JP2014152976A - Latent heat storage system - Google Patents

Latent heat storage system Download PDF

Info

Publication number
JP2014152976A
JP2014152976A JP2013022268A JP2013022268A JP2014152976A JP 2014152976 A JP2014152976 A JP 2014152976A JP 2013022268 A JP2013022268 A JP 2013022268A JP 2013022268 A JP2013022268 A JP 2013022268A JP 2014152976 A JP2014152976 A JP 2014152976A
Authority
JP
Japan
Prior art keywords
heat
transfer medium
heat transfer
latent
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013022268A
Other languages
Japanese (ja)
Inventor
Goji Tabata
剛爾 田端
Hiroshi Ito
伊藤  博
Yoshinobu Ochi
吉宣 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNET KK
Original Assignee
JNET KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNET KK filed Critical JNET KK
Priority to JP2013022268A priority Critical patent/JP2014152976A/en
Publication of JP2014152976A publication Critical patent/JP2014152976A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a latent heat storage system which is safe and achieves high heat transfer efficiency in heat exchange between a latent heat storage material and a heat transfer medium.SOLUTION: A latent heat storage system 1 according to one embodiment includes: a latent heat storage material 5; a first heat transfer medium 6 which conducts heat exchange with the latent heat storage material 5; a main heat exchange device 70 for conducting heat exchange between the latent heat storage material 5 and the first heat transfer medium 6; a second heat transfer medium 7 for bringing heat from the exterior and transferring the heat to the first heat transfer medium 6; a heat reception sub-heat exchange device 80 for conducting heat exchange between the first heat transfer medium 6 and the second heat transfer medium 7; a third heat transfer medium 8 for conducting heat exchange with the first heat transfer medium 6 and supplying the heat to the exterior; and a heat supply sub-heat exchange device 85 for conducting heat exchange between the first heat transfer medium 6 and the third heat transfer medium 8.

Description

本発明は、熱を蓄えておいて、必要なときに用いるための潜熱蓄熱システムに関する。   The present invention relates to a latent heat storage system for storing heat and using it when necessary.

従来から、不用の熱を蓄えておき、必要なときに蓄えた熱を用いるための蓄熱システムが数多く提供されている。特に、近年、蓄熱材として潜熱蓄熱材料であるPCM(Phase Change Material、相変化物質)を用い、潜熱を利用して吸熱及び放熱を行う潜熱蓄熱システムが提供されている。   Conventionally, many heat storage systems for storing unnecessary heat and using the heat stored when necessary have been provided. In particular, a latent heat storage system that uses PCM (Phase Change Material), which is a latent heat storage material, as a heat storage material and absorbs and releases heat using latent heat has been provided in recent years.

潜熱蓄熱材料は、放熱時に固相化し、流動性がなくなる。このため、潜熱蓄熱システムにおいては、一般に、吸熱(蓄熱)の際に、熱源から熱を運んでくる伝熱媒体と蓄熱材料であるPCMとの間で効率的に熱交換することが難しい。   The latent heat storage material is solidified during heat dissipation and loses fluidity. For this reason, in a latent heat storage system, it is generally difficult to efficiently exchange heat between a heat transfer medium that carries heat from a heat source and PCM that is a heat storage material during heat absorption (heat storage).

下記特許文献1に開示されている潜熱蓄熱システムでは、潜熱蓄熱材料(エリスリトール)を油の中に混ぜることで流動性を持たせ、吸熱・放熱時の熱交換の効率を上げている。   In the latent heat storage system disclosed in Patent Document 1 below, fluidity is imparted by mixing a latent heat storage material (erythritol) in oil, thereby increasing the efficiency of heat exchange during heat absorption and heat dissipation.

特開2011−75142号公報JP 2011-75142 A

しかし、潜熱蓄熱材料を油と一緒に混ぜ、熱交換器等において循環させる場合、何らかの要因により油が漏れたりすると、汚染や発火等の危険がある。   However, when the latent heat storage material is mixed with oil and circulated in a heat exchanger or the like, if the oil leaks for some reason, there is a risk of contamination or ignition.

本発明は、このような課題に鑑みてなされたものであり、潜熱蓄熱材料と伝熱媒体との間との熱交換において、安全で高い伝熱効率を発揮することのできる潜熱蓄熱システムを提供することを目的とする。   This invention is made | formed in view of such a subject, and provides the latent heat storage system which can exhibit safe and high heat-transfer efficiency in the heat exchange between a latent-heat storage material and a heat-transfer medium. For the purpose.

上記課題を解決するための本発明に係る潜熱蓄熱システムは、潜熱蓄熱材料に蓄熱する蓄熱システムにおいて、潜熱蓄熱材料と、前記潜熱蓄熱材料との間で熱交換を行う第一伝熱媒体と、前記潜熱蓄熱材料と前記第一伝熱媒体との間で熱交換を行うための主熱交換装置と、外部から熱を運び込み、前記第一伝熱媒体へ熱伝達するための第二伝熱媒体と、前記第一伝熱媒体と前記第二伝熱媒体との間で熱交換を行うための受熱用副熱交換装置と、前記第一伝熱媒体との間で熱交換を行い、外部へ熱を供給するための第三伝熱媒体と、前記第一伝熱媒体と前記第三伝熱媒体との間で熱交換を行うための給熱用副熱交換装置と、を備えることを特徴とする。   The latent heat storage system according to the present invention for solving the above problems is a heat storage system for storing heat in a latent heat storage material, the first heat transfer medium for exchanging heat between the latent heat storage material and the latent heat storage material, A main heat exchange device for exchanging heat between the latent heat storage material and the first heat transfer medium, and a second heat transfer medium for carrying heat from the outside and transferring the heat to the first heat transfer medium Heat exchange between the first heat transfer medium and the second heat transfer medium for heat exchange, and a heat receiving auxiliary heat exchange device for performing heat exchange between the first heat transfer medium and the second heat transfer medium, to the outside A third heat transfer medium for supplying heat; and a sub-heat exchanger for heat supply for performing heat exchange between the first heat transfer medium and the third heat transfer medium. And

また、本発明に係る蓄熱潜熱方法は、第一伝熱媒体、第二伝熱媒体及び第三伝熱媒体を用いて潜熱蓄熱材料に蓄熱する潜熱蓄熱方法において、外部から熱を運び込む前記第二伝熱媒体から前記第一伝熱媒体に熱伝達する第一熱交換工程と、前記第一伝熱媒体から前記潜熱蓄熱材料に熱伝達し、前記潜熱蓄熱材料に蓄熱する第二熱交換工程と、前記潜熱蓄熱材料から前記第一伝熱媒体に熱伝達する第三熱交換工程と、前記第一伝熱媒体から外部に熱を運び出す第三伝熱媒体に熱伝達する第四熱交換工程と、を備えることを特徴とする。   Further, the latent heat storage method according to the present invention is the latent heat storage method for storing heat in the latent heat storage material using the first heat transfer medium, the second heat transfer medium, and the third heat transfer medium. A first heat exchange step of transferring heat from the heat transfer medium to the first heat transfer medium; a second heat exchange step of transferring heat from the first heat transfer medium to the latent heat storage material and storing heat in the latent heat storage material; A third heat exchange step for transferring heat from the latent heat storage material to the first heat transfer medium; and a fourth heat exchange step for transferring heat to the third heat transfer medium that carries heat from the first heat transfer medium to the outside. It is characterized by providing.

本発明に係る潜熱蓄熱システムによれば、固相時の潜熱蓄熱材料と伝熱媒体との間でも安全に効率よく熱交換を行うことができる。   According to the latent heat storage system of the present invention, heat can be exchanged safely and efficiently even between the latent heat storage material and the heat transfer medium in the solid phase.

図1は、本発明の実施形態に係る潜熱蓄熱システムの構成をイメージ的に示す模式図である。FIG. 1 is a schematic diagram conceptually showing the configuration of a latent heat storage system according to an embodiment of the present invention. 図2は、本発明の実施形態に係る潜熱蓄熱システムの正面図である。FIG. 2 is a front view of the latent heat storage system according to the embodiment of the present invention. 図3は、本発明の実施形態に係る潜熱蓄熱システムの平面図である。FIG. 3 is a plan view of the latent heat storage system according to the embodiment of the present invention. 図4は、本発明の実施形態に係る蓄熱槽の垂直断面図である。FIG. 4 is a vertical sectional view of the heat storage tank according to the embodiment of the present invention. 図5は、本発明の実施形態に係る蓄熱槽の水平断面図である。FIG. 5 is a horizontal sectional view of the heat storage tank according to the embodiment of the present invention. 図6は、本発明の実施形態に係る固液熱交換器の水平断面図である。FIG. 6 is a horizontal sectional view of the solid-liquid heat exchanger according to the embodiment of the present invention. 図7は、本発明の実施形態に係る固液熱交換器の垂直断面図である。FIG. 7 is a vertical sectional view of the solid-liquid heat exchanger according to the embodiment of the present invention.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。図1は、本実施形態に係る潜熱蓄熱システムの構成をイメージ的に示す模式図である。図2は、本実施形態に係る潜熱蓄熱システムの構成を示す正面図である。図3は、本実施形態に係る潜熱蓄熱システムの構成を示す平面図である。なお、図2及び図3は、一部断面で示すと共に、一部を模式的に示している。図4は、本実施形態に係る蓄熱槽の垂直断面図である。図5は、本実施形態に係る蓄熱槽の水平断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram conceptually showing the configuration of the latent heat storage system according to the present embodiment. FIG. 2 is a front view showing the configuration of the latent heat storage system according to the present embodiment. FIG. 3 is a plan view showing the configuration of the latent heat storage system according to the present embodiment. 2 and 3 are partially shown in cross section and schematically show a part. FIG. 4 is a vertical sectional view of the heat storage tank according to the present embodiment. FIG. 5 is a horizontal sectional view of the heat storage tank according to the present embodiment.

本実施形態においては、太陽熱を集熱する外部の受熱装置90から得た熱エネルギーを潜熱蓄熱材料であるPCM(Phase Change Material、相変化物質)5に100℃以上の高温潜熱で蓄熱しておき、必要に応じて外部の給熱装置95である温水供給設備に温水を提供する高温潜熱蓄熱システムについて説明する。本実施形態では、PCM5としてエリスリトールを使用しているが、もちろん、適宜他の潜熱蓄熱材料を用いても良い。   In this embodiment, thermal energy obtained from an external heat receiving device 90 that collects solar heat is stored in a PCM (Phase Change Material) 5 that is a latent heat storage material with high-temperature latent heat of 100 ° C. or higher. A high-temperature latent heat storage system that provides hot water to a hot water supply facility that is an external heat supply device 95 as required will be described. In this embodiment, erythritol is used as the PCM 5, but other latent heat storage materials may be used as appropriate.

本実施形態に係る潜熱蓄熱システム1は、外部の受熱装置90から潜熱蓄熱システム1へと熱伝達するプロピレングリコール水溶液(第二伝熱媒体)7とPCM5との間や、潜熱蓄熱システム1から外部の給熱装置95へと熱を伝える水(第三伝熱媒体)8とPCM5との間で直接熱交換をするのではなく、図1に示すように、ジエチレングリコール水溶液(第一伝熱媒体)6を介して熱交換することを特徴としている。   The latent heat storage system 1 according to the present embodiment includes a propylene glycol aqueous solution (second heat transfer medium) 7 that transfers heat from an external heat receiving device 90 to the latent heat storage system 1 and the PCM 5, or from the latent heat storage system 1 to the outside. Instead of directly exchanging heat between the water (third heat transfer medium) 8 for transferring heat to the heat supply device 95 and the PCM 5, as shown in FIG. 1, an aqueous diethylene glycol solution (first heat transfer medium) 6 is characterized in that heat is exchanged via the heat exchanger 6.

すなわち、蓄熱時には、受熱装置90が集熱した熱は、プロピレングリコール水溶液(第二伝熱媒体)7により潜熱蓄熱システム1へと運ばれ、受熱用副熱交換装置80において、プロピレングリコール水溶液(第二伝熱媒体)7からジエチレングリコール水溶液(第一伝熱媒体)6へと熱伝達される(第一熱交換工程)。続いて、主熱交換装置70において、ジエチレングリコール水溶液(第一伝熱媒体)6とPCM5との間で熱交換が行われ、PCM5に蓄熱される(第二熱交換工程)。   That is, at the time of heat storage, the heat collected by the heat receiving device 90 is carried to the latent heat storage system 1 by the propylene glycol aqueous solution (second heat transfer medium) 7, and in the heat receiving auxiliary heat exchange device 80, the propylene glycol aqueous solution (first The heat is transferred from the second heat transfer medium 7 to the diethylene glycol aqueous solution (first heat transfer medium) 6 (first heat exchange step). Subsequently, in the main heat exchange device 70, heat exchange is performed between the diethylene glycol aqueous solution (first heat transfer medium) 6 and the PCM 5, and heat is stored in the PCM 5 (second heat exchange step).

また、放熱(給熱)時には、主熱交換装置70において、PCM5とジエチレングリコール水溶液(第一伝熱媒体)6との間で熱交換が行われ、PCM5に蓄熱されていた熱がジエチレングリコール水溶液(第一伝熱媒体)6へと熱伝達される(第三熱交換工程)。続いて、給熱用副熱交換装置85において、ジエチレングリコール水溶液(第一伝熱媒体)6から水(第三伝熱媒体)8へと熱伝達され(第四熱交換工程)、温水となった水(第三伝熱媒体)8が給熱装置95へ供給される。   Further, at the time of heat release (heat supply), heat exchange is performed between the PCM 5 and the diethylene glycol aqueous solution (first heat transfer medium) 6 in the main heat exchange device 70, and the heat stored in the PCM 5 is converted into the diethylene glycol aqueous solution (first heat transfer medium). Heat is transferred to (one heat transfer medium) 6 (third heat exchange step). Subsequently, heat is transferred from the diethylene glycol aqueous solution (first heat transfer medium) 6 to the water (third heat transfer medium) 8 in the auxiliary heat exchange device 85 for heat supply (fourth heat exchange step) to become hot water. Water (third heat transfer medium) 8 is supplied to the heat supply device 95.

図2及び図3に示すように、具体的には、潜熱蓄熱システム1は、蓄熱本体である蓄熱槽10と、第一伝熱媒体6を循環させるための第一熱媒循環装置30と、第二伝熱媒体7を循環させるための第二熱媒循環装置40と、第三伝熱媒体8を循環させるための第三熱媒循環装置50と、制御装置60とを備えている。   As shown in FIGS. 2 and 3, specifically, the latent heat storage system 1 includes a heat storage tank 10 that is a heat storage main body, a first heat medium circulation device 30 for circulating the first heat transfer medium 6, and A second heat medium circulation device 40 for circulating the second heat transfer medium 7, a third heat medium circulation device 50 for circulating the third heat transfer medium 8, and a control device 60 are provided.

蓄熱槽10は、長時間に渡って温水を提供できるように、第一蓄熱槽10Aと第二蓄熱槽10Bの二つが設置されている。各蓄熱槽10は、主熱交換槽11と、固液熱交換器12と、副熱交換槽21と、蓄熱槽10周りを断熱するための断熱材25と、を備えている。   The heat storage tank 10 is provided with two of the first heat storage tank 10A and the second heat storage tank 10B so that hot water can be provided for a long time. Each heat storage tank 10 includes a main heat exchange tank 11, a solid-liquid heat exchanger 12, a sub heat exchange tank 21, and a heat insulating material 25 for insulating the periphery of the heat storage tank 10.

主熱交換槽11は、PCM5を循環させずに内部に貯蔵しておく略直方体形状の貯蔵槽であり、PCM5と第一伝熱媒体6との間で熱交換をするために、主熱交換槽11内には、PCM5内に浸かるように多数の固液熱交換器12が整列設置されている。主熱交換槽11の内周壁面には、上端から下端へと延在しながら層内へと突出する多数のフィン111が形成されている。   The main heat exchange tank 11 is a substantially rectangular parallelepiped storage tank that stores the PCM 5 without circulating it. In order to exchange heat between the PCM 5 and the first heat transfer medium 6, the main heat exchange tank 11 A large number of solid-liquid heat exchangers 12 are arranged in the tank 11 so as to be immersed in the PCM 5. A large number of fins 111 are formed on the inner peripheral wall surface of the main heat exchange tank 11 and project from the upper end to the lower end and project into the layer.

潜熱蓄熱材料であるPCM5は、液相の状態と固相の状態とで体積が変わる。図4には、主熱交換槽11に収納されているPCM5が液相の場合の上面ラインをL1で示し、固相の場合の上面ラインをL2で示している。   The volume of the PCM5 that is a latent heat storage material changes between a liquid phase state and a solid phase state. In FIG. 4, the upper surface line when the PCM 5 accommodated in the main heat exchange tank 11 is in the liquid phase is indicated by L1, and the upper surface line when the PCM 5 is in the solid phase is indicated by L2.

固液熱交換器12は、縦長の直方体形状をしたアルミ合金製の熱交換器であり、図3に示すように、主熱交換槽11内に4列×12行の合計48個が整列設置されている。固液熱交換器12は、その内部の流路を流れる第一伝熱媒体6と、その外部に位置するPCM5との間、すなわち液体と固体(固相時)との間で熱交換を行う。このため、固液熱交換器12は、従来の熱交換器と比較して格段に広大な伝熱面積を有している。   The solid-liquid heat exchanger 12 is an aluminum alloy heat exchanger having a vertically long rectangular parallelepiped shape. As shown in FIG. 3, a total of 48 columns of 4 columns × 12 rows are arranged in the main heat exchange tank 11. Has been. The solid-liquid heat exchanger 12 performs heat exchange between the first heat transfer medium 6 flowing through the flow path inside the PCM 5 located outside the first heat transfer medium 6, that is, between the liquid and the solid (in the solid phase). . For this reason, the solid-liquid heat exchanger 12 has a remarkably large heat transfer area compared with the conventional heat exchanger.

図6は、本実施形態に係る固液熱交換器の水平断面図、図7は、本実施形態に係る固液熱交換器の垂直断面図を示している。固液熱交換器12は、内部に第一伝熱媒体6が流れる流路を形成する、細長い直方体形状の流路本体14と、流路本体14の両側面から垂直に突出した薄板状の多数のフィン15とを備えている。   FIG. 6 is a horizontal sectional view of the solid-liquid heat exchanger according to the present embodiment, and FIG. 7 is a vertical sectional view of the solid-liquid heat exchanger according to the present embodiment. The solid-liquid heat exchanger 12 includes an elongated rectangular parallelepiped-shaped channel body 14 that forms a channel through which the first heat transfer medium 6 flows, and a number of thin plate-like members that protrude vertically from both side surfaces of the channel body 14. The fin 15 is provided.

流路本体14は、直方体の内部に上端から下端まで垂直に延在する7本の隔壁141が等間隔に形成されており、これら隔壁141により縦方向に延在する8本の縦長流路142が形成されている。隔壁141は、その上端又は下端が若干短く構成されており、隣接する縦長流路142を連通させるための連絡路143が上側又は下側に交互に形成されている。   The flow path main body 14 has seven partition walls 141 that extend vertically from the upper end to the lower end in a rectangular parallelepiped at equal intervals, and the eight vertical flow paths 142 that extend in the vertical direction by the partition walls 141. Is formed. The partition wall 141 has a slightly shorter upper end or lower end, and communication paths 143 for communicating adjacent longitudinal channels 142 are alternately formed on the upper side or the lower side.

また、流路本体14の上側の一端部(図7において左上端部)と、上側の他端部(図7において右上端部)には、内部の流路への出入口となる出入口管147がそれぞれ設置されている。よって、一方の出入口管147から流路本体14に入った第一伝熱媒体6は、8本の縦長流路142を通って流路本体14内を縦方向に四往復した後に、他方の出入口管147から流路本体14外へ出ることになる。このように、流路本体14内には、非常に長い第一伝熱媒体6用の流路が形成されている。   In addition, an inlet / outlet pipe 147 serving as an inlet / outlet to the internal channel is provided at one upper end portion (the upper left end portion in FIG. 7) of the flow channel body 14 and the other upper end portion (the upper right end portion in FIG. 7). Each is installed. Therefore, the first heat transfer medium 6 that has entered the flow channel main body 14 from one of the inlet / outlet pipes 147 passes through the eight vertical flow channels 142 in the vertical direction in the flow channel main body 14 and then moves to the other inlet / outlet. The pipe 147 exits from the flow path body 14. Thus, a very long flow path for the first heat transfer medium 6 is formed in the flow path body 14.

フィン15は、流路本体14の片側に21枚ずつ、合計42枚のフィン15が一つの流路本体14から突出するように設置されており、固液熱交換器12は広大な表面積を有することになる。フィン15は、蓄熱槽10内に貯蔵されているPCM5の内部に入り込むように突出しており、流路本体14内を流れる第一伝熱媒体6と、固相時には流動性がなくなるPCM5との間で伝熱効率の高い熱交換が可能となる。   The fins 15 are installed on one side of the flow path main body 14 so that a total of 42 fins 15 protrude from the single flow path main body 14, and the solid-liquid heat exchanger 12 has a large surface area. It will be. The fin 15 protrudes so as to enter the inside of the PCM 5 stored in the heat storage tank 10, and is between the first heat transfer medium 6 that flows in the flow path body 14 and the PCM 5 that loses fluidity in the solid phase. This enables heat exchange with high heat transfer efficiency.

副熱交換槽21は、主熱交換槽11の側方周囲を周回して囲むように設置された大きな角筒形状の貯蔵槽であり、その内部が第一伝熱媒体6の流路として機能する。副熱交換槽21内には、第二伝熱媒体7が内部を流れる受熱用循環パイプ22と、第三伝熱媒体8が内部を流れる給熱用循環パイプ23が設置されている。   The auxiliary heat exchange tank 21 is a large rectangular tube-shaped storage tank that is installed around the side of the main heat exchange tank 11 so that the inside functions as a flow path for the first heat transfer medium 6. To do. In the auxiliary heat exchange tank 21, a heat receiving circulation pipe 22 through which the second heat transfer medium 7 flows and a heat supply circulation pipe 23 through which the third heat transfer medium 8 flows are installed.

受熱用循環パイプ22及び給熱用循環パイプ23は、副熱交換槽21内を若干傾斜しながら水平方向に何度も周回するように延在設置されており、図4に示すように、受熱用循環パイプ22が副熱交換槽21の外周壁側、給熱用循環パイプ23が副熱交換槽21の内周壁側を周回するように設置されている。   The heat receiving circulation pipe 22 and the heat supplying circulation pipe 23 are installed so as to circulate many times in the horizontal direction while slightly inclining in the sub heat exchange tank 21, and as shown in FIG. The circulation pipe 22 for circulation is installed so as to circulate on the outer peripheral wall side of the auxiliary heat exchange tank 21 and the circulation pipe 23 for heat supply circulates on the inner peripheral wall side of the auxiliary heat exchange tank 21.

よって、副熱交換槽21においては、受熱用循環パイプ22内を流れる第二伝熱媒体7と副熱交換槽21内を流れる第一伝熱媒体6との間で熱交換を行うことができると共に、給熱用循環パイプ23内を流れる第三伝熱媒体8と副熱交換槽21内を流れる第一伝熱媒体6との間で熱交換を行うことができる。   Therefore, in the auxiliary heat exchange tank 21, heat exchange can be performed between the second heat transfer medium 7 flowing in the heat receiving circulation pipe 22 and the first heat transfer medium 6 flowing in the auxiliary heat exchange tank 21. At the same time, heat exchange can be performed between the third heat transfer medium 8 flowing in the heat supply circulation pipe 23 and the first heat transfer medium 6 flowing in the auxiliary heat exchange tank 21.

第一熱媒循環装置30は、第一伝熱媒体6が循環する経路である第一循環ライン31と、第一伝熱媒体6を第一循環ライン31上で循環させるための駆動源である第一循環ポンプ33とを備えている。   The first heat medium circulation device 30 is a first circulation line 31 that is a path through which the first heat transfer medium 6 circulates and a drive source for circulating the first heat transfer medium 6 on the first circulation line 31. And a first circulation pump 33.

第一循環ライン31は、主熱交換槽11内でPCM5と熱交換し、副熱交換槽21内で第二伝熱媒体7又は第三伝熱媒体8と熱交換する第一伝熱媒体6を、主熱交換槽11と副熱交換槽21との間で循環させるための流路である。第一循環ライン31は、主熱交換層11内の流路(縦長流路142、連絡路143、出入口管147)と、副熱交換槽21内の流路と、これらをつなぐその他の流路とを備えている。   The first circulation line 31 exchanges heat with the PCM 5 in the main heat exchange tank 11, and exchanges heat with the second heat transfer medium 7 or the third heat transfer medium 8 in the sub heat exchange tank 21. Is a flow path for circulating between the main heat exchange tank 11 and the sub heat exchange tank 21. The first circulation line 31 is a flow path in the main heat exchange layer 11 (longitudinal flow path 142, communication path 143, inlet / outlet pipe 147), a flow path in the auxiliary heat exchange tank 21, and other flow paths connecting them. And.

第一循環ポンプ33の出力側に接続されている第一循環ライン31は、4列×12行で整列配置されている固液熱交換器12の各行に対応すべく、12本の配管に分岐した後、各列に対応すべくさらに4本の配管に分岐してから、各固液熱交換器12の入口である出入口管147に接続される。   The first circulation line 31 connected to the output side of the first circulation pump 33 branches into 12 pipes so as to correspond to each row of the solid-liquid heat exchanger 12 arranged in 4 columns × 12 rows. Then, after branching into four more pipes to correspond to each row, they are connected to an inlet / outlet pipe 147 which is an inlet of each solid-liquid heat exchanger 12.

一方、各固液熱交換器12の出口の出入口管147に接続された第一循環ライン31の配管は、まず、各列の4本の配管が一本に合流された後、各行の12本の配管が一本の配管に合流させられたうえで、第一循環ポンプ33の入力側に接続される。   On the other hand, as for the piping of the first circulation line 31 connected to the inlet / outlet pipe 147 at the outlet of each solid-liquid heat exchanger 12, first, the four pipes in each column are joined together, and then the 12 pipes in each row. Are joined to one pipe and connected to the input side of the first circulation pump 33.

すなわち、本実施形態では、実質的に48個の固液熱交換器12が全て並列に第一循環ライン31上に設置されていることになるが、第一循環ポンプ33の出力に応じて、各列の4個の固液熱交換器12を直列に接続するなど、適宜所定の数の固液熱交換器12を並列又は直列に接続すれば良い。   That is, in the present embodiment, substantially 48 solid-liquid heat exchangers 12 are all installed in parallel on the first circulation line 31, but depending on the output of the first circulation pump 33, A predetermined number of solid-liquid heat exchangers 12 may be connected in parallel or in series as appropriate, such as connecting four solid-liquid heat exchangers 12 in each row in series.

なお、本実施形態では、蓄熱槽10が二つ設置されており、第一熱媒循環装置30は、各蓄熱槽10用に二つ設置されている。すなわち、第一循環ライン31及び第一循環ポンプ33は各蓄熱槽10用にそれぞれ一つずつ設置されている。   In the present embodiment, two heat storage tanks 10 are installed, and two first heat medium circulation devices 30 are installed for each heat storage tank 10. That is, one first circulation line 31 and one first circulation pump 33 are installed for each heat storage tank 10.

第二熱媒循環装置40は、第二伝熱媒体7が循環する経路である第二循環ライン41と、第二伝熱媒体7を第二循環ライン41上で循環させるための駆動源である第二循環ポンプ43とを備えている。   The second heat medium circulating device 40 is a second circulation line 41 that is a path through which the second heat transfer medium 7 circulates and a drive source for circulating the second heat transfer medium 7 on the second circulation line 41. And a second circulation pump 43.

第二循環ライン41は、副熱交換槽21内で第一伝熱媒体6と熱交換する第二伝熱媒体7を、外部の受熱装置90と副熱交換槽21との間で循環させるための流路である。第二循環ライン41は、副熱交換槽21内の流路(受熱用循環パイプ22)と、受熱装置90と接続するその他の流路とを備えている。   The second circulation line 41 circulates the second heat transfer medium 7 that exchanges heat with the first heat transfer medium 6 in the sub heat exchange tank 21 between the external heat receiving device 90 and the sub heat exchange tank 21. It is a flow path. The second circulation line 41 includes a flow path (heat receiving circulation pipe 22) in the auxiliary heat exchange tank 21 and other flow paths connected to the heat receiving device 90.

第二循環ポンプ43の出力側に接続されている第二循環ライン41は、受熱装置90へと向かい、受熱装置90から戻ってきた第二循環ライン41は、受熱用循環パイプ22の入口(図2において、副熱交換槽21の左上部)に接続される。受熱用循環パイプ22の出口(図2において、副熱交換槽21の左下部)に接続されている第二循環ライン41は、第二循環ポンプ43の入力側に接続される。   The second circulation line 41 connected to the output side of the second circulation pump 43 is directed to the heat receiving device 90, and the second circulation line 41 returned from the heat receiving device 90 is the inlet of the heat receiving circulation pipe 22 (see FIG. 2, the auxiliary heat exchange tank 21 is connected to the upper left part). The second circulation line 41 connected to the outlet of the heat receiving circulation pipe 22 (in FIG. 2, the lower left portion of the auxiliary heat exchange tank 21) is connected to the input side of the second circulation pump 43.

第三熱媒循環装置50は、第三伝熱媒体8が循環する経路である第三循環ライン51と、第三伝熱媒体8を第三循環ライン51上で循環させるための駆動源である第三循環ポンプ53とを備えている。   The third heat medium circulation device 50 is a third circulation line 51 that is a path through which the third heat transfer medium 8 circulates, and a drive source for circulating the third heat transfer medium 8 on the third circulation line 51. And a third circulation pump 53.

第三循環ライン51は、副熱交換槽21内で第一伝熱媒体6と熱交換する第三伝熱媒体8を、外部の給熱装置95と副熱交換槽21との間で循環させるための流路である。第三循環ライン51は、副熱交換槽21内の流路(給熱用循環パイプ23)と、給熱装置95と接続するその他の流路とを備えている。   The third circulation line 51 circulates the third heat transfer medium 8 that exchanges heat with the first heat transfer medium 6 in the sub heat exchange tank 21 between the external heat supply device 95 and the sub heat exchange tank 21. It is a flow path for. The third circulation line 51 includes a flow path (heat supply circulation pipe 23) in the auxiliary heat exchange tank 21 and other flow paths connected to the heat supply device 95.

第三循環ポンプ53の出力側に接続されている第三循環ライン51は、給熱装置95へと向かい、給熱装置95から戻ってきた第三循環ライン51は、給熱用循環パイプ23の入口(図2において、副熱交換槽21の左上部)に接続される。給熱用循環パイプ23の出口(図2において、副熱交換槽21の左下部)に接続されている第三循環ライン51は、第三循環ポンプ53の入力側に接続される。   The third circulation line 51 connected to the output side of the third circulation pump 53 is directed to the heat supply device 95, and the third circulation line 51 returned from the heat supply device 95 is connected to the heat supply circulation pipe 23. It is connected to the inlet (in FIG. 2, the upper left part of the sub heat exchange tank 21). The third circulation line 51 connected to the outlet of the heat supply circulation pipe 23 (in FIG. 2, the lower left portion of the auxiliary heat exchange tank 21) is connected to the input side of the third circulation pump 53.

制御装置60は、潜熱蓄熱システム1の動作を制御するための装置であり、熱媒循環装置30,40,50等と接続されている。制御装置60は、蓄熱・給熱の切り替えや、第一蓄熱槽10Aと第二蓄熱槽10Bとの切り替えの際に、適宜、循環ライン31,41,51の切り替えや循環ポンプ33,43,53の駆動を制御する。   The control device 60 is a device for controlling the operation of the latent heat storage system 1, and is connected to the heat medium circulation devices 30, 40, 50, and the like. The control device 60 appropriately switches the circulation lines 31, 41, 51 and circulation pumps 33, 43, 53 when switching between heat storage and heat supply or switching between the first heat storage tank 10A and the second heat storage tank 10B. Control the drive.

以上、潜熱蓄熱システム1の具体的な構成について説明したが、第一伝熱媒体6とPCM5との熱交換を行う主熱交換装置70は、主熱交換槽11と、固液熱交換器12と、第一熱媒循環装置30の一部を含んでいる。   Although the specific configuration of the latent heat storage system 1 has been described above, the main heat exchange device 70 that performs heat exchange between the first heat transfer medium 6 and the PCM 5 includes the main heat exchange tank 11 and the solid-liquid heat exchanger 12. And a part of the first heat medium circulating device 30 is included.

また、第一伝熱媒体6と第二伝熱媒体7との熱交換を行う受熱用副熱交換装置80は、副熱交換槽21と、第一熱媒循環装置30の一部と、第二熱媒循環装置40の一部とを含んでいる。また、第一伝熱媒体6と第三伝熱媒体8との熱交換を行う給熱用副熱交換装置85は、副熱交換槽21と、第二熱媒循環装置40の一部と、第三熱媒循環装置50の一部とを含んでいる。   Further, the heat receiving auxiliary heat exchange device 80 that performs heat exchange between the first heat transfer medium 6 and the second heat transfer medium 7 includes the auxiliary heat exchange tank 21, a part of the first heat medium circulation device 30, A part of the two heat medium circulating device 40. Moreover, the auxiliary heat exchange device 85 for heat supply that performs heat exchange between the first heat transfer medium 6 and the third heat transfer medium 8 includes the auxiliary heat exchange tank 21, a part of the second heat medium circulation device 40, A part of the third heat medium circulation device 50.

本実施形態では、受熱用副熱交換装置80における第一伝熱媒体6の流路(副熱交換槽21)と、給熱用副熱交換装置85における第一伝熱媒体6の流路(副熱交換槽21)とが同じ流路を共用しており、コンパクトな装置により効率的な熱交換を実現することができる。   In this embodiment, the flow path of the first heat transfer medium 6 in the heat receiving auxiliary heat exchange device 80 (sub heat exchange tank 21) and the flow path of the first heat transfer medium 6 in the heat supply auxiliary heat exchange device 85 ( The auxiliary heat exchange tank 21) shares the same flow path, and an efficient heat exchange can be realized by a compact device.

以上、潜熱蓄熱システム1の構成について説明したが、続いて、潜熱蓄熱システム1において、外部の受熱装置90で集熱された熱を蓄熱する処理、及び蓄熱された熱を放熱して外部の給熱装置に熱を供給する処理の流れについて詳細に説明する。   The configuration of the latent heat storage system 1 has been described above. Subsequently, in the latent heat storage system 1, the process of storing heat collected by the external heat receiving device 90, and the stored heat are radiated to external supply. The flow of processing for supplying heat to the heat device will be described in detail.

まず、蓄熱時には、外部の受熱装置90で集熱した太陽熱により温められた第二伝熱媒体7が第二循環ライン41を通って潜熱蓄熱システム1内へと到達する。受熱用副熱交換装置80を構成する副熱交換槽21に到達した第二伝熱媒体7は、受熱用循環パイプ22内を流れながら放熱し、副熱交換槽21内で受熱用循環パイプ22の外側を流れる第一伝熱媒体6と熱交換する。   First, at the time of heat storage, the second heat transfer medium 7 heated by solar heat collected by the external heat receiving device 90 reaches the inside of the latent heat storage system 1 through the second circulation line 41. The second heat transfer medium 7 that has reached the sub heat exchange tank 21 constituting the heat receiving sub heat exchange device 80 dissipates heat while flowing in the heat receiving circulation pipe 22, and the heat receiving circulation pipe 22 is received in the sub heat exchange tank 21. Heat exchange with the first heat transfer medium 6 flowing outside.

なお、受熱用副熱交換装置80における熱交換により放熱した第二伝熱媒体7は、第二循環ライン41を通って再度外部の受熱装置90へと循環し、再度太陽熱を吸熱する。   The second heat transfer medium 7 radiated by heat exchange in the heat receiving auxiliary heat exchanging device 80 circulates again to the external heat receiving device 90 through the second circulation line 41 and again absorbs solar heat.

副熱交換槽21内において吸熱した第一伝熱媒体6は、第一循環ライン31を通って主熱交換槽11を構成する固液熱交換器12に到達する。固液熱交換器12では、第一伝熱媒体6は、流路本体14内の流路を流れながら放熱し、固液熱交換器12の外側で主熱交換槽11内に貯蔵されているPCM5との間で熱交換する。   The first heat transfer medium 6 that has absorbed heat in the sub heat exchange tank 21 reaches the solid-liquid heat exchanger 12 that constitutes the main heat exchange tank 11 through the first circulation line 31. In the solid-liquid heat exchanger 12, the first heat transfer medium 6 radiates heat while flowing through the flow path in the flow path body 14, and is stored in the main heat exchange tank 11 outside the solid-liquid heat exchanger 12. Exchange heat with PCM5.

本実施形態においてPCM5として使用しているエリスリトールの融点は119℃、融解熱は340kJ/kgであり、吸熱したPCM5は、常温での固体から相変化を経て液体状態となりながら、蓄熱する。   In this embodiment, erythritol used as PCM5 has a melting point of 119 ° C. and a heat of fusion of 340 kJ / kg, and the endothermic PCM5 stores heat while changing from a solid at room temperature to a liquid state through a phase change.

続いて、PCM5に蓄熱された熱を放熱する外部への給熱時には、まず、主熱交換槽11内のPCM5が放熱し、固液熱交換器12内の第一伝熱媒体6と熱交換する。このとき、PCM5は、液体から固体へと状態変化し、大量の融解熱を放出する。   Subsequently, when heat is supplied to the outside for radiating the heat stored in the PCM 5, first, the PCM 5 in the main heat exchange tank 11 radiates and exchanges heat with the first heat transfer medium 6 in the solid-liquid heat exchanger 12. To do. At this time, the PCM 5 changes its state from a liquid to a solid and releases a large amount of heat of fusion.

PCM5から吸熱した第一伝熱媒体6は、第一循環ライン31を通って、給熱用副熱交換装置85を構成する副熱交換槽21内に到達し、給熱用循環パイプ23内を流れる第三伝熱媒体8と熱交換する。   The first heat transfer medium 6 that has absorbed heat from the PCM 5 passes through the first circulation line 31, reaches the sub heat exchange tank 21 that constitutes the heat supply sub heat exchange device 85, and passes through the heat supply circulation pipe 23. Heat exchange with the flowing third heat transfer medium 8 is performed.

給熱用循環パイプ23内において吸熱した第三伝熱媒体8は、例えば、95℃程度まで温度が上昇し、第三循環ライン51を通って外部の給熱装置95へと供給される。給熱装置95としては、例えば、農産物のハウス栽培での温水供給設備、道路交通施設の融雪設備等が想定される。   The temperature of the third heat transfer medium 8 that has absorbed heat in the heat supply circulation pipe 23 rises to about 95 ° C., for example, and is supplied to the external heat supply device 95 through the third circulation line 51. As the heat supply device 95, for example, a hot water supply facility for farmhouse cultivation of agricultural products, a snow melting facility for road traffic facilities, and the like are assumed.

なお、本実施形態においては、第一循環ライン31と第一循環ポンプ33は、第一蓄熱槽10Aに接続される第一循環ライン31A及び第一循環ポンプ33Aと、第二蓄熱槽10Bに接続される第一循環ライン31B及び第一循環ポンプ33Bとが設置されている。例えば、第一蓄熱槽10Aにおいて、第一日目の昼間に受熱運転を行うと共に第二日目に24時間の給熱運転を行い、第二蓄熱槽10Bにおいて、第二日目の昼間に受熱運転を行うと共に第三日目に24時間の給熱運転を行うことで、第二日目以降は24時間連続給熱を行うことができる。   In the present embodiment, the first circulation line 31 and the first circulation pump 33 are connected to the first circulation line 31A and the first circulation pump 33A connected to the first heat storage tank 10A and the second heat storage tank 10B. A first circulation line 31B and a first circulation pump 33B are installed. For example, in the first heat storage tank 10A, a heat receiving operation is performed in the daytime on the first day and a heat supply operation is performed for 24 hours on the second day, and in the second heat storage tank 10B, heat is received in the daytime on the second day. By performing the operation and performing the heat supply operation for 24 hours on the third day, it is possible to perform the continuous heat supply for 24 hours on and after the second day.

このように、本実施形態に係る潜熱蓄熱システム1においては、固体化したPCM5と第一伝熱媒体6とで熱交換する際に、流動化させるためにPCM5を油等に混在する必要がなく、広大な伝熱面積を有する固液熱交換器12を用いて、固体化したPCM5と第一伝熱媒体6との間で直接熱交換をすることができ、油流出等のおそれがなく、安全性の高い蓄熱を実現できる。   Thus, in the latent heat storage system 1 according to the present embodiment, when heat is exchanged between the solidified PCM 5 and the first heat transfer medium 6, there is no need to mix the PCM 5 in oil or the like in order to fluidize it. The solid-liquid heat exchanger 12 having a large heat transfer area can directly exchange heat between the solidified PCM 5 and the first heat transfer medium 6, and there is no risk of oil spilling, Highly safe heat storage can be realized.

また、本実施形態においては、PCM5への潜熱蓄熱を実現するために、PCM5と熱交換するための第一伝熱媒体6、外部から熱を運び込んで第一伝熱媒体6と熱交換するための第二伝熱媒体7、第一伝熱媒体6と熱交換して外部へ熱を運び出すための第三伝熱媒体8の3つの伝熱媒体を用いることで、各伝熱媒体に要求される働き適した熱媒をそれぞれ独立して選択することができ、高効率の潜熱蓄熱を実現することができる。   Moreover, in this embodiment, in order to implement | achieve the latent heat storage to PCM5, in order to carry out heat exchange with the 1st heat transfer medium 6 which carries in heat from the 1st heat transfer medium 6 for heat exchange with PCM5, and the exterior. By using three heat transfer media, the third heat transfer medium 8 for exchanging heat with the second heat transfer medium 7 and the first heat transfer medium 6 to carry the heat to the outside, each heat transfer medium is required. It is possible to independently select a heat medium suitable for the work, and to realize highly efficient latent heat storage.

以上、本発明の実施の形態について説明したが、本発明の実施の形態は、上記実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々の変形が可能である。例えば、上記実施形態に係る潜熱蓄熱システムを構成する各部材の形状やサイズは適宜変更可能である。   Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. For example, the shape and size of each member constituting the latent heat storage system according to the above embodiment can be changed as appropriate.

また、第一〜第三伝熱媒体も適宜他の材料を用いることができる。但し、第一伝熱媒体としては、冬期等の氷点下の環境でも運転できるように、ジエチレングリコール水溶液のような不凍液を用いることが望ましい。   Also, other materials can be used as appropriate for the first to third heat transfer media. However, as the first heat transfer medium, it is desirable to use an antifreeze solution such as a diethylene glycol aqueous solution so that it can be operated even in a sub-zero environment such as winter.

1 潜熱蓄熱システム
5 PCM
6 第一伝熱媒体(ジエチレングリコール水溶液)
7 第二伝熱媒体(プロピレングリコール水溶液)
8 第三伝熱媒体(水)
10 蓄熱槽
11 主熱交換槽
12 固液熱交換器
14 流路本体
15 フィン
21 副熱交換槽
22 受熱用循環パイプ
23 給熱用循環パイプ
25 断熱材
30 第一熱媒循環装置
31 第一循環ライン
33 第一循環ポンプ
40 第二熱媒循環装置
41 第二循環ライン
43 第二循環ポンプ
50 第三熱媒循環装置
51 第三循環ライン
53 第三循環ポンプ
60 制御装置
70 主熱交換装置
80 受熱用副熱交換装置
85 給熱用副熱交換装置
90 受熱装置
95 給熱装置
1 Latent heat storage system 5 PCM
6 First heat transfer medium (diethylene glycol aqueous solution)
7 Second heat transfer medium (propylene glycol aqueous solution)
8 Third heat transfer medium (water)
DESCRIPTION OF SYMBOLS 10 Heat storage tank 11 Main heat exchange tank 12 Solid-liquid heat exchanger 14 Flow path main body 15 Fin 21 Sub heat exchange tank 22 Heat receiving circulation pipe 23 Heat supply circulation pipe 25 Heat insulating material 30 First heat medium circulation device 31 First circulation Line 33 First circulation pump 40 Second heat medium circulation device 41 Second circulation line 43 Second circulation pump 50 Third heat medium circulation device 51 Third circulation line 53 Third circulation pump 60 Control device 70 Main heat exchange device 80 Heat receiving Secondary heat exchanger 85 Heat supply secondary heat exchanger 90 Heat receiving device 95 Heat supply device

Claims (5)

潜熱蓄熱材料に蓄熱する潜熱蓄熱システムにおいて、
潜熱蓄熱材料と、
前記潜熱蓄熱材料との間で熱交換を行う第一伝熱媒体と、
前記潜熱蓄熱材料と前記第一伝熱媒体との間で熱交換を行うための主熱交換装置と、
外部から熱を運び込み、前記第一伝熱媒体へ熱伝達するための第二伝熱媒体と、
前記第一伝熱媒体と前記第二伝熱媒体との間で熱交換を行うための受熱用副熱交換装置と、
前記第一伝熱媒体との間で熱交換を行い、外部へ熱を供給するための第三伝熱媒体と、
前記第一伝熱媒体と前記第三伝熱媒体との間で熱交換を行うための給熱用副熱交換装置と、
を備えることを特徴とする潜熱蓄熱システム。
In the latent heat storage system that stores heat in the latent heat storage material,
Latent heat storage material,
A first heat transfer medium that exchanges heat with the latent heat storage material;
A main heat exchange device for exchanging heat between the latent heat storage material and the first heat transfer medium;
A second heat transfer medium for carrying heat from outside and transferring heat to the first heat transfer medium;
A heat receiving auxiliary heat exchange device for performing heat exchange between the first heat transfer medium and the second heat transfer medium;
A third heat transfer medium for exchanging heat with the first heat transfer medium and supplying heat to the outside;
A sub-heat exchanger for heat supply for performing heat exchange between the first heat transfer medium and the third heat transfer medium;
A latent heat storage system comprising:
前記潜熱蓄熱材料は、循環せずに前記主熱交換装置内に貯蔵されていることを特徴とする請求項1記載の潜熱蓄熱システム。   The latent heat storage system according to claim 1, wherein the latent heat storage material is stored in the main heat exchange device without being circulated. 前記第一伝熱媒体を前記主熱交換装置、前記受熱用副熱交換装置及び前記給熱用副熱交換装置の間で循環させるための第一熱媒循環装置と、
前記第二伝熱媒体を前記受熱用副熱交換装置と外部の受熱装置との間で循環させるための第二熱媒循環装置と、
前記第三伝熱媒体を前記給熱用副熱交換装置と外部の給熱装置との間で循環させるための第三熱媒循環装置と、
をさらに備えることを特徴とする請求項1又は2記載の潜熱蓄熱システム。
A first heat transfer medium circulation device for circulating the first heat transfer medium between the main heat exchange device, the heat receiving auxiliary heat exchange device and the heat supply auxiliary heat exchange device;
A second heat transfer medium circulating device for circulating the second heat transfer medium between the heat receiving auxiliary heat exchange device and an external heat receiving device;
A third heat transfer medium circulation device for circulating the third heat transfer medium between the auxiliary heat exchange device for heat supply and an external heat supply device;
The latent heat storage system according to claim 1, further comprising:
前記第一伝熱媒体の前記受熱用副熱交換装置と前記給熱用副熱交換装置における循環流路が同じ流路を共用していることを特徴とする請求項3記載の潜熱蓄熱システム。   4. The latent heat storage system according to claim 3, wherein circulation paths in the sub-heat exchanger for heat reception of the first heat transfer medium and the sub-heat exchanger for heat supply share the same flow path. 第一伝熱媒体、第二伝熱媒体及び第三伝熱媒体を用いて潜熱蓄熱材料に蓄熱する潜熱蓄熱方法において、
外部から熱を運び込む前記第二伝熱媒体から前記第一伝熱媒体に熱伝達する第一熱交換工程と、
前記第一伝熱媒体から前記潜熱蓄熱材料に熱伝達し、前記潜熱蓄熱材料に蓄熱する第二熱交換工程と、
前記潜熱蓄熱材料から前記第一伝熱媒体に熱伝達する第三熱交換工程と、
前記第一伝熱媒体から外部に熱を運び出す第三伝熱媒体に熱伝達する第四熱交換工程と、
を備えることを特徴とする潜熱蓄熱方法。
In the latent heat storage method of storing heat in the latent heat storage material using the first heat transfer medium, the second heat transfer medium, and the third heat transfer medium,
A first heat exchange step of transferring heat from the second heat transfer medium that carries heat from the outside to the first heat transfer medium;
Heat transfer from the first heat transfer medium to the latent heat storage material, a second heat exchange step of storing heat in the latent heat storage material;
A third heat exchange step for transferring heat from the latent heat storage material to the first heat transfer medium;
A fourth heat exchange step of transferring heat to the third heat transfer medium that carries heat from the first heat transfer medium to the outside;
A latent heat storage method comprising:
JP2013022268A 2013-02-07 2013-02-07 Latent heat storage system Pending JP2014152976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013022268A JP2014152976A (en) 2013-02-07 2013-02-07 Latent heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022268A JP2014152976A (en) 2013-02-07 2013-02-07 Latent heat storage system

Publications (1)

Publication Number Publication Date
JP2014152976A true JP2014152976A (en) 2014-08-25

Family

ID=51575019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022268A Pending JP2014152976A (en) 2013-02-07 2013-02-07 Latent heat storage system

Country Status (1)

Country Link
JP (1) JP2014152976A (en)

Similar Documents

Publication Publication Date Title
US11133538B2 (en) Heat exchanger for cooling battery
EP2400250B1 (en) Thermal storage system
RU2008136719A (en) SYSTEM AND DISTRIBUTION TANK FOR A LOW TEMPERATURE ENERGY NETWORK
CN105115340A (en) Phase change heat storage device and heat-pump water heater
CN203731913U (en) Energy storage heat exchanger
CN105115335A (en) Heat energy storage device with heat storage and heat release functions and application thereof
JP4657226B2 (en) Heat storage device
CN106123661A (en) A kind of micro heat pipe array board phase transformation stores exothermic processes and system
WO2013182916A1 (en) Solar collector
JP2006234310A (en) Heat storage device
CN114674170A (en) Molten salt heat storage device and molten salt heat storage system
CN205027186U (en) Phase transition heat accumulation unit and heat pump water heater
JP2013524101A5 (en)
CN201294452Y (en) Water cooling device for converter power module
JP2014152976A (en) Latent heat storage system
CN104218435B (en) A kind of high density hot-fluid phase-change thermal storage cooling system based on strip type laser
JP3873229B2 (en) Thermal storage device
JP4388253B2 (en) Latent heat storage device
JP2017120156A (en) Heat storage device
CN106016786B (en) Water tank free solar phase-change heat accumulation water heater
JP3891486B2 (en) Latent heat storage type cold heat source equipment and latent heat storage type heat source equipment
JP5982635B2 (en) Heat pump water heater
CN203671959U (en) Three-cavity fluid focused solar energy photo-thermal heating, heat transmission and heat storage system
JP2016164482A (en) Heat exchange system
JP5982636B2 (en) Heat pump water heater