JP2016164482A - Heat exchange system - Google Patents

Heat exchange system Download PDF

Info

Publication number
JP2016164482A
JP2016164482A JP2015247598A JP2015247598A JP2016164482A JP 2016164482 A JP2016164482 A JP 2016164482A JP 2015247598 A JP2015247598 A JP 2015247598A JP 2015247598 A JP2015247598 A JP 2015247598A JP 2016164482 A JP2016164482 A JP 2016164482A
Authority
JP
Japan
Prior art keywords
heat exchange
heat
tank
liquid
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015247598A
Other languages
Japanese (ja)
Other versions
JP6046233B2 (en
Inventor
隆彦 佐藤
Takahiko Sato
隆彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAFUJI KK
Original Assignee
TAKAFUJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAFUJI KK filed Critical TAKAFUJI KK
Publication of JP2016164482A publication Critical patent/JP2016164482A/en
Application granted granted Critical
Publication of JP6046233B2 publication Critical patent/JP6046233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchange system having a relatively small occupied space, and excellent in thermal efficiency.SOLUTION: A heat exchange system 100 includes: heat storage tank 10 capable of storing liquid (hot water) as a heat exchange medium; a heat exchange tank 30 that is provided adjacently to the heat storage tank 10 with a wall body W1 having heat transfer property held therebetween to store hot water supplied from a hot water source H; a heat exchanger 50 arranged in the heat exchange tank 30; a liquid feeding route 70 that mixes liquid (hot water) heated by causing the liquid to fluidize from the lower part of the heat exchanger 50 to the upper part thereof with liquid (hot water) stored in the hot storage tank 10, and then feeds the mixture to a cultivation facility 200 as a heating object area; and a liquid returning route 90 that returns liquid (water) cooled by causing the liquid to pass trough the heating object area (cultivation facility 200) to the heat exchanger 50 and the heat storage tank 10.SELECTED DRAWING: Figure 1

Description

本発明は、地熱水や工場排水などの高温水を利用して、施設園芸用の農業ハウスなどの暖房を行うための熱交換システムに関する。   The present invention relates to a heat exchange system for heating a farm house for facility horticulture using high-temperature water such as geothermal water or factory waste water.

地熱水や工場排水などの高温水を熱源として、水やその他の液体などの熱交換媒体を昇温させるための熱交換器システムについては、従来、様々な方式が提案されているが、本発明に関連するものとして、特許文献1記載の「地熱を利用した給湯設備」がある。   Various methods have been proposed in the past for heat exchanger systems for raising the temperature of heat exchange media such as water and other liquids using high-temperature water such as geothermal water and industrial wastewater as the heat source. As related to the invention, there is a “hot water supply facility using geothermal heat” described in Patent Document 1.

この「地熱を利用した給湯設備」においては、水中ポンプを備えた複数の管路により掘削孔内の温水が熱交換器を介して循環する経路と、循環ポンプを備えた複数の管路と、により、二次側の水が貯湯槽と熱交換器の間を循環する経路が構成され、熱交換器にて二次側の水を昇温させ、貯湯槽から給湯する機能を有している。   In this "hot water supply facility using geothermal heat", a path through which hot water in the excavation hole circulates through a heat exchanger by a plurality of pipes provided with a submersible pump, a plurality of pipes provided with a circulation pump, The secondary side water is circulated between the hot water storage tank and the heat exchanger, and the secondary water is heated by the heat exchanger and has a function of supplying hot water from the hot water storage tank. .

特開平7−305900号公報JP 7-305900 A

前述した「地熱を利用した給湯設備」は、熱媒体を循環利用する方式であるため、温泉の湧出量が少量であっても使用可能であり、温泉を枯渇させる心配がないなどの点において優れているが、熱効率については十分なレベルに達していない面がある。また、熱効率の向上及び熱交換システムの小型化はいつの時代も要請される重要な課題である。   The above-mentioned “hot water supply facility using geothermal heat” is a method that circulates and uses a heat medium, so it can be used even with a small amount of hot springs, and is excellent in that it does not have to worry about exhausting hot springs. However, there are aspects that have not reached a sufficient level in terms of thermal efficiency. Moreover, improvement of thermal efficiency and downsizing of the heat exchange system are important issues that are required at any time.

そこで、本発明が解決しようとする課題は、占有スペースが比較的小さく、熱効率に優れた熱交換システムを提供することにある。   Therefore, the problem to be solved by the present invention is to provide a heat exchange system that occupies a relatively small space and is excellent in thermal efficiency.

本発明の熱交換システムは、熱交換媒体である液体を収容可能な蓄熱槽と、熱水源から供給された熱水を収容するため伝熱性を有する壁体を挟んで前記蓄熱槽に隣接して設けられた熱交換槽と、前記熱交換槽内に配置された熱交換器と、伝熱性を有する壁体を挟んで前記熱交換槽に隣接して設けられた熱水受入槽と、前記熱交換槽内の前記熱交換器内をその下部側から上部側に流動することによって昇温した前記熱交換器内の液体と前記蓄熱槽に収容された液体とを混合して暖房対象領域へ送給する送液経路と、前記暖房対象領域を通過して降温した液体を前記熱交換器及び前記蓄熱槽に戻す復液経路と、を備えたことを特徴とする。   The heat exchanging system of the present invention is adjacent to the heat accumulating tank with a heat accumulating tank capable of accommodating a liquid as a heat exchanging medium and a wall body having heat conductivity for accommodating hot water supplied from a hot water source. A heat exchanger provided, a heat exchanger disposed in the heat exchanger, a hot water receiving tank provided adjacent to the heat exchanger across a wall having heat conductivity, and the heat The liquid in the heat exchanger heated by flowing in the heat exchanger from the lower side to the upper side in the exchange tank and the liquid stored in the heat storage tank are mixed and sent to the heating target area. A liquid supply path for supplying the liquid and a liquid return path for returning the liquid cooled through the heating target area to the heat exchanger and the heat storage tank are provided.

また、本発明の熱交換システムは、熱交換媒体である液体を収容可能な蓄熱槽と、伝熱性を有する壁体を挟んで前記蓄熱槽に隣接して設けられた熱水受入槽と、伝熱性を有する壁体を挟んで前記熱水受入槽に隣接して設けられた熱交換槽と、前記熱交換槽内に配置された熱交換器と、前記熱交換槽内の前記熱交換器の下部側から上部側に流動することによって昇温した前記熱交換器内の液体と前記蓄熱槽に収容された液体とを混合して暖房対象領域へ送給する送液経路と、前記暖房対象領域を通過して降温した液体を前記熱交換器及び前記蓄熱槽に戻す復液経路と、を備えたことを特徴とする。   In addition, the heat exchange system of the present invention includes a heat storage tank that can store a liquid that is a heat exchange medium, a hot water receiving tank provided adjacent to the heat storage tank with a wall body having heat conductivity interposed therebetween, and a heat transfer tank. A heat exchange tank provided adjacent to the hot water receiving tank across a wall having heat, a heat exchanger disposed in the heat exchange tank, and the heat exchanger in the heat exchange tank A liquid supply path for mixing the liquid in the heat exchanger heated by flowing from the lower side to the upper side and the liquid stored in the heat storage tank and feeding the mixed liquid to the heating target area, and the heating target area And a condensate path for returning the liquid cooled down to the heat exchanger and the heat storage tank.

ここで、前記蓄熱槽、前記熱水受入槽及び前記熱交換槽を土砂で埋設された状態とすることが望ましい。   Here, it is desirable that the heat storage tank, the hot water receiving tank, and the heat exchange tank are embedded in earth and sand.

この場合、前記土砂が、前記蓄熱槽、前記熱水受入槽若しくは前記熱交換槽からの放熱により昇温して遠赤外線を放射する機能を有する遠赤外線放射物質を含むものであることが望ましい。   In this case, it is desirable that the earth and sand contain a far-infrared emitting material having a function of emitting far-infrared rays by raising the temperature by heat radiation from the heat storage tank, the hot water receiving tank or the heat exchange tank.

また、前記熱交換器にて昇温した液体と前記蓄熱槽に収容された液体との混合比率を変更するためのバルブを設けることが望ましい。   Moreover, it is desirable to provide a valve for changing the mixing ratio of the liquid heated in the heat exchanger and the liquid stored in the heat storage tank.

さらに、前記送液経路内を流動する液体若しくは前記復液経路内を流動する液体の少なくとも一方を加圧する加圧手段を設けることもできる。   Furthermore, a pressurizing unit that pressurizes at least one of the liquid flowing in the liquid feeding path and the liquid flowing in the condensate path may be provided.

一方、前記熱交換槽に供給される熱水の一部を用いて液体を加温可能な副熱交換器と、前記送液経路を流動する液体の一部を取り出して前記副熱交換器にて加温して前記送液経路に戻す液体循環経路と、を設けることもできる。   On the other hand, a sub heat exchanger capable of heating the liquid using a part of hot water supplied to the heat exchange tank, and a part of the liquid flowing in the liquid feeding path are taken out to the sub heat exchanger. And a liquid circulation path that is heated and returned to the liquid feeding path.

また、前記熱交換器が前記熱交換槽内に出し入れ可能であることが望ましい。   Moreover, it is desirable that the heat exchanger can be taken in and out of the heat exchange tank.

この場合、前記熱交換槽から取り出した前記熱交換器を収容して洗浄するための洗浄槽を前記熱交換槽の近傍に設けることが望ましい。   In this case, it is desirable that a cleaning tank for accommodating and cleaning the heat exchanger taken out from the heat exchange tank is provided in the vicinity of the heat exchange tank.

また、前記熱交換器が互いに連結分離可能な複数の熱交換ユニットで形成されたものであることが望ましい。   The heat exchanger is preferably formed of a plurality of heat exchange units that can be connected and separated from each other.

さらに、前記熱交換槽に前記熱交換器を目視可能な視認窓を設けることができる。   Furthermore, the visual recognition window which can visually observe the said heat exchanger can be provided in the said heat exchange tank.

本発明により、占有スペースが比較的小さく、熱効率に優れた熱交換システムを提供することができる。   According to the present invention, it is possible to provide a heat exchange system that occupies a relatively small space and is excellent in thermal efficiency.

本発明の実施形態である熱交換システム及びこれを利用した栽培設備を示す概略構成図である。It is a schematic block diagram which shows the heat exchange system which is embodiment of this invention, and the cultivation facility using this. 図1中に示す熱交換システム付近の一部省略拡大図である。FIG. 2 is a partially omitted enlarged view near the heat exchange system shown in FIG. 1. 図2に示す熱交換システムを構成する熱交換槽の一部省略断面図である。FIG. 3 is a partially omitted cross-sectional view of a heat exchange tank constituting the heat exchange system shown in FIG. 2. 図2に示す熱交換システムを構成する熱交換器の洗浄工程を示す図である。It is a figure which shows the washing | cleaning process of the heat exchanger which comprises the heat exchange system shown in FIG. 図2に示す熱交換システムを構成する熱交換器の洗浄工程を示す図である。It is a figure which shows the washing | cleaning process of the heat exchanger which comprises the heat exchange system shown in FIG. 本発明のその他の実施形態である熱交換システムを示す一部省略平面図である。It is a partially-omission top view which shows the heat exchange system which is other embodiment of this invention. 図6中の矢線A方向から見た熱交換システムの一部省略正面図である。FIG. 7 is a partially omitted front view of the heat exchange system as viewed from the direction of arrow A in FIG. 6. 図6に示す熱交換システムにおける熱水(温泉水)の流れを示す図である。It is a figure which shows the flow of the hot water (hot spring water) in the heat exchange system shown in FIG. 図6に示す熱交換システムにおける熱交換媒体(温水)の流れを示す図である。It is a figure which shows the flow of the heat exchange medium (warm water) in the heat exchange system shown in FIG.

以下、図1〜図5に基づいて、本発明の実施の形態である熱交換システム100及びこれを利用した栽培設備200について説明する。   Hereinafter, based on FIGS. 1-5, the heat exchange system 100 which is embodiment of this invention and the cultivation equipment 200 using this are demonstrated.

図1,図2に示すように、熱交換システム100は、熱交換媒体である液体(温水)を収容可能な蓄熱槽10と、熱水源Hから供給された熱水を収容するため伝熱性を有する壁体W1を挟んで蓄熱槽10に隣接して設けられた熱交換槽30と、熱交換槽30内に配置された熱交換器50と、熱交換器50内をその下部から上部に流動することによって昇温した液体(温水)と蓄熱槽10に収容された液体(温水)とを混合して暖房対象領域である栽培設備200へ送給する送液経路70と、暖房対象領域(栽培設備200)を通過して降温した液体(水)を熱交換器50及び蓄熱槽10に戻す復液経路90と、を備えている。   As shown in FIGS. 1 and 2, the heat exchanging system 100 has a heat transfer property for accommodating hot water supplied from a hot water source H and a heat storage tank 10 capable of accommodating a liquid (hot water) as a heat exchanging medium. The heat exchanger tank 30 provided adjacent to the heat storage tank 10 across the wall W1 having, the heat exchanger 50 disposed in the heat exchanger tank 30, and the heat exchanger 50 flowing from the lower part to the upper part thereof The liquid supply path 70 which mixes the liquid (warm water) heated by this and the liquid (warm water) accommodated in the heat storage tank 10 and feeds it to the cultivation facility 200 which is the heating target area, and the heating target area (cultivation) And a condensate path 90 for returning the liquid (water) having passed through the facility 200) to the heat exchanger 50 and the heat storage tank 10.

熱交換槽30の、蓄熱槽10の反対側の部分には、壁体W2を挟んで熱水受入槽20が隣接して設けられている。熱水受入槽20、熱交換槽30及び蓄熱槽10はいずれも気密性を有しており、これらを一体化した構造のユニット体60が地下に配置されている。熱水受入槽20と熱交換槽30とを区画する壁体W2の上部及び下部にはそれぞれ入湯経路21及び排湯経路22が設けられているため、これらの入湯経路21及び排湯経路22を経由して、熱水受入槽20と熱交換槽30との間で液体(熱水)が流動可能である。   On the opposite side of the heat storage tank 10 of the heat exchange tank 30, a hot water receiving tank 20 is provided adjacent to the wall body W2. The hot water receiving tank 20, the heat exchange tank 30, and the heat storage tank 10 all have airtightness, and a unit body 60 having a structure in which these are integrated is disposed underground. Since the hot water passage 21 and the hot water passage 22 are respectively provided in the upper part and the lower part of the wall body W2 that divides the hot water receiving tank 20 and the heat exchange tank 30, the hot water passage 21 and the hot water path 22 are provided. Via, the liquid (hot water) can flow between the hot water receiving tank 20 and the heat exchange tank 30.

熱水受入槽20、熱交換槽30及び蓄熱槽10の上部には、それぞれの内部に収容された液体の温度を測定するための温度計23,33,13が配置されている。蓄熱槽10の上部には、自動エア抜き弁12が設けられている。また、蓄熱槽10内の温水を汲み上げて熱交換器50の下部へ送り込むためのポンプ14が蓄熱槽10上に配置されている。   Thermometers 23, 33, and 13 for measuring the temperature of the liquid accommodated in each of the hot water receiving tank 20, the heat exchange tank 30, and the heat storage tank 10 are disposed. An automatic air vent valve 12 is provided in the upper part of the heat storage tank 10. A pump 14 for pumping hot water in the heat storage tank 10 and feeding it to the lower part of the heat exchanger 50 is disposed on the heat storage tank 10.

送液経路70の上流部分には、熱交換器50にて昇温した液体(温水)と、蓄熱槽10に収容された液体(温水)との混合比率を変更可能な三方バルブV1が設けられている。復液経路90の下流部分には、栽培設備200を通過して降温した液体(水)を熱交換器50及び蓄熱槽10に戻す際の分流比率を変更可能な三方バルブV2が設けられている。なお、送液経路70内を流動する液体(温水)、復液経路90内を流動する液体(水)に圧力を加えるための加圧手段(図示せず)を設けることもできる。   A three-way valve V <b> 1 capable of changing the mixing ratio of the liquid (warm water) heated by the heat exchanger 50 and the liquid (warm water) stored in the heat storage tank 10 is provided in the upstream portion of the liquid feeding path 70. ing. In the downstream portion of the condensate path 90, a three-way valve V <b> 2 that can change the diversion ratio when returning the liquid (water) that has passed through the cultivation facility 200 and returned to the heat exchanger 50 and the heat storage tank 10 is provided. . A pressurizing means (not shown) for applying pressure to the liquid (warm water) flowing in the liquid feeding path 70 and the liquid (water) flowing in the condensate path 90 can also be provided.

また、熱交換槽30に隣接する熱水受入槽20に供給される熱水の一部を用いて液体を加温可能な複数の副熱交換器40a,40bと、送液経路70を流動する液体の一部を取り出して副熱交換器40a,40bにて加温して送液経路70に戻す液体循環経路41,42と、が設けられている。   In addition, a plurality of auxiliary heat exchangers 40 a and 40 b that can heat the liquid using a part of the hot water supplied to the hot water receiving tank 20 adjacent to the heat exchange tank 30 and the liquid supply path 70 flow. Liquid circulation paths 41 and 42 that take out a part of the liquid, heat it in the auxiliary heat exchangers 40a and 40b, and return it to the liquid feeding path 70 are provided.

後述するように、熱交換槽30内に配置されている熱交換器50は、熱交換槽30内に出し入れ可能であり、熱交換槽30から取り出した熱交換器50を収容して洗浄するための洗浄槽80が、熱交換槽30を含むユニット体60の近傍に設けられている。また、熱交換槽30には、その内部に配置された熱交換器50を目視可能な視認窓(図示せず)が設けられている。   As will be described later, the heat exchanger 50 disposed in the heat exchange tank 30 can be taken in and out of the heat exchange tank 30 and accommodates and cleans the heat exchanger 50 taken out from the heat exchange tank 30. The cleaning tank 80 is provided in the vicinity of the unit body 60 including the heat exchange tank 30. Moreover, the heat exchange tank 30 is provided with a visual recognition window (not shown) through which the heat exchanger 50 disposed therein can be seen.

熱水源Hから採取された熱水は気水分離器1において水蒸気と熱水とに分離され、水蒸気は発電機2へ供給され、熱水は熱水受入槽20へ供給される。発電機2で発生した電気は所定の送電設備3へ送電される。発電機2の運転に供された後に生成する蒸気水は、気水分離器1にて分離された熱水と合流させて、熱水受入槽20へ供給される。   Hot water collected from the hot water source H is separated into steam and hot water in the steam separator 1, the steam is supplied to the generator 2, and the hot water is supplied to the hot water receiving tank 20. Electricity generated by the generator 2 is transmitted to a predetermined power transmission facility 3. The steam water generated after being used for the operation of the generator 2 is combined with the hot water separated by the steam separator 1 and supplied to the hot water receiving tank 20.

熱交換システム100と栽培設備200との間に配設された送液経路70及び復液経路90の途中には混合設備300が設けられている。混合設備300は、冷水源4から供給される冷水を貯留する水タンク5、圧力制御装置6、ディストリビュータ7,8及び三方バルブ9などを備えている。混合設備300は、送液経路70内及び復液経路90内を経由して熱交換システム100と栽培設備200との間を循環する温水(水)の圧力を所定圧に維持する機能と、蒸発などによる前記温水(水)の減少分を冷水源4からの給水によって自動的に補う機能と、を有する。   A mixing facility 300 is provided in the middle of the liquid feeding path 70 and the condensate path 90 disposed between the heat exchange system 100 and the cultivation facility 200. The mixing facility 300 includes a water tank 5 that stores cold water supplied from the cold water source 4, a pressure control device 6, distributors 7 and 8, a three-way valve 9, and the like. The mixing facility 300 has a function of maintaining the pressure of warm water (water) circulating between the heat exchange system 100 and the cultivation facility 200 through the liquid feeding path 70 and the condensate path 90 at a predetermined pressure, and evaporation. A function of automatically compensating for the decrease in the warm water (water) due to the water supply from the cold water source 4.

図3に示すように、熱交換槽30内に配置された熱交換器50は互いに連結分離可能な複数列の熱交換ユニット51で形成されている。熱交換ユニット51はいずれも、対向状に配置された一対の側壁部材54,55と、これらの側壁部材54,55の間に所定の隙間を隔てて直線状の束をなすように配置された複数のチューブ56と、複数のチューブ56を一定姿勢に保持するため側壁部材54,55間に配置された複数の保持板57と、を備えている。   As shown in FIG. 3, the heat exchanger 50 arranged in the heat exchange tank 30 is formed of a plurality of rows of heat exchange units 51 that can be connected and separated from each other. Each of the heat exchange units 51 is disposed so as to form a linear bundle with a predetermined gap between the pair of side wall members 54 and 55 arranged in an opposing manner and the side wall members 54 and 55. A plurality of tubes 56 and a plurality of holding plates 57 disposed between the side wall members 54 and 55 for holding the plurality of tubes 56 in a fixed posture are provided.

複数のチューブ56は、側壁部材54,55及び保持板57を貫通した状態に配管され、側壁部材54,55の外側には複数のチューブ56の開口端を気密状に連通するチャンバ部58が設けられている。なお、図3には記載されていないが、実際には、複数列の熱交換ユニット51は、図3の裏面側に向かって並列配置され、互いに接合・分離可能であるが、これに限定するものではない。   The plurality of tubes 56 are piped through the side wall members 54, 55 and the holding plate 57, and a chamber portion 58 is provided outside the side wall members 54, 55 to communicate the open ends of the plurality of tubes 56 in an airtight manner. It has been. Although not shown in FIG. 3, in reality, the plurality of rows of heat exchange units 51 are arranged in parallel toward the back side of FIG. 3 and can be joined and separated from each other, but the present invention is limited to this. It is not a thing.

図3に示すように、熱交換槽30の上方に設けられた入湯経路21から熱交換槽30内へ導入された熱水は、熱交換槽30内を循環して熱交換器50内を流動する水を加熱した後、熱交換槽30の底部近くに設けられた排湯経路22から排出される。熱交換器50内を流動することによって昇温した温水は出湯経路52から流出して栽培設備200に向かい、栽培設備200の加温用管路201内を流動することによって降温した水は入水経路53から熱交換器50内へ流入する。なお、入水経路53から熱交換器50に流入した水は、熱交換槽30内をその下部側から上部側に流動すること(熱交換器50の下部側から上部側に流動すること)によって昇温した後、出湯経路52から流出する。   As shown in FIG. 3, hot water introduced into the heat exchange tank 30 from the hot water passage 21 provided above the heat exchange tank 30 circulates in the heat exchange tank 30 and flows in the heat exchanger 50. After the water to be heated is heated, it is discharged from the hot water discharge path 22 provided near the bottom of the heat exchange tank 30. The hot water heated by flowing in the heat exchanger 50 flows out from the hot water supply path 52 and goes to the cultivation facility 200, and the water lowered in temperature by flowing in the heating conduit 201 of the cultivation equipment 200 is the water intake path. 53 flows into the heat exchanger 50. In addition, the water that has flowed into the heat exchanger 50 from the water intake path 53 flows through the heat exchange tank 30 from the lower side to the upper side (flows from the lower side to the upper side of the heat exchanger 50). After warming, it flows out from the hot water supply route 52.

図1〜図3に示すように、熱水源Hから採取され気水分離器1で分離された熱水は、発電機2から排出される蒸気水とともに熱水受入槽20に供給され、入湯経路21及び排湯経路22を経由して隣接する熱交換槽30との間で循環している。入水経路53を経由して、熱交換槽30内の熱交換器50内に送り込まれた温水は、熱交換槽30内の熱水の熱により昇温し、出湯経路52から流出し、送液経路70を経由して栽培設備200へ送給される。栽培設備200に送給された温水は、栽培設備200内に配管された加温用管路201内を流動することにより、植物栽培用の加温手段として利用される。   As shown in FIGS. 1 to 3, the hot water collected from the hot water source H and separated by the steam / water separator 1 is supplied to the hot water receiving tank 20 together with the steam water discharged from the generator 2, and the hot water passage It circulates between the adjacent heat exchange tanks 30 via 21 and the hot water discharge path 22. The hot water sent into the heat exchanger 50 in the heat exchange tank 30 via the water intake path 53 is heated by the heat of the hot water in the heat exchange tank 30, flows out of the hot water discharge path 52, and is fed. It is sent to the cultivation facility 200 via the route 70. The hot water fed to the cultivation facility 200 is used as a heating means for plant cultivation by flowing in the heating conduit 201 piped in the cultivation facility 200.

栽培設備200を通過して、降温した温水は復液経路90及び入水経路53を経由して熱交換器50へ送り込まれ、熱交換器50を、その下部側から上部側に向かって流動することによって再び昇温し、出湯経路52及び送液経路70を経由して栽培設備200へ送り込まれる。   The warm water that has passed through the cultivation facility 200 and has cooled down is sent to the heat exchanger 50 via the condensate path 90 and the water inlet path 53, and flows through the heat exchanger 50 from the lower side toward the upper side. Then, the temperature is raised again and fed to the cultivation facility 200 via the hot water supply route 52 and the liquid supply route 70.

熱交換システム100は、熱交換槽30と蓄熱槽10とを隣接して配置しているので、占有スペースを少なくすることができる。また、熱水受入槽20、熱交換槽30及び蓄熱槽10などを地下に配置して土砂Sで埋設した状態としたことにより、特に、地上での占有スペースを大幅に減少させることができ、熱の散逸を抑制することができるので、熱効率も向上する。さらに、熱水受入槽20、熱交換槽30及び蓄熱槽10を互いに隣接させたことも、熱効率の向上に有効である。   Since the heat exchange system 100 arranges the heat exchange tank 30 and the heat storage tank 10 adjacent to each other, the occupied space can be reduced. In addition, by placing the hot water receiving tank 20, the heat exchange tank 30 and the heat storage tank 10 in the basement and buried in the earth and sand S, in particular, the occupied space on the ground can be greatly reduced, Since heat dissipation can be suppressed, thermal efficiency is also improved. Furthermore, the fact that the hot water receiving tank 20, the heat exchange tank 30, and the heat storage tank 10 are adjacent to each other is also effective in improving the thermal efficiency.

熱交換システム100において、地下に配置された熱水受入槽20、熱交換槽30及び蓄熱槽10などは周囲の土砂Sと接触した状態となっているので、熱交換システム100を構築した後、時間が経過すると、稼働中で高温状態にある熱水受入槽20、熱交換槽30及び蓄熱槽10などから発生する熱により周囲の土砂Sの温度も上昇し、熱水受入槽20、熱交換槽30及び蓄熱槽10などと同等の高い温度となり、その状態が維持される。このため、熱の散逸を抑制する効果がさらに高まり、熱効率も大幅に向上する。   In the heat exchange system 100, since the hot water receiving tank 20, the heat exchange tank 30, the heat storage tank 10 and the like arranged in the basement are in contact with the surrounding earth and sand S, after the heat exchange system 100 is constructed, When time elapses, the temperature of the surrounding earth and sand S rises due to the heat generated from the hot water receiving tank 20, the heat exchange tank 30 and the heat storage tank 10 that are in operation and at a high temperature, and the hot water receiving tank 20, heat exchange It becomes a high temperature equivalent to the tank 30 and the heat storage tank 10, and the state is maintained. For this reason, the effect of suppressing heat dissipation is further enhanced, and the thermal efficiency is greatly improved.

また、熱水受入槽20、熱交換槽30及び蓄熱槽10などの周囲の土砂Sは遠赤外線放射機能を有する物質(遠赤外線放射物質Q)を含んでいるので、熱媒体により加温された熱水受入槽20、熱交換槽30若しくは蓄熱槽10などからの放熱により、土砂Sとともに昇温した遠赤外線物質Qから放射される遠赤外線によって土砂S中に存在する水分が効率良く昇温する結果、熱水受入槽20、熱交換槽30及び蓄熱槽10などの周囲の土砂Sが広範囲に亘って高温度に保たれるため、保温効果が著しく高まり、熱効率の向上に極めて有効である。   Moreover, since the surrounding earth and sand S, such as the hot-water receiving tank 20, the heat exchange tank 30, and the heat storage tank 10, contains the substance (far-infrared radiation substance Q) which has a far-infrared radiation function, it was heated by the heat medium. Due to heat radiation from the hot water receiving tank 20, the heat exchange tank 30, or the heat storage tank 10, the water present in the earth and sand S is efficiently heated by the far infrared rays emitted from the far infrared substance Q heated together with the earth and sand S. As a result, since the surrounding earth and sand S such as the hot water receiving tank 20, the heat exchange tank 30, and the heat storage tank 10 are kept at a high temperature over a wide range, the heat retaining effect is remarkably enhanced, which is extremely effective for improving the thermal efficiency.

また、熱交換媒体(温水)により加温された熱水受入槽20,蓄熱槽10あるいは熱交換槽30からの放熱により土砂Sが昇温し、蓄熱状態にある土砂S中の遠赤外線放射物質Qから遠赤外線が放射されるので、熱水受入槽20、蓄熱槽10及び熱交換槽30の内部の液体(温水)を温める効果が得られる。   In addition, the far-infrared radiation material in the earth and sand S in the heat storage state, the earth and sand S is heated by heat radiation from the hot water receiving tank 20, the heat storage tank 10 or the heat exchange tank 30 heated by the heat exchange medium (hot water) Since far infrared rays are radiated from Q, the effect of warming the liquid (hot water) inside the hot water receiving tank 20, the heat storage tank 10, and the heat exchange tank 30 is obtained.

ここで、土砂S中の遠赤外線放射物質Qは、熱水受入槽20、熱交換槽30及び蓄熱槽10などを地下に埋設する場合に、埋め戻す土砂S中に混合させることができる。また、自然状態において土砂S中に遠赤外線放射物質Qを多く含む土地の地下部分に熱交換システム100を構築すれば、前述と同様の遠赤外線による効果を得ることができる。なお、遠赤外線放射物質Qとは、波長が4μm〜1000μmの電磁波を放射する機能を有する物質をいう。   Here, the far-infrared radiation material Q in the earth and sand S can be mixed in the earth and sand S to be backfilled when the hot water receiving tank 20, the heat exchange tank 30 and the heat storage tank 10 are buried underground. Moreover, if the heat exchange system 100 is constructed in the underground portion of the land that contains a lot of far-infrared radiation material Q in the earth and sand S in a natural state, the same effect by far-infrared as described above can be obtained. The far-infrared emitting substance Q is a substance having a function of emitting an electromagnetic wave having a wavelength of 4 μm to 1000 μm.

遠赤外線放射物質Qは、特に限定しないので、天然セラミックスや人工セラミックスなどを使用することができるが、例えば、Al23,SiO2,MgO,ZrO2,3Al23・2SiO2(ムライト),ZrO2・SiO2(ジルコン),2MgO・2Al23・5SiO2など(コージェライト)などが好適である。ここで、前記セラミックスとは、アルミニウム、ケイ素、マグネシウム、ジルコニウム、チタンなどの各種金属元素と、酸素、窒素、炭素、ホウ素などとの無機化合物及びこれらの複合化合物の総称である。 The far-infrared emitting material Q is not particularly limited, and natural ceramics or artificial ceramics can be used. For example, Al 2 O 3 , SiO 2 , MgO, ZrO 2 , 3Al 2 O 3 .2SiO 2 (mullite ), ZrO 2 · SiO 2 (zircon), 2MgO · 2Al 2 O 3 · 5SiO 2 (cordierite) and the like are suitable. Here, the ceramic is a general term for inorganic compounds of various metal elements such as aluminum, silicon, magnesium, zirconium, and titanium, oxygen, nitrogen, carbon, boron, and the like, and composite compounds thereof.

前述したように、熱交換器50は、熱交換槽30に対して比較的容易に出し入れ可能であるため、長期間の使用などにより、複数のチューブ56の間にスケールが付着したような場合、図4に示すように、専用の治具Xを介してクレーンのフックFで吊り上げることによって熱交換槽30(図2参照)から引き上げ、その近傍に設けられた洗浄槽80内の洗浄液Rに浸漬して洗浄することができる。洗浄完了後は、図5に示すように、洗浄槽80から熱交換器50を引き上げて、熱交換槽30(図2参照)に戻すことができる。   As described above, since the heat exchanger 50 can be taken in and out with respect to the heat exchange tank 30 relatively easily, when a scale adheres between the plurality of tubes 56 due to long-term use or the like, As shown in FIG. 4, it is lifted from the heat exchange tank 30 (see FIG. 2) by being lifted by a crane hook F through a dedicated jig X, and immersed in a cleaning liquid R in a cleaning tank 80 provided in the vicinity thereof. And can be washed. After completion of the cleaning, as shown in FIG. 5, the heat exchanger 50 can be pulled up from the cleaning tank 80 and returned to the heat exchange tank 30 (see FIG. 2).

熱交換システム100においては、熱水受入槽20、熱交換槽30及び蓄熱槽10などを地下に配置することにより、熱水受入槽20、熱交換槽30及び蓄熱槽10などを土砂Sで埋設された状態としているが、これに限定するものではないので、例えば、地上に配置した熱水受入槽20、熱交換槽30及び蓄熱槽10などに土砂を被せて盛土を形成したり、トンネル状の横穴内に熱水受入槽20、熱交換槽30及び蓄熱槽10などを収容した後、土砂で埋め戻したりすることによって、熱水受入槽20、熱交換槽30及び蓄熱槽10などを土砂で埋設された状態とすることもできる。   In the heat exchange system 100, the hot water receiving tank 20, the heat exchange tank 30, the heat storage tank 10, and the like are disposed in the basement so that the hot water receiving tank 20, the heat exchange tank 30, the heat storage tank 10, etc. are buried in the earth and sand S. However, the present invention is not limited to this. For example, a hot water receiving tank 20, a heat exchange tank 30, a heat storage tank 10 and the like placed on the ground are covered with earth and sand to form a bank, or a tunnel shape The hot water receiving tank 20, the heat exchange tank 30, the heat storage tank 10 and the like are accommodated in the horizontal holes, and then backfilled with earth and sand, so that the hot water receiving tank 20, the heat exchange tank 30, the heat storage tank 10 and the like are earthed. It can also be made into the state buried by.

次に、図6〜図9に基づいて、本発明のその他の実施形態である熱交換システム500について説明する。図6,図7に示すように、本実施形態の熱交換システム500は、2個の蓄熱槽511,512と、4個の熱水受入槽521,522,523,524と、4個の熱交換槽531,532,533,534と、を備えている。熱交換槽531,532,533,534の内部には、図3と同様の熱交換器50が出し入れ可能に配置されている。なお、図6中では土砂S及び遠赤外線物質Q(図7参照)を省略している。   Next, based on FIGS. 6-9, the heat exchange system 500 which is other embodiment of this invention is demonstrated. As shown in FIGS. 6 and 7, the heat exchange system 500 of the present embodiment includes two heat storage tanks 511 and 512, four hot water receiving tanks 521, 522, 523, and 524, and four heats. Exchange tanks 531, 532, 533, and 534. Inside the heat exchange tanks 531, 532, 533, and 534, a heat exchanger 50 similar to that shown in FIG. In addition, the earth and sand S and the far-infrared substance Q (refer FIG. 7) are abbreviate | omitted in FIG.

蓄熱槽511,512は両端が閉塞された円筒形状のタンク部材であり、それぞれの軸心511c,512c方向が略水平をなすような状態で、架台511a,512aを介して、基礎体501上に互いに平行に設置されている。熱水受入槽521,522は平面視形状が長方形の部材であり、蓄熱槽511の上半分の部分を挟んで対向した状態で対称に配置されている。熱水受入槽521,522は互いに同じサイズ、形状の部材であり、熱水受入槽521,522の一部に設けられた凹曲面状の壁体521a,522aを、蓄熱槽511の円筒形状の周壁511bに密着させた状態で取り付けられている。   The heat storage tanks 511 and 512 are cylindrical tank members that are closed at both ends, and are placed on the base body 501 via the mounts 511a and 512a in a state where the directions of the respective axes 511c and 512c are substantially horizontal. They are installed parallel to each other. The hot water receiving tanks 521 and 522 are members having a rectangular shape in plan view, and are arranged symmetrically with the upper half portion of the heat storage tank 511 facing each other. The hot water receiving tanks 521 and 522 are members of the same size and shape, and the concave curved wall bodies 521a and 522a provided in a part of the hot water receiving tanks 521 and 522 are formed in the cylindrical shape of the heat storage tank 511. It is attached in a state of being in close contact with the peripheral wall 511b.

図7において、蓄熱槽511の軸心511cを中心とし、周壁511bの最上部511dを起点として時計回りに角度を測ったとき、熱水受入槽522の壁体522aは15度〜90度の領域で蓄熱槽511の周壁511bに密着しており、熱水受入槽521の壁体521aは270度〜345度の領域で蓄熱槽511の周壁611bに密着している。   In FIG. 7, when the angle is measured clockwise around the axis 511 c of the heat storage tank 511 and the uppermost part 511 d of the peripheral wall 511 b as a starting point, the wall body 522 a of the hot water receiving tank 522 has an area of 15 to 90 degrees. The wall body 521a of the hot water receiving tank 521 is in close contact with the peripheral wall 611b of the heat storage tank 511 in the region of 270 to 345 degrees.

二つの熱交換槽531,532は外形が直方体形状の部材であり、蓄熱槽511の軸心511c方向の長さが熱水受入槽521,522と同一である。熱交換槽531,532は、蓄熱槽511を挟んで対称をなす位置に配置され、熱交換槽531,532の垂直壁体がそれぞれ熱水受入槽521,522の垂直壁体に密着している。   The two heat exchange tanks 531 and 532 are members having a rectangular parallelepiped shape, and the length of the heat storage tank 511 in the axial center 511c direction is the same as that of the hot water receiving tanks 521 and 522. The heat exchange tanks 531 and 532 are arranged at positions symmetrical with respect to the heat storage tank 511, and the vertical wall bodies of the heat exchange tanks 531 and 532 are in close contact with the vertical wall bodies of the hot water receiving tanks 521 and 522, respectively. .

蓄熱槽512においては、蓄熱槽511に対する熱水受入槽521,522及び熱交換槽531,532の配置状態と同様の状態で、熱水受入槽523,524及び熱交換槽533,534が蓄熱槽512に取り付けられている。また、熱交換槽532,533はそれぞれの垂直壁体同が密着した状態となっている。なお、蓄熱槽511,512、熱水受入槽521,522,523,524及び熱交換槽531,532,533,534を形成する壁体は全て伝熱性の良好な金属材料で形成されている。   In the heat storage tank 512, the hot water receiving tanks 523, 524 and the heat exchange tanks 533, 534 are the heat storage tank in the same state as the arrangement of the hot water receiving tanks 521, 522 and the heat exchange tanks 531, 532 with respect to the heat storage tank 511. 512 is attached. The heat exchange tanks 532 and 533 are in close contact with each other. The wall bodies forming the heat storage tanks 511 and 512, the hot water receiving tanks 521, 522, 523, and 524 and the heat exchange tanks 531, 532, 533, and 534 are all formed of a metal material having good heat conductivity.

図7に示すように、熱交換システム500を構成する蓄熱槽511,512、熱水受入槽521,522,523,524及び熱交換槽531,532,533,534は土砂Sに埋もれた状態で地下に配置されている。なお、蓄熱槽511,512の最上部511d,512d、並びに、熱水受入槽521,522,523,524の上面521u,522u,523u,524u及び熱交換槽531,532,533,534の上面531a,532a,533a,534aは地表面に露出している。   As shown in FIG. 7, the heat storage tanks 511 and 512, the hot water receiving tanks 521, 522, 523, and 524 and the heat exchange tanks 531, 532, 533, and 534 that constitute the heat exchange system 500 are buried in the earth and sand S. Located in the basement. The uppermost portions 511d and 512d of the heat storage tanks 511 and 512, the upper surfaces 521u, 522u, 523u, and 524u of the hot water receiving tanks 521, 522, 523, and 524u, and the upper surfaces 531a of the heat exchange tanks 531, 532, 533, and 534, respectively. , 532a, 533a, 534a are exposed on the ground surface.

ここで、図8に基づいて、熱交換システム500における熱水(温泉水)の流れについて説明する。図8に示す熱交換システム500は、複数の熱水源H1,H2から供給される熱水を利用して、施設園芸用の農業ハウスなどの栽培設備200(図1参照)の暖房を行うことができる。熱水源H1は新たに掘削された温泉井戸であり、熱水源H2は再利用温泉水の供給施設である。なお、説明の都合上、図8中において、矢線Qで示す方向を前方と呼び、矢線Rで示す方向を後方と呼ぶ(後述する図9中においても同様とする。)。   Here, based on FIG. 8, the flow of hot water (hot spring water) in the heat exchange system 500 will be described. The heat exchange system 500 shown in FIG. 8 can heat the cultivation equipment 200 (see FIG. 1) such as an agricultural house for horticultural horticulture using hot water supplied from a plurality of hot water sources H1 and H2. it can. The hot water source H1 is a newly excavated hot spring well, and the hot water source H2 is a reuse hot spring water supply facility. For convenience of explanation, the direction indicated by the arrow Q in FIG. 8 is referred to as the front, and the direction indicated by the arrow R is referred to as the rear (the same applies to FIG. 9 described later).

図8に示すように、熱水源H1から送給された熱水(温泉水)は、熱交換システム500の中央部分(蓄熱槽511,512の間の部分)に配列された2個の熱交換槽532,533の前方部分からそれぞれの内部へ流入する。熱交換槽532,533内へ流入した熱水は、それぞれの内部を後方に向かって矢線方向に流動して行き、後方部分から、それぞれ隣接する熱水受入槽522,523の後方部分内へ流入する。   As shown in FIG. 8, the hot water (hot spring water) supplied from the hot water source H <b> 1 has two heat exchanges arranged in the central portion of the heat exchange system 500 (the portion between the heat storage tanks 511 and 512). It flows into each inside from the front part of tank 532,533. The hot water that has flowed into the heat exchange tanks 532 and 533 flows in the direction of the arrow toward the rear in the respective interior, and from the rear part into the rear part of the adjacent hot water receiving tanks 522 and 523, respectively. Inflow.

熱水受入槽522,523内へ流入した熱水は、それぞれの内部を前方に向かって流動して行き、熱水受入槽522,523の前方部分から外部へ排出される。熱水受入槽522,523から排出された熱水は所定の排水経路502を経由して処理される。   The hot water that has flowed into the hot water receiving tanks 522 and 523 flows forward in the respective interiors, and is discharged from the front portion of the hot water receiving tanks 522 and 523 to the outside. The hot water discharged from the hot water receiving tanks 522 and 523 is processed via a predetermined drainage path 502.

一方、熱水源H2から送給された熱水(再利用温泉水)は、2個の熱交換槽531,534の前方部からそれぞれの内部へ流入する。熱交換槽531,534内へ流入した熱水は、それぞれの内部を後方に向かって矢線方向に流動していき、後方部分から、それぞれ隣接する熱水受入槽521,524の後方部分内へ流入する。   On the other hand, hot water (reused hot spring water) supplied from the hot water source H2 flows into the inside from the front part of the two heat exchange tanks 531 and 534. The hot water that has flowed into the heat exchange tanks 531 and 534 flows in the direction of the arrow toward the rear in the respective interior, and from the rear part into the rear part of the adjacent hot water receiving tanks 521 and 524, respectively. Inflow.

熱水受入槽521,524内へ流入した熱水は、それぞれの内部を前方に向かって流動して行き、熱水受入槽521,524の前方部分から外部へ排出される。熱水受入槽521,524から排出された熱水は所定の排水経路502を経由して処理される。   The hot water that has flowed into the hot water receiving tanks 521 and 524 flows forward in the respective interiors, and is discharged from the front portions of the hot water receiving tanks 521 and 524 to the outside. The hot water discharged from the hot water receiving tanks 521 and 524 is processed via a predetermined drainage path 502.

図8に示す熱交換システム500において、熱交換槽531,532,533,534内へ流入した熱水は、後述するように、栽培設備から戻ってくる熱交換媒体である低温水の昇温に供される。また、熱交換槽531,532,533,534を経由して流入した温水によって昇温した熱水受入槽521,522,523,524は、それぞれ隣接する蓄熱槽511,512を保温する機能を有する。   In the heat exchange system 500 shown in FIG. 8, the hot water that has flowed into the heat exchange tanks 531, 532, 533, and 534 is used to raise the temperature of low-temperature water that is a heat exchange medium that returns from the cultivation facility, as will be described later. Provided. Moreover, the hot water receiving tanks 521, 522, 523, and 524 that have been heated by the hot water that has flowed in through the heat exchange tanks 531, 532, 533, and 534 have a function of keeping the adjacent heat storage tanks 511 and 512 warm. .

次に、図9に基づいて、熱交換システム500における熱交換媒体(温水)の流れについて説明する。図1に示す熱交換システム100と同様、図9に示す熱交換システム500と、栽培設備200と、の間には送液経路70及び復液経路90が設けられている。また、送液経路70及び復液経路90の途中には、図1に示す混合設備300が設けられている。   Next, the flow of the heat exchange medium (warm water) in the heat exchange system 500 will be described with reference to FIG. As with the heat exchange system 100 shown in FIG. 1, a liquid feeding path 70 and a condensate path 90 are provided between the heat exchange system 500 shown in FIG. 9 and the cultivation facility 200. Further, a mixing facility 300 shown in FIG. 1 is provided in the middle of the liquid feeding path 70 and the condensate path 90.

熱交換システム500は、栽培設備200との間において、送液経路70及び復液経路90を経由して、熱交換媒体(温水)を循環させることにより、栽培設備200の暖房を行う。熱交換システム500において所定温度まで加温された温水は送液経路70を経由して栽培設備(図1参照)へ供給され、栽培設備200の暖房に使用される。栽培設備の暖房に使用されることにより降温した温水は復液経路90を経由して熱交換システム500へ戻されて、所定温度まで加温され、送液経路70を経由して栽培設備へ供給される。   The heat exchange system 500 heats the cultivation facility 200 by circulating a heat exchange medium (warm water) with the cultivation facility 200 via the liquid feeding path 70 and the condensate path 90. The hot water heated to a predetermined temperature in the heat exchange system 500 is supplied to the cultivation facility (see FIG. 1) via the liquid feeding path 70 and used for heating the cultivation facility 200. The hot water cooled by being used for heating the cultivation facility is returned to the heat exchange system 500 via the condensate path 90, heated to a predetermined temperature, and supplied to the cultivation facility via the liquid supply path 70. Is done.

図9に示すように、栽培設備の暖房に使用されることにより降温した温水は復液経路90を経由して熱交換システム500に戻り、4個の熱交換槽531,532,533,534にそれぞれ内蔵された熱交換器50の後方に流入する。また、復液経路90を経由して戻ってきた温水の一部は蓄熱槽511の後方からその内部へ流入する。   As shown in FIG. 9, the hot water cooled by being used for heating the cultivation facility returns to the heat exchanging system 500 via the condensate path 90 and enters four heat exchanging tanks 531, 532, 533, 534. Each flows into the rear of the built-in heat exchanger 50. Further, a part of the warm water that has returned via the condensate path 90 flows into the heat storage tank 511 from behind.

熱交換器50に流入した温水は、熱交換器50内の後方下部側から前方上部側に向かって流動していき、この過程において、熱交換槽531,532,533,534内へ導入された熱水により昇温される。熱交換槽531,532,533,534内の熱交換器50によって所定温度まで昇温した温水は熱交換槽531,532,533,534の前方上部側から流出し、送液経路70を経由して栽培設備200へ供給され、暖房に使用される。   The warm water that has flowed into the heat exchanger 50 flows from the lower rear side toward the upper front side in the heat exchanger 50, and in this process, is introduced into the heat exchange tanks 531, 532, 533, and 534. The temperature is raised with hot water. The hot water heated to a predetermined temperature by the heat exchanger 50 in the heat exchange tanks 531, 532, 533, 534 flows out from the upper front side of the heat exchange tanks 531, 532, 533, 534, and passes through the liquid feeding path 70. Is supplied to the cultivation facility 200 and used for heating.

一方、復液経路90を経由して蓄熱槽511の後方からその内部へ流入した温水は、蓄熱槽511内を前方に向かって流動し、蓄熱槽511の前方部分から流出し、蓄熱槽512の前方部分からその内部へ流入する。蓄熱槽511,512は、これらと密着している熱水受入槽521,522,523,524によって所定温度に保温されているので、蓄熱槽511,512内に流入した温水は所定温度まで昇温され、必要に応じて、蓄熱槽512の前方から送液経路70へ送り込まれ、熱交換器50から送液経路70へ供給された温水と混合して栽培設備200へ送給される。   On the other hand, the hot water that has flowed into the heat storage tank 511 from the rear of the heat storage tank 511 via the condensate path 90 flows forward in the heat storage tank 511, flows out of the front portion of the heat storage tank 511, and flows into the heat storage tank 512. It flows into the inside from the front part. Since the heat storage tanks 511 and 512 are kept at a predetermined temperature by hot water receiving tanks 521, 522, 523, and 524 that are in close contact therewith, the hot water flowing into the heat storage tanks 511 and 512 is heated to a predetermined temperature. If necessary, it is fed from the front of the heat storage tank 512 to the liquid feeding path 70, mixed with the hot water supplied from the heat exchanger 50 to the liquid feeding path 70, and fed to the cultivation facility 200.

熱交換システム500は、蓄熱槽511(512)と熱水受入槽521,522(523,524)とを密着して配置するとともに、熱水受入槽521,522(523,524)と熱交換槽531,532(533,534)とを密着して配置しているので、占有スペースを少なくすることができる。   The heat exchange system 500 arranges the heat storage tank 511 (512) and the hot water receiving tanks 521, 522 (523, 524) in close contact with each other, and the hot water receiving tanks 521, 522 (523, 524) and the heat exchange tank. Since 531 and 532 (533, 534) are arranged in close contact with each other, the occupied space can be reduced.

また、蓄熱槽511,512、熱水受入槽521,522,523,524及び熱交換槽531,532,533,534などを地下に配置したことにより、特に、地上での占有スペースを大幅に減少させることができ、熱の散逸を抑制することができるので、熱効率も向上する。   In addition, the heat storage tanks 511 and 512, the hot water receiving tanks 521, 522, 523, and 524, the heat exchange tanks 531, 532, 533, and 534, etc. are arranged in the basement. Since heat dissipation can be suppressed, thermal efficiency is also improved.

図7に示すように、熱交換システム500において、地下に配置された熱水受入槽521,522,523,524、熱交換槽531,532,533,534及び蓄熱槽511,512などは周囲の土砂Sと接触した状態となっているので、熱交換システム500を構築した後、時間が経過すると、稼働状態にある熱水受入槽521,522,523,524、熱交換槽531,532,533,534及び蓄熱槽511,512などから発生する熱により周囲の土砂Sの温度も上昇し、熱水受入槽521,522,523,524、熱交換槽531,532,533,534及び蓄熱槽511,512などと同等の高温度となり、その状態が維持される。このため、熱の散逸を抑制する効果が非常に高く、熱効率を大幅に向上させることができる。   As shown in FIG. 7, in the heat exchange system 500, the hot water receiving tanks 521, 522, 523, 524, the heat exchange tanks 531, 532, 533, 534, and the heat storage tanks 511, 512 are arranged in the surroundings. Since it has been in contact with the earth and sand S, after the heat exchange system 500 is constructed, when time elapses, the hot water receiving tanks 521, 522, 523, 524, and the heat exchange tanks 531, 532, 533 are in operation. , 534, heat storage tanks 511, 512, and the like, the temperature of the surrounding earth and sand S also rises, hot water receiving tanks 521, 522, 523, 524, heat exchange tanks 531, 532, 533, 534, and heat storage tank 511 , 512, etc., and the temperature is maintained. For this reason, the effect which suppresses heat dissipation is very high, and thermal efficiency can be improved significantly.

また、熱水受入槽521,522,523,524、熱交換槽531,532,533,534及び蓄熱槽511,512などの周囲の土砂Sは遠赤外線放射物質Qを含んでいるので、土砂Sとともに温度上昇した遠赤外線放射物質Qから放射される遠赤外線によって土砂S中に存在する水分が効率良く昇温する結果、熱水受入槽521,522,523,524、熱交換槽531,532,533,534及び蓄熱槽511,512などの周囲の土砂Sが広範囲に亘って高温度に保たれるため、保温効果が著しく高まり、熱効率の向上に極めて有効である。   Moreover, since the surrounding earth and sand S, such as the hot water receiving tanks 521, 522, 523, and 524, the heat exchange tanks 531, 532, 533, and 534, and the heat storage tanks 511 and 512, contain the far-infrared radiation material Q, the earth and sand S At the same time, the water present in the earth and sand S is efficiently heated by the far-infrared radiation emitted from the far-infrared emitting material Q whose temperature has risen. As a result, the hot water receiving tanks 521, 522, 523, 524, the heat exchange tanks 531, 532, Since the surrounding earth and sand S such as 533 and 534 and the heat storage tanks 511 and 512 are kept at a high temperature over a wide range, the heat retention effect is remarkably enhanced, which is extremely effective for improving the thermal efficiency.

前述したように、遠赤外線放射物質Qは土砂Sを埋め戻す場合に、土砂S中に混入させることができるが、土砂S中に遠赤外線放射物質Qを多く含む土地の地下部分に熱交換システム500を構築することによっても同様の効果を得ることができる。   As described above, the far-infrared emitting material Q can be mixed in the earth and sand S when the earth and sand S is backfilled, but the heat exchanging system is installed in the underground portion of the land containing the far-infrared emitting material Q in the earth and sand S. The same effect can be obtained by constructing 500.

なお、図1〜図9に基づいて説明した熱交換システム100,500は本発明の一例を示すものであり、本発明の熱交換システムは前述した熱交換システム100,500に限定されるものではない。   In addition, the heat exchange system 100,500 demonstrated based on FIGS. 1-9 shows an example of this invention, and the heat exchange system of this invention is not limited to the heat exchange system 100,500 mentioned above. Absent.

本発明の熱交換システムは、地熱水や工場排水などの高温水を利用して、植物を栽培したり、魚介類を養殖したり、建物の空調設備を構築したりすることが可能であり、農業、漁業、建設業などの分野において広く利用することができる。   The heat exchange system of the present invention is capable of cultivating plants, cultivating seafood, and constructing air conditioning facilities of buildings using high-temperature water such as geothermal water and factory effluent. It can be widely used in fields such as agriculture, fishing and construction.

1 気水分離器
2 発電機
3 送電設備
4 冷水源
5 水タンク
6 圧力制御装置
7,8 ディストリビュータ
9,V1,V2 三方バルブ
10,511,512 蓄熱槽
12 自動エア抜き弁
13,23,33 温度計
14 ポンプ
20,521,522,523,524 熱水受入槽
21 入湯経路
22 排湯経路
30,531,532,533,534 熱交換槽
40a,40b 副熱交換器
41,42 液体循環経路
50 熱交換器
52 出湯経路
53 入水経路
56 チューブ
57 保持板
58 チャンバ部
70 送液経路
80 洗浄槽
90 復液経路
100,500 熱交換システム
200 栽培設備
300 混合設備
501 基礎体
502 排水経路
511a,512a 架台
511b,512b 周壁
511c,512c 軸心
511d,512d 最上部
521u,522u,523u,524u 熱水受入槽の上面
531a,532a,533a,534a 熱交換槽の上面
F フック
H,H1,H2 熱水源
Q 遠赤外線放射物質
S 土砂
W1,W2,521a,522a,523a,524a 壁体
X 治具
DESCRIPTION OF SYMBOLS 1 Air-water separator 2 Generator 3 Power transmission equipment 4 Cold water source 5 Water tank 6 Pressure control device 7,8 Distributor 9, V1, V2 Three-way valve 10,511,512 Heat storage tank 12 Automatic air vent valve 13,23,33 Temperature Total 14 Pump 20,521,522,523,524 Hot water receiving tank 21 Hot water path 22 Hot water path 30, 531, 532, 533, 534 Heat exchange tank 40a, 40b Sub heat exchanger 41, 42 Liquid circulation path 50 Heat Exchanger 52 Hot water supply route 53 Water supply route 56 Tube 57 Holding plate 58 Chamber part 70 Liquid supply route 80 Washing tank 90 Condensate route 100,500 Heat exchange system 200 Cultivation equipment 300 Mixing equipment 501 Base body 502 Drainage paths 511a, 512a Base 511b 512b Peripheral walls 511c, 512c Axes 511d, 512d Upper part 521u, 522u, 523u, 524u Upper surface of hot water receiving tank 531a, 532a, 533a, 534a Upper surface of heat exchange tank F Hook H, H1, H2 Hot water source Q Far infrared radiation substance S Earth and sand W1, W2, 521a, 522a, 523a, 524a Wall body X Jig

Claims (11)

熱交換媒体である液体を収容可能な蓄熱槽と、熱水源から供給された熱水を収容するため伝熱性を有する壁体を挟んで前記蓄熱槽に隣接して設けられた熱交換槽と、前記熱交換槽内に配置された熱交換器と、伝熱性を有する壁体を挟んで前記熱交換槽に隣接して設けられた熱水受入槽と、前記熱交換槽内の前記熱交換器の下部側から上部側に流動することによって昇温した前記熱交換器内の液体と前記蓄熱槽に収容された液体とを混合して暖房対象領域へ送給する送液経路と、前記暖房対象領域を通過して降温した液体を前記熱交換器及び前記蓄熱槽に戻す復液経路と、を備えた熱交換システム。   A heat storage tank capable of storing a liquid which is a heat exchange medium, a heat exchange tank provided adjacent to the heat storage tank with a wall having heat conductivity in order to store hot water supplied from a hot water source, A heat exchanger disposed in the heat exchange tank, a hot water receiving tank provided adjacent to the heat exchange tank across a wall having heat conductivity, and the heat exchanger in the heat exchange tank The liquid supply path for mixing the liquid in the heat exchanger that has been heated by flowing from the lower side to the upper side and the liquid stored in the heat storage tank and feeding the mixed liquid to the heating target area, and the heating target A heat exchange system comprising: a condensate path for returning the liquid that has cooled down through the region to the heat exchanger and the heat storage tank. 熱交換媒体である液体を収容可能な蓄熱槽と、伝熱性を有する壁体を挟んで前記蓄熱槽に隣接して設けられた熱水受入槽と、伝熱性を有する壁体を挟んで前記熱水受入槽に隣接して設けられた熱交換槽と、前記熱交換槽内に配置された熱交換器と、前記熱交換槽内の前記熱交換器の下部側から上部側に流動することによって昇温した前記熱交換器内の液体と前記蓄熱槽に収容された液体とを混合して暖房対象領域へ送給する送液経路と、前記暖房対象領域を通過して降温した液体を前記熱交換器及び前記蓄熱槽に戻す復液経路と、を備えた熱交換システム。   A heat storage tank capable of accommodating a liquid as a heat exchange medium, a hot water receiving tank provided adjacent to the heat storage tank with a wall body having heat conductivity interposed therebetween, and the heat having the wall body having heat conductivity interposed therebetween. By flowing from the lower side to the upper side of the heat exchanger in the heat exchange tank, the heat exchanger disposed in the heat exchange tank, the heat exchange tank provided adjacent to the water receiving tank The liquid in the heat exchanger that has been heated and the liquid stored in the heat storage tank are mixed and fed to the area to be heated, and the liquid that has cooled down after passing through the area to be heated is heated. A heat exchange system comprising: an exchanger and a condensate path returning to the heat storage tank. 前記蓄熱槽、前記熱水受入槽及び前記熱交換槽を土砂で埋設された状態とした請求項1または2に記載の熱交換システム。   The heat exchange system according to claim 1 or 2, wherein the heat storage tank, the hot water receiving tank, and the heat exchange tank are embedded in earth and sand. 前記土砂が、前記蓄熱槽、前記熱水受入槽若しくは前記熱交換槽からの放熱により昇温して遠赤外線を放射する機能を有する遠赤外線放射物質を含むものである請求項3記載の熱交換システム。   The heat exchange system according to claim 3, wherein the earth and sand include a far-infrared emitting material having a function of emitting a far-infrared ray by raising the temperature by heat radiation from the heat storage tank, the hot water receiving tank or the heat exchange tank. 前記熱交換器にて昇温した液体と前記蓄熱槽に収容された液体との混合比率を変更するためのバルブを設けた請求項1〜4のいずれかの項に記載の熱交換システム。   The heat exchange system according to any one of claims 1 to 4, further comprising a valve for changing a mixing ratio between the liquid heated by the heat exchanger and the liquid stored in the heat storage tank. 前記送液経路内を流動する液体若しくは前記復液経路内を流動する液体の少なくとも一方を加圧する加圧手段を設けた請求項1〜5のいずれかの項に記載の熱交換システム。   The heat exchange system according to any one of claims 1 to 5, further comprising a pressurizing unit that pressurizes at least one of a liquid flowing in the liquid feeding path or a liquid flowing in the condensate path. 前記熱交換槽に供給される熱水の一部を用いて液体を加温可能な副熱交換器と、前記送液経路を流動する前記液体の一部を取り出して前記副熱交換器にて加温して前記送液経路に戻す液体循環経路と、を設けた請求項1〜6のいずれかの項に記載の熱交換システム。   In the auxiliary heat exchanger capable of heating the liquid using a part of the hot water supplied to the heat exchange tank, and taking out a part of the liquid flowing in the liquid feeding path in the auxiliary heat exchanger The heat exchange system according to any one of claims 1 to 6, further comprising a liquid circulation path that warms and returns the liquid to the liquid supply path. 前記熱交換器が前記熱交換槽内に出し入れ可能である請求項1〜7のいずれかの項に記載の熱交換システム。   The heat exchange system according to any one of claims 1 to 7, wherein the heat exchanger can be taken in and out of the heat exchange tank. 前記熱交換槽から取り出した前記熱交換器を収容して洗浄するための洗浄槽を前記熱交換槽の近傍に設けた請求項8に記載の熱交換システム。   The heat exchange system according to claim 8, wherein a washing tank for accommodating and washing the heat exchanger taken out from the heat exchange tank is provided in the vicinity of the heat exchange tank. 前記熱交換器が互いに連結分離可能な複数の熱交換ユニットで形成された請求項1〜9のいずれかの項に記載の熱交換システム。   The heat exchange system according to any one of claims 1 to 9, wherein the heat exchanger is formed of a plurality of heat exchange units that can be connected and separated from each other. 前記熱交換槽に前記熱交換器を目視可能な視認窓を設けた請求項1〜10のいずれかの項に記載の熱交換システム。   The heat exchange system according to any one of claims 1 to 10, wherein a visual recognition window through which the heat exchanger can be viewed is provided in the heat exchange tank.
JP2015247598A 2015-02-27 2015-12-18 Heat exchange system Active JP6046233B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015039013 2015-02-27
JP2015039013 2015-02-27

Publications (2)

Publication Number Publication Date
JP2016164482A true JP2016164482A (en) 2016-09-08
JP6046233B2 JP6046233B2 (en) 2016-12-14

Family

ID=56876125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015247598A Active JP6046233B2 (en) 2015-02-27 2015-12-18 Heat exchange system

Country Status (1)

Country Link
JP (1) JP6046233B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219159A (en) * 2018-06-19 2019-12-26 株式会社 トラストプラン Waste hot water heat regenerator and waste hot water heat regeneration system using the same
CN113179820A (en) * 2021-04-30 2021-07-30 上海市园林设计研究总院有限公司 Outdoor heating system for adjusting landscape microclimate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264721A (en) * 2008-04-23 2009-11-12 Takahashi Kanri:Kk Earth solar system (single layer type)
DE102009006240A1 (en) * 2009-01-27 2010-08-05 Ilsetraud Kalkschmidt Combined heat accumulating system for use as energy source, particularly for buildings, has controller, tank that is arranged in ground, and heat pump that is connected with heat exchanger
JP2015152236A (en) * 2014-02-14 2015-08-24 株式会社守谷商会 Underground heat collection system and underground heat cooling/heating or hot water supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264721A (en) * 2008-04-23 2009-11-12 Takahashi Kanri:Kk Earth solar system (single layer type)
DE102009006240A1 (en) * 2009-01-27 2010-08-05 Ilsetraud Kalkschmidt Combined heat accumulating system for use as energy source, particularly for buildings, has controller, tank that is arranged in ground, and heat pump that is connected with heat exchanger
JP2015152236A (en) * 2014-02-14 2015-08-24 株式会社守谷商会 Underground heat collection system and underground heat cooling/heating or hot water supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219159A (en) * 2018-06-19 2019-12-26 株式会社 トラストプラン Waste hot water heat regenerator and waste hot water heat regeneration system using the same
CN113179820A (en) * 2021-04-30 2021-07-30 上海市园林设计研究总院有限公司 Outdoor heating system for adjusting landscape microclimate
CN113179820B (en) * 2021-04-30 2023-09-01 上海市园林设计研究总院有限公司 Outdoor heating system for adjusting landscape microclimate

Also Published As

Publication number Publication date
JP6046233B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
US8096293B2 (en) Water-heating system
US8833076B2 (en) Thermal storage system
SE534695C2 (en) Accumulator
RU2651276C1 (en) Soil heating device
JP6046233B2 (en) Heat exchange system
RU2694696C2 (en) Cooling device for cooling of fluid medium by means of surface water
KR101438680B1 (en) Aqua Firm System using waste heat, geothermal and sea water for controlling water temperature
KR102070359B1 (en) Aquaponics system by applying heat pump for water temperature optimization for growth and development
KR101278146B1 (en) Cultivating system of seaweed using hot discharging water of power plant
KR20160011724A (en) Hybrid plain to complex use of air heat and solar thermal
RU93208U1 (en) GREENHOUSE WITH HEATED SOIL FROM SOLAR RADIATION ENERGY
KR101151016B1 (en) Hot air blowing apparatus using thermal storage oil
JP2014054222A (en) Greenhouse temperature control system
RU2733229C1 (en) Greenhouse with night heating by solar energy
CN104392751A (en) Steam generator capable of avoiding emission of radioactive materials
KR101551650B1 (en) The system of simultaneously employing cooling device and heat pumping device using the heat of storage water
JP2016086806A (en) Air conditioner of greenhouse for plant cultivation
CN203369249U (en) Automatic temperature control and heat exchange device for fish seedling cultivation
KR20130058092A (en) Heating system using thermal storage tank
JP2003116355A (en) Plant culturing container
RU110228U1 (en) INSTALLATION FOR CULTIVATION OF SEA HYDROBIONTS
KR20150081739A (en) Thermal storage container and transport-type thermal storage system using thereof
US20140311707A1 (en) Method and apparatus for enhancing heat transfer in a fluid container
JP2007300815A (en) Culture medium sterilization system
JP6599712B2 (en) Cultivation equipment with plant temperature control mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160902

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161116

R150 Certificate of patent or registration of utility model

Ref document number: 6046233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250