5 (en) 2015-09-17
JP6309710B2 JP6309710B2 (en) 2018-04-11

Family

ID=51575031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022966A Expired - Fee Related JP6309710B2 (en) 2013-02-08 2013-02-08 Freezer refrigerator

Country Status (2)

Country Link
JP (1) JP6309710B2 (en)
CN (1) CN203928548U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051692A (en) * 2018-09-27 2020-04-02 アクア株式会社 refrigerator
CN113758136A (en) * 2021-09-10 2021-12-07 Tcl家用电器(合肥)有限公司 Refrigerator and control method thereof
CN114518012A (en) * 2022-03-10 2022-05-20 海信(山东)冰箱有限公司 Refrigerator control method and refrigerator
CN114739092A (en) * 2022-04-20 2022-07-12 海信(山东)冰箱有限公司 Refrigerator and air door control method thereof
CN114739092B (en) * 2022-04-20 2024-05-03 海信冰箱有限公司 Refrigerator and air door control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104713291B (en) * 2015-04-09 2017-08-04 泰州乐金电子冷机有限公司 Refrigerator
JP7441644B2 (en) * 2019-12-23 2024-03-01 日立グローバルライフソリューションズ株式会社 refrigerator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147273A (en) * 1985-12-19 1987-07-01 三菱電機株式会社 Controller for freezing refrigerator
JPS63189765A (en) * 1987-01-30 1988-08-05 三洋電機株式会社 Temperature controller for refrigerator, etc.
JPH02122185A (en) * 1988-10-31 1990-05-09 Matsushita Refrig Co Ltd Refrigerator
JPH0370961A (en) * 1989-08-09 1991-03-26 Sanyo Electric Co Ltd Method of controlling operation of refrigerator
JPH0518650A (en) * 1991-07-09 1993-01-26 Matsushita Refrig Co Ltd Controlling device for refrigerated-cold storage cabinet
JPH1038435A (en) * 1996-07-26 1998-02-13 Sanyo Electric Co Ltd Temperature control device for freezing refrigerator
JPH10332239A (en) * 1997-05-30 1998-12-15 Mitsubishi Heavy Ind Ltd Control method of refrigerating machine
JP2003028551A (en) * 2001-07-11 2003-01-29 Sanyo Electric Co Ltd Refrigerator
JP2004294008A (en) * 2003-03-28 2004-10-21 Daikin Ind Ltd Refrigerator
US20110011109A1 (en) * 2009-07-16 2011-01-20 Alexander Rafalovich Dual evaporator defrost system for an appliance

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147273A (en) * 1985-12-19 1987-07-01 三菱電機株式会社 Controller for freezing refrigerator
JPS63189765A (en) * 1987-01-30 1988-08-05 三洋電機株式会社 Temperature controller for refrigerator, etc.
JPH02122185A (en) * 1988-10-31 1990-05-09 Matsushita Refrig Co Ltd Refrigerator
JPH0370961A (en) * 1989-08-09 1991-03-26 Sanyo Electric Co Ltd Method of controlling operation of refrigerator
JPH0518650A (en) * 1991-07-09 1993-01-26 Matsushita Refrig Co Ltd Controlling device for refrigerated-cold storage cabinet
JPH1038435A (en) * 1996-07-26 1998-02-13 Sanyo Electric Co Ltd Temperature control device for freezing refrigerator
JPH10332239A (en) * 1997-05-30 1998-12-15 Mitsubishi Heavy Ind Ltd Control method of refrigerating machine
JP2003028551A (en) * 2001-07-11 2003-01-29 Sanyo Electric Co Ltd Refrigerator
JP2004294008A (en) * 2003-03-28 2004-10-21 Daikin Ind Ltd Refrigerator
US20110011109A1 (en) * 2009-07-16 2011-01-20 Alexander Rafalovich Dual evaporator defrost system for an appliance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051692A (en) * 2018-09-27 2020-04-02 アクア株式会社 refrigerator
JP7207697B2 (en) 2018-09-27 2023-01-18 アクア株式会社 refrigerator
CN113758136A (en) * 2021-09-10 2021-12-07 Tcl家用电器(合肥)有限公司 Refrigerator and control method thereof
CN114518012A (en) * 2022-03-10 2022-05-20 海信(山东)冰箱有限公司 Refrigerator control method and refrigerator
CN114739092A (en) * 2022-04-20 2022-07-12 海信(山东)冰箱有限公司 Refrigerator and air door control method thereof
CN114739092B (en) * 2022-04-20 2024-05-03 海信冰箱有限公司 Refrigerator and air door control method thereof

Also Published As

Publication number Publication date
CN203928548U (en) 2014-11-05
JP6309710B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP5391250B2 (en) Refrigerator and freezer
JP5826317B2 (en) refrigerator
JP6309710B2 (en) Freezer refrigerator
KR102418005B1 (en) Refrigerator and controlling method thereof
KR20120023699A (en) Refrigerator
JPWO2005038365A1 (en) Cooling storage
AU2014303819B2 (en) Refrigerator
JP4334971B2 (en) Cooling storage
KR20180132317A (en) Refrigerator
KR20180069678A (en) Refrigerator
JP6309156B2 (en) refrigerator
KR100678777B1 (en) Refrigerator
JP2015036600A (en) Refrigerator
JP2012078077A (en) Refrigerating device
JP2022013044A (en) refrigerator
JP5579290B1 (en) refrigerator
JP5404549B2 (en) Freezer refrigerator
JP5763469B2 (en) Refrigerator
CN111288712B (en) Refrigerator with a door
CN111288713B (en) Refrigerator with a door
JP6261535B2 (en) Freezer refrigerator
JP6099423B2 (en) Freezer refrigerator
JP7351735B2 (en) refrigerator
JP7344651B2 (en) refrigerator
JP2011052934A (en) Refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170303

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180315

R150 Certificate of patent or registration of utility model

Ref document number: 6309710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees